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(4) Statement of the problem studied:  Drug tolerant persisters are linked to clinical failure to treat chronic infections.  

Pseudomonas aeruginosa is the causative agent of a number of chronic infections.  We found that persisters play a role in 

maintenance of the chronic infection of the cystic fibrosis lung by P. aerugionsa.  We aimed to better understand the 

mechanisms of persister formation and maintenance in P. aeruginosa in order to better treat chronic infections.

(5) Pseudomonas aeruginosa is an opportunistic pathogen which causes serious infections when our immune system is 

compromised.  The leading cause of morbidity in patients with cystic fibrosis is infection with P. aeruginosa (Govan and Deretic 

1996).  We found that persisters likely contribute to the recalcitrance of this infection (Mulcahy, Burns et al. 2010). Cystic fibroris 

is not the only clinical situation where P. aeruginosa infects the airways.  Intubated patients are at risk for developing 

ventilator-associated pneumonia (VAP), which can develop into a chronic infection (Vincent, Bihari et al. 1995)(Reinhardt, 

Köhler et al. 2007).   P. aeruginosa frequently infects burns, where it is also capable of establishing chronic infections that 

impede healing (Bowler, Duerden et al. 2001; Bjarnsholt, Kirketerp-Moller et al. 2008).  We reported that persister cells are a 

major reason why biofilms of P. aeruginosa resist aggressive antibiotic therapy (Spoering and Lewis 2001).  Recent studies of 

the spatial susceptibility of P. aeruginosa in biofilms has demonstrated that there are active and dormant cells in biofilms and 

that these cells exhibit differing tolerance to antimicrobial agents (Haagensen, Klausen et al. 2007; Pamp, Gjermansen et al. 

2008).  In addition, several antibiotics penetrate biofilms of P. aeruginosa effectively, but still do not sterilize the biofilm 

(Spoering and Lewis 2001; Walters, Roe et al. 2003).  These findings strengthen the hypothesis that persisters allow P. 

aerugionsa to escape sterilization by antimicrobial therapy.  

While we have gained a good understanding of the mechanisms of persister formation in E. coli, the mechanisms behind P. 

aeruginosa persisters have remained elusive.  E. coli forms persisters in response to gain of function mutations in the kinase 

HipA (Moyed and Bertrand 1983; Correia, D'Onofrio et al. 2006).  We found that this kinase phosphorylates EF-Tu shutting 

down cellular functions (Schumacher, Piro et al. 2009).  Our transcriptomic analyses of E. coli persisters demonstrated the 

importance of toxins in persister formation (Keren, Shah et al. 2004; Shah, Zhang et al. 2006).  Overexpression of RNA 

endonucleases causes cells to enter a persister state (Keren, Shah et al. 2004; Harrison, Wade et al. 2009).  We also found 

that the TisB toxin causes persister formation in response to antibiotic mediated DNA damage (Dorr, Vulic et al. 2010).  This 

toxin shuts down cells by formation of a membrane pore that collapses the proton-motive force (Dorr, Vulic et al. 2010; Gurnev, 

Ortenberg et al. 2012).  It was recently found that at least 6 of the E. coli RNA endonuclease toxin-anti-toxin modules must be 

knocked out before there is an observable effect on persister formation (Maisonneuve, Shakespeare et al. 2011).  P. 

aeruginosa has at least three annotated and expressed TA modules, but it is unclear what role they play in persister formation 

at present.  

We proposed to understand the nature of P. aerugionsa persisters by utilizing the approaches that have been developed to 

study E. coli persisters.  In specific Aim 2 of our original proposal we planned to identify persister genes by isolating high 

persister mutants (hip).  This was the technique utilized nearly three decades ago to identify the first E. coli persister gene, hipA 

(Moyed and Bertrand 1983). We recently used this method to identify additional hip mutations in E. coli. However, this approach 

did not work for P. aerugionsa. Surprisingly, after several rounds of selection for improved survival in the presence of 

bactericidal antibiotics, not hip mutants were recovered. We then turned to clinical isolates to see whether prolonged 

pulse-dosing with antibiotics selects for hip mutants in this pathogen. 

       We obtained a series of isolates from CF patients who had chronic and clonal infection of the lung with P. aeruginosa.  Out 

of 15 patients total, 11 presented with strains that developed a hip phenotype over time (Mulcahy, Burns et al. 2010).  In many 

cases the hip isolate obtained from the patient exhibited no resistance to antimicrobial therapy.  The selection of a hip 

phenotype in vivo indicates the importance of persisters in chronic infections.   

We then attempted to identify persister genes responsible for the hip phenotype. In a similar study with E. coli, we found hip 

mutants among isolates from patients with UTI, and many of these carried gain-of-function mutations in the HipA toxin. These 

mutations apparently decrease binding of HipA to the HipB antitoxin, releasing active toxin, which creates more dormant cells. 

However, sequenced genomes of P. aeruginosa mutants did not show any notable changes in the toxins. There are over 60 

changes in the genome of the clonal series we first analyzed, and no obvious persister gene candidates. Comparison to 

independent hip isolates makes if difficult to identify changes in particular genes, since the pan-genome of P. aeruginosa is so 

large. 

In specific Aim 1 we proposed that obtaining a transcriptome of P. aerugionsa persisters would lead to candidate persister 

genes.  We developed a relatively rapid method for isolation of stationary phase P. aerugionsa persisters using fluorescence 

activated cell sorting (FACS).   To isolate persisters we constructed a plasmid with constitutive mCherry expression and 

inducible GFP expression.  The ability to express GFP in response to inducer indicates that a given cell is metabolically active 

while the presence of mCherry indicates cell viability.  Dim cells with mCherry are easily isolated from the bulk population with 

our BD FACS ARIA II instrument.  However, we were surprised to find that P. aeruginsa persisters resuscitate during cell 

sorting.  Chemical fixation was then used to preserve the transcriptome. This allowed to isolate persisters, but crosslinking 

prevented obtaining a transcriptome. We then decided to use these cells for a proteomics analysis

We established a collaboration with Dr. Joshua Adkins at Pacific Northwest National Laboratory (PNNL) to obtain a persister 



proteome.  Dr. Adkins is an expert in nano-proteomics, and after extensive optimization his group was able to obtain proteomics 

data from 1x108 formaldehyde fixed and sorted cells.  This sorting requires only a few days to obtain enough sample material 

for analysis.  In an unsorted stationary phase sample where quantity of material is not limiting, ~1500 proteins that map to the 

PA01 genome are identifiable.  This is the full complement of proteins that can be detected during stationary phase.  In the first 

persister proteome obtained, ~1,000 proteins are detected.  More importantly, quantitative comparisons between the persister 

fraction and the susceptible fraction have been made.  Not surprisingly, most cellular protein levels decrease in the persister 

fraction with over 600 proteins showing decreased levels in persisters.  This is expected because persisters are not 

metabolically active.  There are 90 proteins that show a significant increase in the persister fraction.  The largest change in any 

single protein is in bacterioferritin, an iron storage protein.  This indicates that persisters could shut down due to sequestration 

of iron.  Another interesting finding is that a predicted RNA endonuclease, PA3614, is more abundant in persisters.  This class 

of protein is predicted to play a role in ribosome biogenesis and could potentially shut down persister cells by reducing 

functional ribosome content.   

Persisters are most abundant in non-growing populations, however our previously developed persister isolation methods relied 

on actively growing cultures (Keren, Shah et al. 2004; Shah, Zhang et al. 2006).  We can now isolate persisters from stationary 

phase, which represents a significant experimental development.  The description of the first persister proteome is a major 

scientific advance and has provided us with new candidate persister genes.   In addition, technical advances in proteomics 

made during our collaboration will provide useful information for future proteomic studies where samples are limited or from 

archival material.
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(4) Statement of the problem studied:   
Drug tolerant persisters are linked to clinical failure to treat chronic infections.  
Pseudomonas aeruginosa is the causative agent of a number of chronic 
infections.  We found that persisters play a role in maintenance of the chronic 
infection of the cystic fibrosis lung by P. aerugionsa.  We aimed to better 
understand the mechanisms of persister formation and maintenance in P. 
aeruginosa in order to better treat chronic infections. 
  
 
(5) Summary of Most Important Results   
Pseudomonas aeruginosa is an opportunistic pathogen which causes serious 
infections when our immune system is compromised.  The leading cause of 
morbidity in patients with cystic fibrosis is infection with P. aeruginosa (Govan 
and Deretic 1996).  We found that persisters likely contribute to the recalcitrance 
of this infection (Mulcahy, Burns et al. 2010). Cystic fibroris is not the only clinical 
situation where P. aeruginosa infects the airways.  Intubated patients are at risk 
for developing ventilator-associated pneumonia (VAP), which can develop into a 
chronic infection (Vincent, Bihari et al. 1995)(Reinhardt, Köhler et al. 2007).   P. 
aeruginosa frequently infects burns, where it is also capable of establishing 
chronic infections that impede healing (Bowler, Duerden et al. 2001; Bjarnsholt, 
Kirketerp-Moller et al. 2008).  We reported that persister cells are a major reason 
why biofilms of P. aeruginosa resist aggressive antibiotic therapy (Spoering and 
Lewis 2001).  Recent studies of the spatial susceptibility of P. aeruginosa in 
biofilms has demonstrated that there are active and dormant cells in biofilms and 
that these cells exhibit differing tolerance to antimicrobial agents (Haagensen, 
Klausen et al. 2007; Pamp, Gjermansen et al. 2008).  In addition, several 
antibiotics penetrate biofilms of P. aeruginosa effectively, but still do not sterilize 
the biofilm (Spoering and Lewis 2001; Walters, Roe et al. 2003).  These findings 
strengthen the hypothesis that persisters allow P. aerugionsa to escape 
sterilization by antimicrobial therapy.   
 
While we have gained a good understanding of the mechanisms of persister 
formation in E. coli, the mechanisms behind P. aeruginosa persisters have 
remained elusive.  E. coli forms persisters in response to gain of function 
mutations in the kinase HipA (Moyed and Bertrand 1983; Correia, D'Onofrio et al. 
2006).  We found that this kinase phosphorylates EF-Tu shutting down cellular 
functions (Schumacher, Piro et al. 2009).  Our transcriptomic analyses of E. coli 
persisters demonstrated the importance of toxins in persister formation (Keren, 
Shah et al. 2004; Shah, Zhang et al. 2006).  Overexpression of RNA 
endonucleases causes cells to enter a persister state (Keren, Shah et al. 2004; 
Harrison, Wade et al. 2009).  We also found that the TisB toxin causes persister 
formation in response to antibiotic mediated DNA damage (Dorr, Vulic et al. 
2010).  This toxin shuts down cells by formation of a membrane pore that 
collapses the proton-motive force (Dorr, Vulic et al. 2010; Gurnev, Ortenberg et 
al. 2012).  It was recently found that at least 6 of the E. coli RNA endonuclease 
toxin-anti-toxin modules must be knocked out before there is an observable 



effect on persister formation (Maisonneuve, Shakespeare et al. 2011).  P. 
aeruginosa has at least three annotated and expressed TA modules, but it is 
unclear what role they play in persister formation at present.   
 
We proposed to understand the nature of P. aerugionsa persisters by utilizing the 
approaches that have been developed to study E. coli persisters.  In specific Aim 
2 of our original proposal we planned to identify persister genes by isolating high 
persister mutants (hip).  This was the technique utilized nearly three decades ago 
to identify the first E. coli persister gene, hipA (Moyed and Bertrand 1983). We 
recently used this method to identify additional hip mutations in E. coli. However, 
this approach did not work for P. aerugionsa. Surprisingly, after several rounds of 
selection for improved survival in the presence of bactericidal antibiotics, not hip 
mutants were recovered. We then turned to clinical isolates to see whether 
prolonged pulse-dosing with antibiotics selects for hip mutants in this pathogen.  
       We obtained a series of isolates from CF patients who had chronic and 
clonal infection of the lung with P. aeruginosa.  Out of 15 patients total, 11 
presented with strains that developed a hip phenotype over time (Mulcahy, Burns 
et al. 2010).  In many cases the hip isolate obtained from the patient exhibited no 
resistance to antimicrobial therapy.  The selection of a hip phenotype in vivo 
indicates the importance of persisters in chronic infections.    

We then attempted to identify persister genes responsible for the hip 
phenotype. In a similar study with E. coli, we found hip mutants among isolates 
from patients with UTI, and many of these carried gain-of-function mutations in 
the HipA toxin. These mutations apparently decrease binding of HipA to the HipB 
antitoxin, releasing active toxin, which creates more dormant cells. However, 
sequenced genomes of P. aeruginosa mutants did not show any notable 
changes in the toxins. There are over 60 changes in the genome of the clonal 
series we first analyzed, and no obvious persister gene candidates. Comparison 
to independent hip isolates makes if difficult to identify changes in particular 
genes, since the pan-genome of P. aeruginosa is so large.  
 
In specific Aim 1 we proposed that obtaining a transcriptome of P. aerugionsa 
persisters would lead to candidate persister genes.  We developed a relatively 
rapid method for isolation of stationary phase P. aerugionsa persisters using 
fluorescence activated cell sorting (FACS).   To isolate persisters we constructed 
a plasmid with constitutive mCherry expression and inducible GFP expression.  
The ability to express GFP in response to inducer indicates that a given cell is 
metabolically active while the presence of mCherry indicates cell viability.  Dim 
cells with mCherry are easily isolated from the bulk population with our BD FACS 
ARIA II instrument.  However, we were surprised to find that P. aeruginsa 
persisters resuscitate during cell sorting.  Chemical fixation was then used to 
preserve the transcriptome. This allowed to isolate persisters, but crosslinking 
prevented obtaining a transcriptome. We then decided to use these cells for a 
proteomics analysis 
 



We established a collaboration with Dr. Joshua Adkins at Pacific 
Northwest National Laboratory (PNNL) to obtain a persister proteome.  Dr. 
Adkins is an expert in nano-proteomics, and after extensive optimization his 
group was able to obtain proteomics data from 1x108 formaldehyde fixed and 
sorted cells.  This sorting requires only a few days to obtain enough sample 
material for analysis.  In an unsorted stationary phase sample where quantity of 
material is not limiting, ~1500 proteins that map to the PA01 genome are 
identifiable.  This is the full complement of proteins that can be detected during 
stationary phase.  In the first persister proteome obtained, ~1,000 proteins are 
detected.  More importantly, quantitative comparisons between the persister 
fraction and the susceptible fraction have been made.  Not surprisingly, most 
cellular protein levels decrease in the persister fraction with over 600 proteins 
showing decreased levels in persisters.  This is expected because persisters are 
not metabolically active.  There are 90 proteins that show a significant increase in 
the persister fraction.  The largest change in any single protein is in 
bacterioferritin, an iron storage protein.  This indicates that persisters could shut 
down due to sequestration of iron.  Another interesting finding is that a predicted 
RNA endonuclease, PA3614, is more abundant in persisters.  This class of 
protein is predicted to play a role in ribosome biogenesis and could potentially 
shut down persister cells by reducing functional ribosome content.    
 
Persisters are most abundant in non-growing populations, however our 
previously developed persister isolation methods relied on actively growing 
cultures (Keren, Shah et al. 2004; Shah, Zhang et al. 2006).  We can now isolate 
persisters from stationary phase, which represents a significant experimental 
development.  The description of the first persister proteome is a major scientific 
advance and has provided us with new candidate persister genes.   In addition, 
technical advances in proteomics made during our collaboration will provide 
useful information for future proteomic studies where samples are limited or from 
archival material. 
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