UNCLASSIFIED

AD NUMBER

ADB302442

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies only; Administrative/Operational
Use; MAY 2004. Other requests shall be
referred to Director, U.S. Army Materiel
Systems Analysis Activity, Aberdeen
Proving Ground, MD 21005-5071.

AUTHORITY

AMSRD 1ltr, 18 Jul 2005

THIS PAGE IS UNCLASSIFIED




MSAA

Excellence in Analysis

TECHNICAL REPORT NO. TR-751

AMSAA MATURITY PROJECTION MODEL
"~ BASED ON STEIN ESTIMATION

| July 2004

DISTRIBUTION LIMITED TO U.S. GOVERNMENT AGENCIES ONLY; ADMINISTRATIVE OR
OPERATIONAL USE; MAY 2004. OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED
TO DIRECTOR, U.S. ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY, APG, MD 21005-5071.

U.S. ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY
ABERDEEN PROVING GROUND, MARYLAND 21005-5071




DESTRUCTION NOTICE

Destroy by any method that will prevent disclosure of contents or reconstruction of the
document.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army
position unless so specified by other official documentation.

WARNING
Information and data contained in this document are based on the input available at the time of preparation.
TRADE NAMES

The use of trade names in this report does not constitute an official endorsement or approval of
the use of such commercial hardware or software. The report may not be cited for purposes of
advertisement.




REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average | hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data
needed, and cormpleting and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden
to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,

Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE

July 2004 Technical Report

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

AMSAA Maturity Projection Model based on Stein Estimation.

6. AUTHOR(S)

Paul M. Ellner, J. Brian Hall

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Director

U.S. Army Materiel Systems Analysis Activity
392 Hopkins Road

Aberdeen Proving Ground, MD 21005-5071

8. PERFORMING ORGANIZATION
REPORT NUMBER

TR-751

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Director

U.S. Army Materiel Systems Analysis Activity
392 Hopkins Road

Aberdeen Proving Ground, MD 21005-5071

10. SPONSORING/MONITORING
AGENCY REPORT NUMBRER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Distribution limited to U.S. Government agencies only; administrative or
operational use; May 2004. Other requests for this document shall be referred to

Director, U.S. Army Materiel Systems Analysis Activity, APG, MD 21005-
5071

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

15, NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION OF 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
REPORT OF THIS PAGE OF ABSTRACT S AME AS REPORT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

298-102

i

20040527 04)




THIS PAGE INTENTIONALLY LEFT BLANK.

ii




CONTENTS

PAGE

LIST OF FIGURES .....oooticteeiteeieeeereetenveesessnessessnnestseseessssessesssasasesssssssessessesesaes v
LIST OF TABLES ... eeeteceerteeerteeeetssse et s sestasatessnastesssessnsessessnsanssensessesssnsnnes v
ACKNOWLEDGEMENTS ......ooceeeterrerrrerstestesrnessesensresesasesssassssessessssssssessnas vii
LIST OF ACRONYMS .....oeieeteceetesresneesesaesstasstesenessessaassessseessssnssnsessasssnnns ix
LIST OF NOTATION ....cutieieeereecireereereentnesteessesssasstesssesssseessssassssssssssesnsessssssnes Xi
EXECUTIVE SUMMARY ..ooooteeiieitreriinttierereieesssessesssesssesessasssssessssessssssasensaens 1
1.1 Problem Statement..........cccociiieiriiiiieiiinreeenree et esreesesneeessssseesessnsesssesesaessnns 1
1.2 OVEIVIEW ....uteierieeeiiereeetesrereteeseeassnesaseseseaseaessaessstasssessssasssssnssssssssesssasssesssens 1
1.3 Features Of AMPM-SteIN....cocieieiiiienieieieetteeieeseteseteeseneesstneessessseasssessssesssens 2
1.4 RESUIS .t eecree e e et cer e e s e e e s eaae s e taaesssaee s s eresasnsaesersssessnsasassneessnnes 2
INTRODUCTION ....ootiitieriereerrcreeeeeteseesssssnassaessessssessassssesssessssessessssssessesssssseens 3
2.1 Reliability Growth Terminology......ccoccceerverrcrniierniircrircre e tee e esseesseesnses 3
2.2 Areas of Reliability GrOWth......ccccceeiieiiiiniiriiiectiesieeteeee e sereeeesasessesaeens 3
2.3 A Brief History of Reliability Growth Projection..........ccccceceveereriveveecvesverennnens 4
2.4 The International Electrotechnical COmmISSION.......c.ceveveeerrvreerueereiervesseeseeenne 5
2.5 Role of Mode Classification in Current Models.........ccooceeevivievvnecnecreninnennenns 5
2.6 StUAY OVEIVIEW ...oouiiriirieiinienceriteneeieeeerteeeesteseenesaeessssanessessaesessassesaanssssansan 6
2.7 The AMPM based on Stein ESHMAtioN .......ccoveerveerireveerececireneereeeeessreneeenenes 6
2.8 Features 0f AMPM-SteIN...coociiviiieireerreiitecirieeesreeceresireesesneseseesssesssnesssessnsessens 6
2.9 MathemMatiCa. . cccuiieeereerieeeeesieesaeeeiteesaeaeteaseeesssaesenesesassasssessseessssssnsensesssnessnns 7
COMPARISON OF AMPM-STEIN AND CURRENT MODELS ..........cccoveuu..... 8
3.1 Differences in Technical APProach ........ccecveeeevveeeiiecereecieeeeeecerecreeve e e 8
3.2 Stein Approach to Projection using One Classification............cceevveereenrernenne. 10
3.3 Stein Approach to Projection using Two Classifications ..........cccvereevecreenennans 13
3.4 Failure Rate due to Unobserved Modes as & —> 00 ....ccocevveieiecreeeecnrecrvecnnns 14
3.5 AMPM-Stein Approximation using MLE ........cccocerviviievinvienienieneneeeereneennen 16
3.6 AMPM-Stein Approximation using MME ..........ccccovivivrnrninreeeeeeceeene, 19
3.7 Cost versus Reliability Tradeoff Analysis......cccceccevrveeeiirrceeccincenereeeecrene 24
SIMULATION......cuttieeteeeetecereereeeetteereeeseeesseseesesesssssesesesssessssssssssessnsessssssnesstonn 25
4.1 SIMUlAtiON OVETVIEW ....eeeeerveerieeriienrrecrrreeiseeeeeeeesseeesseressaessssesssseesscsssaionsssnne 25
4.2 Data GENeration .........ccocvevveririeintentnieieeit e s erens 25

4.2.1 Simulation INPULS ....c.coeeeeeieiierinecteener et eaene e 25

4.2.2 Distribution Parameters and PDFSs ......cccccovcviiirvericvivineiceeseereeeeees 27

4.2.3 Fallure RAteS....cccuveeeeriieeeeiieecteeeeeereee e e e evaee e st s eseeesaneesnseees 30

4.2.4 Generating Uniform Random Numbers .........cccoceeceevveinvineevencesvernennnnas 31

4.2.5 First Occurrence TIMES .......eccveeereererririeinrireenveeesnresenreereeracesseesssiseaens 32

4.2.6 Fix Effectiveness FACtOrS ......ccecvveererereireerenereeeineccesecsreeeveessesvesesnesne 33

iid




4.2.7 FallUIE TIMIES ..ottt s e seesstttessessessstassessesessastneeeeeennesmenene 34

4.2.8 Data Structures — Two Classifications .......c.ceeeveeeervcenenvienvineneceeneenes 37
4.2.9 Data Structures — One Classification.......c.coeveerevcrenvercnrecncnennienennnnns 37
4.3 Projection MOGEIS ....c.coceviiriicieniiiiirenicrceni et 38
4.3.1 AMPM-Stein using Two Classifications........ccccevereereecrereenecrevncreennenes 38
4.3.2 AMPM-Stein using One Classification........ccccvevvecvereneneninnnieniennnn 40
4.3.3 AMSAA-Crow using Two Classifications........ccccceeceevemvvrcverenceenunennn. 41
4.3.4 AMSAA-Crow using One Classification........cccceceeverceencencnnencvennnenne. 42
4.4 Reliability ProOJeCtions.....cceeveierierieeieneeireeiesteserereeetesee e eeeessesutesnesseensesseens 43
4.4.1 MME using Two Classifications.......c.ccceceeeeerercurnerseeneenreenerieennennnens 43
4.4.2 MME using One ClassifiCation ......cccccceceereerecenniennienicnrieenes e e 44
4.4.3 MLE using Two Classifications........cccceeveevrerreniesieenienennnrnnnreseeenenns 45
4.4.4 MLE using One ClassifiCation .........ccueeeremierrneecncninceeneenenieenencenes 46
4.5 ReClassifICAtION ..vecviriiruirrirererieriesererrie st ettt esee e et set e s e s seesbesaeas 48
4.5.1 Reclassifying A-modes — Two Classifications......c..cccecevvrrcvrerierenee. 48
4.5.2 Reclassifying A-modes — One Classification.......c.ccceceveveenenincrnnnene 49
4.6 Reliability Projections after Reclassification.........c.ceeevvevvevenenenenenereesnenn. 49
4.6.1 MME using Two Classifications......c..coceeeeveererrenircerenrenenenenieenennnnns 49
4.6.2 MME using One Classification ......c.ccoceevereeseenienreninneninieneneneseeeeenes 50
4.6.3 MLE using Two ClassifiCations........c.cceveveevueerenereercrinencreeenesenees 51
4.6.4 MLE using One Classification .......cccccceoverereceneneeinieneeneeneneeneeeeenen,s 52
4.7 SImulation RESUlS ......ccoeviiririiiieniricen ettt 54
4.7.1 Storing ReSUILS .....ceevriiiriieieeinrieee ettt 54
4.7.2 Displayed ReSUILS .....ccuevvuerieiirirrieeniieree ettt 56
ANALYSIS AND RESULTS ...ttt sttt esa e s 57
5.1 Results using Gamma Failure Rates ........ccceveemeieniiieniinsicciienteieeieeiie e 57
5.2 Results using Weibull and Lognormal Failure Rates ......cc.occeceeerivieeenenenn. 61
REFERENCES ..ottt et sse sttt nees e seeseste s sae e essasssnsens 62
APPENDIXES
A — WEIBULL RESULTS ...ooiiiieeinenteeretet ettt ae s eae s 63
B — LOGNORMAL RESULTS ...ttt eeresieeeete et aenasenerasve 67
C -~ DERIVATION OF THE STEIN SHRINKAGE FACTOR.......cccccecvrvirinninens 71
D — DISTRIBUTION LIST ..oteotioieietenientisterieteeecresreecees s ssese e saesesnesens 79

iv




O 00 1O\ U bW =

W W NN N R RN NN
SRR RN RS VI N M - v~ yil iyl e e

LIST OF FIGURES

Title Page
Gamma PDF and Parameters ........cceccevveecernnnreneenerneneeciesreesiesseceseeseessessanessenns 28
Lognormal PDF and Parameters...........cveeerreriererennecieceneneiesseseesseesessssssesssnne 29
Weibull PDF and Parameters.........ccovceeiieriiiciminriiciieciiintest st ssnenees 29
Distribution of Most Accurate Projection — Two Classifications (Gamma).......... 60
Distribution of Most Accurate Projection — Two Classifications (Weibull) ......... 65

Distribution of Most Accurate Projection — Two Classifications (Lognormal) ....69

LIST OF TABLES

Title Page
SIMUIALON INPULS .. .cuveveveeeeerererereeresreseeseesteeae e sesesessssassseesessssasssesessssssssesesesssnnes 26
A and B-Mode Failure Rates ......ccccceerierviieenieeniireeeenseeseneessreesnsesessaessnessessssessaees 31
Uniform Random NUMDETS.......ccccevveirieniirinientereiricreesecnree e seassessessnssssensnans 32
First OCCUITence TIMES.......eeciireerrieeeieisiieeieereieeesee s seecesaese e e s sanassaseseesssaassnees 33
Fix Effectiveness FACtOrS.....ccciviiiieeiieniiirierecieeeiessie s s sereereaesevnnesne e e s s snees 34
Fallure TimMES ....cocveerieerercieiiereceieese st et ste s sae st e s s san e ses s e s sae e e e sssesanesessnensanen 35
MTBF — TWO ClassifiCatIOns......cccecevreenueerrireesreeneineseieeeestessssssnessessasssessssssenns 56
MTBF — One ClassifiCation.........cccvvevreenereienieennieneenseeereeestesseesssesssesssessessssssssssons 56
MTBF — Two Classifications (Reclassification).........ccecceeevvrereircirnreeesnenvensnennns 56
MTBF — One Classification (Reclassification)......ccocceeeieereieesnneesrenneeeissessenessennns 56
Simulated/Surfaced Failure Modes (Gamma) .......c.ccccoeeeveeerirenicneeereeseenereseeennens 57
GammMa ParameterS .......cooiieeiiiereiiereeiieiieieeeeessteesssseesesseetasesseaasessnaessnssssssssessesnns 58
MTBF — Two Classifications (Gamma) .........ccceeeerreuieecrieessreesinessereneessasssssesesons 58
MTBF — One Classification (Gamima)........cccecveerereeerrreenseresneesrueesneessesssessseessenn 59
MTBF ~ One Classification (Reclassified) (Gamma) .......ccccceeevreeevveenrrerneerneenenns 59
MTBF Variance — Two Classifications (Gamma)........cceevceveveeesvereeessneceseessesssenns 59
MTBF Variance — One Classification (Gamma) .........ccceeveveeeeerereesererneeneesseessnes 59
MSE — Two Classifications (Gamima) ........c..ccecereeverieveersieensieeseensseeseeessessssessees 60
MSE — One Classification (Gamima) .........ceeceereeereerenesiereseessessisesseesvasssesssssesssenns 60
Simulated/Surfaced Failure Modes (Weibull) ......ccocoeecievvnnieniinreneeeeceeeene, 65
WeEIbUll Parameters......c.coceeieriuerierieeeeciecteeetrerecsee e sse e esesa s e eseeseessesnsensenns 65
MTBF — Two Classifications (Weibull) .......cccccovieriiiinveninneniesercnrreseveeeneseenns 65
MTBEF — One Classification (Weibull) ......cccocceeeiievciniiiinnenniieereeeeceeceeecssen 65
MTBF — One Classification (Reclassified) (Weibull) ......cccocevveveevinienecireecnnnns 65
MTBF Variance — Two Classifications (Weibull)........cccccvveveecieceeciicrcnececne. 65
MTBEF Variance — One Classification (Weibull).....cc.oeeevieeiveeceieiinceeeicieeeee 65
MSE - Two Classifications (Weibull).......cccoeceeinieniieiieniieirreceeeeeceeceeeeee e 65
MSE - One Classification (Weibull) ........ccoceiviininnirnienieieeeciesesreecreeeeseseenens 65
Simulated/Surfaced Failure Modes (Lognormal) .........ccccceeiiiiceeieciecninrcinecienens 69
Lognormal Parameters ........ccceveriireererntireerneecinrectesteeeeseeseesssesesssessessesssssessenses 69
MTBF — Two Classifications (Lognormal) ......ccccceeeerevierrrrnrenrieneneeneereeeresennes 69




32
33
34
35
36
37

MTBF — One Classification (Lognormal).......cccceoevieniiniiinieneninniineeeseeennns 69

MTBF - One Classification (Reclassified) (Lognormal) .........ccccoeivieinivincnnnnnn. 69
MTBF Variance — Two Classifications (Lognormal)..........ccoevierenininiininiennnnn. 69
MTBF Variance — One Classification (Lognormal) ........ccoceeviveeiiiiininineninns 69
MSE — Two Classifications (Lognormal)......c.cecceeeevmieniiiniiiineineeeieenas 69
MSE — One Classification (Lognormal) .......ccccceoereervirmniniinnienieeneeiceeeene 69

vi




ACKNOWLEDGEMENTS

The U.S. Army Materiel System Analysis Activity (AMSAA) recognizes the
following individuals for their contributions to this report.

The authors are:

Paul M. Ellner, Logistics Analysis Division.
J. Brian Hall, Logistics Analysis Division.

Appreciation is extended to Jane Krolewski, and David Mortin, Logistics
Analysis Division, for critical comments and assessment of this report.

The authors with to give special thanks to Mr. George Hanna, a former colleague
at AMSAA, for suggesting the Stein approach, and deriving the equation for the Stein
shrinkage factor.

vii




THIS PAGE IS INTENTIONALLY LEFT BLANK.

viii




AMSAA
AMPM
A-Mode
B-Mode

COTS
CRGM

DRGM

FEF
FOT

GFE

IEC
ISO

MLE
MME
MSE
MTBF

PDF

RGM
RGP

LIST OF ACRONYMS

Army Materiel Systems Analysis Activity
AMSAA Maturity Projection Model
A failure mode that will be addressed by corrective action

A failure mode that will not be addressed by corrective action

Commercial Off-The-Self
Continuous Reliability Growth Model

Discrete Reliability Growth Model

Fix Effectiveness Factor
First Occurrence Time

Government Furnished Equipment

International Electrotechnical Commission
International Standards Organization

Maximum Likelihood Estimation or Maximum Likelihood Estimate
Method of Moments Estimation or Method of Moments Estimate

Mean Square Error
Mean Time Between Failure

Probability Density Function

Reliability Growth Management
Reliability Growth Program

ix




THIS PAGE IS INTENTIONALLY LEFT BLANK.




LIST OF NOTATION
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1. EXECUTIVE SUMMARY.

1.1 Problem Statement.

The reliability growth of a complex system involves surfacing and analyzing failure
modes and implementing corrective actions, (termed fixes) during or following a developmental
test phase. At the end of a test phase, program management usually desires an assessment of the
system’s reliability associated with the current configuration. Such an assessment can be derived
from failure data observed in the test phase, and assessments of the corrective actions to failure
modes surfaced during the test period. Such assessments of system reliability have been referred
to as projections. Current projection methods distinguish between failure modes that will be
addressed by a fix if observed (termed B-modes) and those that will not be fixed (A-modes). The
estimate of current system reliability depends upon this mode classification. In particular,
estimates of the rate of occurrence of B-modes based on B-mode first occurrence times and of
the presumed constant A-mode failure rate are required to assess system reliability. It would
seem desirable and more natural to base the projection of system reliability on estimates that do
not depend on such a classification scheme, but merely on failure mode test phase data and the
assessed effectiveness of the failure mode corrective actions. Such a projection would only
distinguish between failure modes on the basis of their assigned fix effectiveness factors (the
expected fraction reductions in the failure mode rates of occurrence due to corrective actions).
Modes currently not included in planned or realized corrective actions would be assigned a zero
fix effectiveness factor. For situations where fixes to surfaced failure modes will be delayed until
the conclusion of the test phase, such a projection method would be helpful in conducting a
reliability versus cost tradeoff analysis with regard to deciding which modes to fix. In this paper
a projection method is presented that can treat failure modes in such a unified manner for the
case where all corrective actions are delayed until the end of the test phase. Also, the estimation
procedure will be shown to be closely related to a Stein estimator that satisfies an expected
squared-error loss optimality criterion for estimating a vector composed of the unknown mode

initial failure rates.

1.2 Overview.

Assessment methods are presented for projecting the impact of corrective actions, or
fixes, on system reliability. The presented approach to reliability projection, referred to as
AMPM-Stein, addresses the case where all fixes are delayed to the end of the current test phase.
The assessment procedure allows for a unified treatment of failure modes. The procedure when
applied in this fashion only distinguishes for estimation purposes between modes for which a fix
would be attempted if surfaced (B-modes), and those that would not be addressed with a fix even
if surfaced (A-modes), through assigned positive and zero fix effectiveness factors for surfaced
B-modes and A-modes, respectively. A projection procedure that can treat failure modes in such
a unified manner is necessary in cases where it is not realistic to divide the potential failure
modes into an inherent set of A-modes and B-modes. In many instances A-modes are not
inherent. Modes could be reclassified from A to B due to repeat occurrences and the necessity of
meeting a reliability requirement, additional information, or changes in the level of resources
available for corrective action. A unified treatment also lends itself to performing trade-off
analyses between reliability improvement and the associated corrective action implementation




costs. The AMPM-Stein procedure can also be applied to the case addressed by widely used
projection methods for which there is an assumed inherent division between potential failure
modes with respect to A-mode/B-mode categorization.

1.3 Features of AMPM-Stein.

The model allows for a unified treatment of failure modes. This permits one to conduct a
trade-off analysis between reliability improvement and incremental cost since failure modes are
only distinguished through their FEFs. A second feature of AMPM-Stein is that all failure data
is utilized in estimating model parameters. Third, the new model only needs to assess FEFs
associated with the surfaced modes — there is no need to consider FEFs for unsurfaced modes.
In particular, AMPM-Stein does not have to assess an average FEF for all the modes that would
receive corrective action if surfaced. Finally, AMPM-Stein avoids inaccuracies in assessments
that can arise in projection methods which utilize A-mode and B-mode classification. Such
inaccuracies can occur if modes initially considered A-modes are switched to B-modes. Modes
can be reclassified for a variety of reasons. A few reasons include a numerous repetition of A-
mode failures, a more accurate diagnosis of a failure mode, and increased funding.

1.4 Results.

Current simulation results indicate greater accuracy with regard to the MTBF estimates
can be achieved by the AMPM-Stein approach even when an A-mode/B-mode split is valid. In
particular, these simulation results indicate that the AMPM-Stein MTBF projections obtained for
this case tend to be more accurate than those obtained from the reliability projection method
adopted as a standard by the International Electrotechnical Commission, namely the AMSAA-
Crow model. Also the simulations indicate that the AMPM-Stein MTBF assessments based on
the simple closed form parameter estimators obtained from the method of moments are almost as
accurate as the AMPM-Stein assessments that utilize the more computationally intensive
maximum likelihood estimators. The AMPM-Stein approach has several additional appealing
characteristics. In contrast to current projection methods, the approach precludes the need to
assess the arithmetic average of the fix effectiveness factor values that would be realized if all B-
modes were to be surfaced. It only requires assessment of FEFs for the surfaced modes that will
be mitigated. In addition, the AMPM-Stein approach naturally leads to an expression for the
portion of the mitigated system failure rate due to the unsurfaced modes (or unsurfaced B-modes
for two classifications). Thus no functional form for this failure rate need be assumed.




2. INTRODUCTION.

2.1 Reliability Growth Terminology.

Initial prototypes of complex systems incorporating new, and often unproven,
technological advances will inevitably possess reliability defects. The same is true even for
prototypes that consist of the integration of existing systems. These known, and often unknown,
defects are identified and examined in developmental and operational testing of the system, and
are referred to as failure modes. Failure modes are the root causes of potential reliability
deficiencies in a system. Failure modes are typically unforeseen problems, and have associated
failure mechanisms. Corrective actions, or fixes, are measures which are taken to address these
problem failure modes. More specifically, corrective actions alter the design, maintenance,
operational procedures, or the manufacturing process of an item for the purpose of improving its
reliability. To model the reliability improvement resulting from a corrective action, we use Fix
Effectiveness Factors (FEFs). A fix effectiveness factor (FEF) is the expected fraction reduction
in initial mode failure rate due to corrective action. Corrective actions are typically reserved for
failure modes which exhibit one or more failures during testing, which are referred to as surfaced
modes, or observed modes. Unsurfaced modes, or unobserved modes, are failure modes which
did not trigger a failure during the test phase. Of particular interest, is the time of first failure for
a given mode, which is referred to as the First Occurrence Time (FOT). In addition, mode
failures beyond the FOT are referred to as repeats.

Clearly, this categorization of surfaced and unsurfaced modes is based on the perspective
of the mode failure pattern; that is, either the mode exhibits a failure or it does not. Failure
modes are also categorized from a reliability improvement point-of-view; that is, either a
corrective measure will be taken to address a reliability deficiency, or it will not. This leads to
two types of failure modes, namely B-modes and A-modes. B-mode failures are the set of all
failure modes for which a corrective action would be implemented if the mode is surfaced. The
remaining failure modes, the set of all unsurfaced and surfaced modes where corrective measures
are not pursued, are referred to as A-mode failures. There are a number of reasons why some
surfaced modes are classified as A-modes. A few of these reasons include, the fix may not be
economically justifiable, the surfaced mode may be related to Government Furnished Equipment
(GFE), or a Commercial-Off-The-Shelf (COTS) item (whose failure rate is known or accepted),
or the diagnosis of the underlying failure mechanism may be unclear.

2.2 Areas of Reliability Growth.

To uncover and mitigate potential reliability deficiencies, early prototypes and later more
mature units are subjected to a series of developmental and operational tests. The tests are
specifically designed to expose the system to the envelope of stresses and operating conditions
that are expected to be experienced during the weapon’s life cycle. Encountered failures are
analyzed, corrective actions are implemented, and modifications to the system design, and
manufacturing process, are tested to verify the effectiveness of the corrective actions. The
resulting reliability maturation process is commonly referred to as a Reliability Growth Program
(RGP). Reliability Growth Management (RGM) of this program is the systematic planning for
reliability achievement as a function of time and other resources, as well as controlling ongoing




rates of achievement by reallocation of resources based on comparisons between planned and
assessed reliability values (MIL-HDBK-189, 1981). RGM procedures are utilized in guiding the
materiel acquisition process for new military systems. These include: reliability growth
planning, reliability growth tracking, and projecting reliability improvements for a system.
Reliability growth planning addresses program schedules, amount of testing, available resources,
and the realism of the test program in achieving its requirements. Reliability growth tracking is a
process which allows management the opportunity to gauge the progress of the reliability effort
of a system. This is done by evaluating a demonstrated numerical measure of the system
reliability during a RGP based on test data. Reliability growth projection is the process of
assessing the reliability of a system which can be anticipated due to implementation of corrective
actions to failure modes. Reliability projections are based on the test data to date, as well as
engineering assessments of the effectiveness of planned or implemented corrective actions.
Reliability growth projection is the focus of the presented analysis.

2.3 A Brief History of Reliability Growth Projection.

The genesis of reliability growth projection has its roots in a paper written by Corcoran,
et al. (1964). The paper presents a nonparametric Discrete Reliability Growth Model (DRGM)
for which the relevant data comprise sequences of dichotomous success-failure outcomes. The
model attempts to quantify the increase in system reliability attained after implementing
corrective actions, without the benefit of continued testing. Here, N items are tested, and S items
are observed to have performed successfully. The modes associated with the remaining N-S
failures are identified and subsequent corrective actions are performed. No follow-on tests are
performed. However, the nominal reliability estimate is adjusted to reflect the reliability
improvement obtained via the fixes. The update to the nominal reliability estimate is the
reliability projection following corrective actions.

Another milestone in the area of reliability growth projection includes the development of
Continuous Reliability Growth Models (CRGMs). CRGMs are models utilized in representing
the reliability growth of a system in the case where the test duration is measured on a continuous
scale (i.e. time or distance), as opposed to a discrete one (i.e. trials or rounds) as discussed above.
The first model appears in a paper written by Crow (1982). This model, the AMSAA-Crow
model, projects a system’s failure intensity at the beginning of a follow-on test phase, based on
reliability data captured from the previous test. These data include, the B-mode FOTs, the
number of failures associated with each B-mode failure, and the total number of failures due to
failure modes that will not be addressed by corrective actions, namely the A modes. In addition,
the reliability projection, per the AMSAA-Crow model, uses engineering assessments of the
planned fixes to B-modes surfaced during the test. The estimation procedure assumes that all
fixes are deferred until the end of the current test phase, but are implemented prior to the follow-
on test. The model also assumes each failure causes a system failure and that the number of B-
modes that occur by a given test duration can be modeled by a Poisson process. The AMSAA-
Crow model is internationally recognized as being the standard reliability growth projection
model per the International Electrotechnical Commission (IEC 61164, 2004).

Another projection model, termed the AMSAA Maturity Projection Model (AMPM), was
introduced by Ellner, et al. (1995). Like the AMSAA-Crow model, the AMPM applies to the




case where the test duration is measured in a continuous fashion, such as in hours or miles. In
contrast to the AMSAA-Crow projection model, the AMPM does not require that all the
corrective actions be implemented at the end of the test phase. Therefore, one may use the
model to calculate a reliability projection in the case where not all fixes are delayed, or in the
case where all fixes are delayed. The AMPM can also be utilized to calculate a projection for
milestones beyond the start of the next test phase. This is a flexible feature in that the model can
make projections beyond the range of the data, whereas the AMSAA-Crow model should only
be used to calculate projections up to, or at, the end of the test phase. Finally, there are five main
assumptions implicit in using the AMPM. The first assumption is that there are k failure modes,
where k is large. Second, each failure mode time to first occurrence is assumed to follow the
exponential distribution. The third assumption is that the occurrence of failures due to modes are
statistically independent. The fourth assumption is that each failure mode occurrence causes
system failure. Lastly, the initial B-mode failure rates are assumed to be a realization of a

random sample from a gamma distribution.
2.4 The International Electrotechnical Commission.

The IEC is a worldwide organization for standardization comprising all national
electrotechnical committees (i.e. IEC National Committees). The objective of the IEC is to
promote international co-operation on all questions concerning standardization in the electrical
and electronic fields. In addition to other activities, the IEC publishes international standards.
The preparation of these standards is entrusted to technical committees; any IEC National
Committee interested in the associated subject may participate. International, governmental and
non-governmental organizations liaising with the IEC also participate in this preparatory work.
The IEC collaborates closely with the International Organization for Standardization (ISO) in
accordance with conditions determined by agreement between the two organizations. The
formal agreements of the IEC on technical matters express, as nearly as possible, an international
consensus of opinion on relevant subjects, since each technical committee has representation
from all interested national committees. IEC documents have the form of recommendations for
international use and are published in the form of standards, technical specifications, technical

reports or guides.
2.5 Role of Mode Classification in Current Models.

As discussed, the reliability growth of a complex system involves surfacing and
analyzing failure modes, and implementing corrective actions, termed fixes, during or following
a developmental test phase. At the end of a test phase, program management usually desires an
assessment of the system’s reliability associated with the current configuration. Such
assessments of system reliability have been referred to as projections. Current projection
methods distinguish between failure modes that will be addressed by a fix if observed (B-modes)
and those that will not be fixed (A-modes). The estimate of current system reliability depends
upon this failure mode classification. In particular, the reliability projection depends on
_estimates of the rate of occurrence of B-modes based on B-mode first occurrence times, and of
the presumed constant A-mode failure rate required to assess system reliability. It is desirable
and more natural to base the projection of system reliability on estimates that do not depend on
such a classification scheme, but merely on failure mode test phase data, and the assessed




effectiveness of the failure mode corrective actions. Such a projection would only distinguish
between failure modes on the basis of their assigned FEF. Here, A-modes would be assigned a
zero FEF. For situations where fixes to surfaced failure modes will be delayed until the
conclusion of the test phase, such a projection method would be helpful in conducting a
reliability versus cost tradeoff analysis with regard to deciding which modes to fix.

2.6 Study Overview.

In this paper we shall present a projection method that can treat failure modes in a unified
manner for the case where all corrective actions are delayed until the end of the test phase. A
unique characteristic of the projection methodology is that the estimation procedure is based on a
Stein shrinkage estimator. For a large number of potential modes, the estimation procedure is
shown to approximate a Stein estimator that satisfies an optimal expected squared-error loss
criterion for the vector of unknown initial mode failure rates. The Stein optimality criterion
leads to a particular functional form for the rate of occurrence of new failure modes. This
functional form is compared to the B-mode rate of occurrence functions currently utilized in
several projection models. The procedure does not require one to distinguish between failure
modes that will not be corrected if surfaced (A-Modes) and those that would receive a corrective
action if observed (B-Modes). Such a unified treatment of failure modes avoids the frequently
unrealistic assumption that there are two distinct types of potential failure modes a priori. Often
failure modes are switched from A-Modes to B-Modes during a development program due to the
necessity of meeting a requirement or due to additional funding or information that allows a
mode to be addressed. Several estimation procedures are presented for assessing the Stein
shrinkage factor utilized by the reliability projection method. The accuracy of the presented
projection procedures is compared against the IEC standard projection model, namely the
AMSAA Crow-Model. The test data and projections are simulated. The simulations results are
compiled over 1,000 replications.

2.7 The AMPM based on Stein Estimation.

The U.S. Army Materiel Systems Analysis Activity (AMSAA) has recently developed a
new reliability growth projection model. The new model is closely related to the current
AMPM. This new model was developed for making reliability projections based on Stein
estimation of initial mode failure rates in the case where the test duration is measured in a
continuous fashion, and where all corrective actions are deferred until the end of the test phase.
The motivation for developing the new model was to calculate a potentially more accurate
reliability projection, that was based on the FEFs and number of failures for the observed failure
modes. This is done by approximating an estimator that minimizes the expected squared error in
the initial mode failure rates. Estimates for unknown parameters in the Stein approach are
obtained by treating the initial mode failure rates as a realization of a random sample from a
gamma distribution as is done in the AMPM approach. Thus, the new model is referred to as
AMPM-Stein.

2.8 Features of AMPM-Stein.




The model allows for a unified treatment of failure modes. This permits one to conduct a
trade-off analysis between reliability improvement and incremental cost since failure modes are
only distinguished through their FEFs. A second feature of AMPM-Stein is that all failure data
is utilized in estimating model parameters. Third, the new model only needs to assess FEFs
associated with the surfaced modes — there is no need to consider FEFs for unsurfaced modes.
In particular, AMPM-Stein does not have to assess an average FEF for all the modes that would
receive corrective action if surfaced. Finally, AMPM-Stein avoids inaccuracies in assessments
that can arise in projection methods which utilize A-mode and B-mode classification. Such
inaccuracies can occur if modes initially considered A-modes are switched to B-modes. Modes
can be reclassified for a variety of reasons. A few reasons include a numerous repetition of A-
mode failures, a more accurate diagnosis of a failure mode, and increased funding.

2.9 Mathematica.

The simulation for this study, as well as Section 4 of this report, are written in a
Mathematica notebook. Mathematica is a software tool that integrates a programming language,
numeric and computational engine, graphics system, and documentation system, as well as,
provides advanced connectivity to other applications such as Microsoft Excel. Throughout
Section 4, the documentation, graphing and programming are seamlessly integrated. Sections of
text in bold represent code that will be executed by Mathematica's computational engine. The
output (i.e. numbers, lists, tables, graphs, figures etc.), if any, from the executed code will appear
immediately below the code, or program instructions.




3. COMPARISON OF AMPM-STEIN AND CURRENT MODELS.
3.1 Differences in Technical Approach.

The AMPM-Stein approach does not require one to distinguish between A-modes and B-
modes other than through the assignment of a zero, and positive FEF, respectively, to surfaced
modes. Also, only FEFs associated with the surfaced modes need be referenced. In particular,
unlike the methods in Crow (1982) and Ellner, et al. (1995), no estimate of the arithmetic
average of all the FEFs, that would be realized if all the B-modes were surfaced, is required.
Another significant difference between the Stein approach and the other methods is that the Stein
projection is a direct assessment of the realized system failure rate after failure mode mitigation.
The approaches (Crow, 1982), (Corcoran, et al., 1964), and (Ellner, et al., 1995) indirectly
attempt to assess the realized system reliability by estimating the expected value of the mitigated
system probability of failure or system failure rate, »(7), where r(T) is viewed as a random
variable. For example, in Crow (1982) and Ellner, et al. (1995) , the realized value of »(T) is
assessed as the estimate of a conditional (given A, ), or unconditional expected value of »(T),

respectively, where,
k
r(T)=A,+ Y (1~d,- TN, (1)
i=]

Corcoran, et al. (1964) proceeds in a similar fashion for one-shot systems. In Crow (1982) it is
shown that,

E[r(D)=4,+ > ~d)A +3d; -4 o

ieB ieB

To estimate E[r(T )], the AMSAA-Crow method approximates Zd,. Ae* by g, -Z/l,. et

ieB ieB
where
1
Ha =20, 3)
B ieB
The value u, is estimated by
. 1 .
fy=—> 2.4, €
mB ieobs(B)

where d; is an assessment of d;. Thesum Y 4,-e™" is estimated (Crow, 1982) by noting that
ieB
the number of B-modes surfaced by t is

M()=3 I,(1) (5)
ieB
and the expected number of B-modes by t, is
u=EM@©]=3 1-e*) ©)
ieB

Thus, the slope of u(z) is




d/,l(t) At
- =;x,. e (7)
and represents the expected rate of occurrence of B-modes at t. By assuming u(¢) can be
approximated by

p()y="4-T* (8)
and that M (¢)is a Poisson process with mean value function A_-#%, Crow (1982) develops an
estimation procedure for A, and S, based on the B-mode first occurrence times and number of
surfaced B-modes. This yields an estimate of

n@=2L8 . p, o o)

which represents the rate of occurrence of new B-modes at time t for the AMSAA-Crow model.

The resulting estimate of 4_(¢), };c (®), is taken as an assessment of z&i e | and A, -l;C @) is
ieB

utilized as an assessment of » d;-A,-e™*". The assessment for E[r(T)] (Crow, 1982), and
ieB
hence the indirect assessment of the realized value of »(T'), is then obtained as

n N «[ N. . A
E[r(D]==2+ ) (-4 )(-—’—)ﬂld ~h (T) (10)
icobs(B) T
The AMPM approach (Ellner et al., 1995) treats the initial B-mode failure rates 4, as a
realized random sample of size &k, from a gamma random variable, I'le, 8], with density
x® -e-yﬂ
—_— x>0
S =T (a+1)-p** (11)
0 x<0

where I' is the gamma function, @ >—1 and f>0. The AMPM approach replaces T with
t>T and the 4, in equation (2) by independent and identically distributed random variables

A; ~TTle,B]. The expected value of E[r(¢)] with respect to A,,...,A, is obtained as

p)=A,+A=p, XAz —h(2))+ h(z) (12)
where
_ky-B-(a+])
O s (13)

and A, = h(0). Maximum likelihood estimates for 4;,8 and «, denoted by iB,kB, ,5',(8 and @,

respectively, are obtained based on k,, the number of surfaced B-modes, and the observed B-
mode first occurrence times. The realization of the mitigated system failure rate, »(¢), is

assessed as the resulting estimate, p, (¢), of p(#). The limiting values of /iB’kB, ,éka ,and &,
are obtained and used to derive P (t)=k1im P, (). This limiting estimate is taken as the
3 —>®

assessment of the realized value of (z) for complex systems (i.e. for large k,). The use of B-




mode first occurrence times to estimate A,,8 and « allows the AMPM approach (Ellner, et al.,
1995) to be used to assess the realized value of »(¢) for t>7 . One need only assume that all

fixes are incorporated by t. In particular, it is not necessary to assume that all fixes are delayed
until t. Note, however, the AMPM and AMSAA-Crow methods both require an assessment of

4, , the arithmetic average of the B-mode FEFs that would be realized if all B-modes were

surfaced. Also, both these methods utilize the number of observed B-modes and the B-mode
first occurrence times for parameter estimation to obtain an assessment of the realized mitigated
system failure rate. Thus these methods do not solely distinguish between A-modes and
surfaced B-modes for estimation purposes by assigning zero FEFs to the former and positive
FEFs to the latter.

Finally, we note a connection between the AMPM estimate for A(r) and the Stein
projection. It is shown that A(¢) is the expected failure rate due to the B-modes not surfaced by t
(Ellner et al., 1995). As suggested by equation (13) the AMPM estimate based on &, potential
B-modes is

~

] A
by, (1) =———% . (14)
A+B, -
It is shown in Ellner, et al. (1995) that
A . y)
h,(t) = lim h, (f)=—22— (15)
oo T (14 B, 00)

where /im and ﬁw are positive constants. For =7 this form will be shown in Section 3.4 to

be compatible for complex systems with the Stein projection expression for the portion of the
mitigated system failure rate attributable to the B-modes not surfaced by T. This is interesting to
note since the Stein projection approach does not treat the initial B-mode failure rates as a
realization of a random sample from some assumed parent population.

3.2 Stein Approach to Projection using One Classification.

Assume the system has k > 1 potential failure modes that have initial failure rates
Aysees Ay . It 1s assumed the modes independently generate failures and that the system fails

whenever a failure mode occurs. It is also assumed that corrective actions do not spawn new
failure modes and that all fixes are incorporated into the system at the end of a test period of
duration T hours, or miles.

Let N, denote the number of failures encountered for mode i that occur during the test.
The standard Maximum Likelihood Estimate (MLE) of A, is
~ N,
A =—L 16).
i =7 (16)

Let avg( ):i) denote the arithmetic average of the estimates /fq,...,):k . The Stein estimators for
Ay Ay denoted by 4., 4, , are defined by
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2,=0-4,+01-6)-avg(l) (17)
where 6€[0,1] is chosen to minimize the expected sum of mean squared errors,

k ~
E[Z(ﬁi —/1,.)2}. We shall let 6; denote the optimal value of 6 and refer to 6, as the Stein

shrinkage factor. Vector estimators, such as (Z,...,Ik) of multidimensional parameters that
satisfy such an optimality criterion were considered by Stein (1981). To obtain 6, note the

following:
s 1&N, N
A)=—) —Ft=—r 18
ag(h) =3 2= (18)
where
k
N=ZN,. 19)
E(N)=2, T Var(N,) (20)
From (20) we have
E[}1=2, 1)
and
Var[i]—fi (22)
T

Finally, from the above, one can show,
k
E[ZZJ = (23)
and
Lol 2
Varj: li:J =7 (24)
Let
A=Y 4 (25)

After some detailed calculation, using equations (14-20) we arrive at the following result

[Z(ﬂ - %) J ( )+ (1-6)* 2/12 +20(1- 9)( )+ (1-6)° —— (26)

i=1 =]

e ,
Thus, E[z (4, —l,.)ZJ is a quadratic polynomial with respect to 6. The polynomial coefficient

i=1

of 6 is equal to

_+Zl (ﬁ*%}
et
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A
T(l—;{—j Z(x ~1)’ >0 (27)

fork > 1, where

T4
= (28)

The quadratic polynomial with respect to € in equation (26) has a unique minimum value that

can be found by solving the equation
i=1

Denoting the unique value of @ that solves equation (29) by 6,, we find

Z(/L_I)z

%= = (30)
(1——} Z(x 1)’

Thus, we have 6, € (0,1) which shows that 8 is equal to 9 Let

Z(ﬂ -4’

Var[A]= ——k————- €29)
Note by equation (30),

o, = ; Varl[li] (32)

(———)(1 - —) +Var[A,]
k-T k
By equation (24), we can see that
k A~
Ish l Var[4;] (33)
k i=1 T k i=1

Let avg(Var[ii]) denote the right side of equation (33). It is interesting to note by equation (32)

that
Var{4,]

avg(Var[i,. ](1 - _11;) +Var{A,]

This shows that the Stein estimate of A, can be expressed as the following weighted

0 = (34)

combination of A, and avg():,.);

Var[A,]

avg(Var[i,. ]Il - l)
. k
A+
1 1

Z" = i
Var[A,]+ avg(Var[ﬂ:[ ]Il - ;] Var{4,]+ avg(Var[ﬂ:i]{l "

j avg(i,) (35)
Therefore, the smaller the population variance of the mode failure rates is relative to the average

of the variances associated with the individual mode standard estimators, Var[):i], the more Zl 1s

weighted (i.e. “shrunk”) towards avg():,.).

12




After mitigation of the failure modes surfaced during the test period [0, T], the realized

system failure rate is
r@) =Y (-d)i+ D 4 (36)
icobs icobs

The Stein projection for r(T'), denoted by py(T) is obtained by replacing d, by an assessed

value d; and by estimating 4, by 4. Thus,
ps(D)= Y (1-d)+ 3 4, (37)

ieobs . —
ieobs

Note for mode i€ obs , by definition N, =0. Thus, by equation (17) where =6, we obtain

for i € obs ,
~ N
A=01-6)|— 38
= )( - T] (38)
Let m denote the number of surfaced modes during [0, T]. Then by equations (37) and (38),
*, A m N
ps(T)= Z(l"di M, '*(1—;)(1"90(‘]?) (39)
icobs

The Stein projection cannot be directly calculated from the data for a set of d, since k is
typically unknown before and after the test and &; is a function of Var[4,], A, and k (or

k
equivalently, A, A, and k). However, approximations to the Stein projection can be
q y. i P proj

i=]

obtained that can be calculated from the test data and the assessed FEFs.

3.3 Stein Approach to Projection using Two Classifications.

One can also use the Stein projection approach with two failure mode classifications as is
done for the AMSAA-Crow and AMPM models. Strictly speaking, such an application of these
models demands that there are a priori ground rules for classifying observed modes into A or B-
modes which do not become reclassified. The Stein projection for the two failure mode

classification case is given by

Psa(D =4+ D2 (A-dDE+ D4, (40)
icobs(B) ieéb_s(_B_)
In equation (40) A, denotes the collective failure rate due to the A-modes and
~ N
Ay = TA 41

where N, is the number of observed A-mode failures. Also, obs(B) denotes the index set of

the observed B-modes and obs(B) denotes its complement in B. For ie B, /1:.,2 denotes the
Stein estimate of 4, for two classifications. In place of the expression for Z in equation (17) ,

ZI.,Z is defined as
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2 A
Zi,z = gs,B 'ii +(1- 93,3)' iez (42)
B

In equation (42), k, is the number of potential B-modes. The shrinkage factor 6, in equation

(42) is the value of 6 €[0,]1] that minimizes E{Z(Z,z —l,.)z}. This optimal value for @ is

ieB
derived in a manner similar to §;. In place of equation (30),
Z (’1,' - IB )2
b5 = 2 (43)

Ag 1 T2
"7',‘(1 P ]+Z(/1i Ag)

B ieB

where
= 1
Ay =— 4 (44)
kB ieB
Finally, we note that the Stein projection for two mode classifications, p;,(T), can be expressed

in a manner analogous to equation (39):

Ps.2 )=
7 —di M e N Ne
In equation (45), m, denotes the number of surfaced B-modes and
Ny=YN,= YN, (46)
ieB icobs(B)

3.4 Failure Rate due to Unobserved Modes as kt — 0.

The term Z): in equation (37) represents the portion of the projected failure rate
icobs

ps(T) attributed to the failure modes not surfaced by T. Equation (38) indicates that

=~ m (N
24 =(1-65)0 —;)(;j (47)

ieobs

Utilizing the expression (32) for §; we obtain

(48)

Thus,




ieobs

Using equation (31) we obtain,

or equivalently,

24
(H{Ep

1-—
k

(49)

(50

&)

To consider the limiting behavior of the expression in equation (51) for large k, denote A, by

A, for i=1...,k where

iﬂ“ =4
i=1

(52)

and A€(0,0) with k > 1. Let _ﬂ_k = (Aigss ey ) Consider the maximization problem P:

—k

0 i#l
’l?,kz .
{ﬂz=l

Thus the maximum value for problem P equals
k

'1—2()“?,1: )2 =4

=

k
pIH

i=1

This shows that for any k > 1 with at least two non-zero 4, one has 0 <T <A.

implies that for complex systems or subsystems (i.e. for large k)

T A
E;‘:Hﬂs-r

where
1=

and 0< B, <A with
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k
n}ax(%leik] subject to 4, 20 and (52). All maximizers lz for problem P are of the form
i=1 -

(53)

(54)

This
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Bs =%Z/1f (57)

Using two mode classifications, in a similar fashion one can show that for complex systems or
subsystems

~

Ag
1+ﬁs,5 T

in

> i

ieobs(B)

(58)

where /{B =A;—f— and 0< B, <A, , where B, =%Z/1f and A, =Z/1,. .

B i€eB ieB

The functional form in equation (58) for approximating 222 is the same form

iem
utilized by the AMPM model for large k to estimate the failure rate due to the unsurfaced B-
modes at the end of the test period. In contrast to the AMPM, the Stein projection approach
leads to this form for large k without assuming the initial B-mode failure rates are a realization
of a random sample from an assumed parent population. The AMSAA-Crow projection

estimates the failure rate at the end of test due to the unsurfaced B-modes by A -3, -T %1 where

A, and J are statistical estimates of A, and pB.. This functional form arises from the
AMSAA-Crow assumption that the number of B-modes that are surfaced by t is M (¢f) where

M (¢) is a Poisson process with mean value function A_-t% for 4. >0 and 8, >0.

3.5 AMPM-Stein Approximation using MLE.

As shown in the previous section, the Stein projection depends on the unknown constants

k
k, 4 =Z/1,. , and Var[A,]. We shall now consider an approximation to the Stein projection
i=]
obtained for a given k and for when k is unknown but large. To obtain the approximations we
assume A,,...,4, 1s a realization of a random sample from a gamma distribution with density

function given in equation (11). We shall use the data N, to obtain MLEs for ¢ and S,

denoted by ¢, and ﬁk. The method of marginal maximum likelihood will be employed (Martz
et al., 1982). We shall initially use the gamma parameterization used in Martz, et al. (1982) (i.e.

a,=a+1 and §, = % , to express the MLE equations. After simplification of equations (7.171)

and (7.172) (Martz et al., 1982), we arrive at equations (59) and (60) below,

TS

(59)

and
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k-In[B,] +iz( ]—Zklln[T+,Bo]=O (60)

j=1 i=1

Let A, =k-B,(1+&,) where &, and ﬂk denote the MLEs for o and S, respectively, given the
This yields

system has k potential failure modes. Thus, &, =q,-1 and ,ék =—
0

A, =(—{c—]d0. Equations (59) and (60) can be rewritten in terms of }:k and ,ﬁk. Upon
0

simplification we obtain,

A = (61)

N| =

and

5

The sum from =1 to N, -1 in equation (62) is defined to be zero if N, =1. Next we consider

Jjeobs i=1 1+
N

Jln[1+ﬂk 7] ZZ (MJ =m (62)

the limiting values of A, and ﬁk as k increases. Let A, Ezlcimi" and S, Ellcim ,ék. From

equation (61) and (62) it follows that
(63)

S
I
Nz

and
(64)

(ﬂjvT]ln[l +,Bc,0

One can show that equation (64) has a unique positive solution ﬁw if and only if N > m. This
condition is equivalent to saying N, >1 for at least one mode i. We shall assume this is the case.

Consider equation (62) and let x, = ,Bk -T. Then one can show 3 x, € (0, Bw -T) such that x,
satisfies (62) provided
N2
>
Z(N ;~DN;

Jjeobs

From numerical experience, we conjecture that equation (65) is a necessary and sufficient
condition for a solution x, € (0, ,éw -T) of equation (62). However this has not been established.

(65)

One can utilize the finite k estimate 3, to obtain an estimate of the shrinkage factor 6;. The

limiting value ﬁm shall be used to estimate 6, for complex systems or subsystems. To consider
this further, let I'a, 8] denote a gamma random variable with density f(x). Also let A,,...,A,
be independent and identically distributed gamma random variables with density f(x), given in

equation (11). Define A Ezk;A,. . Note E[l[e,pl]=B-(e+1) and Var[[Ta, Bl)= B -(a +1).

i=l
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This implies E[A]=k-B(a+1) and E[(k-1)-s*(A,)] = (k=1)-B*-(a+1) where s*(A;) =

k _ _ k R R
k_l'IZ(Ai—A)Z and A=7IC—A. Thus we shall approximate lzz/l,. by k-f.(a, +1)=4,
TRl i=1

and k-Var[A,] = i(z,. -2)? by (k-1)(B,)*(4, +1)=(1‘ki)- B, -4, . By equation (32),

i=]

k- A
9, = . 1Var[ ) (66)
(—)(1 - —J +k-Var[4,]
T k
Thus we approximate 6; by

) ,Bk T
05, = ——= 67
T (67)

This suggests that for complex systems or subsystems, (i.e. large k) a suitable approximation for
6; is

. . 3 .T
0; ., =limé;, =L"i—— (68)
e Y

One can now obtain approximations to the Stein projection by utilizing és'k and éS,cc'
These approximations will be referred to as the finite k and infinite k AMPM-Stein projections,
respectively. For finite k, motivated by equation (17) we define
Ay =05, A +(1-065, )avg (L) (69)
for i=1,..,k. The corresponding AMPM-Stein projection for the system failure rate after
mitigation of surfaced modes, denoted by p; , (T), is given by
Psa(M)= 2 (A=d) Ay + 3 7 (70)
ieobs icobs
Equation (70) can be rewritten in a manner analogous to the form of equation (39) utilized for
the Stein projection:

psa()= 2 (U=d)) Ay + (=316, )(%j (71)

ieobs

We also obtain

A~ . ~ * A ~ oy N
Pso(T)= }(‘_{2 P (T)= Z(l ~-d; )04, +(1-65,, )(']TJ (72)

i€obs

The corresponding MTBF projection is

M, = (ps. (D))" (73)
One can also apply the AMPM-Stein projection to the case of two mode classifications based on
appropriate a priori mode classification rules. Denoting the two-mode AMPM-Stein system
failure rate projections by pg,, (T) and pg, . (T) for the finite and infinite k, projection

respectively, we let
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~ N LI m A N
Pras, M=+ T0-d)) Ty, + (l’f]ﬂ‘é’w {7) w0

icobs(B) B
and
P N *, 7 A N
pS,eo,2 (T) =__A_+ Z(l_dt )Z’i,w + (l_es,oo,B)(—_i) (75)
icobs(B) T
where for equations (74) and (75),
iy =Ospay A (1= 54, )4"'38'(/1:) (76)
and
Aio = klim Aiky (77)
In equations (74) and (75), respectively,
X By T
BS,B,kB = _Tﬂ‘BA’_hL—"_ (78)
1+ ﬂB,kB T
and
. 3. .T
L (79)
1 + ﬂB,oo ) T

In equation (78) léB,k,, = y—]kf- is the MLE solution of the following modification of equation (62):

N o1+ y, 1- > Nf-——-—l——=m3 (80)
Y ? (i'J’kB'kBJ

kg Jjeobs(B) i=1 1+
B

In equation (80), the sum from i=1 to i=N, -1 is defined to be zero if N, =1. In equation
(79), Bs., is the limit of the fB,,, and y, =f,.-T satisfies the following modification of
equation (64)

(—ii’—”)ln[l-kyw]:ml, (81)

@

For equations (80) and (81) we assume N, >m,. This guarantees equation (81) has a unique
positive solution, y, . Ifin addition,

W)’
B> Z(Nj =y (82)

Jjeobs(B)
(the counterpart of equation (65)) then equation (82) will have a solution M, €0,3,).

3.6 AMPM-Stein Approximation using MME.

Using Method of Moment Estimation (MME) a second estimation procedure was utilized
to estimate #; and obtain associated approximations to the Stein projection for the mitigated

system failure rate. The second procedure is a method of moments presented in Section 7.7.1 of
Martz, et al. (1982). Once again assume that 4,,...,4, is a realization of a sample of size k from
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I'(a,p). Itis noted in Chapter 7 of Martz, et al. (1982) that the marginal distribution of N, is
given by the density g(n;,a,, 8,) Where

Y T(n; +a,)
F(ao)-nj!-(T+ﬂ0)"’+a°

g(njaao’ﬂo)z (83)

for n;=0,12,... where ,=a+1, and ,BO=l and n;! denotes the factorial of »,. The

marginal mean and variance are

a,-T
E[N;,aq,B,]=—" (84)
Bo
and
-T-(T
VarlN . o] = 2T T+ Fo) (85)
I8
It follows that the marginal mean and variance of i ; are
- a
E[/l{jsaoaﬁo]z_o (86)
Bo
and
~ a, (T+p8,)
Var[.,a,, =0 \ 07 87
ar[ j 0 ﬂO] T'ﬂg ( )

A
k

.t

_ & k
Let A, => -~ and m’ = (the unweighted sample mean and second sample moment about
u X p
i=1 J=1

the origin respectively for il ,...,):k . In Martz, et al. (1982) it is shown that

— a
E[A,,a,,B,]==2

(88)

and

[T'(l'*'ao)'*'ﬂo]
T-Bs

where A, and M are random variables that take on the values of A, and m, respectively.

E[M?,a,,f,]=22 (89)

This suggests implicitly defining the unweighted moment estimators for ¢, and f,, denoted by

a, and Eo , respectively, through the following equations:
7-%

=& 90
7 (90)

and
m? = a,[T-(+a,)+ B,]
) T'ﬂoz

€2y
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Let a, and ﬁk be the corresponding method of moments estimators for ¢ and S based on

assuming k potential failure modes. Thus, &, =&, —1 and Ek = —i— Let
0

A =k-B, -(1+&,) (92)
From equations (90) and (91) it can be shown that

~ & k-4,

B, === T u = 93)

%, k-(m’-7)-H-7

u

where H =§ . From the first equality in equation (93) we have

~ A A
,Bk =—= = (94)
a, l+a,
Thus
1& ;2
B (+@) =4, =24 (95)
Jj=1
This yields
k N N
l =k- 1+a, )= —L=— 96
B, -(1+&,) Z =T (96)
Also
~ k-(m-2)-H-2
= T = 97
B s ©7)
, &N 1 2
from the second equality in equation (93). Note, k-m, —Zﬂ Z T :-17 ZN . Also,
j=1 Jj=1 Jjeobs
1 2
kA= N, 98
S o5
- 1
H-2 =F(ZNJ (99)
jeobs
and
— N.
k-d,=> = (100)
jeobs T
Thus by equation (97)
1 1 1
7 2N Tz(ZNj] -7 2N
> jeobs jeobs Jjeobs (101)
k Nj
Jjeobs T
This yields,




s -Y
'B’ _ jeobs ’ k (102)
‘ T-N

One can now obtain the method of moments limit estimators ﬂ:,o and Em as k increases. These

are Zx = }(imik and /1, = }‘im ﬁk. From equation (96),

~ N
Ay = T (103)
Also, from equation (102),
2
a 1 jeobij
B., i; -1 (104)

The moment estimates ﬁk and B, of B provide the respective estimates 67” and 673,uo of the

Stein shrinkage factor 6, where

~ BT
g, =P (105)
1+ BT
and
~ B .T
b, =L (106)
V4B T

The moment estimators of &, in equations (105) and (106) provide corresponding
approximations to the Stein system failure rate projection. Let p;,(T) and ps(T) denote
these approximations based on gs,k and 673',3 , respectively. In place of equation (71) for the

MLE based approximation of p,(T') we define

Psy= 2. (=d))A, + (1 - ﬁ](1 ~ 05, )[ﬂj (107)
icobs k T
where, for equation (107),
Z,-_,( = gs.k ii +(1- 5s.k )an(}:i) (108)
Let,
M54 (T) = (B (1)) (109)

denote the corresponding AMPM-Stein MTBF projection based on the finite k moment
estimators for 6. Next, let

5S,w(T)EI1(2255,k (T) (110)

Note, }(im avg(/{i) = ’I‘im% Z/i,. =0. Also ¢9~S'00 = Il(im 9~S_k by equations (105) and (106),

ieobs

respectively. Thus by equation (108) ’l(im Z.‘k = gs,w [—];Lj . By equation (107) this yields
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~ wy [N ~ (N
Psw= (-4, )9s,m(7’)+(1—9s,w)(—T—) (111)

ieobs
The corresponding MTBF projection is
M. (T) = (Bs.. (D))" (112)
AMPM-Stein projections based on moment estimators can also be developed for the case where
failure modes are partitioned into A-modes and B-modes by a priori classification rules. The
shrinkage factor, finite k, approximation to 6, , is given by

- . T
O 5. =—/z%"-ﬂ-—— (113)
Y1+ By T

The estimate ,BIB,,‘K in equation (112) is

DN —(—l—jNﬁ -N,

Y jeobs k
Pas, =502 119
B
Thus,
2
5 =tmp,, =[L)z=nl (115)
B,oo piren B.kg T NB

The corresponding large k; estimate of 6 ,, based on the limit of the method of moments
estimator ,EB,,(B ,18

~ B, T
Os 5. = T (116)
1 + ﬂB,oo ) T
The AMPM-Stein system failure rate projections, based on 5& 5., and 5& 5. When utilizing two
mode classifications are denoted by ,Bs,z,ks (T) and pg, ., (T), respectively. In place of equation

(107) for pg,(T) we have

Poas, D) =24 4 2 =d)y, + (1 - —’,fjj)a ~Osau, )(-]YT—] (117)
For equation (113),
Zi,ka = gs,s,kg ii +(1- ‘9~S,B,k,, )qv§ (i.) (118)
The MTBEF projection is )
Ms,z,kg (I)= (ﬁs,z,kﬂ (-T))_1 (119)
Let p;, ()= klsi_rg Ps24,(T) . Then we can show that
Proe=244 3 (-d)7,,. (iv—j + (1B, )(ﬂ&] (120)
icobs(B) T T

The associated MTBF projection is
Mo (1) = (Bae (D)) (121)
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3.7 Cost versus Reliability Tradeoff Analysis.

At the end of a test phase one might wish to conduct a cost versus reliability tradeoff
analysis to assist in selecting a set of surfaced failure modes to address with fixes. For any
selected set of surfaced modes, say Z c obs, one could study the underlying root causes of

failure to determine potential fixes. Based on such a study, a set of positive FEFs, d; for i e Z
could be assessed for the proposed fixes. Actual implementation of these fixes would lower the

k
system failure rate from the initial value, say p(T;¢) = Z/li , to a lower failure rate

i=1

pTZY=Y (1-d)+ D A+ ) 4 (122)

ieZ ie(obs-2) icobs

with corresponding MTBF M(T;Z) = (p(T A ))_1. Note that p(T;Z) changes from p(T;¢) as a
function of the selected mode set Z only through the FEFs being raised from zero to positive
values d; for ie Z. The assessments for p(T;Z) provided by the AMPM-Stein approach have

the same property. For example, this can be seen for the AMPM-Stein system failure rate
assessment for large k based on MLEs by recalling equation (72). Since d; =0 for
i€ (obs—Z) we have

~ A b A b I N

Ps.e (T) = Z(l _di )05,00/1[ + Z‘gs,w/li +(1 _95,00 )("T"J (123)

ieZ ie(obs-2Z)
where ):,. =]—;i. Note by equations (68) and (64), és‘w only depends on N and the number of

surfaced modes, m. Thus by equation (123), p, . (T) is an assessment of p(T;Z) that only

changes for a given set of test results as Z changes through the resulting change in the FEFs.
However, assessments of p(7;Z) based on the AMSAA-Crow (Crow, 1982) or AMPM (Ellner

et al., 1995) would not change solely due to the change in FEFs brought about by a change in Z.
In these methods the modes are partitioned into A-modes and B-modes. If one identifies the

modes in Z as the surfaced B-modes (since d; >0 for ie Z) then these assessments would

depend on the number of modes in Z and the pattern of first occurrence times for these modes, in
addition to the assessed FEFs for i € Z. The dependence of the assessment of p(T;Z) on the B-

mode first occurrence times indicates that the AMSAA-Crow and the version of the AMPM
based on B-mode first occurrence times are not appropriate for this selection problem.

Associated with each selection of Z, one could also assess the cost of implementing all
the fixes for the failure modes ie Z. Let ¢ (Z) denote this assessed cost. A plot of the points

(Ms'm(T;Z),c‘(Z)) where M se(T32)= (/55,@ (T ;Z))_1 for a number of potential selected sets Z
would be useful in identifying the least cost solution Z to meet a reliability goal. Alternately,
one could replace M s (T3Z) by the AMPM-Stein assessments of MTBF based on the method

of moments estimators.
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4. SIMULATION.

4.1 Simulation Overview.

One replication of the simulation is demonstrated in this section of the report. The simulation
results in_this section do not support any conclusions, since they merely represent one execu-
tion of the model. The simulation results shown in Section 5 are obtained from 1,000 replica-
tions of the simulation, and provide the data supporting the presented conclusions. The pur-
pose for this section is to document, and demonstrate the inner workings of the simulation. In
Section 4.2, data typical to that which would be collected in a developmental test is generated.
This includes obtaining necessary inputs, generating failure rates, first occurrence times, fix
effectiveness factors and failure times. Also, data structures are defined for both methods of
classification of the failure modes. In Section 4.3, the projection models are defined. This

includes:

1. the AMPM-Stein model based on two classifications;

2. the AMPM-Stein model based on one classification;

3. the AMSAA-Crow model based on two classifications; and
4. the AMSAA-Crow model based on one classification.

The projections are then calculated in Section 4.4. This includes the projections of the
AMSAA-Crow model, and the AMPM-Stein model using both MME and MLE, for one and
two classifications of failure modes. In Section 4.5, repeat A-modes are reclassified to
B-modes. This process not only entails identifying and reclassifying the repeat A-modes, but
involves redefining the data structures for both mode classifications. Following the reclassifi-
cation process, the projections are recomputed in Section 4.6. This is done to examine the
impact reclassification of A-modes has on the various projections. Finally, the necessary data
is saved, and the results are displayed in 4.7.

4.2 Data Generation.

4.2.1 Simulation Inputs.

All of the inputs necessary to perform one execution of the simulation are defined below.
EAa,x, and EXg,x are the expected A-mode, and B-mode failure rates, respectively. ka, and
kg are the number of generated A-mode, and B-mode failures, respectively. T is the length
of the test phase. a., and B, represent the shape, and scale parameters, respectively, for the
gamma distribution. The values in the first argument of aa., and B, are the parameters used
to generate A-mode failure rates. Similarly, the B-mode failures rates are generated using the
values in the second argument. The variable dist determines the distribution for which the
failure rates are drawn; 1 for gamma, 2 for lognormal, and 3 for Weibull. The following
Mathematica code defines the inputs and prints the relevant values in Table 1 below.
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<< Statistics”

dist

EAg,x

kp=6;

kg = 10;

Ba = {107%, 107%};

EAg,x ka Bal[1] .
ks Bal1]

EAa,x EAg,x

© YkaBal1] T ks Bal2]

T=1000;

1l; (*1-Gamma, 2-Lognormal, 3-Weibull %)
1071 /1.5;

EAA,K =

}:

Aa

Gamma[l+3]-Gamma[1+ -l]2 1
{x /- FindROOt[ * = == ’ {xl l}] ’
Gamma [l + %] ax[1]

Gamma[l-r%]—Gamma[l+ %]2 1
x/. FindRoot[ == s {x, 1}]};
Gammal[l + %] aa[[2]

xa Ba

Ve Gamma[l + —B}:]
TableForm[

{{kA, kg, T, Which[dist == 1, "Gamma", dist == 2, "Log Normal",

dist == 3, "Weibull"] }} » TableHeadings >
{None, {"A-Modes", "B-Modes", "Test Length", "Distribution"}},
TableAlignments - Center]

A-Modes B-Modes Test Length Distribution
) 10 1000 Gamma

Table 1. Simulation Inputs.

26




Table 1 shows that the length of the simulated test is 1,000 hours. The table also indicates
that 6 A-mode, and 10 B-mode failure rates were generated. Only a small number of failure
modes are generated in this demonstration. This is done for illustrative purposes, and mini-
mizes the volume of data printed in following sections. The data (i.e. MTBF projections,
mean squared error, and variance, etc.) that is examined to support the conclusions in this
study are obtained by generating 100 A-modes, and 500 B-modes, 1,000 times. These results
are shown in Section 5. Finally, Table 1 also indicates that the failure rates are randomly
drawn from a gamma distribution. The parameters and PDF for this distribution are displayed

in the following section.

4.2.2 Distribution Parameters and PDFs.

Associated with the methodology for which AMPM-Stein is based, is the assumption that the
failure rates are a realization from a random sample of numbers drawn from a gamma distribu-
tion. To examine the sensitivity of this assumption, the option for generating the failure rates
from a lognormal or Weibull distribution is incorporated. Although the present run is generat-
ing failure rates from a gamma distribution, the corresponding PDF plots and parameters are
provided for the lognormal, and Weibull distributions. When making comparisons of the
projection results obtained from the use of three different distributions, one must use parame-
ters which result in identical means and variances for each distribution. Otherwise, the results
would not be comparable. To demonstrate that the results are comparable, distribution parame-
ters and PDFs are displayed below. The following Mathematica code generates the plots

shown in Figures 1 through 3.

x1 = Mean[GammaDistribution[a,[1], BI111]:
Plot [PDF [GammaDistribution[a,[1], B[1]1, x].,
{x, 0, .01}, PlotRange -» {0, 600}, Frame -» True,
FrameLabel -» {"Failure Rate", "f(x)"},
Epilog -» {Text["x", {x1, 550}], Line[{{x1, 0}, {x1, 525}}],
Text [TableForm[Map [NumberForm[#, {5, 4},
NumberPadding -» {"", "0"}] &, {{N[aa[11]., N[a.[2]1]1}.
{N[Ba[111, N[Ba[2111}}, {2}], TableHeadings -
{{"a", "B"}, {"A-Modes", "B-Modes"}}, TableAlignments -
Right, TableSpacing- {0, 1}], {.003, 500}1}1;
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x2 = Mean[LogNormalDistribution[u,[1], on[111]:
Plot [PDF [LogNormalDistribution[u,[1]}, o, [11], x].
{x, 0, .01}, PlotRange -» {0, 600}, Frame - True,
FrameLabel - {"Failure Rate", "g(x)"},
Epilog -» {Text["x", {x2, 550}], Line[{{x2, 0}, {x1, 525}}],
Text [TableForm[Map [NumberForm[#, {5, 3},
NumberPadding - {"", "0"}] &, {{N[us[11], N[cz[111},
{N[ua2]1], N[on[2]]}}, {2}], TableHeadings -
{{"u", "o"}, {"A-Modes", "B-Modes"}}, TableAlignments -»
Right, TableSpacing- {0, 1}], {.003, 500}1}]:

x3 = Mean [WeibullDistribution[B,[1], 6,[111]:
Plot [PDF[WeibullDistribution[B,[1], 6.[11]1, x].,
{x, 0, .01}, PlotRange » {0, 600}, Frame - True,
FrameLabel - {"Failure Rate", "h(x)"},
Epilog -» {Text["x", {x3, 550}], Line[{{x3, 0}, {x3, 525}}],
Text [TableForm[Map [NumberForm[#, {5, 3},
NumberPadding -» {"", "0"}] &, {{N[B.I11], N[6.[I111}.
{N[B«[21]1, N[6,[211}}, {2}], TableHeadings -
{{"B*, "e"}, {"A-Modes", "B-Modes"}}, TableAlignments -
Right, TableSpacing-» {0, 1}], {.003, 500}]1}1]1:

600
A-Modes B-Modes x
500 a 66.6670 66.6670 i
A 0.0001 0.0001
400
%300
44
200
100
0 0.002 0.004 0.006 0.008 0.01

Failure Rate

Figure 1. Gamma PDF and Parameters.
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Figure 1 shows a plot of the gamma Probability Density Function (PDF) whose parameters
are printed in the top left corner. The A and B-modes failure rates were generated via these
parameters. This includes the gamma shape and scale (o and ) parameter values of 66.6670
and 0.0001, respectively. The mean and variance for this distribution are approximately

0.0067 and 6.7 x 1077, respectively.

600
A-Modes B-Modes X
500¢} u -5.018 0.122
o ~-5.018 0.122
400
X 300
o))
200
100+t

0 0.002 0.004 0.006 0.008 0.01
Failure Rate

Figure 2. Lognormal PDF and Parameters.

Similarly, Figure 2 shows the parameters and plot of the lognormal PDF. The values that are |
displayed are the mean and variance parameters to the corresponding normal distribution.
These values result in a mean and variance identical to that discussed above for the gamma
distribution.  For example, since these values are based on a normal distribution,
e~>018 = 0.0067, which is the mean shown above.

600
A-Modes B-Modes =~ X
500 B3 9.547 0.007
€] 9.547 0.007

400+
X 300
<

200

100+

0 0.002 0.004 0.006 0.008 0.01

Failure Rate

Figure 3. Weibull PDF and Parameters.

The parameters for the Weibull distribution are found in the same fashion. Figure 3 shows
the parameter values and plot of the PDF. Likewise, the mean and variance are identical to
the previous. It is also noted that the shape and scale of the PDFs, while not identical, are as
closely related as possible. Having identical means and variances, shows that projection
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results obtained from generating failure rates from either of the above distributions are compa-
rable. In the next section, the failure rates for this demonstration are generated from the
gamma distribution shown in Figure 1.

4.2.3 Failure Rates.

The Mathematica code below randomly draws A-mode and B-mode failure rates based on
one of the three distributions previously discussed. The list of k4 A-mode failure rates is
denoted by A4. Similarly, Ap is a list of k3 B-mode failure rates. These rates for both the A,
and B-mode failures are printed in Table 2 below. The blank space in Table 2 results from
generating fewer A-mode failure rates in comparison to the number of B-modes.

Ap = Which[
dist == 1,
Table[Random[GammaDistribution[a,[1], B-0I111], {i, ka}l.,
dist == 2, Table[Random[LogNormalDistribution[u,[1], o,[[11]].,
{i, ka}l,
dist == 3, Table[Random[WeibullDistribution[B,[1], 6.0I111].,
{i, ka}ll;
Ag = Which[
dist =1,
Table[Random[GammaDistribution[a,[2], Bal20]], {i, ks}].
dist == 2, Table[Random[LogNormalDistribution[u,[2], o,[2]]1].
{i, ks}],
dist == 3, Table[Random[WeibullDistribution[B,[2], 6.[21]1].
{i, ks}1];
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If[k, > kg, Table[AppendTo[Ag, ""], {i, ka-ks}].,
Table[AppendTo[A,, ""], {i, ks -ka}l]:
TableForm[Map [NumberForm[#, {7, 6}, NumberPadding - {"", "0"},
ExponentFunction » (Null &) ] &, Transpose[{Aa, Ag}], {2}],
TableHeadings -» {Automatic, {"A-Mode", "B-Mode"}}]

A-Mode B-Mode
1 0.008288 0.007838
2 0.006374 0.006398
3 0.007915 0.006058
4 0.006143 0.006842
5 0.006521 0.005768
6 0.007982 0.006620
7 0.007217
8 0.006210
9 0.007258
10 0.006082

Table 2. A and B Mode Failure Rates.

There are 6 A-modes and 10 B-modes shown in Table 2. These numbers were generated
from a gamma distributions with mean of approximately, 0.0067. The shape of this distribu-
tion is displayed in Figure 1 of the preceding section

4.2.4 Generating Uniform Random Numbers.

k4 and kp uniform random numbers are drawn below. These random numbers will be uti-
lized in the next section to calculate the first occurrence time (FOT) for each mode. The
following Mathematica instructions draw the numbers randomly from a uniform distribution
over the interval [0,1] and print the data in Table 3. The black space in the table is due to
generating a fewer number of A-modes than B-modes.
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Uy = Table[Random[], {i, ka}]:
Ug = Table[Random[], {i, kg}]:;
If[ka > kg, Table[AppendTo[Ug, ""], {i, ka-ks}],
Table[AppendTo[U,, ""], {i, ke -ka}]l]:
TableForm[Map [NumberForm[#, {5, 4}, NumberPadding - {"", "0"},
ExponentFunction » (Null &) ] &, Transpose[{Ua, Us}], {2}].,
TableHeadings » {Automatic, {"A-Mode", "B-Mode"}}]

A-Mode B-Mode
1 0.2531 0.1236
2 0.1803 0.2584
3 0.9385 0.1313
4 0.7706 0.4658
5 0.1023 0.7674
6 0.7458 0.6014
7 0.7375
8 0.5076
9 0.0125
10 0.5792

Table 3. Uniform Random Numbers.

4.2.5 First Occurrence Times.

The uniform numbers, and the A-mode and B-mode failure rates from the preceding sections
are utilized to compute the FOTs. In this execution of the simulation the length of the test
phase is T = 1,000 hours. Any FOT greater than 1,000 referred to as an unsurfaced mode.
The following Mathematica code calculates the FOTs and prints the data Table 4 below.
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If[ka > kg, As = ReplaceAll[Ag, "" - 1]; Uy = ReplaceAll[Ug, "" > 1],
Ap = ReplaceAll[A,, "" - 1]; U, = ReplaceAll[U,, "" > 1]]:;
-Log [Ua] -Log[Us]
—_— g
Axn As
If[k, > kg, tg = ReplaceAll[ty, 0> ""],
ta = ReplaceAll[t,, 0> "%"]];
TableForm[Map [NumberForm[#, {50, 0}, NumberPoint -» "%,
DigitBlock » 3, NumberPadding - {"", "0"},
ExponentFunction -» (Null &) ] &, Transpose[{t,, tg}]l, {2}],

A=

TableAlignments - Right,
TableHeadings -» {Automatic, {"A-Mode", "B-Mode"}}]

A-Mode B-Mode

1 166 267
2 269 212
3 8 335
4 42 112
5 329 46
6 37 77
7 42
8 109
9 604
10 90

Table 4. First Occurrence Times.

Table 4 displays the A, and B-mode first occurrence times. Note that all modes were surfaced
by T.

4.2.6 Fix Effectiveness Factors.

Fix Effectiveness Factors (FEFs) represent the fraction reduction of initial mode failure rate
due to corrective action. The beta distribution is utilized in randomly generating the FEFs.
Using the beta distribution we generate kpz FEFs, denoted by dp, for the B-mode failures.
Since the A-mode failures remain unfixed, the FEFs for the A modes, d,, are set equal to 0.
The following Mathematica code generates the FEFs and prints the data in Table 5 below.
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=0.8;
v=0.1;
1-c-cv?

gz ——
v2

(=)
r= q;
[o]

d, = Table[O0, {i, ka}l:
dg = Table[Random[BetaDistribution[qg, r]], {i, ks}];
If[ka > kg, Table[AppendTo[dg, ""], {i, ka-ks}].,
Table[AppendTo[dy, ""], {i, ke -ka}ll]:
TableForm[Map [NumberForm[#, {5, 4}, NumberPadding - {"", "0"},
ExponentFunction » (Null &) ] &, Transpose[{da, dg}], {2}].,
TableHeadings -» {Automatic, {"A-Mode", "B-Mode"}}]

A-Mode B-Mode
1 0.0000 0.8571
2 0.0000 0.8177
3 0.0000 0.5545
4 0.0000 0.8034
5 0.0000 0.8060
6 0.0000 0.8287
7 0.8432
8 0.5157
9 0.7203
10 0.9312

Table 5. Fix Effectiveness Factors.

4.2.7 Failure Times.

Using FOTs calculated in section 4.2.5, a sequence of failure times up to time T for each
failure mode are generated. The following Mathematica code defines the function 'timeline.'
This function uses the FOTs and failure rates to calculate the failure times. The function is
called twice, once for the A modes, and once for the B modes. The failure times are then
printed in Table 6 below. "Null" may appear in place of a sequence of failure times for some
modes. This occurs for the unsurfaced modes, or modes whose FOT is greater than T.
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If[ka > kg, tg = DeleteCases[tg, ""];, ta = DeleteCases[t,, ""]];
timeline[tlist_, Alist_] := {
tl = Table][
If[tlist[[i] =T, {tlist[[i]l}, Null], {i, Length[tlist]}];
For[i=1, i < Length[tl], While[Max[t1[i]] < T,
Log[Random|[] ] .
Alist[i]
If[NewT < T, AppendTo[tl[[i]], NewT], Break[]];]: i++]; t1};
TA = Flatten[timeline[t,, Ap], 1]:
TB = Flatten[timeline[tg, Ag]l, 1];
If[ka > kg, Table[AppendTo[TB, ""], {i, ka -ks}],
Table[AppendTo[TA, ""], {i, ke ~-ka}ll]l:
TableForm[Map [NumberForm{#, {6, 0}, DigitBlock > 3,
NumberPoint -> ""] &, Transpose[{TA, TB}], {3}].,
TableHeadings -» {Automatic, {"A-~Mode", "B-Mode"}},
TableAlignments - Right]

NewT = Max[tl[i]] -

A-Mode B-Mode
166 267
218 356
289 361
362 378
1 415 496
437 500
501 596
762 765
941 846
269
5 391 212
411 299
533
8
42
162
429
456 335
3 490 754
556 833
688
801
815
925
42
87
264 112
286 142
4 430 281
443 312
490 418
535 948
808
867
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329

348
394
451 .6
544
718
5 646
795
718 942
739
779
794
991
37
54
146 o
349 174
395
234
474
6 323
536
607
567
696
600 53¢
630
651
715
42
108
256
7 320
497
582
109
209
8 331
632
892
604
9 716
803
90
235
10 946
948

Table 6. Failure Times.

Since all of the failure modes in this run were surfaced by T, there is a sequence of failure
times for each mode. Table 6 displays the failure times in ascending order. By inspection,
one notices that all the failure times occur in the interval [0,T]. Also, the number of failure
times varies per mode. This reflects the randomness of the routine used to generate the failure
times.
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4.2.8 Data Structures - Two Classifications.

In the "Two Classification" case, A-mode failures and B-mode failures are classified sepa-
rately, and are not utilized in a unified fashion when making reliability projections. In this
case, a number of data structures are defined. tb is a list of B-mode FOTs. m is the number
of surfaced B-modes. N,4;, and Np; are the number of A-mode, and B-mode failures for
mode i, respectively. N4, and Np are the total number of A-mode, and B-mode failures,
respectively. SBM is an index set of all surfaced B-mode FOTs. 4* is a list of all FEFs for
the surfaced B-modes. 4+ is the average FEF for the surfaced B-modes. The following
Mathematica code defines these variables. Due to the volume of information associated with
these data structures, they are not printed.

If[ka > kg,
dg = DeleteCases|[dg, ""];
Ap = DeleteCases[Ag, 1]; TB = DeleteCases[TB, ""];,
d, = DeleteCases[d,, ""]; Ay = DeleteCases[Ap, 1];
TA = DeleteCases|[TA, ""]];

tb = Select[ts, # < T &];

m = Length[tb];

Np,; = Map[Length[#] &, TA];

Np,; = Map[Length[#] &, TB];

Np = Total[Na,;];

Ng = Total[Ng,i];

SBM = Position[ts, _?(#=<T&)];

d* = Extract[dz, SBM];

4.2.9 Data Structures - One Classification.

"One Classification" of failure modes refers to a unified treatment, where failure modes are
not classified depending on implementation of corrective action. In this case, A-mode and
B-mode failures are contained in one list. A-modes are only distinguished from B-modes via
a zero FEF. Aap is a list which contains all of the A-mode and B-mode failure rates. TAB is
a list containing all A-mode and B-mode failure times. Nap; is the number of failures for
A-mode or B-mode i. N,y is the total number of A-mode and B-modes failures. SABM is
an index set of all surfaced A-mode and B-mode FOTs. dap is a list which contains all
A-mode and B-mode FEFs. The A-mode FEFs are zero since the modes are unfixed. dAB is
a list of all FEFs for the surfaced A-mode and B-mode failures. kg is the total number of
A-mode and B-mode failures that were generated in the simulation. m2 is the total number of
surfaced A, and B-mode failures by time T. The following Mathematica code defines these
data structures. The associated data is not printed due to the volume of output.
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Axg = doin[A,, Agl:;

TAB = Join[TA, TB];

Npp,; = Map[Length[#] &, TAB];

Nap = Total [Npg,i];

tas = Join[ta, ts];

SABM = Position[tas, 2?2 (#sT&)];
dag = Join[da, dg];

dAB = Extract[d,s, SABM];

kas = ka + kg

m2 = Length[Select[tys, # ST &]]);

4.3 Projection Models.

4.3.1 AMPM-Stein using Two Classifications.

The following Mathematica code defines the AMPM based on Stein estimation in the two
classification case, where failure modes are classified according to whether they will be
addressed by corrective action, or remain unfixed. The function 'Stein2C' is defined for
repeated use. The function requires two inputs, namely the estimates for the shape parameter,
B, of the gamma distribution, for which the failure rates are drawn. This estimate of 83 is
obtained in the case where the number of modes is a known, or assumed (i.e. finite k), and in
the case where there is a large, and unknown, number of modes (i.e. k-»o0). Although there
are a numerous equations listed below, there are essentially four model equations, but they are
calculated in a number of different types of cases. The four model equations include the Stein
shrinkage factor, a, the mode failure rate, A, the rate of occurrence of new B-modes, h, and
the failure rate, p. The different cases these values are calculated in are as follows:

1. actual value in the finite case,
2. actual value in the infinite case,
3. estimate in the finite case, and
4. estimate in the infinite case.

Since all required data is simulated, actual values are calculated and compared to the corre-
sponding estimates. The subscripts on the variables indicate which case the variable is com-
puted for, subscripts including "a", and "h" indicate "actual value," and "estimated value,"”
respectively. Subscripts including "K," and "oo" indicate that the variable is based on the
assumption of a finite number of modes, and infinite modes, respectively.

Stein2C[Bw_, Bk_] :=

T Bk
as,x,b = ————
S.X 1+7TBk

Ns. ;
.lh= 1;
T
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Ng
As,k,h = Ag,x,hAn + (1 -Qs,x,n) ( o T H

Variance[Ag] (ks - 1)

Qg,x = i
’ \ TotallX 1
Variance[Xg] (kg -1) + —-'La—,ri—al— (1- T:Z')
Ball2] T
as,m = H
1+ Ba[2] T
2 A (1a)(NB)
= + - , 7
s, K s.x s,K T
Boo T
Ou = —— i
1+ BT
Ng,i
ls,oo,h = O H
T
N Ng,i
o = s, 7
s, s -
kB—m
=1
kg—m
hs,x,n = Delete[As,x,n, SBM][31:;
j=1
Np
hso= (1-0s,a) (=)
T
Np
hs,en = (1-62) (=)
T
kB—m
h, = Delete[Ag, SBM][jl:
=1
Np» < e )
psx= — + » (1 -a"[i]) Extract[As,x, SBM][I] +hs,x;

j=1

Na < _ .
ps.xm= — + » (1-d&"[3]) Extract[As,x,n, SBMI[3] +hs,x,ns

3=
Na < .
ps.w= — *+ . (1-d"[3]) Extract[As,o, SBM][I] + hs,e:
3=
Na < e _
Ps,om = — *+ » (1-d*[3]) Extract[Ag,e,n, SBM][3] +bs,e,ns
3=
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(1-ds[[31) A=M31 +
j=1

Total[Delete[dg, SBM] Delete[Ag, SBM]]:;
stein2c = {1/pas 1/ps,xs 1/ Ps,x,us 1/ (Ps,w,n) }i }7

k
Pa = Total[A,] +

4.3.2 AMPM-Stein using One Classification.

The Mathematica code below defines the AMPM based on Stein estimation in the case where
all modes are treated in a unified fashion. The model equations are identical to those already
seen from the previous section. The use of the associated data structures for the one classifica-
tion case is the only difference. The function 'Stein1C' is defined for repeated use. The
description of variables in the preceding section applies for the variables below.

SteinlC[Bw , Bk _] :=
Off [General::spelll];
ag,x = (Variance[Axs] (kap - 1)) /
Total [Axs] (1 1 ))

(Variance[lm] (kag - 1) +

T ks
Ball2] T
As,e0 = ——————;
1+Ba[2]T
Nap,i Nas
Ag,x = Og,x + (1 - ag,x) ( ) ;
kg T
Beo T
Bp = —— ;
1+B0T
Nas, i
AS,co,h = 6y - H
Nas, i

-
I

AS,m = 05,

Kap-m2
hs x = Z Delete[Xs,x, SABM][3];
51
T Bk
Qs g,p = ——;
S F TRk
Nas, 1
Ap = - H
T
Nas
As,K,h = Qs,k,h An + (1 - Qg,x,n) ( ) ;
kas T

kap-m2
hs,x,n= . Delete[As,x,n, SABM][i]:
=1
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E

kap-m2
h, = Z Delete[Xxs, SABM][i];
j=1

hs,e = (1-as,a) (

A =g

Bs,e,n = (1-6a) |

m2
Ps,x = ) (1~ dAB[3I) Extract [As,x, SABM][3] + hs,x;

i=1

m2
Ps,x,n= ) (1 -dAB[j]) Extract [As,x,ns SABM][] + hs,x,n
j=1

m2
Ps,e = Z (1 - dAB[[j]) Extract[As o, SABM][j] + hs,e;
j=1

m2
Ps,int,n = ) (1 - AAB[J]) Extract[As,o,n, SABM][i] + hs,a,ns

j=1
kas
Pa= ) (1-dxslil) Aas[3] +
j=1

Total [Delete[d,s, SABM] Delete[Ans, SABM]];
steinlc = {1/Pas 1/ps,xs 1/Ps,x,ns 1/ (Ps,ine,n) }i}i

4.3.3 AMSAA-Crow using Two Classifications.

For comparison purposes, reliability projections using the AMSAA-Crow model are exam-
ined. The following Mathematica code defines the function 'AMSAACrow2C', which calcu-
lates the model equations of the AMSAA-Crow model in the two classification case. S, and
B are the biased, and unbiased MLE, respectively, of the shape parameter of the model.
Similarly, A., and A, are the biased, and unbiased MLE, respectively, of the scale parameter
of the model. A, is the biased estimate of the rate of occurrence of new B-modes at the end of
the test phase. h., is the unbiased estimate. The biased and unbiased estimate of the system
level failure intensity are denoted by p. and p.u, respectively. The corresponding MTBFs

are M, and M_,.
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AMSAACrow2C[] := {
Zia @' [4D

m

*

Ha =

m

Bc = oy - H
D3 209 w57 ]

m-1

Ac,u = H

T/3c,u
he = A¢ B¢ The-1;
hc u’= Ac u Bc u TBC'“_I ;

Z(l a*[31) ( “m)wd*hc;

Z(l a"[31) ( “m)wd*hc,u;

1
M= —3;
Pc
1
Mo ,uw = ;
Pc,u

unbiased = {Bc,ul Ac,ul hc,ul Pc,ur Mc,u}i}?

4.3.4 AMSAA-Crow using One Classification.

The following Mathematica code defines the function '"AMSAACrow1C', which contains the
model equations utilized in the one classification case. The model equations are identical to
that used in the two classification case. However, the data structures below compensate for
treating A and B-modes in a unified fashion. The discussion of the variables in the preceding
section explain the estimates below.
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AMSAACrowlC|[] :=
_ 5§ B[]

*

Ha

m2
tab = Select[tas, # < T &];
m2
I3c = 2 . i
250 09 [ w2y ]
m2 -1 .
Bc,u = m2 Bei
m2
Ac = -Eﬁ—c-;
m2
Ae,u = TBen d

hc,u = Ac,u Bc,u Tﬁc'“_li
m2 .
Nag,: [31]
pe= ), (1-anBlil) (=222 ) ¢ e’ hes
j=1

+ Ua* he,ui

n2 Nas,:i [J]1
pc,u=Zl (1 - daB[5]) (——“i?——)
:]:

1
Mc = —7
Pe
1
Mc,u = i
Pec,u

unbiasedlc = {lsc,ul Ac,ur Ne,ur Pc,ur Mc,u};};

4.4 Reliability Projections.

4.4.1 MME using Two Classifications.

The method of moments (MME) estimates are obtained below for two cases. In the first case
a finite number of modes is assumed. The second case calculates the MME where the num-
ber of modes approaches infinity. This case is useful in situations where there are a large, but
unknown, number of failure modes. The MMEs are used in the function call for the AMPM-
Stein based on two classifications. Projections from the AMSAA-Crow model are also
obtained. Finally, the associated sum of squared error for the models is calculated. These
results are stored and compared against the other projections at the end of the simulation run.
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&
n"

T
M, = ;
ks
i=1
kg A2
Oy = - ; (* EQUATION 7.159, MARTZ & WALLER. %)
ks (My - A®) - 2 Ay
A
By = —; (% EQUATION 7.160, MARTZ & WALLER. %)
ay

-e

1 Z‘;‘ﬂ Extract[Ng, 2, SBM][i]
Mo = — B
.T | X5.1Extract(Ng,;, SBM][3j]

Stein2C[Buw: Bu];
stein2cmme = stein2c;
AMSAACrow2C[];
crow2c = unbiased;

ks
AMPMSteinApproxk = > (As[3] - As,x,u[31) 2

=1
ks
AMPMSteinApproxw = » (As[j] - As,e.n[3]) ?;
i1
ks
AMPMSteinActual = (As[3T - Xs,x031) %5
j=1

MMEerror = {AMSAACrowError,
AMPMSteinApproxk, AMPMSteinApproxc, AMPMSteinActual};

4.4.2 MME using One Classification.

The MME:s are also calculated in the one classification case. The data structures used below
contain all mode information, unlike those of the preceding section. The following Mathemat-
ica code calculates the MMEs, executes the AMPM-Stein and AMSAA-Crow models and
estimates the associated sum of squared error.
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kas  Nag,i[3]
T

Kap
3=1

kzs ( Nap,1[3] )2
T
ST e
1

i
kas A _

Ka (Ma - As2) - 220,

(# EQUATION 7.159, MARTZ & WALLER. %)

Oy =

By = — ; (* EQUATION 7.160, MARTZ & WALLER. #)
am

1 [ X352, Extract[Nas,:?, SABM][]]

Mo = =

T Z‘;‘fl Extract[Nag,;, SABM][j]

-e

SteinlC[Byw: Bul;
steinlcmme = steinlc;
AMSAACrowlC[];
crowlec = unbiasedlc;

kas
AMPMSteinApproxk = > (Aas[i] - As,x,u[31)%;
i=1

kas
AMPMSteinApproxe = > (Aasl[3] - As,,al31)*;
i=1

kas
AMPMSteinActual = Z (Aas[3] - As,x[31) 2:

j=1
Kas 2
. Nas,i _ .
AMSAACrowError = Aaeli] - - [Nl :
3-1

MMEerrorlC = {AMSAACrowError,
AMPMSteinApproxk, AMPMSteinApproxe, AMPMSteinActual};

4.4.3 MLE using Two Classifications.

The following Mathematica routine calculates the MLEs for a finite, and infinite number of
modes in the two classification case. The routine obtains the AMPM-Stein and AMSAA-
Crow projections, and also calculates the corresponding sum of squared error. Again, the
results are shown at the end of the simulation run.
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check2 = 0;
If[Max[Ng,i] > 1,

fix ] := (-}-I:—';) Log[l+xT];

Bmlew = x /. FindRoot [f[x] =m, {x, 1073}];
(* EQUATION 7.172, MARTZ & WALLER. %)

N 2
If[kg > ” 2 ’
2521 (N, :[31 - 1) Ng,:[3]
check2 = 1;
kg NB,i[Ij]]_l
1
glx_] := £[x] - e
j:l p:l 1 + ( NB )

fmleK = x /. FindRoot [g[x] ==m, {x, 10'3}] P
"No solution to pfg. “] , "No repeats. "] ;
Stein2C[fmlewx, BmleK];
stein2cmle = steinc;
AMSAACrow2C|[]:;

(A3 - As,x,u[31) ?;
j=1

k
AMPMSteinApproxk =

ks
AMPMSteinApproxw = > (As[3] - As,,n[31)%;

i=1
kg
AMPMSteinActual = » (As[3] - As,x[31)2%;
5=1
ka 2
. Ng,i
AMSAACrowError = E (AB[[j]]— - [[J]]);
3=1

MLEerror = {AMSAACrowError,
AMPMSteinApproxk, AMPMSteinApproxc, AMPMSteinActual};

4.4.4 MLE using One Classification.

The last projection method that is examined, before reclassification of A-modes, is based on
MLE in the one classification case. The following Mathematica code calculates the MLEs,

projections, and sum of squared error.
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check2 = 0;
If[Max[NAB,i] >1,

flx ] := (—Z—A-:—‘) Log[l+xT];

Bmlew = x /. FindRoot [£f [x] =m2, {x, 1073}];

(# EQUATION 7.172, MARTZ & WALLER. *)
Nag?

5% (Nas,+[3] - 1) Nas, s [31

check2 = 1;

If[kAB >

kap Nas,i[3]-1

1
glx_] := £[x] Z - ;
= 4 1+ (HE)

BmlekK = x /. FindRoot[g[x] == m2, {x, 10'3}] i
"No solution to fk. "] , "No repeats. "] ;
SteinlC[fBmlex, BmleK];
steinlcmle = steinlc;
AMSAACrowlC[];

kasp
AMPMSteinApproxk = Z (Aas 3] - As,x.x[31) %5
j=1

kan
AMPMSteinApproxw = Z (Aas[3] - As,w,u[3]) ?;
i

kaz
AMPMSteinActual = Z (Aan[3T - As,x[31) 2;

j=1
Kas 2
) Nas,i .
AMSAACrowError = Axs 31 - (30| :
T
3=1

MLEerrorlC = {AMSAACrowError,
AMPMSteinApproxk, AMPMSteinApproxwo, AMPMSteinActual}:




4.5 Reclassification.

4.5.1 Reclassifying A-modes - Two Classifications.

The following Mathematica instructions reclassifies some A-mode failures as B-modes, and
reorganizes the data accordingly. The A-modes that are reclassified are modes that program
management are likely to fix, namely the repeat A-modes. The variable repeats is the index
set of such modes. R is the total number of A-modes that are reclassified. All other variables
below were previously discussed. The following process of reclassifying the A-modes entails
removing all data associated with the repeat A-modes from the corresponding A-mode data
structures. The data is then appended the appropriate B-mode data structures. Also, the FEFs
for the reclassified A-modes are updated from 0 to a random number drawn from the beta
distribution discussed in Section 4.2.6. This process of reclassifying A-modes, and reorganiz-
ing the data is performed below in the two classification case. Due to the volume of data
involved, the following variables are not printed.

repeats = Position[N,,;, ?(#>1&)];
R = Length[repeats];
Ag = Join[Ag, Extract[A,, repeats]];
kg = Length[Ag] ;
Ap = Delete[A,, repeats];
ka = Length{A,];
tg = Join[ty, Extract[t,, repeats]]:;
tb = Join[tb, Extract[t,, repeats]];
ta = Delete[ta, repeats];
TB = Join[TB, Extract[TA, repeats]];
m = Length[tb];
Ng,; = Map[Length[#] &, TB];
Ng = Total|[Ng,i];
TA = Delete[TA, repeats];
dg = Join[dp, Table[Random[BetaDistribution[q, r]], {i, R}]1];
da = Drop[da, R];
SBM = Position[tg, ? (#<T&)];
d* = Extract[dg, SBM];
, ZiadMED
= ———m ;
N,,; = Map[Length[#] &, TA]; Np = Total[Na,:];

Ha
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4.5.2 Reclassifying A-modes - One Classification.

By utilizing the variables from the proceeding section, the data structures for the one classifica-
tion are simply redefined. The following Mathematica code performs the required update.

The projections are then re-run in the next section.

Aap = Join[Ax, Agl;

TAB = Join[TA, TB];

Nap,i = Map[Length[#] &, TAB];

Npg = Total [Nag,i] s

tap = Join[ta, tsl;

SABM = Position[tas, 2?2 (#<T&)];
d;s = Join[d,, dg]:;

dAB = Extract[das, SABM];

kag = ka + kg

m2 = Length[Select[tas, # < T &]]:;

4.6 Reliability Projections after Reclassification.

4.6.1 MME using Two Classifications.

The following Mathematica instructions recalculate the projections based on MME using two
classifications.
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S~
[+
11

T
M, =
Kz ’
j=1
kB ->Lu2
Qu = ; (* EQUATION 7.159, MARTZ & WALLER.

ke (My =A%) - 22 2y

A
Bu = - ; (# EQUATION 7.160, MARTZ & WALLER. %)
Qy

1 ( X3.1Extract[Ns 2, SBM][]]
T | 3j.1Extract[Ns,;, SBM][j]

BMco -

-e

Stein2C[Buw:, Bul i
rstein2cmme = stein2c;
AMSAACrow2C[];
rcrow2c = unbiased;

kg
AMPMSteinApproxk = Z (As[31 - As.x,u[31) %;
j=1

kg
AMPMSteinApproxow = Z (Xs[3T - Xs,0,u[31) 2;
j=1

e
AMPMSteinActual = Z (Xs[3T - As,x[31) %5
j1

rMMEerror = {AMSAACrowError,
AMPMSteinApproxk, AMPMSteinApproxco, AMPMSteinActual};

4.6.2 MME using One Classification.

*)

The Mathematica routine below recalculates the projection in the one classification case using

MME.
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&
n
&
n

kAB Au2
kas (Mg - Xy®) - 222 2,
(# EQUATION 7.159, MARTZ & WALLER. =*)

.

Ay =

By = —; (* EQUATION 7.160, MARTZ & WALLER. %)
Oy

1 Z‘:‘j‘fl Extract[Nas ;2, SABM][j]

BMw = — m2
T | 332 Extract[Nas,:, SABM][i]

-

SteinlC[Buw, Buli
rsteinlcmme = steinlc;
AMSAACrowlC][];
rcrowlc = unbiasedlc;

kas
AMPMSteinApproxk = Z (Mas[3] - As,x,6[31) %;
i1

kan
AMPMSteinApproxe = > (Awsl[il - As,=,u[31)%s
j=1

kan
AMPMSteinActual = Z (Mas[3] - As,x[31) ?;

=1
3%
) Nas,i __\?
AMSAACrowError = Axs[3] - 0in| :
T
3-1

rMMEerrorlC = {AMSAACrowError,
AMPMSteinApproxk, AMPMSteinApproxo, AMPMSteinActual};

4.6.3 MLE using Two Classifications.

The Mathematica code below performs the projections in the two classification case using
MLE.
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check2 = 0;
If[Max[Ng,i] > 1,

fix ] := (;?%) Log[l+xT];

Bmlew = x /. FindRoot [£[x] =m, {x, 1073}];
(#* EQUATION 7.172, MARTZ & WALLER. %)

N2
If [k > — P ,
2521 (Ng,:[[3] - 1) Ng,:[3]
check2 = 1;
ka NB,i[Ij]]_l
: 1
glx_] := £[x] - e
j:l p:l NB

pmleK = x /. FindRoot [g[x] =m, {x, 1073}];,
"No solution to Bg. “] , "No repeats. "] ;
Stein2C[fBmlex, fmleK];
rstein2cmle = stein2c;
AMSAACrow2C|[};

kg
AMPMSteinApproxk = ' (As[3] - As,x,[31) s
j=1

ks
AMPMSteinApproxe = > (As[J] - As,,ulil)?s

j=1
kg
AMPMSteinActual = Y (As[3] - Xs,x[31)2;
EpE
ks )
. Ng,i _,
AMSAACrowError = 2A:[031 - T 031 :
3=1

rMLEerror = {AMSAACrowError,
AMPMSteinApproxk, AMPMSteinApproxco, AMPMSteinActual};

4.6.4 MLE using One Classification.

This Mathematica routine reruns the projections using MLE when all modes are treated in a
unified fashion.
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check2 = 0;
If[Max[Nag,i] > 1,

fx ] := (-z—A:%) Log[l+xT];

Bmlew = x /. FindRoot [£[x] =m2, {x, 1073}];
(» EQUATION 7.172, MARTZ & WALLER. «*)

Nap?
If[kAB > k ’
232 (Nap,:[3] - 1) Nag,i[3]
check2 = 1;
kAB NAB,iEj]-l
£ 1
glx_] := £[x] - pyET
j=1 p=1 Nas

BmleK = x /. FindRoot [g[x] ==m2, {x, 1073}];,
"No solution to Bg. "] , "No repeats. "] ;
SteinlC[Bmlew, BmleK];
rsteinlcmle = steinlc;
AMSAACrowlC[];

kas
AMPMSteinApproxk = Z (Aas[3T - As,x,6[31) %:
=1

kan
AMPMSteinApprox® = > (Axs[3] - As,«,a[31)*;
j=1

kas
AMPMSteinActual = Z (Aas[3T - Xs,x[31) ?;

j=1
. Nas,i |
AMSAACrowError = Axs[3il - 03l | ;
T
j=1

rMLEerrorlC = {AMSAACrowError,
AMPMSteinApproxk, AMPMSteinApproxc, AMPMSteinActual};
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4.7 Simulation Results.

4.7.1 Storing Results.

During one execution of the simulation, the necessary data is generated, and four different
types of reliability projections are calculated. In addition, the mean square error is examined.
Since the simulation can be replicated numerous times, the results during each replication
must be saved. The following Mathematica instructions store this data.

mtbfresults = {};
rmtbfresults = {};
errorresults = {};
mtbfresultslc = {};
rmtbfresultslc = {};
errorresultslc = {};
surfaced = {};
AppendTo[surfaced, {Length[Select([tp, #<T&]], m}];
(» 2C *)
AppendTo[mtbfresults,
Join[stein2cmle, {stein2cmme[[3], stein2cmme[[4], crow2c[51}]]:

AppendTo[errorresults, {MLEerror[4], MLEerror[2],

MLEerror[[3], MMEerror([[2]], MMEerror[[3]], MLEerror[1]}]:
(» 1C *)
AppendTo[mtbfresultslc,

Join[steinlcmle, {steinlcmme[3], steinlcmme[[4]], crowlc[5]}]]:

AppendTo[errorresultslc, {MLEerrorlC[[4], MLEerrorlC[2],

MLEerrorlC[3], MMEerrorlC[[2], MMEerror1C[[3], MLEerrorlC[[1]}];
(# RECLASSIFICATION %)
(* 2C x)
AppendTo[rmtbfresults, Join[rstein2cmle,

{rstein2cmme[[3], rstein2cmme[[4], rcrow2ec[5]}1];
(» 1C x)
AppendTo[rmtbfresultslc, Join[rsteinlcmle,

{rsteinlcmme[[3], rsteinlcmme[[4], rcrowlc[5]}]11]:;
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4.7.2 Displayed Results.

The Mathematica code below consists of print statements, which display the data shown in
Tables 7 through 11 below. These data represent the MTBF projections in the various cases
previously discussed. Also, these projections are for one replication of the simulation. When
replicating the simulation numerous times, as performed in the study, the mean squared error,
and variance in the projections are calculated over the sequence of runs. These data are not
provided below since only one replication is examined.

TableForm[Map [NumberForm[#, {4, 2}, NumberPadding-» {"", "0"}] &,
mtbfresults, {2}],
TableHeadings » {None, {"Actual", "Stein", "MLE K", "MLE o",
"MME K", "MME o", "A-C"}}, TableAlignments - Right]
TableForm[Map [NumberForm[#, {4, 2}, NumberPadding-» {"", "0"}] &,
mtbfresultslc, {2}],
TableHeadings » {None, {"Actual", "Stein", "MLE K", "MLE ",
"MME K", "MME ", "A-C"}}, TableAlignments - Right]
TableForm[Map [NumberForm[#, {4, 2}, NumberPadding -» {"", "0"}] &,
rmtbfresults, {2}],
TableHeadings » {None, {"Actual", "Stein", "MLE K", "MLE ",
"MME K", "MME o", "A-C"}}, TableAlignments - Right]
TableForm[Map [NumberForm[#, {4, 2}, NumberPadding-» {"", "0"}] &,
rmtbfresultslc, {2}],
TableHeadings » {None, {"Actual", "Stein", "MLE K", "MLE ooV,
"MME K", "MME ", "A-C"}}, TableAlignments - Right]

The structure of the tables below are equivalent. That is, they contain the same columns, in
the same order. The first two columns in these tables, namely "Actual" and "Stein", are
theoretical MTBF values and are not attainable through experience. The capability of obtain-
ing these values here is due to making assumptions regarding the distribution, and population
parameters of failure modes in addition to randomly generating data, typical to that collected
in a developmental test. "Actual" represents the actual system MTBF. "Stein" represents the
actual MTBF based on Stein estimation. "MLE K" and "MME K" are the MTBF projections
based on MLE and MME, respectively, in the case where there is a finite number of failure
modes. "MLE 0" and "MME oo" represent the projections based on MLE and MME, respec-
tively, in the case where there is an infinite number of failure modes. These infinite estimates
are more commonly used since there are typically an unknown, but very large, number of
failure modes associated with complex systems. The MLE K, MLE co, MME K, and MME
co estimates are all projections of the AMPM-Stein model. The last column is the projection
given by the AMSAA-Crow model, labeled "A-C."
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Actual Stein MLE K MLE o MME K MME A-C
17.01 14.63 14.68 14.21 14 .59 13.46 14.07

Table 7. MTBF - Two Classifications.

Actual Stein MLE K MLE o MME K MME o A-C
17.01 17.80 16.77 14.40 16.82 13.83 14.11

Table 8. MTBF - One Classifications.

Actual Stein MLE K MLE o MME K MME o A-C
41.25 41.99 42.57 37.51 42.53 30.34 35.76

Table 9. MTBF - Two Classifications (Reclassified).

Actual Stein MLE K MLE o MME K MME o A-C
41.25 41.99 42.57 37.51 42 .53 30.34 35.76

Table 10. MTBF - One Classifications (Reclassified).

It is noted that Tables 9 and 10 are identical. In this replication of the model, 6 A-modes and
10 B-modes were generated. Since all 6 A-modes were reclassified to B-modes, the data
structures utilized between the two, and the one classification cases are equivalent, yielding
the same projections. That is, if all A-modes generated in any replication of the model were
reclassified, the projections between the classification methods would be equivalent since the
two classification only has one class of modes - the B-modes. This is due to the fact that
there are no A-modes left after reclassification to divide the failure modes into two categories
- all the modes are B-modes and have one classification.
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5. RESULTS AND ANALYSIS.

5.1 Results using Gamma Failure Rates.

Simulations were run in Mathematica to investigate the accuracy of the Stein
MTBF projections M (T) = (p, (T ))", and assessed MTBFs for the AMPM-Stein model
based on MLE and MME estimates of the Stein shrinkage factor ;. This was done for

assessed MTBFs based on finite a number of modes, k, and large k (i.e. £k —> o). The
accuracy of the procedures were investigated for two mode classifications, and where
modes are only differentiated via the mode FEFs (referred to as one classification). The
accuracy of these procedures for MTBF assessment were compared to the accuracy of the
IEC standard for reliability projection (the AMSAA-Crow model).

The simulation consists of a number of steps, and was demonstrated in Section 4.
A summary of these steps include:

1. Specifying various inputs; such as, specifying a distribution to randomly draw
mode failure rates (i.e. gamma, Weibull or lognormal), the number of A-
mode failure rates to generate, the number of B-mode failure rates to
generate, the length of the simulated test phase, and the number of tests to
replicate.

2. Generating k, and k, A-mode and B-mode failure rates, respectively, for the

selected distribution. The same distribution was used for generating the A-

modes and B-modes.

Calculating A-mode and B-mode first occurrence times.

4. Generating B-mode fix effectiveness factors from a beta distribution with

shape parameters equal to 19.2 and 4.8. These parameters yield a mean and

coefficient of variation of 0.8 and 0.1, respectively. The A-mode fix
effectiveness factors are set equal to zero, since these modes are not fixed.

Calculating a sequence of failure times for each failure mode.

6. Calculating the MTBF projections discussed above using two classifications
and one classification of failure modes.

7. Reclassifying repeat A-modes to B-modes. The associated fix effectiveness
factors, are changed from zero to a random number generated by the beta
distribution discussed in step 4. This is done since the failure modes will now
be addressed by corrective action.

8. Recalculate the one classification projections after reclassification.

w

hd

The presented simulation runs perform the steps above for a test phase of length 3,000
hours. This process is replicated 1,000 times (i.e. 1,000 tests are simulated). The
distribution type, as well as the simulated number of A and B-modes, and average
number of surfaced A and B-modes over the 1,000 replications are shown in Table 11.

Simulated Surfaced Distribution
A-Modes 200 54 Gamma
B-Modes 500 135 Geamma

Table 11. Simulated/Surfaced Failure Modes.
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Table 11 shows that there were 200 A-modes and 500 B-modes simulated in each test.
There were 54 surfaced A-modes and 135 surfaced B-modes on average over the 1,000
tests. The failure mode rates were simulated from a gamma distribution whose
parameters are shown in Table 12.

A-Modes B-Modes
Shape - « 0.6667 0.6667
Scale - f3 0.0002 0.0002

Table 12. Gamma Parameters.

These parameter values were held constant for the indicated number of replications.
However, new sets of initial mode failure rates, and FEFs were generated for each
replication.

For every replication, a simulated failure history was generated for each of the
failure modes over the specified test period (T = 3,000 hours for the displayed results).
At the end of the test, the estimated surfaced B-mode failure rates for a procedure were
reduced by their associated mode FEFs to obtain the assessed MTBF value. Tables 13
through 15 below display the actual MTBF and assessed MTBF values for several cases.
"Actual" represents the actual system MTBF. "Stein" represents the actual MTBF based
on Stein estimation. "MLE K" and "MME K" are the MTBF projections based on MLE
and MME, respectively, in the case where there is a finite number of failure modes.
"MLE oo" and "MME oo" represent the projections based on MLE and MME,
respectively, in the case where there is an infinite number of failure modes. These
infinite estimates are more commonly used since there are typically an unknown, but
very large, number of failure modes associated with complex systems. The MLE K,
MLE oo, MME K, and MME oo estimates are all projections of the AMPM-Stein model.
The last column is the projection given by the AMSAA-Crow model, labeled "A-C."

1. Assuming an inherent set of A and B-modes. The versions of the Stein, and
AMPM-Stein, that assume such a mode split, and the AMSAA-Crow model
were used to generate the assessed MTBFs displayed in the table labeled two

classifications.
Actual Stein MLE K MLE @ MME K MME o A-C
MTBF 15.58 15.61 15.58 15.37 15.54 15.01 14.43

Table 13. MTBF Projections — Two Classifications.

2. One classification case, i.e. procedures that only distinguish between A and
B-modes for estimation purposes by FEFs. The AMSAA-Crow as presented
in Crow (1982) and Ellner, et al. (1995) is not designed to handle this case.
However, a one classification version of this method can be derived. To
implement this variant, all modes were treated as B-modes for estimation with
d, =0 for the generated A-modes.
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Actusl Stein MLE K MLE oo MME K MME A-C
MTBF 15.58 15.60 15.56 15.3¢6 15.53 15.01 14.43

Table 14. MTBF Projections — One Classification.

3. Reclassification using one mode classification.

Actual Stein MLE R MLE o MME K MME oo A-C
MTBF 17.02 17.03 17.00 14.93 16.95 16.41 16.23

Table 15. MTBF Projections — One Classification after Reclassification of A-modes.

For the reclassification case, each generated A-mode was reclassified to a B-
mode if one or more repeat failures of the mode occurred during the simulated test. The
averages for the actual and assessed MTBFs are displayed in tables for the Stein,
AMPM-Stein approximations, and the AMSAA-Crow model. The appropriate variant of
the Stein and AMPM-Stein approximation for the one classification case are applied to
obtain the assessed MTBFs before and after reclassification. The theory on which the
two classification variants of these methods are based do not apply to the reclassification
problem.

Table 15 displays averages of the actual and assessed mitigated system MTBFs
after reclassification of A-modes for one classification of failure modes. The
assessments provided by the Stein and AMPM-Stein approximations utilized the version
of these methods that distinguish between A and B-modes for estimation purposes only
through their assigned FEFs. The version of the AMSAA-Crow method applied for
Table 14 was used to obtain the A-C entries in Table 15. A theoretical underpinning that
allows a unified failure mode treatment is necessary to support assessment of the MTBF
after mode reclassification.

Tables 13 through 15 above display the average actual and assessed mitigated
system MTBF values over the 1,000 replications for each of the cases described, which is
the first accuracy measure examined. Tables 16 and 17 below display the sample
variance, over all 1,000 replications, of the actual and assessed MTBFs before
reclassification of A-modes, for two classifications and one classification, respectively.

Actual Stein MLE R MLE @ MME K MME o A-C
VAR 0.55 1.34 1.33 1.31 1.38 1.29 1.32

Table 16. MTBF Variance — Two Classifications.

Actual Stein MLE K MLE © MME R MME oo A-C
VAR 0.55 1.20 1.08 1.10 1.12 1.11 1.21

Table 17. MTBF Variance — One Classifications.

From tables 16 and 17 we can see that there is little change in the variance in the
MTBF for the assessments. Note that for each assessment procedure, a portion of the
sample variance for the estimated MTBFs is due to the variation in the actual mitigated
MTBFs.
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A third accuracy indicator is the average, over the 1,000 replications, of the sum
k
of squared errors Z(i}’ —4,)* for the one classification case and Z(lf -2,)° for the
i=1 ieB
two classification case, where A denotes the assessed mode initial failure rate for a
given method. For comparison purposes, the table displays the average of the sum of
squared errors (/’[i - 2,)?, denoted “Standard,” for the unadjusted estimates /?;.. Recall

that };:0 for i € obs .

Tables 18 and 19 show the mean square error (MSE) in the MTBF before
reclassification of A-modes, for two classifications and one classification, respectively.

Stein MLE K MLE o MME K MME o Standard
MSE 0.00000831 0.00000845 g.00001121 0.00000847 0.00001120 0.00002210

Table 18. MSE — Two Classifications.

3tein MLE K MLE o MME K MME o Standard
MSE 0.00001164 0.00001178 0.00001566 0.00001180 0.00001563 0.00003097

Table 19. MSE — One Classification.

The average of these unadjusted squared errors (the column titled “Standard”), is large

compared to the Stein and AMPM-Stein procedures. This is an indication that one

should not use the reciprocal of Z(l~d,.)/?:i = ):A + Z(l—d,.)i‘. to estimate the
icobs ieobs(B)

mitigated MTBF for the one or two classification cases.

The simulation accuracy results, based on the absolute error between the actual
MTBF and the assessed MTBF, indicate the Stein and AMPM-Stein approximations
compare favorably to the AMSAA-Crow (A-C) method
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MLE o A-C MME o A-C MLE o MME o
73.5 26.5 75.2 24.8 64.6 35.4

Figure 4. Distribution of Most Accurate Projection — Two Classifications.

Figure 4 shows three pie charts. The pie charts are one-on-one comparisons between two
estimation methods. For example, the pie chart on the left side of Figure 1 compares the
MTBF accuracy between the AMPM-Stein MLE (with an infinite number of modes) to
that of the AMSAA-Crow model. The distribution is shown below the pie chart. For the
pie chart on the left, the AMPM-Stein MLE (with an infinite number of modes) provided
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a more accurate MTBF projection than that for the AMSAA-Crow model in 73.5% of the
1,000 tests that were replicated.

The AMPM-Stein procedures for finite k and large k (i.e. £ — ) based on the
MLE and MME shrinkage estimators produced MTBF assessments that were close to
each other. In practice, the number of modes, k, is not known and could be difficult to
estimate. However, these results (and underlying theory) indicate that for complex
systems, one does not need to assess k. The displayed simulation results also indicate
that the AMPM-Stein assessments from the simple closed form MME estimates are
comparable in accuracy to the MTBF assessments based on the more computationally

intensive MLE estimates.

For the displayed simulation results, the accuracy of the assessed MTBFs for the
Stein and AMPM-Stein procedures for one classification were comparable to the
achieved accuracy of the corresponding procedures that address the two classification
case. The same is true for the MTBF assessments after reclassification with respect to
the one and two classification procedures.

5.2 Results using Weibull and Lognormal Failure Rates.

The same analysis as above was performed in two additional cases. The first
generates failure rates from a Weibull distribution, the second from a lognormal. The
means and variances were chosen to be the same as for the gamma distribution. This was
done to examine the impact of violating the assumption that the mode failure rates are a
realization of a random sample from a gamma distribution. The associated tables are
shown for the Weibull and lognormal runs in Appendix A and Appendix B, respectively.
Even though the AMPM-Stein MLE and MME estimation procedures for the unknown
Stein parameters assume the A, are realizations from a gamma distribution, all the

comments for the previous tables concerning accuracy still apply for the Weibull case.
Comparable results were also attained when the A, were generated from a lognormal

distribution. This perhaps indicates that the true MTBF and AMPM-Stein assessed
MTBFs are not strongly affected by the tails of the distribution of mode failure rates.
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APPENDIX A — WEIBULL RESULTS.
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APPENDIX A - WEIBULL RESULTS.

gimulated Surfaced Distribution
A-Modes 200 55 Weibull
B-Modes 500 137 Weibull

Table 20. Simulated/Surfaced Failure Modes.

A-Modes B-Mades
Shape - f 0.8539 0.8339
8cale - B 0.6001 0.0001

Table 21. Weibull Parameters.

Actual Stein MLE K MLE o MME K MME o A-C
MTBF 15.36 15.50 15.44 15.23 15.45 14.82 14.30

Table 22. MTBF Projections — Two Classifications.

Actual Stein MLE K MLE o MME K MME o A~C
MTEBF 15.36 15,49 15.43 15.22 15.45 14.92 14.29

Table 23. MTBF Projections — One Classification.

Actual Stein MLE K MLE o MME R MME o A-C
MTBF 16.68 16.82 16.73 16.686 16.77 16.23 15.98

Table 24. MTBF Projections — One Classification after Reclassification of A-modes.

Actual Stein MLE K MLE o MME K MME o A-C
VAR 0.48 1.24 1.27 1.25 1.34 1.235 1.30

Table 25. MTBF Variance — Two Classifications.

Actual Stein MLE K MLE o« MME K MME o A-C

VAR G.49 1.12 1.07 1.0% 1.10 1.09 1.20

Table 26 MTBF Variance — One Classifications.

Stein MLE K MLE o MME R MME Standard
MSE 0.00000733 0.00000808 0.00001101 0.00000810 0.00001100 0.00002220
Table 27. MSE — Two Classifications.
gtein MLE K MLE MME K MME o gtandard
MS3E 0.00001109 0.00001124 0.00001535 0.00001126 0.000013533 0.00003108
Table 28. MSE — One Classification.
MLE o A-C MME o A-C MLE o MME o
73.2 26.8 72.4 27.6 60.5 39.5

Figure 5. Distribution of Most Accurate Projection — Two Classifications.
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APPENDIX B - LOGNORMAL RESULTS.
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APPENDIX B - LOGNORMAL RESULTS.

gimulated gurfaced Distribution
A-Modes 200 o6 Log Normal
B-Modes 500 140 Log Normal

Table 29. Simulated/Surfaced Failure Modes.

A-Modes B-Modes
Mean - u -9.3808 -9.3808
gtd.Dev - © 0.9572 0.9572

Table 30. Lognormal Parameters.

Actual Stein MLE K MLE o MME K MME e A-C
MTBF 15.02 15.64 15.29 14.98 15.57 14.97 14.07

Table 31. MTBF Projections — Two Classifications.

Actual Stein MLE K MLE o MME K MME o A-C
MTEBF 15.02 15.63 15.27 14.96 15.56 14.97 14.07

Table 32. MTBF Projections — One Classification.

Actual gtein MLE K MLE @ MME R MME A-C
MTBF 16.22 16.94 16. 44 16.23 16.87 16.25 15.61

Table 33. MTBF Projections — One Classification after Reclassification of A-modes.

Actual Stein MLE K MLE o MME K MME o A-C
VAR 0.45 1.40 1.16 1.13 1.56 1.39 1.13

Table 34. MTBF Variance — Two Classifications.

Actual Stein MLE K MLE o MME K MME o A-C
VAR 0.45 1.12 0.93 0.94 1.20 1.14 1.05
Table 35. MTBF Variance — One Classifications.
Stein MLE K MLE o MME KR MME Standard
MSE 0.00000822 0.00000844 0.00001118 0.00000841 0.00001119 0.00002234
Table 36. MSE — Two Classifications.
Stein MLE R MLE o MME K MME o Standard
MSE 0.00001153 0.00001178 0.00001561 0.00001173 g.00001562 0.00003117

Table 37. MSE — One Classification.

o '@

MLE o A-C MME o A-C MLE o MME o
67.7 3z2.3 66.6 33.4 59.1 40.9

Figure 6. Distribution of Most Accurate Projection — Two Classifications.
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APPENDIX C — DERIVATION OF THE STEIN SHRINKAGE FACTOR.

The Stein shrinkage factor, 6, is the value of 6 €[0,1] that minimizes the sum of expected
squared error loss between the actual mode failure rates, denoted by A, for i=12,...,k,

and the Stein estimates of 4, , defined

A =04 +(1-65) “k

k A
2

(D

To find 6, we shall first calculate the unique value, 6,, such that

d [& ~ o]
ZZZE[;(&.—A,.) ]_0

@

The unique value, 6,, will be shown to be the Stein shrinkage factor. To derive 8, one

begins by calculating the following:
1. Bl

k
i3,

5. F| —&
k

-

.,

i=1

where 4, is the MLE of 4, , which is given by,
A=

i

_]_\_IL'
T
1. Ei]

Since N, ~ Poi[/IiT ], the expected value of (3) s,
E [’{: ]= _E_’[_;VJ =4

]

Therefore 4, is an unbiased estimate of A
2. Ej2.

The variance of , is,
Var[N,]

Var[ﬂ:,.]= 77

N [

From (4) and (5), one can see that,

73

3)

4)

&)




Bl )=+ ©)

The Stein estimate of 4, is given by,

k "~
_ 2.4
A,.=9-A,.+(1—9)-% (7
Utilizing (4) yields,
£i]=0-4+0-0)2 ®)

k
where A = Z/lj .
j=1

4 E[[ZAH

k k
Since N ~ PoilleJ, ZNJ ~ Poi[T- l} , and one can see that,
j=1 j:

J
1

k. k
E{Z%}Z% ©)
j=1 j=1
and
k
>4
ko - J
VarI:Z/l 11 =L (10)
J= T
(9) and (10) imply,
k
LY Z,lj LY (g
E(lej =L+[z,1j =(—+,12) (11)
Jj=1 T j= T
k
where /152/1]
j=1
~ k ~
At DA
5. E|—
k
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k
Since A, and Zﬂj are not independent random variables, their product is rewritten as,
=1

~ k A A k ~ A,
A 'le,- =], -lej + A2, which gives,
= J=

J=i

S
i.-kij zi-z;/ljmf
1 J=
E—2 |=p ¥ 12
p k (12)
L i

k ~
Since A, and Zij are independent random variables, by using (4) and (6), (12)
Jj=l

J=i

becomes,
RS A -Zk:l +(&i+12j < A
A2 A = A ﬂf'Ziﬁ—;
E J=1 - J#i — Jj=1 (13)
k k k
6. E|7].

From (7) one can see that,

A~
.

2
k A
o i3y (34
=02 12 420(1-0) —I 1 (1-g)? A

p e a9
Taking the expected value of (14) gives,

A
.

i34 E[[zaj }
E[Ziz]=92 'E[ﬂ:f]+29(1—9).E j1 =

By utilizing (6), (13), and (11), (15) becomes,

A A
ol g [ hehtT %)
E[l,.z]:Bz-(7‘+lfj+29(1—9)- —-—“7—— +(1—9)2-T (16)

7. 3 4,-£[]

i=l

From (8), one can see that,
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k -~ k ) 12
Zﬂi-E[l,.]=c9-Z/1,. +(1-6)-2 (17)

where A= Zl
8. ZE[,V]
Summmg (16) over i =12,...,k yields,
A
k - A k 12 +'f (;'FZZJ
S El7z]=° -(?+Z/ﬁ)+20(l—0)- +(1-6)’ (18)
i=1 i=1

k ~
Evaluating E[Z (A4 - l,.)z] .

i=1
Given the results above, one can now evaluate E[Zk: (4, - /1,.)7} =E [i(ﬂ? 244 + A2 )}
= P
= Zk:(E[Z? J-24.£[7 ]+ 22)= iE[Zf]— 22&E[Z,]+ i}.f (19)
=] i=] i=1 i=1

i

By utilizing (18) and (17), the right-hand side of (19) becomes,

J) r ﬂz + i (% + /12) B
6’ -(-T-+sz]+29(1—9)- TT +(1-0)? S —2(9 > X +(1-6)- J+Z,1
i=] i=1
(20)
After the algebraic manipulations,
k k k k
O° K -203 B+ B=(1-6) A (21)
i=1 i=} i=] i=1
and
- f ,12 /12 of -2
(1-8) = [+ (1-0*| Z- |-2(1-0)| = |=(1-6) p (22)

(20) is expressed as,

AL 2
1) = 9( )+(1 )% 2,12+2e(1 9)(’1}(1_9)2[_/1‘?_} (23)

i=1

k
Thus, E{Z(Z - l,)2j| = f(6) is a quadratic polynomial with respect to 4.
i=1
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k ~
Evaluating ;%E{Z (A - ,11,)2] =

i=1

i=1

116 = 29( j (2- 29)Zf+(2 49)( ) (2-20) L 24

f'(6,) =0 implies,

29(’1}292;3 49(k ]+29(% 42] 2212 ( j+2(%k fj (25)

i=] i=1

k _ k 2
After algebraic manipulation of (25), and using the fact that > (4, ~1)* =Y A - % ,

i=1 i=1
k

54

where 1 = —'ik— , the expected sum of squared error optimality criterion is given by,
k —_—
Z (4—4)
6, = (26)

;(1“] Z(l %

From (26) one can see that 6, € (0,]). The assurance that 6, is a minimum, and not a

maximum results from the fact that the polynomial coefficient of 8 in (23) is positive.

That is, Z(l 1)+ (l——};) >0. Since 6, €(0,]) and minimizes E[Z(Zi —/11.)2}, w

i=1

i=]

have 6, =9, .
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