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ABSTRACT 

The goal of this work is to develop an efficient numerical 
modeling method for the vibration of hybrid electric vehicle 
(HEV) battery packs to support probabilistic forced response 
simulations and fatigue life predictions. There are two 
important sources of variations in HEV battery packs that 
affect their structural dynamic response. One source is the 
uncertain level of pre-stress due to bolts or welds used for 
joining cells within a pack. The other source is small structural 
variations among the cells of a battery pack. The structural 
dynamics of HEV battery packs are known to feature very 
high modal density in many frequency bands. That is because 
packs are composed of nominally identical cells. The high 
modal density combined with small, random structural 
variations among the cells can lead to drastic variations in the 
dynamic response compared with those of the ideal nominal 
system. Therefore, it is important to perform probabilistic 
simulations of the structural response with pre-stress 
variations and cell-to-cell parameter variations in order to 
accurately predict the fatigue life of a pack. In this paper, a 
new parametric reduced-order model (PROM) formulation is 
derived for HEV battery pack vibration by employing several 
key observation; namely (1) the stiffness matrix can be 
parameterized for different levels of pre-stress, (2) the mode 
shapes of a battery pack with cell-to-cell variation can be 
represented as a linear combination of the mode shapes of the 
nominal system, and (3) the frame holding each cell has 
vibratory motion. These key observations are exploited to 
include the effects of pre-stress and cell-to-cell variations 
directly in the PROM formulation. A numerical example of an 
academic battery pack with pouch cells is presented to 
demonstrate that the PROMs capture the effects of both pre-
stress and structural variation on HEV battery packs. The 
PROMs are validated numerically by comparing their forced 
response predictions with those from full-order finite element 
models (FEMs) of the same systems.  

INTRODUCTION 

Typical hybrid electric vehicle (HEV) battery packs are 
assembled by bolts or welds for joining cells within the pack 

and for integrating the battery structure into the rest of the 
vehicle. The pre-stress due to joining can affect the dynamic 
response of the structures significantly. Additionally, the 
battery pack structure includes 100–300 cells. Because these 
cells are nominally identical, battery packs fall under the class 
of structures known as periodic structures. The dynamics of 
periodic structures are known to feature very high modal 
density in many frequency bands. The high modal density 
combined with small, random structural variations among the 
cells (which are unavoidable in practice) can lead to drastic 
consequences on the structural dynamics. Therefore, it may be 
important to use statistical dynamic response calculations for 
predicting the fatigue life of a pack, especially for a pack with 
pouch cells. Such statistical calculations are hard to perform 
using linear methods because the mode shapes of a pack 
depend in a nonlinear fashion on the parameters of each cell. 
The alternative is to use sample-based statistical analyses. 
However, typical finite element models (FEMs) of battery 
packs have several million degrees of freedom (DOFs). Thus, 
the computational time for obtaining just a single sample can 
be on the order of a day.  

To overcome this issue, in the field of structural dynamic 
analysis, component mode synthesis (CMS) [1-7] is well 
established as an alternative to conventional FEMs with large 
numbers of DOFs. CMS belongs to a wide class of domain 
decomposition techniques. CMS divides the global structure 
into several substructures, and the DOFs of each individual 
substructure are reduced significantly. Then, the substructures 
are reconnected, and the dynamic response of the system is 
predicted very efficiently and accurately. However, classical 
CMS must be modified in order to account for parametric 
variability in the structure. Thus, alternate, design-oriented 
techniques have been developed. One such approach is to 
generate what is referred to as parametric reduced-order 
models (PROMs). PROMs were introduced initially by 
Balmès [8-9] to avoid the expensive process of reanalysis of 
complex structures. In addition, several other PROM methods 
have been developed [10-14]. In particular, the multiple-
component PROMs (MC-PROMs) [13] have been developed 
by the authors. MC-PROMs are well suited for the structure 
modeled with shell-type finite elements. However, MC-
PROMs have several drawbacks, namely: (1) a numerical 
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instability of system level matrices can be encountered due to 
the transformation matrix, (2) MC-PROMs do not capture well 
elemental level nonlinearities for thickness variations of brick 
type finite elements, and (3) the interface DOFs are hard to 
reduce. Thus, the next-generation PROM (NX-PROM) 
technique has been developed recently to overcome these 
drawbacks [14]. The concepts used in NX-PROMs are applied 
herein to capture the pre-stress variations.  

The PROM techniques are highly efficient methods for 
estimating the statistics of the structural dynamic response. 
However, for a structure with very high modal density, 
previously developed PROMs have to be modified to 
efficiently capture the dynamic response. In particular, such a 
modification can be similar to the component mode mistuning 
(CMM) [15] method. CMM was developed for predicting the 
dynamic response of bladed disks found in turbo-machinery. 
Typically, these bladed disks suffer from high modal density. 
Thus, small structural variations in the blades significantly 
affect the system-level dynamic response. Nonetheless, it has 
been shown that the mode shapes of a mistuned bladed disk 
can be represented as a linear combination of the mode shapes 
of the tuned bladed disk [16]. This allows CMM to capture the 
dynamic response effectively with a small number of DOFs, 
and that is the inspiration for the new PROMs introduced in 
this work. 

 

Figure 1. The geometry of a battery pack with 20 pouch cells 

The focus of this work is to predict the vibratory response of a 
battery pack which may suffer from vibration localization. 
Localization can lead to damage because of excessive 
vibrations and stress levels, which in turn can lead to 
mechanical or electromechanical failure. Localization depends 
on small variations in structural properties from cell to cell. 
Those variations are random. Hence, a statistical 
characterization of the dynamics of the pack is necessary. 

Thus, the work focuses on predicting the probability that a 
given cell experiences larger amplitudes than for the nominal 
case (when all variabilities are absent). The probability that a 
cell mechanically or electromechanically fails is related to the 
probability that a cell experiences larger vibrations. The 
vibration response is characterized in this work as typically 
done in vibration analyses, namely by using the complex 
displacement amplitudes throughout the system. The new 
method, however, is much faster (e.g., 10,000 times faster as 
shown in this paper). For studies of mechanical fatigue, the 
spatial derivatives (gradients) of these displacements can be 
used to obtain the corresponding stresses. This approach, 
which is sometimes referred to as stress recovery, is a standard 
analysis procedure with a relatively low computational cost. It 
is often available in finite element packages for structural 
dynamics, and it has also been implemented directly in 
reduced-order modeling methods [17]. 

 

Figure 2. Forced response of the center node of the 1st cell 
for different levels of pre-stress without structural variation 

STRUCTURAL PROPERTIES AND 
DYNAMIC CHARACTERISTICS OF 
BATTERY PACKS 

HEV battery packs typically have 100 – 300 individual cells 
that are nominally identical. To demonstrate the structural 
dynamic characteristics of a battery pack, a simplified 
academic model of a pack of pouch cells was developed using 
finite elements as shown in Figure 1. The nodes on one end of 
the pack are totally fixed. The pre-stress and dynamic loads 
are applied to nodes on the other end of the structure. The pre-
stress loads are applied to the longitudinal direction to 
compress the structure, and the harmonic excitations are 
applied to all three (x, y, z)  directions. The excitation 
frequencies are in the range of 2,200 – 2,350Hz. A total of 20 
nominally identical cells are stacked. Typically, foam or 
epoxy stiffness layers can be placed between cells. These 
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elements are nonlinear materials, but they are soft.  Thus, 
herein we ignore these nonlinear materials.  

 

Figure 3. The geometry of a single pouch cell 

  

Figure 4. Natural frequencies of the academic battery pack 
without pre-stress and without cell-to-cell variations 

To evaluate how the pre-stress variations in the structure affect 
the structural response, we applied two different levels of pre-
stress, which are 150kN and 470kN. Figure 2 shows the forced 
responses of the center node of the 1st cell for the different 
levels of pre-stress. The responses obtained by full-order 
models are significantly different for each level of pre-stress.  

Table 1. Two cases of Young’s modulus variations 

Case 1 Case 2 
Cell Variation Cell Variation 

1 +5% 3 +3% 
5 -7% 9 -5% 

12 +1% 13 +2% 
16 +3% 20 -5% 

 

Figure 3 shows a single cell and the frames that join it to the 
adjacent cells. The single pouch cell is a plate-like structure 
for which the small, random structural variations are modeled 
by perturbations to the elastic modulus (E). The (nominally 
identical) cells are mechanically coupled through the frames, 

which induces a high modal density to the entire battery pack 
structure, as shown in Figure 4. The flat regions in Figure 4 
indicate frequency ranges of high modal density. For example, 
there are over 20 modes in the range 2,200 – 2,300Hz. If the 
battery pack had more cells, the modal density would be even 
higher. 

To examine how structural variations in the cells affect the 
structural response, we applied the elastic modulus variations 
described in Table 1, and compared the mode shapes of the 
structure with nominal parameters (no variation) and the mode 
shapes of the structure for cases 1 and 2. These mode shapes 
are shown in Figure 5. To observe the consequences of small 
parameter variations, cases 1 and 2 only had variations in 4 
cells. In general, all cells have some variability. 

Although the structural variations are small, the mode shapes 
are affected significantly. In particular, note that some mode 
shapes are localized at a few cells in which there are no 
parameter variations.  

         

Figure 5. Mode shapes of the nominal structure with 
identical cells (left) and the structures with  

cases 1(center) and 2 (right) of cell parameter variations 

Forced responses were compared for each case of variation 
also, as shown in Figure 6. These results show that small local 
structural variations can induce large changes in the global 
response. 

Figure 6 shows the response of the 4th cell (top plot) and the 
6th cell (bottom plot). As shown in Table 1, there are no 
variations in the parameters of cells 4 and 6. However, there 
are significant changes in the dynamic response of these cells. 
For example, the maximum response of the 6th cell of the 
battery with nominal parameters is approximately 0.0085mm, 
whereas the maximum response of the same cell in case 2 of 
parameter variations is approximately 0.0061mm. The 
maximum parameter variation between the nominal battery 
and that of case 2 is only 5%. Nonetheless, the variation in the 
maximum response is almost 30%. This demonstrates that 
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small local structural variations can have large global 
consequences. To efficiently capture the dynamic 
characteristics of the structure with simultaneous pre-stress 
and structural variations, we developed the new approach 
described in the next section. 

 

 

Figure 6. Forced response of the center node of the 4th cell 
(top) and the 6th cell (bottom) for the nominal case of no 

parameter variations versus two cases with parameter 
variations 

PARAMETRIC REDUCED-ORDER 
MODELS 

Modeling Pre-stress in a Structure 

The pre-stress affects the dynamic response of structures by 
changing their stiffness. The first key idea of PROMs is the 
parameterization of the stiffness matrices [14]. The 
parameterization significantly reduces the reanalysis time 
because any variation in the parametric range can be applied 
for different levels of pre-stress without full-order finite 

element calculations or mesh refinement. The other key idea is 
to predict vibration responses using reduced-order models 
(ROMs) as opposed to full-order models to reduce the 
calculation time. To detail the construction of PROMs, these 
two key ideas are implemented.  

The transformation matrix for PROMs is constructed by a set 
of fixed-interface normal modes N

augΦ  given by 

0 1 2 3
N N N N N
aug  =  Φ Φ Φ Φ Φ , (1) 

where matrix 0
NΦ corresponds to the nominal parameter values 

and matrices ( )1,2,3N
i i =Φ correspond to 3 other parameter 

values. A third-order interpolation is used for a 
parameterization. Thus, 4 samples of matrices (at distinct 
parameter values) are needed for constructing the 
transformation matrix.  

In general, the columns of N
augΦ are not orthogonal. Therefore, 

for numerical stability, an orthogonal basis for the space 
spanned by these modes is computed. This basis is obtained by 
a truncated set of left singular vector NU of 

N
augΦ [14]. The 

basis of vectors in NU is orthogonal, so numerical 
conditioning problems are avoided. In addition, the left 
singular vectors NU  are truncated to lower the size of the 
resulting model. The choice of the cutoff point can affect 
accuracy if it is chosen too high, but it does not affect 
numerical stability. Thus, the cutoff value can be estimated by 
a standard convergence study where calculations are done at 
ever lower cutoff values until convergence is obtained. For the 
calculations we performed, the cutoff was 0.01% of the 
maximum singular value. Then NU  is used in a 
transformation matrix PROMT to convert for physical 
coordinates to generalized coordinates. The transformed 
stiffness matrices for the 4 samples of such matrices 

( )TPROM PROM FEM PROM
i i=K T K T , (2) 

where 0, 1, 2, 3i = .  

For convenience we summarize next the parameterization 
procedure closely following Hong et al. [14]. The 
parameterization equation consists of a third-order 
interpolation, which can be written as 

( ) 2 3
0 0 1 2 3p p p p p+ ∆ ≈ + ∆ + ∆ + ∆K K K K K . (3) 

Four equations are needed to calculate the matrices iK (for
0, 1, 2, 3i = ). To obtain these four equations, reduced-order 

stiffness matrices are computed using Equation (2) for four 
parameter values. First, consider the case where 0p∆ = . One 
obtains 
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( )0 0
PROMp ≈K K . (4) 

Next, consider p i pδ∆ = (for 1, 2, 3i = ). One obtains 

( )0
PROM
ip i pδ+ ≈K K

( ) ( ) ( )2 3
0 1 2 3i p i p i pδ δ δ≈ + + +K K K K . 

(5) 

Rearranging Equations (4) and (5) into matrix form, for each 
entry e, q of the matrices 0K ,

 1K , 2K
 
and 3K , one obtains 

( )
( )
( )
( )

0
0,

01,

2, 0

3,
0

2

3

eq
eq

eqeq

eq eq

eq
eq

p

p p

p p

p p

δ

δ

δ

 
   
  + 
  =  
  + 
      +  

KK
KK

C
K K
K K

, (6) 

where 

( ) ( )
( ) ( )
( ) ( )

2 3

2 3

2 3

1 0 0 0

1

1 2 2 2

1 3 3 3

p p p

p p p

p p p

δ δ δ

δ δ δ

δ δ δ

 
 
 

=  
 
 
  

C . (7) 

Equation (6) can be easily solved by simply inverting the 
4 4× matrix C . Let us denote by A this inverse matrix, i.e. 

11 12 13 14

21 22 23 241

31 32 33 34

41 42 43 44

−

 
 
 = =
 
 
 

A A A A
A A A A

A C
A A A A
A A A A

. (8) 

Rearranging Equation (6) using the entries A , one obtains 

( )0
PROM

pp p ∆+ ∆ ≈K K                  
0 0 1 1 2 2 3 3

PROM PROM PROM PROMb b b b≈ + + +K K K K ,
 

(9) 

where 

( )2 3
0 11 21 31 41b A A p A p A p= + ∆ + ∆ + ∆ ,

( )2 3
1 12 22 32 42b A A p A p A p= + ∆ + ∆ + ∆ ,

( )2 3
2 13 23 33 43b A A p A p A p= + ∆ + ∆ + ∆ ,

( )2 3
3 14 24 34 44b A A p A p A p= + ∆ + ∆ + ∆ . 

 

The parameterized stiffness matrix in Equation (9) is used to 
capture the dynamic response of the structure with different 

levels of pre-stress. Details of this procedure can be found also 
in Hong et al. [14]. 

 

 

Figure 7. 1st and 2nd modes of a fixed-boundary pouch cell 

 

Figure 8. Boundary-displaced motion of a pouch cell 

Modeling Structural Variations in Cells 

The equations of motion for the structure with no variation 
and with variation can be expressed as  

+ + =Mx Cx Kx F  , (10) 

( )δ+ + + =Mx Cx K K x F  , (11) 

where δK contains the stiffness variation. Based on equations 
(10) and (11), the mode shapes are defined by the following 
eigenvalue problems 

t t t− =KΦ MΦ Λ 0 , (12) 

( ) m m mδ+ − =K K Φ MΦ Λ 0 , (13) 

where superscript t  and m indicate the tuned (nominal) and 
mistuned (structure with variation) quantities. Matrices tΛ
and mΛ are diagonal and contain the eigenvalues of the tuned 
and mistuned systems. If the structure has mass variations, the 
mass matrix in Equation (11) is ( )δ+M M . For the sake of 
simplicity, we consider just the case of stiffness variations.  

The novel approach is based on two key assumptions. The first 
assumption is that the mode shapes mΦ  of a pack with 
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parametric variations can be approximated as a linear 
combination of the mode shapes tΦ  of nominal pack with no 
parametric variations. This first assumption is ensured by the 
high modal density. 

The second assumption for structural variations is that the 
variations in stiffness of a cell can be projected onto a small 
set of modes of the nominal cell with a fixed boundary, as 
shown in Figure 7. This second assumption relies on the fact 
that the boundary motions can be ignored when the boundary 
of the pouch cell is not moving. However, it turns out that the 
boundary motion has to be considered because it is not small, 
as shown in Figure 8. Thus, the plate-like modes of a nominal 
cell—with its boundary displaced the same amount as the 
frame—are used in the proposed PROMs. This is a key step 
for ensuring accuracy. This approach is distinct from the 
original CMM method [15] because the CMM method does 
not account for the boundary motion.  

These two key ideas are implemented to model a system with 
pre-stress variations. Equation (10) for the tuned (nominal) 
structure with pre-stress variations can be written as  

( ),0 ,01PROM PROM PROM PROM PROM
p pjγ∆ ∆+ + =M u K u F , (14) 

where PROMu are generalized coordinates given by 
PROM PROM=x T u . Subscript p∆  indicates the pre-stress 

variation and subscript 0 indicates no structural variations. γ  
is a structural damping coefficient.  

The eigenvalue problem determined from Equation (14) with  
PROM =F 0  is solved to determine the natural frequencies 

,0
PROM

p∆Λ and mode shapes ,0
PROM

p∆Φ of the system. Next, we can 
use a secondary modal analysis to transform coordinates from 

PROMu to PROMv such that ,0
PROM PROM PROM

p∆=u Φ v . Equation 
(14) becomes 

( ) ( ),0 ,01
TPROM PROM PROM PROM PROM

p pjγ ∆ ∆+ + =v Λ v Φ F . (15) 

Note that ,0
PROM

p∆Λ contains eigenvalues of the pre-stressed 
structure without variation. That is different from tΛ which 
contains eigenvalues of the tuned system without pre-stress. 

As described above, the first key assumption is used in the 
PROM domain. The mistuned mode shapes of the structure 
can be represented as a linear combination of tuned mode 
shapes. Thus, we can assume the physical coordinates x in 
Equation (11) can be expressed as 

,0
PROM PROM PROM PROM PROM

p∆= =x T u T Φ v . (16) 

Then the equations of motion of the mistuned structure in the 
PROMv coordinates can be written as 

( )( ) ( ),0 ,01
TPROM PROM PROM PROM PROM

p pjγ ∆ ∆+ + + =v Λ v A Φ F , (17) 

where ( ) ( ),0 , ,0

T TPROM PROM FEM PROM PROM PROM
p p pδ∆ ∆ ∆=A Φ T K T Φ v and

,
FEM

p δ∆K contains the variations in the stiffness matrix in physical 
coordinates between the nominal structure and the structure 
with variations.  

 

Figure 9. Forced response predictions for the center node of 
the 5th cell (top) and the 9th cell (bottom) predicted by a full-
order model and a PROM for cases 1 (top) and 2 (bottom) 

with 150kN pre-stress 
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Figure 10. Forced response predictions for the center node 
of the 5th cell (top) and the 9th cell (bottom) predicted by a 

full-order model and a PROM for cases 1 (top)  
and 2 (bottom) with 470kN pre-stress 

To parameterize the stiffness variation in the jth cell, we used a 
first order interpolation given by 

, ,
, ,0

FEM j FEM j
p j pmδ∆ ∆=K K ,

 (18) 

where ,
,0

FEM j
p∆K is the jth cell stiffness matrix for the nominal 

cell, and jm is the amount of stiffness variation in the jth cell. 

Then, ,
,0

FEM j
p∆K  can be partitioned into  

0 0
,

,0 0 0
FEM j AA AO

p
OA OO

∆

 
=  
 

K K
K

K K
,
 (19) 

where subscripts A and O refer to interface (A) and internal (O) 
DOFs of the jth cell. The partitions of the stiffness matrix are 
used to calculate the static deformation from the boundary 
displacement of the jth cell by using  

0 0
,

0 0
,

AA jAA AO

OO jOA OO

    
=    

      

FTK K
FTK K

,
 

(20) 

where ,A jT and ,O jT are interface and internal displacements of 

the jth cell. The interface displacement ,A jT is obtained from 

the transformation matrix PROMsT by selecting entries 
corresponding to interface DOFs of the jth cell from global 
DOFs, which is   

, ,
PROM

A j A j=T T .
 

(21) 

Then the static deformation induced by the boundary 
displacement can be computed from Equation (20), that is 

( )
1

,,

0 0
, ,

PROM
A jA j

j PROM
O j OO OA A j

−

  
 = = 
   −   

TT
T

T K K T
. (22) 

Next, a set of fixed interface normal modes CΦ of a single 
battery cell structure are calculated. The fixed-interface 
normal modes are a truncated set of modes obtained by 
solving the eigenproblem with the mass and stiffness matrices 
of the cell with a fixed boundary. One obtains 

 

Figure 11. Maximum errors between PROM and FEM for 
each cell (center node displacement) in the frequency range 
of interest for cases 1 (top) and 2 (bottom) with 150kN pre-

stress 
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0 0C C C
OO OO OO OO− =K Φ M Φ Λ 0 ,  

 
(23) 

where 
C

C AA
CC
OOOO

   
= =   

  

0Φ
Φ

ΦΦ
. 

Next, the computed static deformation jT and a set of fixed 

interface normal modes CΦ of the single cell are used to 
calculate modal participation factors jq as follows 

PROM C
j j j− =T T Φ q , 

( ) ( ) ( )1 ,
,

TC C FEM j PROM
j p j jδ

−

∆= −q Λ Φ K T T .
 

(24) 

These relations are used to construct the equations of motion 
for pre-stress and stiffness variations as follows 

( ) ( ),0 ,01
TPROM PROM PROM PROM PROM

p pjγ ∆ ∆+ + + =v Λ v B Φ F , 
(25) 

where 

( )( ),0 ,01
TPROM PROM PROM

p pjγ ∆ ∆= +B Φ CΦ v ,   

( ) ( ),
,0

1

N TC FEM j C
j j j p j j

j
m ∆

=

 
= + + 
 
∑C Φ q T K Φ q T , and N is the 

number of cells which have stiffness variations.  
  

NUMERICAL RESULTS 

Numerical results to demonstrate the performance of the 
proposed method have been obtained using the academic 
battery model shown in Figure 1. This academic model has 
208,753 DOFs and 20 nominally identical cells. The 
frequency range of interest is 1,500 – 3,000Hz (the first flat 
region in Figure 4). Pre-stress and dynamic loads were applied 
as shown in Figure 1. Two cases of Young’s modulus 
variations were applied to 4 cells in the pack under the pre-
stress of 150kN and 470kN, as shown in Table 1. The forced 
response is obtained at the center nodes of all 20 cells.  

The PROM predictions agree very well with the FEM results. 
For example, Figures 9 and 10 show the response of the center 
node of the 5th cell for case 1 and the 9th cell for case 2 under 
150kN and 470kN pre-stress, respectively. The solid lines 
indicate predictions of full-order models and the symbols 
indicate PROM predictions. Figures 11 and 12 show the 
maximum error between the PROM and the FEM predictions 
for all cells over the entire frequency range of interest for 
cases 1 and 2 under different levels of pre-stress. The 
maximum errors are not larger than 2.7% as shown in Figures 
11 and 12. In Table 2, the number of DOFs and the 
computational time required for the reanalyses are shown. The 
number of DOFs of the PROM is much lower than that of the 
full-order finite element model (which has 208,753 DOFs). 
The reanalysis time required by the PROM for each variation 
is about 10,000 times shorter than that of the full-order models. 

 

Figure 12. Maximum errors between PROM and FEM for 
each cell (center node displacement) in the frequency range 
of interest for cases 1 (top) and 2 (bottom) with 470kN pre-

stress 

This computational gain is expected to be even larger for more 
refined models. That is because the PROM captures the low-
dimensional physics of the problem. This low dimensionality 
means that only a few coordinates are necessary to describe 
the dynamics of the actual physical system. This number of 
coordinates is a feature of the physics, not of the model used 
to discretize the physics. The model can increase in size by 
mesh refinement. However, the physics remains the same and 
require only a few coordinates. The key is to find these 
coordinates, and PROM techniques are intended to do just that. 
Thus, the size of the PROM is not expected to increase when 
the size of the full order model increases (e.g., by mesh 
refinement).  

In a battery pack, a single pouch cell with intense vibrations 
may lead to the failure of the entire pack. Thus, identifying the 
cell that is most likely to have intense vibrations is a key issue. 
The accuracy and high computational speed of the PROMs 
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allow a very rapid identification of the cells most influenced 
by parameter variations (pre-stress and structural variations).  

Table 2. Comparison of the full-order model and the PROM 

 Full-order model PROM 
System DOFs 208,753 38 

Reanalysis time 10,120-10,780 sec 0.89-0.95 
  

For that, the forced response is collected for all cells. A cell 
amplification factor (CAF) is defined as 

nominal1, ,

max
max

max

p
ij

i N
i

A
CAF

A
ω

ω

∆

=

 
 =
 
 


,
 

(26) 

where ω is the frequency of the excitation, p
iA∆ is the 

amplitude of the response of cell i of a battery with parameter 

 

Figure 13. Average cell amplification factors based on 
10,000 separate cases of random variations with 150kN (top) 

and 470kN (bottom) of pre-stress 

variations, and nominal
iA is the amplitude of the response of cell 

i of the battery with nominal parameters. Intense vibrations 
occur in the cell with the largest cell amplification factor in the 
system. The superscript j is the case of variation, and N 
indicates the number of cells. As shown in Figures 9 and 10, 
the forced response is significantly different for each case of 
variation. That means that the cell being the worst should be 
detected by a statistical analysis. Herein, cell amplification 
factors were calculated for 10,000 cases of random cell-to-cell 
variations for two-levels of pre-stress with 150kN and 470kN 
as shown in Figure 13. Figure 14 shows the probability of cell 
with intense vibrations for these two pre-stresses. These 
results highlight that the 1st cell suffers the largest 
amplification due to random variations and pre-stress. For 
example, the largest amplification factor was 3.5 and 3.9 on 
the 1st cell for 150kN and 470kN respectively. This means that 
at least one cell had a forced response that was 350% or 390% 
higher than would be predicted if all the cells were assumed to 
be identical.  

 

Figure 14. Probability of intense vibrations for each cell 
based on 10,000 separate cases of random variations with 

150kN (top) and 470kN (bottom) pre-stress 
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When considering random parametric variations in the cells, 
the worst case of vibrations occurs when the amplification is 
the largest. This worst case is important because it can be used 
as a predictor of whether the battery pack may suffer from 
high local stresses. Results obtained for the maximum cell 
amplification factor of each cell are shown in Figure 15. Note 
that the maximum CAF is much greater for cell 1 than for any 
other cell. This is because the forcing was applied at the end of 
the battery pack where cell 1 is located. As noted earlier, the 
parametric variations cause spatial localization of the vibration 
modes. The modes localized about cell 1 will tend to be 
strongly excited by the forcing. This confinement of vibration 
energy is a well known characteristic of nominally periodic 
structures with small, random parametric variations [18]. 

 

 

Figure 15. Maximum cell amplification factors for each cell 
(for overall cases of random variations) with 150kN (top) 

and 470kN (bottom) pre-stress 

For the two cases of pre-stress, namely 150kN and 470kN, the 
maximum cell amplification factor for the 1st cell is 12.5 and 
16.1 respectively. This level of forced response increase could 
potentially lead to a significant reduction in battery fatigue life. 
Therefore, these results suggest that it may be important to 

account for parameter variations in the cells when predicting 
the structural response and fatigue life of HEV batteries. 

CONCLUSIONS 

There is currently a lot of research interest in various aspects 
of hybrid electric vehicle (HEV) battery performance. The 
scope of this paper is the structural and dynamic 
characteristics of HEV battery packs. The dynamic 
characteristics of HEV battery packs are significantly affected 
by the pre-stress created by joining cells within the pack. Also 
the dynamic response of the structure can be sensitive to small 
structural variations among the battery cells because the 
system features high modal density. Thus, to predict the 
fatigue life, statistical calculations should be performed. 
However, a structural finite element model of a full HEV 
battery could easily have millions of degrees of freedom. The 
large model size makes it cumbersome or infeasible to run 
Monte-Carlo-type simulations.  
 
In this paper, we developed new parametric reduced-order 
models (PROMs) to predict very quickly the structural 
dynamic response of HEV batteries. We applied the idea of 
the next generation parametric reduced-order models to 
capture the different levels of pre-stress using a numerically 
stable transformation matrix and a third-order interpolation 
function. Also, to capture the cell-to-cell variation in the entire 
battery pack, new PROMs are used, which are based on two 
key assumptions: (1) mode shapes of the structure with 
variations can be represented as a linear combination of mode 
shapes of the structure with nominal parameters,  
and (2) variability in parameters in the corresponding cell can 
be captured by mode shapes of the nominal cell with its 
boundary displaced the same amount as the frame.  

As a numerical example, a PROM was generated for an 
academic model of a battery pack with 20 pouch cells. The 
forced response results from the PROM were found to match 
very well with those from the full-order finite element model. 
The results also showed that pre-stress and small local 
variations in the structural parameters of the cells induce very 
large changes in the global response.  

To help predict which cell is most likely to suffer fatigue 
failure, we defined an amplification factor that corresponds to 
the ratio of maximum forced response levels for the system 
with and without parameter variations. For the 10,000 cases of 
random variations considered, the largest amplification factor 
was around 3.5 and 3.9 for 150kN and 470kN. Thus, at least 
one cell had an increase in the forced response level of 
approximately 350% and 390% when small variations were 
accounted for (compared to the nominal system in which all 
cells are assumed to be identical). For the academic battery 
pack, the 1st cell was identified as the worst. The dynamics of 
the pack is susceptible to large amplification in frequency 
ranges where there is a high modal density. These frequency 
ranges are due to the physics of the pack, not due to the 
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models. If the pack is subjected to external loads which 
contain frequencies in one of these ranges, large vibration and 
stress amplifications can occur. These observations for pouch 
cells should also hold for solid prismatic cells. Cylindrical 
type cells may exhibit a different behavior.  
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