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Abstract 

Presence of plasma turbulence can strongly influence propagation properties of electromagnetic 
signals used for surveillance and communication. In particular, we are interested in the 
generation of low frequency plasma turbulence in the form of coherent vortex structures 
coexisting with short scale density irregularities  and  of lower hybrid turbulence. Lower-hybrid 
type density irregularities are excited by plasma flows with velocity shear, whereas interchange 
or flute type oscillations in magnetized plasma are associated with Rayleigh-Taylor type 
instability. These types of density irregularities play important role in refraction and scattering of 
high frequency electromagnetic signals propagating in the earth ionosphere, inside a plasma 
sheath of reentry and hypersonic vehicles and in many other applications. We will discuss 
generation of low frequency density irregularities due to the presence of plasma flows with 
velocity shear and interchange instability.  
 
 
1. Introduction 
 
 
The scattering of high-frequency (HF) electromagnetic (EM) waves is a fundamental 
phenomenon in plasma physics. In a stable plasma EM scattering occurs due to the thermal 
electron density fluctuations and it is known as “Thomson scattering”  [1]. Due to nonlinear 
interaction of waves in plasma, scattering can also arise from single waves excited in the plasma 
and is explained as three-wave nonlinear interaction [2]. Scattering can also take place due to 
interaction of HF waves with electrostatic solitons [3] or from charged dust particles [4]. In the 
present paper we will analyze formation of plasma density irregularities due to development of 
lower hybrid and interchange instabilities. These types of density irregularities play an important 
role in analysis of high frequency EM scattering and refraction in the ionospheric plasma. The 
reason for this is that the spatial scales of these plasma waves are comparable or smaller than 
typical wavelengths of EM signals used for surveillance, communication and OTH radar 
applications. 
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In the terrestrial high-latitude (auroral) magnetosphere and ionosphere, whistler-lower-hybrid 
fluctuations in their electromagnetic or electrostatic limits are usually found in association with 
energetic electron beams along the geomagnetic field and/or anisotropic electron distributions. In 
particular, the energetic electron acceleration within the terrestrial auroral region results in the 
emission of short-wavelength, primarily electrostatic waves near the resonance cone of the 
whistler-lower-hybrid branch [5].  Another source of enhanced lower hybrid waves in the auroral 
ionosphere is related to strongly sheared plasma flows driven by structured electric fields in the 
vicinity of small scale auroral arcs [6].  
At subauroral latitudes, lower hybrid/fast magnetosonic waves accompany such well-known 
space weather phenomena as subauroral ion drifts (SAID) and subauroral polarization streams 
(SAPS) [7,8] . Figure 1.1 presents overview of one of such events occurred on 18 March 2002 
when three independent spacecraft (Cluster, DMSP, and Polar) crossed the SAID channel 
virtually at the same time and within the same magnetic tube. It is seen that the wave activity is 
abruptly enhanced inside the SAID channel, just interior to the plasmaspere’s boundary (the 
plasmapause).  
 

 
 
                                  

Figure 1.1 ( left panel) World-line plots of the Cluster, DMSP, Polar satellites during the 18-March-2002 

substorm event. The SAID channels from Cluster 1 (C1) are superimposed. Shown in the middle are (top) 

the C1/C4 outward electric field Ex in the inertial frame, (mid) C1/EDI 1‐keV electron counts (thick line) 
and the cold plasma density n0 (thin), and (bottom) C4/STAFF frequency‐time spectrograms for the 
electric spectral power in (mV/m)2/Hz (in log scale). Horizontal lines indicate the lower hybrid resonance 
(solid) and the 10th, 4th, and 2nd harmonics of the H+‐ion gyrofrequency (dashed), derived from the 
observed magnetic field. Shown on the right are the features of the northern SAID channel from Polar: 
(top) the outward electric field, (mid) the plasma density, and (bottom) spectral amplitudes of electric 
fields at 32 (dashed line), 256 (thick), and 2048 (thin) Hz. 
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The remainder of this paper is organized as follows: In Section 2, excitation of the lower hybrid 
instability by flows with velocity shear in the presence of electron-neutral collisions is analyzed. 
Linearized equations for the lower hybrid eigenmodes inside a plasma slab with velocity shear 
will be derived and solved numerically. Numerical solution is based on the implementation of 
the shooting code. In Section 3, nonlinear equations describing interaction of the lower hybrid 
waves inside a plasma flow with velocity shear with the low frequency ion acoustic oscillations 
will be derived, and dispersion equation for the modified decay instability will be presented. In 
Section 4, the results of the laboratory experiments in the NRL Space Chamber on excitation of 
lower hybrid turbulence by ExB flows with velocity shear will be presented.  In Section 5, linear 
and nonlinear stages of interchange instability with the ionospheric plasma parameters 
corresponding to the equatorial F-layer will be discussed. In the description of the interchange 
instability we retain finite ion Larmor radius effects. Inclusion of spatial scales comparable with 
the ion Larmor radius is important for the analysis of radar generated high-frequency EM waves 
interacting with density irregularities associated with the equatorial spread F in the ionosphere. A 
brief summary and applications are contained in Section 6. 
 
2. Excitation of Lower Hybrid waves by a flow with velocity shear 
 
In this Section we will analyze instability of a plasma flow with a transverse velocity shear scale 
length much smaller than the ion gyroradius but larger than the electron gyroradius. As shown in 
[9,10], under these conditions electrostatic oscillations with the frequencies above the lower 
hybrid frequency  
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can be excited.  In (2.1) pe and pi are the corresponding electron and ion plasma frequencies 

and ce is the electron cyclotron frequency. Below in the hydrodynamic approximation we will 

derive the equation for excitation of oscillations in the frequency range just above the lower 
hybrid frequency LH . In this equation we will include wave dispersion due to the thermal 

effects, electron neutral collision frequency and nearly perpendicular to the magnetic field 

propagation wave vectors with 
2

2
z

y

k m

k M
 (m and M are electron and ion masses respectively), yk  

- is the wave vector perpendicular to an external magnetic field and zk  –  is the wave vector of 

oscillations along the magnetic field. Electrons in the lower hybrid oscillations are magnetized, 
but ions are unmagnetized. The external electric filed varies along the x-direction 0 ( )xE x  and 

creates electron flow with velocity shear directed along the y-direction 0 ( )yV x  (see Figure 2.1). 

The width of the layer with electric field inhomogeneity is smaller than the ion Larmor radius. In 
such a system, we have electron flow with velocity shear moving in y-direction, whereas ions, 
being unmagnetized, do not experience ExB drift and are at rest in the laboratory coordinate 
system. We will use linearized electron momentum equation in the drift approximation which 
also contains electron neutral collisions term and linearized ion momentum equation for 
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unmagnetized ions.  Using also continuity equations for electrons and ions and Poisson equation 
for the electrostatic potential of a lower hybrid wave, we can arrive to the following linearized 
equation which describes wave excitation in the non-local approximation: 

2 2 22 2

2 2 2

2 2 2 2 2

2 2

0 2 2

2 2
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In equation (1) en  is an electron-neutral collision frequency, 0 ( )yV x is the flow velocity and 

operator ˆ
zL  is defined as: 0

ˆ ( )z yL V x
t y

 
 
 

. 

We are interested in the solution of the equation (1) which represent waves propagating along the 
y and z directions inside a plasma slab and the solution in the form of the eigenfunction in the x-
direction of the flow inhomogeneity: 
 
  
 
 
 
 
 
                                                              0 0( ) ~ ( )E x x V E B  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1.  In this figure a nonuniform electric field 0 ( )xE x and an external  magnetic field 0zB  create a 

nonuniform electron flow with velocity shear along the y-direction. 

~ ( ) exp(  )                      (2.3)
y z

x i t k y k z    
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We set 0x   at the conducting surface of the vehicle and require 
 

  0 0.x    (2.4) 

 

In the free space beyond the sheath edge at x L , the potential      expx L k x L       so 

that  
 

 0.
x L

d
k

dx

 


    
 (2.5) 

 
Equations (2.2) ,(2.4) and (2.5) constitute the eigenvalue problem to be solved numerically for 
the complex eigenfrequency   using a standard shooting method [11]. 
Using equation (2.2) for conditions used in Ganguli et al.  and neglecting thermal dispersion of 
lower hybrid waves (R = 0), electron-neutral collisions ( 0en  ) and restricting analysis to the   

waves with 0zk   , the shooting code recovers the previously published 

solutions	 (1.89 1.94) LHi   [9]From this point using equation (2.2), the shooting code was 

used to investigate the effect of finite electron-neutral collisions on the mode. Figure 2.2  shows 
the real frequency (solid black line) and growth rate (dashed red line) normalized to the lower 
hybrid frequency as function of electron-neutral collision frequency normalized to the electron 
cyclotron frequency for plasma conditions similar to those from published experimental 
observations of this instability [12]: ߱௣௘/Ω௘ ൌ ாܮா/Ω௘ݒ ,8.0 ൌ 13.6, ݇௬ܮா ൌ 0.5, ݇௭ܮா ൌ 0, 
and argon ions. The following electric field profile was used in the code: 
 

2
0 0( ) sec ( )x

E

x
E x E h

L
                            (2.6) 

where ܮா is the velocity shear scale length in the electron flow and the shear flow velocity along 
the y-direction is defined as: 

                                              0 0
0 2

0

( )
V ( )y y

x
x c

B




E B
e                                  (2.7) 

where c – is the speed of light. 
Results of numerical solution of equation (2.2) with inclusion of electron-neutral collisions, but 
with omission of thermal dispersion and with 0zk  are presented by Figure 2.2. It can be seen 

that presence of weak collisions has a strong  effect on both the growth rate and real frequency, 
though the mode is not completely stabilized.  We stop at 0.1~݊݁ߥω௖௘ to remain in the regime 
where the drift approximation is valid. However, it is expected that ߭௘௡~Ω௘ is needed before 
collisions could totally suppress  excitation of the mode. 
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Figure 2.2: Normalized real frequency (solid black line) and growth rate (dashed red line) dependence on 
normalized collision frequency. 
 
To obtain solution for the frequency and the growth rate of excited modes in the local 
approximation, we again will use equation (2.2) neglecting thermal dispersion of lower hybrid 
waves(R=0), electron-neutral collisions ( 0en  ) and restricting analysis to the  waves with 

0zk  . This will allow us to examine the qualitative behavior of this instability without 

employing the full numerical solution.  To arrive at the local approximation for the lower hybrid 
modes, we start from: 
 

dଶ߶

dݔଶ
െ ߶ଶߢ ൌ 0,	

where 

ଶߢ ൌ ݇௬
ଶ
െ

ଶߜ

ଶߜ ൅ 1
߱ଶ

߱ଶ െ 1

݇௬̅ݒா
ᇱᇱ

ഥ߱ െ ݇௬̅ݒா
,	

 

and ߜ ൌ ߱௣௘ ⁄௘ߗ , 	 ത݇௬ ൌ ݇௬ܮா, 	߱ ൌ ߱ ߱௅ு⁄ , and ݒா ൌ ாݒ ߱௅ு⁄  ா.  We obtain the localܮ

dispersion relation by taking ߢଶ ൌ 0 and using the values for ݒா and ݒா
ᇱᇱ at ݔ ൌ 0 as in Romero et 

al. [9].  This results in a cubic equation for ߱: 
 

߱ଷ ൅ ݇௬ݒா଴ ቆ
2
ത݇
௬
ଶ

ଶߜ

ଶߜ െ 1
െ 1ቇ߱ଶ െ ߱ ൅ ݇௬ݒா଴ ൌ 0,	

 
Figure 1.3 shows the local and non-local solutions for the following parameters: ߜ ൌ 8.0, 
ாݒ ൌ 1.1, ݇௬ܮா ൌ 0.5, ݇௭ܮா ൌ 0, and argon ions.  The local solution does a good job of 
approximating the general behavior of the non-local solutions, but more importantly, it 
represents a good operating regime for studying the non-linear behavior of this mode.  The 
maximum growth rate occurs for a real frequency just above the lower hybrid frequency, and the 
mode only exists for a small band of perpendicular wave numbers. 
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Figure 1.3: Normalized real frequency (solid black line) and growth rate (dashed red line) dependence on 
normalized perpendicular wave number comparing local and non-local solutions. 

 
3. Nonlinear interaction of lower hybrid and ion acoustic waves 
 
It is well known that the most effective mechanism for saturation of the lower hybrid instability 
is connected with the decay and modified decay instabilities which occur due to interaction of 
the excited lower hybrid waves with the ion acoustic oscillations [13, 14]. In the experiments 
described in Section 4, the electron temperature was much larger than the ion temperature with 

~ 10e

i

T

T
. This justifies implementation of the nonlinear scheme with involvement of ion acoustic 

waves instead of the nonlinear interaction scheme based on induced scattering on electrons. 
System of  equations for the electrostatic potential of lower hybrid waves excited in a system 
consisting of unmagnetized ions and  moving through them in y-direction magnetized electrons 
with velocity shear in x-direction with the speed 0 ( )yV x  and nonlinearly coupled with ion 

acoustic oscillations is presented below. Density perturbations in ion acoustic oscillations are 
defined as n . This system of equations has the following form: 
 
                                                                                                                                                 (3.1)   
 
 
 
 
                                                                                                                                                 (3.2) 
 
 

In equations (3.1) and (3.2)  Poisson brackets {a,b} are defined as { , }  
a b a b
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.     

Below, in the local approximation we will derive dispersion equation for modified decay of 
excited lower hybrid waves and find the estimate for the threshold of this instability. In the 
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absence of the electron flow, modified decay of magnetosonic waves in the vicinity of the lower 
hybrid frequency was analyzed in [15]. 
 We will examine the case when the  pump wave is excited due to the presence of velocity shear 
in the electron flow. The parametric decay of a pump wave into two satellites in vicinity of the 
lower hybrid frequency and low-frequency ion acoustic type mode represented by the low-
frequency density fluctuations can be describe as follows. We will introduce the pump lower 
hybrid wave: 
 

0 00 0 0

0 0 0

( ) ( )1
( ) . .
2

i i t i t
e e c c e c c
         k k kk r k r

k k k                                                            (3.3) 

 
As well as Anti-Stokes: 
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and Stokes satellites: 
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For the ion acoustic type density fluctuations we will use: 
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The following conditions on the wave vectors of two satellites 1k  and  2k as well as the wave 

vector in ion acoustic perturbations sk are imposed: 1 0 s k k k  and  2 0 s k k k . Now, using 

equations (3.1) and (3.2) the following dispersion equation for the modified decay instability of 
the lower hybrid waves interacting with low frequency ion acoustic density fluctuations can be 
derived: 
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To obtain (3.7), we also used: 
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Finally, from equation (3.7) the following estimate for the threshold of the modified decay 
instability of the lower hybrid waves can be obtained: 
 

                                                                  
2 2
0

2
0

 
4

ce

e pe

E m

n T M


 

                                               (3.8) 

 
Using (3.8) it is also possible to estimate the amplitude of the low frequency ion acoustic type 
density fluctuations which appear in the system. 
 
4. Experiments on excitation of lower hybrid turbulence 
    in the NRL Space Chamber 
 
In a series of experiments, Amatucci et al. [12] demonstrated that strongly sheared electron flows 
perpendicular to the background magnetic field with scale size smaller than an ion gyroradius but 
larger than an electron gyroradius can drive electrostatic oscillations near the lower hybrid 
frequency.  These observations were consistent with the 
theoretical predictions of Ganguli et al. [8] and Ganguli and Romero [9] and lent s upport to the 
relaxation scenario for highly stressed magnetospheric boundary layers.  For example, during 
intense solar activity, the plasma sheet boundary layer can become highly compressed, with 
gradients in the plasma across the layer self-consistently generating localized electric fields and 
highly sheared flows across the magnetic field.  These sheared flows generate plasma 
instabilities that work to dissipate differential flows and widen the boundary layer.  An 
analogous situation can arise in the flowing plasma surrounding a hypersonic vehicle, resulting 
in the generation of strong plasma turbulence. 
 
The experiments on the generation of shear-driven lower hybrid waves were conducted in the 
Space Physics Simulation Chamber (SPSC) at the Naval Research Laboratory.  The main 
chamber part of the SPSC consists of a 1.8 m diameter, 5 m long cylindrical vacuum vessel 
designed for controlled, scaled experiments of space plasma processes.  For these experiments, a 
large area (~ 75 cm diameter) hot filament plasma source was placed at one end of the chamber, 
while a smaller filament source (~ 2 cm diameter) is placed at the opposite end.  As can be seen 
in a schematic of the experimental setup in Figure 4.2, an isolated electrode blocks a small 
portion of the plasma generated by the large area source, which is filled with the plasma 
generated by the small plasma source.  The blocking disk and the outer grid of the small source 
allow for control over the plasma potential of the small area plasma column.  Strong radial dc 
electric fields can be generated by this steep variation of plasma potential across the cylindrical 
boundary layer between the two plasmas.  This in conjunction with the filament heater currents 
on both sources enables independent control over the electric field and density gradients across 
the boundary of the two interpenetrating plasmas, simulating the stressed plasma sheet boundary 
layer conditions. 
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Typical parameters for the steady-state argon plasma are: plasma density n ~109-1010 cm-3, ion 
and electron temperatures Ti ~0.05 eV and Te ~0.25 eV, ion and electron thermal speeds vti ~ 
5×104 cm/s and vte ~ 2×107 cm/s, and an axial magnetic field B = 40 G.  This yields ion and 
electron gyrofrequencies Ωi  ~1.5 kHz and Ωe ~110 Mhz, ion and electron gyroradii ρi ~3.5 cm 
and ρe ~0.03 cm, and lower hybrid frequency fLH ~400 kHz.  The neutral density nn is variable 
from 1011-1014 cm-3, and the plasma column diameter and effective length are 75 cm and 3 m, 
respectively. 
 
Plasma potential was measured using radial emissive probes. The derivative of the resulting 
profile is the electric field profile.  The measured electric field yields a typical transverse electric 
field scale length LE from 0.6-1.0 cm (0.17-0.3 ρi) and the magnitude can be controlled up to 40 
V/cm.  Typical plasma potential (solid line without symbols) and electric field (dashed line) 
radial profiles can be seen in Figure 4.3.  Since the electric field scale length is in the range ρe < 
LE < ρi, the electrons E×B drift but the ions do not.  For sufficiently strong electric fields, an 
instability with frequency in the lower hybrid frequency range is observed within the shear layer.  
Figure 4.3 shows an overlay of mode amplitude (solid circles) as a function of radial position 
localized to the edge of the transverse electron flow layer.  A sample wave spectrum is also inset 
showing a mode with frequency ~780 kHz (~1.9fLH), indicating that sheared transverse electron 
flows without the presence of a density gradient can drive lower hybrid waves. 
 
 

 
Figure 4.2: Schematic diagram of the experimental setup showing the two interpenetrating plasmas. 
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Figure 4.3: Radial profile of lower hybrid wave 
amplitude for the uniform density case and wave 
spectrum as inset. 

Figure 4.4: Comparison of experimentally observed 
(filled symbols) and theoretically predicted (line) 
values of mode frequency as a function of magnetic 
field strength. 

 
Figure 4.4 shows a comparison between theoretically predicted mode frequency for these 
velocity shear-driven waves and the experimentally measure values as a function of the magnetic 
field strength.  There is good agreement between the theoretical predictions and the measure 
mode frequencies.  The observed instability also exhibits a threshold electric field (~7.5 V/cm) 
for the waves to appear.  This coupled with the spatial localization of the mode amplitude to the 
shear layer suggests that the shear in the electron E×B flow is responsible for driving the 
observed lower hybrid waves. 
 
While these experiments were scaled to magnetospheric boundary layer conditions, they could 
equally be applied to hypersonic vehicle plasmas.  Future experimentation will focus on 
increasing the overall size of the flowing plasma region while maintaining the steep gradients.  
By driving the mode well in the nonlinearly saturate state, we will investigate the formation of 
turbulent plasma density structures and the effect of such structures on the scattering and 
transmission of electromagnetic waves. 
 
5.  Interchange instability in the ionospheric F-layer 
 
Below we will present analysis of generation of density vorticies on the nonlinear stage of 
interchange instability[16 – 18]. Such density vorticies can play significant role in scattering of 
high-frequency EM waves generated on the nonlinear stage of excited instability.  Such vorticies 
appear in the ionospheric F-layer and are part of the ionospheric clutter [19 – 22]. They also can 
exist in a plasma flow around a hypersonic vehicle and adversely effect sensors performance. 
This study is also relevant to a laser probing in a high energy density plasmas and for diagnostics 
of the edge plasma in tokamaks. Our analysis will be applicable to both low-beta and high-beta 
plasmas and will include finite ion Larmor radius effects [16, 17]. Inclusion of spatial scales 
comparable with the ion Larmor radius is important for the analysis of radar generated high-
frequency EM waves interacting with density irregularities associated with the equatorial spread 
F in the ionosphere.  
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5.1   Basic Equations  

Two-fluid macroscopic equations will be used to describe low-frequency interchange modes (

,i   where  is the frequency of the flute mode and 0z
i

i

ZeB
m c  is the cyclotron 

frequency of the ion with charge Z and mass i pm m , with pm  being the proton mass and c 

is the speed of light) in a weakly inhomogeneous plasma with external magnetic field 0 ( )zB x . 

As is customary in the interchange turbulence, oscillations are taken to be uniform in the 
direction of the magnetic field, i.e., the wave vector along the magnetic field 0k  . We 

consider a weakly inhomogeneous high-beta plasma of slab geometry with density 0 ( )n x  in the 

presence of an inhomogeneous magnetic field 0 ( )zB x , where x is the direction of 

inhomogeneity. We will also retain the gravity term xgg e , which drives the instability of the 

flute modes.  One of the main difference if to compare with the case of a low-beta plasma is 
that in a high-beta plasma the electric field in the flute oscillations is not irrotational (i.e. 

0 E


) as in the low-beta case and is written as 1( )( )c t
   
AE


. The plasma 

density N can be expressed as the sum of a slowly varying component with x, the equilibrium 
plasma density 0 ( )n x , and a perturbed component due to interchange oscillations  ( , , )n x y t . 

Likewise, the magnetic field is written as 0 ( , , )z z zB B B x y t  . We also assume the quasi-

neutrality condition e iN ZN . The equilibrium condition for the case under consideration can 

be written as  

 
22 2
i

B n
Ti

g

V

  
 (5.1) 

where   

0 0 0
2

0 0 0

81 1
0,    0,    z i i

N B i
z

dn dB n T

n dx B dx B

       
 

Parameter i - ion plasma beta,  defines the ratio of the kinetic energy containing in plasma 

ions to the magnetic field energy. Below we will also use parameter
 

2
0

8 e e
e

z

n T

B

 
 
- electron 

plasma beta and total plasma beta i e    . 

To obtain the coupled nonlinear system of equations for density N, electrostatic potential  , 

and magnetic field zB , we start from the quasi-neutrality condition  

 v 0di j   (5.2) 

The continuity equation for the electron density 
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v(N ) 0e

e e

N
di

t


 


v  (5.3) 

And the equation for the magnetic field in the flute-type oscillations 

 

4z
x

B
j

t c

 



 (5.4) 

To the system (5.2) - (5.4) we should add equations of motion for ions and electrons. The 
equations of motion for the ions are written in the form 

 
0

1
[ ( ) ] ( [ ( )])i

i i i i i i i i i im N q N P m N
t c

 
        


v

v v E v B B g
   

 (5.5) 

where iq Ze , and i i iP N T . It is also assumed that the viscosity tensor  contains only 

gyroviscosity components 

 

vv
( )

2
yi i x

xx yy
i

N T

y x
 


    

    (5.6) 

 

vv
( )

2
yi i x

xy yx
i

N T

x y
 


  

    (5.7) 

Below it is assumed that the electric drift, the diamagnetic drift, and the gravitational drift are 
all of the same order, and of first order in the small parameter   defined by: 

 
 2

0 0

i nz B
i

ci i z i

nBZe
k

T B n k k

    


      
 (5.8) 

From the ion equation of motion one can obtain an iterative solution for the ion velocity: 

         

 
 

    
 2

1

0

1
     

n n
n n nTi i i i

i i i
z ci i ci ci i i ci

V nc

B n t m n   
    
               

Vg
V z E z z z z V V z

(5.9) 

Next, we can estimate the order of various terms: 

 
   1

~Ti
E Ti i Ti i

i i ci

Vc c Ze B
k V k V k

B B t B B T k B

    
 

                   

A A
V z z  

 (5.10) 

 
   

0

lni n i
Di i Ti i Ti i

i ci i

T n
n V k V k

m k n

   


 
   

 
V z  

 5.(11) 

 
   n

g T i i T i i
c i c i

g
V k V k

k

  
 

  
g

V z   
 (5.12) 
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The zero order velocity is the equilibrium diamagnetic drift plus the gravitational drift 

(assuming no equilibrium electric field, 0E ): 

 

 
2

0 0
0

0

.Ti i
i Di g

ci i ci

V n

n 


     
g

V z z V V
 (5.13) 

The first iteration gives: 

 

 
2 (0)

1

0

0 ,

Ti i
i

ci i i i ci ci

E Di g

V nc

B n m n


  



  
         

   

Π g
V z E z z z

V V V V  

(5.14) 

where (0)Π  is computed at  0
iV . And from the next iteration one obtains the following 

solution: 

 

 
 

    
12 (1)

2 1 1

0

1Ti i i
i i i

ci i ci ci i i ci

V nc

B n t mn


   
   

              

Vg Π
V z E z z z z V V z

 

(5.15) 

 

where 
(1) Π  is computed at  1

iV . 

 

5.2   Corrections to Gyroviscous Cancellation 

In the case of low-beta plasma the gyroviscous flux cancels the diamagnetic flux (see for 
example [23] and  [24]) . Below we will show that in a high-beta plasma this cancellation does 
not take place and as a result new terms appear in the final nonlinear equations that describe 
interchange turbulence. Using equation (5.5) we can write the expression for the perpendicular 
ion velocity keeping only the terms that are first order in  : 
 

  2
i E Di g O     V V V V  (5.16) 

For the electric drift EV , the diamagnetic drift DiV and for the gravitational drift gV we have the 

following expressions: 
 

 0
E

c

B
  V z E

, 

2
Ti i

Di
ci i

V n

n


 V z
, 

g
ci



z g

V
 (5.17) 

Now  the ion continuity equation can be written as: 

 

   

  0

i DiE
i i E i

ci ci

z
Di i

ci i i

n z z
n

t t t

m n

 



 



                         
           
   

VV
V V V

e Π
V V

 (5.18) 
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After lengthy calculations we can arrive at: 

 

0

0

{ [ ( ) ]} ( )
2

i iz z z
Di i

ci i i ci z ci

n T B Bg

m n B t y


  

 
      

 
e

V V

  

 (5.19) 

In a low-beta plasma relation (5.19) should be replaced by the well known gyroviscous 
cancellation relation (see for example [23] and [24]): 

 
{ [ ( ) ]} 0z

Di i
ci i im n


 


     

e
V V

  

 (5.20) 

 5.3   Nonlinear Equations for Description of Interchange Turbulence 

Finally, with the help of relation (5.19) we can arrive at the following complicated system of 

nonlinear equations for density N, electrostatic potential  and magnetic field zB : 

 

2
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2 2
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0 0
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 
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 (5.21) 
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B N
N B e Ti

z i ci z

Vn c n c
n

t B y y B

       

  
   

   
 (5.22) 

 2zB n
   (5.23) 

In equations (5.21) – (5.23) we used quasi-neutrality condition i en n n    and Poisson 

brackets are defined as: 

 
{ , }

a b a b
a b

x y y x

   
 
     

 

Equations (5.21) – (5.23) describe the excitation and nonlinear evolution if compressible 
electromagnetic interchange modes in a finite beta plasma with inhomogeneous density and 
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magnetic field. As one can see, the nonlinear terms in equations (5.21) – (5.22) are rather 
complicated. They contain so-called vector nonlinearities (represented through Poisson 
brackets) which are the source for generation of large scale vortex structures coexisting with 
short scale spectral components produced on the nonlinear stage of modulation instability of 
interchange modes. Equations (5.21) – (5.23)  will be used to analyze interchange turbulence 
and scattering of high frequency electromagnetic waves on density irregularities associated 
with interchange turbulence. 

5.5 Instability of Interchange Modes 

The dispersion equation for interchange mode instability can be obtained from the linearized 
system of equations (5.21) – (5.23). The dispersion relation was solved numerically for the 
following set of plasma parameters, roughly approximating the plasma conditions that exist in 
the so-called spread-F layer in the ionosphere: 

5 3
0

0

2

~ 2 10  cm  - plasma density         

~ 0.4  - magnetic field

~ 500 /  - gravitational constant

~ 1.4  - ion and electron temperature

16  - ion mass and  proton mass
i e

i p p

n

B G

g cm s

T T eV

m m m




  

  

Results of the numerical solution of the linearized dispersion equation are presented in  
Fig. 5.1 below. In the limit of very small   , the linear dispersion relation can be solved and the 
linear growth rate should scale as:  

 max N g   (5.24) 

In Fig. 5.1 we compare the growth of the energy in the density and potential fluctuations from 
the numerical solution of equations (5.21 –5.23) with the maximum growth rate calculated from 
Eq. (5.24). From Eq. (5.24), we find that 1

max ~ 0.0408 s  , or 4
max / ~ 1.7 10ci   . As shown in 

Fig. 5.1, we find that 4
max / ~ 1.6 10ci    provides a reasonable fit to the code results.   
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Figure 5.1. Density and potential growth 

 

 

5.6 Numerical Solution of Nonlinear Equations 

Below we present  results of numerical solution of nonlinear system of equations (5.21) – (5.23).  
For the numerical analysis we use the code Flute developed by Dr. J.N. Leboeuf; detailed 
description of the code can be found in [17]. 
 
The linear growth of the electrostatic wave energy and density perturbations followed by the 
nonlinear saturation of the instability is presented in Fig. 5.2. 
 

                            

Figure 5.2. Linear growth and nonlinear saturation of the interchange instability 

17 
Approved for public release; distribution unlimited.



Snapshots of the density fluctuations are shown Fig. 5.3. The initial perturbations applied to the 
vorticity and density are random, with the normalized amplitude 10-4. This is illustrated in Fig. 
5.3(a). The linear phase of the instability is illustrated in Fig. 5.3(b) and 5.3(c). It is clearly see 
that perturbations are elongated along the x – direction. This are so-called streamer-like 
perturbations. The transition from linear to nonlinear and the nonlinear phase is captured in Fig. 
5.3(d) – (f). On the nonlinear stage, when amplitudes of perturbations exceed the threshold for 
the modulation instability, transition from streamer-type perturbations to the zonal flow type of 
perturbations (elongated along the y – direction, perpendicular to the direction of plasma 
inhomogeneity) takes place.  This is one of the expected characteristics of the interchange 
turbulence.  The nonlinear phase is also characterized by a broad spectrum of excited 
wavelengths and frequencies. 

 

 

 

 

                                                                                                                 

 

 

 

 

 

                                                                                                                                     

 

 

 

 

 

Figure 5.3. Snapshots of the density fluctuations 

 

Density in nonlinear stage and formation of zonal flows and nonlinear vortex structures 

 

(d)  2700it  (e)  2800it  (f)  2980it 

( )  0ia t  ( )  10ib t  ( )  300ic t 

Density in linear stage  
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6. Summary 
 
This paper consists of two parts. In the first part (Sections 2 – 4)  results of the  theoretical 
analysis and the NRL Space Chamber experimental study of excitation and nonlinear saturation 
of lower hybrid instability in plasmas with unmagnetized ions and magnetized electrons drifting 
across the magnetic field due to the presence of an external inhomogeneous 
electric field 0 ( )xE x are presented. Drifting electron flow has velocity shear and is the source of 

the instability (see [8,9] for details). Equation for excitation of instability in the vicinity of the 
lower hybrid frequency with inclusion of the thermal dispersion and electron-neutral collisions 
was derived and solved in nonlocal and local approximations. Results show satisfactory 
agreement for both numerical solution obtained with the help of the shooting code and solution 
in the local approximation. Next, nonlinear equations describing coupling of excited lower 
hybrid waves with low frequency ion acoustic perturbations were. Using these equations, 
modified decay instability of the lower hybrid waves in a local approximation was analyzed. In 
particular, dispersion equation for the modified decay instability was derived and its threshold 
was determined.   
In the second part, analysis of interchange instability with inclusion of finite ion Larmor radius 
effects in a high beta plasma is presented. Obtained results are used to analyze linear and 
nonlinear stages of the instability as well as formation of vortex structures in a plasma with 
parameters similar to that in the ionospheric F layer. Numerical results show that formation of 
vortex structures occurs when the amplitude of density perturbations exceeds the threshold for 
the modulation instability and  on the nonlinear stage density perturbations in the vortex 
structures can be very large. Developed technique can be also applied to analyze  interchange 
modes in high energy density physics, such as Z-pinch plasmas. This study is also relevant to a 
laser probing in a high energy density plasmas and for diagnostics of the edge plasma in 
tokamaks.  Another areas of applications – magnetospheric and space plasmas. 
The types of density irregularities examined in the paper play important role in refraction and 
scattering of high frequency electromagnetic signals propagating in the earth ionosphere, inside a 
plasma sheath of reentry and hypersonic vehicles and in many other applications related to 
surveillance and navigation. Detailed analysis of high frequency electromagnetic wave refraction 
and scattering in the presence of developed low frequency plasma turbulence described in the 
paper is the subject for the future work. 
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