UNITED STATES NAVY

PROJECT SQUID

A TECHNICAL | REPORT No. 10
cg:,*
c@?}{; égg’noﬁv THROUGH REED VALVES
$OR PULSE JET ENGINES,

e ,Q;&n. CLAMPED REED VALVES

\,'%\‘ by

Paul Torda

: e
——————— { o L
HT - 7

—~ e

July, 1948

£

VTECHNIC INSTITUTE
oLy OF BROOKLYN

e T feen ey ed
: %) 1 This dorunyan’ resd ‘:;:ﬁ}j. o |
¥ {~1 ?“-"“Uv‘.’ 1 "]\ R \& ~iey 1 | 3
%g ‘ G5 debutias. el el
L4 Ve R

A R SR F T S TS
- A T 0 . e e




L R

//
TECHNICAL REPORT No. 10

PROJECT SQUID

A COOPERATIVE PROGRAM
OF FUNDAMENTAL RESEARCH IN JET PROPULSION

for the
OFFICE OF NAVAL RESEARCH
of the

NAVY DEPARTMENT

CONTRACT N6-ORI-93, TASK ORDER II
NR 220.039

=

COMPRESSIBLE FLOW THROUGH REED VALVES 1
=

FOR PULSE JET ENGINES, £
E]

II. CLAMPED REED VALVES E
: vy, £

BY e i

= T :

PAUL TORDA . ¢

- ‘; L. %

T

POLYTECHNIC INSTITUTE OF BROOKLYN

BROOKLYN 2, NEW YORK
22 JULY 1948

1 This di‘:—.ﬁ_:rl‘j‘\:? l;-:; A,
l for public ;.9




ACKNOWLEDGMENT
.,A“CCSJtDn vor _;zli:.; The author expresses his thanks to Dr. H. J.
LR NP
l ?l' . i!:’('l r‘ Beissner for his advice, to Messrs, I. P. Villalba
W e s and J. H. Brick for their work on detail analysis
- T e and to Mrs, N. Cossey and Mr. B, Klein for their
| careful checking of the final mnalysis.
. TR -
i
ﬁ' . |
. P4k k
— _

i . TABLE OF CONTENTS '

COMPRESSIBLE FLOW THROUGH REED VALVES FOR PULSE JET

ENGINES, 1I. CLAMPED BEED VALVES., . . . . . . 1
Introduction . . . . . . . . . . . ... 1 "
Air Inflow Analysis . . .« « v v v o+ e 1 i
] {A) Notation and Basic Equations Defining the Flow. 2 %
(B) Integration of the Basic Equations 3 3
3 (C) Solution of the Boundary Value Problem 4
{D) Special Solutions 7 E
(E) Mass Distribution of Reeds and Combustion
3 Chamber Pressure Variation . . . . . . 14
(F) Remarks on Numerical Examples . . . . . . 15
Conclusions. . . . . . . . 0 000w 15
1 List of Symbols . . . . « . .+ . o .+ . . . . 17 7
Distribution List Vo e e e e e e e e 19 .

l.‘-,-..||m|\m|.|\|||\u|mmmM||mu|mn|nmm_mm||mmwmmnmwmummnm‘ T




gy

COMPRESSIBLE FLOW THROUGH REED VALVES
FOR PULSE JET ENGINES

I1. CLAMPED REED VALVES

Paul Torda

INTRODUCTION

In a previous report, Ref. 1, the a.. inflow through automatically operating hinged reed
valves was treated. This paper deals with the inflow analysis between clamped reed valves

used on conventional pulse jet engines, For a detailed discussion of background reference

should be made to Ref, 1.

Again, as in Bef, 1, the basic postulate is made that the reeds form smooth nozzles dur-
ing their motion, thereby increasing the inflow efficiency. Since the bending stresses are
reduced by eliminating oscillations about the momentarily bent shapes of the reeds, the reed

endurance will also be increased.

This analysis, as the one Ref. 1, was based an the theaury of non-steady, campressible,
non-viscous flow with isentropic change of state of the gas, and employs a quasi-one-damen-
sional approach. The resulting nan-linear differe..tial equations have been integrated in
closed form. To solve the problem in a general manner, the time variation of the flow ve-
locity at an arbitrary time and arbitrary cross section of the reed nozile was prescribed
and the corresponding pressure distribution on the combustion chamber side of the reeds was
calculated. The inverse method would allow particular numerical solutions only. The pre-
scribed boundary and transition conditions have been satisfied. Although the exact transi-
tion conditions between the inflow and the aero-thermodynamic proc- ss of the engine were not
known because of lack of experimental as well as theoretical evidence, it is thought that a
sufficiently broad rarge of such conditions 1is covered in the analysis as to include all ex-

perimentally or theoretically determined transition conditions likely to arise in future

investigations,

AIR INFLOW ANALYSIS

In this analysis the flow upstream of the valves has been assumed to be parallel to the
valve center planes, i.e, a short cowl of large diameter was assumed shead of the valve bank,

which is built up of a large number of individual valves,
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The quesi one-dimensional approach used takes into account the time end space
variation of area, flow pressure, and flow velocity between the reeds. The analysis con-
sidars nonwsteady, compressible, non-viscous flow between clamped reed valves with isentropic

change of state during the period of opening.

By satisfying the Euler dynamic equations, the continuity equation, and the equation of
change of state, and by preseribing that the momentary nozzle shapes be smooth, the flow
variables between a pair of reeds were determined. The interaction between the inflow con-
ditions, the valves, and the combustion chamber pressure is taken into account by additionally
satisiying the equation of forced reed vibration. Thus, the pressure variation on the com-
busticit chamber side of the reeds is calculated as a result of the analysis. The use of the

results for design purposes is discussed in the beginning of sectian (C).

The basic equations and part of their integration are identical to those for the hinged
valves, Bef. 1. ‘Thus only the basic equations and the main stepes of integration rather than

all the intermediate steps are giver in this analysis,
A complete list of symbols is included at the end of the report.
(A) NOTATION AND BASIC EQUATIONS DEFINING THE FLOW

The following notation is usid in this analysis, see Figure 1:

A= Alx,t) cross secticnal area between a pair of reeus h
o = plx,t) density of gas
r = nlx,t) pressure of the gas
u = ulxt) velocity of the flow in X direction
X space variable
t time variable > (a.1)
S
Yy s — adiabatic constant
Cy
¢, and ¢, specific heat of the gas at constant pres-
: sure and constant volume tespectively,
subscript 0 free stream conditions )
The equation of continuity is R v
R 3
RN 9
dMpA)  Bdloku) : (a.2)
— + — = U
ot ax
2
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FIGURE 1
The Euler dynamic equation of motion is
du . uau 19p 0
b dx p o {a.3)
The equation of isentropic change of state is
y
E— ES (9._.) (9-4)
Fo Po

(B) INTEGRATION OF THE BASIC EQUATIONS

A new variable, tnhe product of density and cross-sectional area, is introduced as

R = Blx,t) = plx,t) Alx,u) (b.o1)
and the continuity equation (a.2) can then be integrated to vield
1 9B (b.2)

=2 [-).=d {
uB[ ,dtx*rK,t)J

where K, (t) is an arbitrary funciion of time arising in the integration.

It is assumed that in the solution of equation (bl the variables are separable, say

Bix,t) = X{x) T(t) = X-T (b.3)
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then

X(x) u beCX (b.4)

satisfies all the equations and yields desirable valve shapes.

Expressing (b.2) in terms of (b.3) and (b.4), yields

L ex s 147
= = K (L) = — —
brgp e AV Tm g (b.5)
Cenoting
¥4 (b.6)

expressing 3 /ox from equation (a.4), using (b.5) for u and its derivatives, and then substitu-
ting these values into the Euler dynamic equation (s.3) and integrating, the following expression

is fcund for the density 1

2 2 ¥-=1
' \ ' 2T - ~2CX -CX 5y
X,y s Y—i ‘,xrd._l(d;)‘_ 2 (Fl"-) L8 ._.‘\1\‘“,‘*_(:”1
Y L~ - - — c— e v vy = 8 - 4 A 5
' c, ‘clT dat* Tl IR oc it 2
where X, (t) is an arbitrary function of time arising in the integration. (b.7)

Inserting (b.7) in (b.3), the expression for the area variable can be written as
(b.8) ,

T
B -1 x(1d% ) , e d ()
At = = = b 1% = I {1 5w ( = } - m,(m k)

The expressions for velocity (b.5), density (b.7), and ares distribution (b.8) are general
solutions of the basic equations. They contain arbitrary constants and arbitrary functions of

time which have to be determined from the conditions prescribed by the particular problem.

T AN

(C) SOLUTION OF THE BOUNDARY VALUE PROBLEM

AT o

The function T(t) describing the time history of inflow and valve opening is as yet unde- . E|

termined. The transition conditions between the inflow and the aero-thermodynemic process of
the combustion chamber should be used to determine this function. This was not possible since
the transition conditions involved were unknown. The determination of T{t) was effected thus:

If it is assumed that the velocity function at the entrance, u(o,t}, is known by some means

then the function T(1) can be evaluated. By prescribing such functions ul(o,t) = f(t) of various
nature, T(t) was determined. The vclocity, density, amd pressure in the flow, and the area
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distribution of the reed valves were calculated for each selected function ulo,t) = f(t). The
examples included are insufficient for design use. Towards this end, many more examples
- should be calculated by the method given in this paper. It would then be possible to select

L ‘H '\““

the proper valve parameters- for any particular design problem by comparing the results of such

examples with the combustion chamber pressure variation of interest.

The initial and boundary conditions of the present problem are assuwed as follows:
1. The urea between a pair of reeds must be a constant at the entrance (x=0) for any

time (t). ' 5
2. The reeds are_clamped, i.e., the tangent of the reeds at x=0 must be a constant !
during the whole valve motion.

il
w

: The appropriate velocity function, selected for tune cvaluation of T(1), must be pre-
- scribed. =
4. At the start of the inflow (L=0), the density at tne inlet section {X=0) was assumed a

i

to be the stagnation density (pg), and the inlet area constant,
5. The start of the intlow (1=0) was chosen at a time when the reeds already are open
slightly. This allowed the use of an exponential function for the space function
£ X(x) of the analysis, Should the stariing time be chosen when the valves are fully

|
i
|

closed, an additive space function would have to be used in order that the area be
zero at X=h. The use of such an additive function would only complicate the already
lengthy numerical work and would not yield significant results, since at the beginning
of the reed movement the flow is well behaved. Therefore, the additive space function
was left out and only the ex onential term of the space function used. However, the

time interval (At) during which the valves open slightly together with the amount of

the slight opening {A{h,0)) can be made arbitrarily small without adverse effects an
tne results.

At the start the density distribution along X should be nearly constant and even at
x=h should be equal approximately to the stagnation density {p,).

2] 6. At the end of the opening {(t=t,}, the density at the exat section, p(fi,1,}, and the

exit area, 4(h,t;), should have prescribed values.

The above conditions can be stated mathematically as:

L ALO, L) = Ay = Ag g ) %
2. (ay} é
-— : 1 = const.
OXly < |
£ 3. ul0,b) = f(w) , H
£ (e.1) =
= B(0,0) = pgho o = Psho,t 9
= 5. B(h,0) ¥ pgAp o E
= 6. Blh,t,) = upgoho o ]
5
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where
AO’O=A°‘L=2blﬂnreﬁnX=O

Ap o - area at x=h, t=0

pg = stagnatinn density

sttt

4o = constants
f(t) = given function of time
t, = time needed for opening of the valves

n = tangent of the roed at built in end.

il

S

Using the boundary value (cl.1), expression (b.8) for the area disteibution allows the

on of the arbitrary time function K (L),

i

cvaluati .
i
[ ( 1-7) ] s ;—;
K (L) = = ﬁ&i] LR Jdg) 1 (c:2) 13
’ y-1L bT 2p2T? Go  beT
The boundary value (c1.2), together with the derivative of the area (h.3) with respect E
: tc X, yields the following differential equation in Tit) and K (L) 'f
= ™ . + 2 E
. a=-—’I’“"7)[£—E l—d_l.)"c[l(,(g)] de,m] s
: ¢ dt \Tdt b?T? bTdt i
T > (c.3) =
. [ chg y | 2we, b Y 3
3 where g = n_._.,.l_ .__.(-_..._.) E
L 2W b AO,L E
/ i
7 Condition (cl.3) used in conjunction with equation {c..’ yelds a linear differential equation %,
£ in & new variable é
v = i) (c.4) :’
1
in the following manner: ;
The velocity function (b.S) for x=0 yields é
K, (L) 1 4T %
o) = e = = = = {(t] (c.5)
( bT cT dt g
-
from which 3
dT E
(c.6)

o
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Substituting (c¢.6) into equation (c.3) and introducing the new variable, v, as given by (c.4),
the linear first order differential equation resulting for v is

df(e; i‘] . (l—-Y_)d

dv
— V[(l—y) 1 cf(t) - ﬁ-t:a—t— ‘—“?‘-‘ = 0 (c.?)

dt
and its solution

df(t)
. e-_[ § (1-y) [criv - fdt-] fat x[ o)
df(t)
s;‘ [J‘(- (l—f:{)d . I; (1-y)ef(y)- Tat ]£ dtdt)+ B] _

where 3 is an arbitrary coastant arising in the integration.

Once v(t) has been evaluated, the whole time history of the inflow and reed movement is
determined, since T(t), and thus A(X,t}, pix,t), plx,t), and u{x,t), can be expressed.

The choice of {(t) determines whether vit) can be expressed in a closed form. In such
cases where the desired u{o,t)=f(t) does not lend itself to a closed form solution fer vii),

the computations must be made using numerical methods, e.g. graphical integration.

Four different functions f(1) were selected as examples and the special solutions pre-

sented.
(D) SPECIAL SOLUTIONS

The four functions ulo,t)=f(t), for which calculations are presented, were prescribed as

m
Case I - ulo,t) = f{t) &= —0 ]
n+t,
Case II - ulo,t) = f(t) = mte™ + m, IL
. do1
Case TII - (ot} = f(4) = — (d.D)
C_ern(tm)

Case IV - ulo,t) = f(t) = m, = const.

In the following detmiled analysis for Case I is given. For the other cases the analysis

is similar, therefore, only the final results are included.

Case I, Expression (c.8) gives the general solution of the differential equation for
T0*) < v in terms of f(1). Using (d.1) for this case, or

wio, ) = flt) = - (d.1)

.?WWWMWMWMMWMMWWMMMMM-.‘“r
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and evaluating the integrals, v(t) can be calculated,
With

afie) m df(t)
(1=y)[ef(t) - iyt = (1- S B dit ...
5 1-y)ef(t) 0 Jdt = (1-y) [cn+t ) 1dt

l”se(n#t)NC(“7)+ loge(n+t)(“7)= loge(n+t)(*"7)(mc*‘)

a (n+t)? (
- — , + y~r){cm+s )
m (1-y)lcm+l)+2 * Bintt) (d.2)

vit) = —(1-y)

Then, from (c.4)

1

aly-L1{nst)? (y=1)(cmel) | 7 (d.3)

- - + #B{n+t)
m{(l—y)icm+1)+2) s

T(t) =

Using (d.3) for T(L) and its de.-ivatives and substituting them into (c¢.6), the arbitrary
time function, K (t), as determined from condition (cl.3), becomes

. [ ] cm 1 -t Saly-1)(n+t)
£, 1t) = - {(t) — { vl { - -
' c %V 2 mt 1 %V L)g m((1-y)(cme1)+2] )

=Y
o _ 1 (d.4)
+ ply=1)(cm+l)(n+t)! 7-1)(cm+:)_;]}J
where v(t) is given by (d.2).
with this value of K (t), the area expression (b,8) becomes
(d.5)

i
Alx,t) = beCX[vit))* 7 [plx,t}]"?t

i
i
i
1
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and the expression for the denaity %
y-1 -t = + Blem+1) [(y=1){em+l) ~ %
1-cx-e " C* =
-1){cmes }—- i E
ner [rmdemms el e E

2a 1 m(e"2C*_e=CX) .
+[v(t)]'*§ — + B(cm+1)(n+t)[(7“”(cm“)’" f — + 4
m{ {1—y)(cm+1)+2] c 3
2a (¢ J{cmet) 2]%2 % '3
R B2 NN + glemel) (ne )Lt 7™} vi- g (=
Hviv)] 3m[(l—ych’wiHZ] 8 ’ é
(n+t)’[2y(e'°"—1)“20(1-y)x+l~7e"cx .

: — % %
¥
(1-9} 7_:T |i
_a-2CX _a-CX E
, mlemi-e®H)valle T fﬁ.( Aot ) [vit)]™! (d.6) =
2c(n+t)? v-11 © E
=

The velocity function can now be written
t 2
ulx,t) = —?-fe'cx + E..[v(t,)]" E
i ¢ d.7) ¥
2q =
. — +3(em+el ) t‘)[(Y“i)(Cm*i)-i]](l-e"CX) E
[m[(l—y)(cm+1)+2] pleml)ine E
In the above expressions, v(t) is given by (d.2).
From boundary conditians (c 1.4), i.e. M
B(0,0) = Ag, 105 (cl.4) I+
1z
. i
aly=1y n* \ A i
A = b ) anl (y=13{cm+1)] 4.8) -
0,105 7 b R Toy) (cmeitez] " 2 ( ;
and from boundary conditions (cl.5), i.e.
!
B(h,o0) = Ah,ops (c1.5)
2
2 . T
aly-1) n v anllr-item ]y 7 (d.9)

. heCh§
An,o0s = YT o T 1eE)




From (d.8) and (d.9) the values of c and of  can be calculated to

1 An -
e = log 0 (d,10)
Rl
“ = (Ao,tos )(“ 4 n* ly-1)a nila=y){emes)) (d.11)
o 1—y)(om+1)+2]

Finally, from boundary candition {ci.6), i.e,
B(h,t,) = ”Ao,tgps (cl.6)

where u < 1 and g <

thie value oi v can be determined as

{9!.) =n=é_gl_t.:30 [po L (1"7)_{“*“'\ )('Y"i)(cm+1) .
0% X=0 2w S 1 5 -

1)

(d.12)

m{(1-y)(cmel)+2) .o %

(n+t (y=1)icm+s)

c, (y»1){(n+t, )2un? ]

The final expressions for area, density, and velocity distribution to be used in the numerical
calculations are

i
Al ) = Ay yog €79% M Y] (d.13)

y=1 | L=cx—eCX . )
plx, %) = A ["‘?‘T““ Mt { ~ o+ {y=L)lems1)-113 } +
c, ¢®n y=1

m , - aH
+ -—?(e'ZCX_e'“X) M™! [-_T + -] + (d.14)
cn Y—4
2yle X 1)2c(l-y)x+(1-e72CX) (n+t 2 [a\ X Q] 2
+ - e —
207 n’ Y""

i
} ¥=1

r Cy

+ (em(1-e72C%) s2(1 e X)) 4 2r , (y-t)y-e
oo Y1 os &
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where {y-1}{cmes) | \ T
( “Ch)(kby) ..lnf,tf‘) 4
N = n —
(mt ( n+t,, }(7-1)(Cm+l)
{(d.15)
(y-1)lcm*s) L
n+t n+t
n( iy (1-N)
n
: (y-1){cmes)=2]
: Q- <1_N)(cm+1)( 1kd ][ Y
1 n ”
1 ulx,t) = l e CX 4
' . n+t
{y-1){cmes ), ~%
1 +1
> { ( RNEIT l 2 \ } -{
Ly ly-1)lemes) :
-{ 2 tem ln’ L (1_e-cX) 3
-1 n f (d.16) i
£
Case II. Using expression (d.l) for this case, or tj
1=
ufo,t) = f{t) = mtePt « m, (d.1) 2

the resulting expressions for area, density, and velocity distribution to be used in the numeri-
cal calculations are;

1
AL, t) = Ay ppg €C% feChiyT™y[ ]2 (d.17)

1 nt o
- mnettint+Z) 1
p(X,L) = .Y_‘L (CX*e‘Cx.«l) [—g__ R J+
c, fc e

1
+ §(1 -e”?CX_2ex) ( ) + (2iy=Llex+1-e72C* 42y (e C* 1))

AT CC oY it mines

T

fﬁ(y-? ) o2 (1-7)'C}\,)\

M™2 4 (d.18)
uC (Y 1)2[”]2
f(‘?“:‘) fue(l-/)C)“)\?

+ [(2-ylex-1+e™CX _y(e™®*-1)] c? (y-1IN o -
(y=1 )y Y ploy=1)gl1=y)eh - i

cc,p N e 1A - 51
- ~CX_ t¥s _ 2 1 i
+EY 1)ex+yle 1) + v ] R M ]} g
11 E




£ = mteltt + ;)
£ = meRtint+l)
Ay = Ifdt . ﬁ1e“t(nt—1) + myt

) —cm  (1-9)
\ s l‘OeC[_Aitt‘—?] (1-7) {e;%—}
| [fhy, i L (d.19)

N fhply-2leli-yiengy,
o

gt'f(y-z )e(x"y)c)\‘dt e--t'rr
o= I '

. \ (y-2),(1=v)CA
ulx, ) = i[{%. ! ( f SR .\1"} (e7C¥_1y + ch (d.20)
c Y=Lk

Case IIi. Using expression (d.1) for this case, or

ulo,t) = flt) = e—=Lu (a.1)
c_en(t+n)

the resuiting expressions for area, density, and velocity distribution to be used in the

numerical calculations are:

1
Alx,t) = Ag g eCX |17y 453 (d.21)

plx,t)

{ﬂ[ﬁ,[x,-x,]’ "2 [2cly-1)x + (1-e7%CX) +2y(e"CXo1)) +
C, )

+ ff[x,—x,] N“*[e - CX.g-2CX) . %;{x,—(yal)xq]N"[cx + e X 1) «+

1

+ f2[c(l e7*%%) 4 gecX _pyemtnly Z ) (y-ily LR
2¢ y—1°8

Jililhe AT T

.
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where
M N
A, - ehl{t+n)

. ol7=tint -1 mn
g = € [1+M§c+2—_—-Ye &]

N =\, - Mc + ';—-l' em(t+n)]
~Y ? (d.23)
. m _
ceit(t+n)

" (_Hoe,BCh)(t-‘y)r - Ve(:y-‘i)mti
elr=timty o Y=L oy o vl mi,en)
Sy 2-y /

ulx,t) = %[cfe“cx\*m(—}‘hﬁl (e~CX_1)) (d.24)

Case IV. Using expression (d.1) for this case, or

ufo,t) = f{t) = m, = const. (d.1)

the resulting expressions for area, density, and velocity distribution to be used in the
numerical calculations are: ]

1
ALK, ) = gy o €CX HTT o) (d.25)

-1 i
plx,t) = % Y?-[mi, NMTE((1-y)ex+e™?CX 1 - y(e™CX_ 1)) +
1

+ mANTMT2[(y-1) cx -% (e” X _1) + yle™®X_1)) - (d.26) 1

1

? Yy -
_,m_g (e-QCX__l) + _iil(eos)(‘y—t)M*x ] 2 y =1
Y-—-

13

s e L I L




§ where

(1-7) )
e(vw)cm(,t[‘f"_’ e'Ch) L=y 1}
N = . \ g ! )
e(y-:)cmotxﬁi , (d.27)
£ ’ ‘
(fg e-ch ’"’7)(e(y~s)cmnt_l),e(y-:)cmot,_e(7~x)(cmnt)
4
) e(wt)cmo"u‘ 2 ) ) /

ulx,t) = m,e CX + m NM™! (1-e~CX) (d.28)

o

In this case two of the boundary conuitions had to be modified as follows:
at x =0 and t=0 A=Ay and p * €0g

and thus Hi0,0) = gAO'Lps

i

Nog

at X=hH and t =0 A= Ah,o and p

and thus 3(},0) = AAh,OpS

and the constant ¢ becomes

c = 1 )\Ab 0
1 lose‘EAO.t)

(E) MASS DISTRIBUTION OF REEDS AND COMBUSTION CHAMBER PRESSURE VARIATION

In the beginning of Air Inflow dnalysis it was stated that the pressure variation on the
combustion chamber side of the reeds is calculated as a result of the analysis by additionally

satisfying the equation of forced reed vibratiom

Ch 3%y Ay
— | Bl—= | + m*—= = qlx,t) (e.1)
dx? x? at? q y
where
A ~

-

w = depth of reeds (e.2)

m* = masa of reeds per unit length r

q(x,t) = forcing function, the differeace of the pressure forces on both

sides of the reeds. )
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For any prescribed masa distribution of the reeds used in the numerical calculations,
the pressure vatiation on the combustion chamber side of the reeds can be determined as

2 aﬁy aﬂy
QC(X,?‘) = Ql(X,t) - ','d?' \Eigﬁ \ - m'—;,- (e.3)
where
Qa(X,t) = pressure on combustion chamber side of reeds (per unit length).

qj{X,t) = pressure on inflow side of reeds (per unit length).

(F) REMARKS ON NUMERICAL EXAMPLES

No numerical examples are included in this report similar to those given in Ref., 1 due

to the lack of time and personnel.

Judging from the experience gained during the work done on numerical calculations ftor
the hinged valves, Ref. 1, and from the calculations made to date on the clamped valves,
there should be little if any difference in valve shapes, movement, velocity, pressure and
mass distribution between the clamped and hinged reed valves. Inspection of the valve motion
curves for the hinged reed valves, included in Ref, 1, shows virtually no change of the tan-
gent to the reed at the entrance section during the total movement. Thus, the main valve

motion is due to bending of the reeds during opening,

The expressions for the present case, though necessarily more involved, should result

in similar curves.

1t should be of interest to the designer to have numerical examples worked out for the
clamped reed valves. Such examples would facilitate the cioice of valve design most suitable
for the particular problem of interest. No great difficulty is expected for trained per-
sonnel in doing such numerical computations as suggested in this paper. For the actual pro-

cedure the method used in Rei. 1 should be followed.

CONCLUSIONS

Numerical results wh. . may be obtained by means of the above analysis and those of

Ref. 1 involve laborious computations. To overcome this disadvantage, a method of approxi-
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E mation woré suitable for engineering applications has been worked out together with numerical
examples. These results will be reported in the near future,

[

REFERENCES

1. Torda, Paul; Villalbae, I.P.; ad Brick, J.H.; Compressille Flow Through Reed Valves
For Pulse Jet Engines. I. Hinged Reed Valves, Technical Peport No. 9, Project

Squid, 14 June 1948.

(e T

|
|

R R T T

PO O

T

16




il

bl

Jr—

A= 2ix, )

Ao,o = Ag,t

Ah,o
b

B = Bi(x,t) =
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q = qi{x,t)
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LIST OF SYMBOLS

¢ross sectional area between a pair of reeds.

cross sectional area at x = 0.

cross sectional area at X

hunthO-

constant in X(x) function.

constant in X(x) function.

constant,

product of gas density and cross sectional area.

specific heat of gas at constant pressure and constant volume

respectively.
velocity function at x = O,

iength of reed.

half distance between a pair of reeds at x = O,

arbitrary functions of time arising in integrations.

constant in f(t) function.

mass of reeds per unit length.
ubbreviations for recuiring expressions.
pressure of gas.

force per unit of length, forcing function
abbreviation for recurring function.

time variable.

opening time for reed movement.

time function.

velocity of flow in X direction.

time function,
depth of reeds.
space variable.

space function,

- E;-’ yix,t) dependent space variable.
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subscript ¢

a
B
C
« R
Y
Cv
= (X
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M, O, €, x
p = p(x,t)
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free stream conditions.

inflow,

combustion chamber,

constant defined by equation (¢.3).

arbitrary constant ariaing in integration,

ediabatic constant.
tangent of reed at X = O,

abbreviations for recurring functions.
constants.
density of gas.

stagnation density.
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