
Generalized Orienteering Problem with Resource Dependent

Rewards

Jesse Pietz, Johannes O. Royset

Operations Research Department, Naval Postgraduate School, Monterey, California

February 19, 2013

Abstract

We introduce a generalized Orienteering Problem where, as usual, a vehicle is routed from a

prescribed start node, through a directed network, to a prescribed destination node, collecting

rewards at each node visited, in order to maximize the total reward along the path. In our

generalization, transit on arcs in the network and reward collection at nodes both consume a

variable amount of the same limited resource. We exploit this resource trade-off through a spe-

cialized branch-and-bound algorithm that relies upon partial path relaxation problems which

often yield tight bounds and lead to substantial pruning in the enumeration tree. We present

the Smuggler Search Problem as an important real-world application of our generalized Orien-

teering Problem. Numerical results show that our algorithm applied to the Smuggler Search

Problem outperforms standard Mixed-Integer Nonlinear Programming solvers for moderate to

large problem instances. We demonstrate model enhancements that allow practitioners to rep-

resent realistic search planning scenarios by accounting for multiple heterogeneous searchers

and complex smuggler motion.

Keywords: orienteering problem; military operations research; search and surveillance; route

planning; mixed-integer nonlinear programming

1 Introduction

We define the Generalized Orienteering Problem with Resource Dependent Rewards (GOP-RDR),

which seeks to route a vehicle along a simple path through a directed network, between prescribed

start and end nodes, in order to maximize the total reward along the path. Rewards are collected by

the vehicle at each node visited, where the reward level depends on the amount of scarce resources

expended. Arcs in the network are traversed while consuming the same limited resources used for

reward collection. The path is constructed so that the total resource expenditure is within given

limits.

The GOP-RDR is a generalization of the well-known Orienteering Problem (OP) [33]. The OP

and its multi-vehicle extension, the Team OP (TOP), have wide-ranging applicability and have

been used to solve many practical problems in tourism [24, 25, 26, 36], sports [3, 11, 32], military

operations [16, 20], commercial service and vehicle routing [11, 27, 30], and production [14, 18]. In

these problems, node visitation rewards and arc traversal resource expenditures (arc lengths) are

fixed quantities.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
19 FEB 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
Generalized Orienteering Problem with Resource Dependent Rewards

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Operations Research
Department,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Naval Research Logistics, to appear

14. ABSTRACT
We introduce a generalized Orienteering Problem where, as usual, a vehicle is routed from a prescribed
start node, through a directed network, to a prescribed destination node, collecting rewards at each node
visited, in order to maximize the total reward along the path. In our generalization, transit on arcs in the
network and reward collection at nodes both consume a variable amount of the same limited resource. We
exploit this resource trade-o through a spe- cialized branch-and-bound algorithm that relies upon partial
path relaxation problems which often yield tight bounds and lead to substantial pruning in the
enumeration tree. We present the Smuggler Search Problem as an important real-world application of our
generalized Orien- teering Problem. Numerical results show that our algorithm applied to the Smuggler
Search Problem outperforms standard Mixed-Integer Nonlinear Programming solvers for moderate to
large problem instances. We demonstrate model enhancements that allow practitioners to rep- resent
realistic search planning scenarios by accounting for multiple heterogeneous searchers and complex
smuggler motion.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

35

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The GOP-RDR generalizes the OP by allowing node rewards and arc length to vary based on

the amount of the resources expended at each node. GOP-RDRs arise in military, search and

rescue applications, and law enforcement operations where the objective is to route a searcher to

find moving targets in an area of interest (AOI) so that the total reward garnered by the search is

maximized. In these optimal search problems, targets can be thought of as carrying some type of

illicit material. Thus, the reward garnered by the search is related to the amount of illicit material

detected. Limited resources (e.g., time, fuel, etc.) are expended by the searcher while performing

search actions in regions of interest and while in transit between these regions as targets move in the

AOI. We introduce the Smuggler Search Problem (SSP), a path-constrained optimal search problem

in continuous space and time as an important example of a GOP-RDR. The SSP deals with the

high level decision of routing search vehicles through subsets of the AOI called search regions in the

presence of uncertain information about target whereabouts.

GOP-RDRs may also arise in commercial applications where a vehicle is routed to a number of

locations in order to perform a service. The distance between locations can be represented by a

travel time, possibly changing with time-of-day or environmental effects, and the reward garnered by

performing the service at each location may be an increasing function of time spent at the location.

For example, the Red Cross blood collection problem [38] is similar to the GOP-RDR in that it is

more beneficial to visit pickup locations later in the path because the visitation reward increases

with time. This problem differs from the GOP-RDR in that, while rewards at each node depend

on time (time being a resource consumed in transit between nodes), the activity of collecting the

reward does not require resource consumption. Moreover, the arc lengths between nodes do not

vary in this problem.

Other generalizations of the OP have been considered in multi-objective problems where rewards

may be functions of a number of attribute scores [24, 25, 35, 36], and where the arc length between

nodes are determined by general cost functions [18]. The later reference introduces a generalized

OP that arises when transit resources are not fixed values but are determined by general resource

expenditure functions. The GOP-RDR further generalizes the OP by allowing reward collection

to vary as a function of resources expended at nodes. We are not aware of any references in the

literature on OPs and related problems which consider generalizations of the node rewards and

arc lengths at the same time, nor have we encountered any problems where the effort of collecting

rewards at nodes is in direct competition with that of transiting between nodes. The GOP-RDR

appears to be the first to consider these issues.

Several exact algorithms for solving OPs and TOPs have been proposed in the literature: see

[2, 4] for branch-and-price references or [15, 19] for branch-and-bound references. Laporte and

Martello [15] describe a branch-and-bound algorithm where fathoming is accomplished by computing

inexpensive upper bounds based on a binary knapsack problem. This is possible because the arc

lengths and rewards are fixed values, conditions which do not necessarily hold in the GOP-RDR.

Lagrangian relaxation is used within a branch-and-bound procedure by Ramesh at al. [19]. They

relax the budget constraint and solve the resulting relaxation for fixed Lagrange multipliers using

a polynomial time degree-constrained spanning tree algorithm, a technique that is not possible

for the nonlinear GOP-RDR. We present a branch-and-bound algorithm for the GOP-RDR that

capitalizes on the trade-off between transit and reward collection resource usage by solving partial

path relaxation problems to compute upper bounds. Several heuristics for solving OPs and TOPs

have also been proposed in the literature [1, 6]. We use the heuristic presented in [6] as a point of

departure in developing a heuristic for the SSP, where a simple node deletion step is used to find

2

an improving path.

The remainder of this article is organized as follows. We formulate the GOP-RDR and provide a

branch-and-bound algorithm for obtaining solutions in the next section. In Section 3 we formulate

the SSP and describe a heuristic that is used to provide initial solutions to the branch-and-bound

(B&B) algorithm. In Section 4 we provide numerical results, comparing branch-and-bound solu-

tions to solutions obtained by MINLP solvers. Section 5 highlights SSP enhancements that allow

practitioners to model realistic search planning problems. We conclude with final remarks in Sec-

tion 6.

2 Formulation and Branch-and-Bound Framework

Before formulating the GOP-RDR we begin with a standard OP formulation [33], which we will use

as a stepping stone for generalization. Consider a standard OP, where a vehicle is routed through

a transportation network, collecting rewards at each node. Let G = (N,A) be the directed graph

that models this transportation network, where N = {0, 1, . . . , n + 1} is the node set and A is the

arc set. Nodes 0 and n + 1 are the vehicle’s home station and recovery location respectively; not

necessarily the same physical location. We assume that all arcs incident to node 0 are outbound

arcs, and that all arcs incident to node n + 1 are inbound arcs. For notational convenience, we

define N̂ = N\{0, n+ 1} as the set of nodes excluding the home station, node 0, and the recovery

location, node n + 1. At each node i ∈ N̂ it is possible to collect a reward qi. Traversing any arc

(i, j) ∈ A consumes a fixed resource t̄i,j. Total resource expenditure is limited by T . We model the

vehicle path on G using the binary variables xi,j, where xi,j takes on value 1 when arc (i, j) is in

the path, and 0 otherwise. We have the following OP formulation.

Problem O:

max
x

∑
j∈N̂

qj

(∑
i:(i,j)∈A

xi,j

)
(1a)

s.t.
∑

(i,j)∈A
t̄i,jxi,j ≤ T (1b)

∑
i:(i,j)∈A

xi,j −
∑

i:(j,i)∈A
xj,i =


−1,

0,

1,

j = 0

∀j ∈ N̂
j = n+ 1

(1c)

∑
i:(i,j)∈A

xi,j ≤ 1, ∀j ∈ N (1d)∑
(i,j)∈A:
i,j∈N ′

xi,j ≤ |N ′| − 1, ∀N ′ ⊆ N̂ ,N ′ 6= ∅ (1e)

xi,j ∈ {0, 1}, ∀(i, j) ∈ A (1f)

The objective (1a) accumulates rewards along the path. Constraint (1b) ensures the resources t̄i,j
expended along the path do not exceed the resource limit T . Constraints (1c) maintain a balanced

network flow that starts at the home station and ends at the recovery location. Constraints (1d)

ensure nodes are visited at most once. Constraints (1e) are the subtour elimination constraints

3

proposed in [8], which are known to yield relatively tight linear programming relaxations [29, chap.

1].

For notational convenience we will also use the auxiliary binary variable yj, which is uniquely

determined by variables xi,j. Variables yj take on value 1 when node j is in the path, and 0

otherwise; i.e.,

y0 = 1, yj =
∑

i:(i,j)∈A

xi,j,∀j ∈ N\{0} (2)

We denote by x the vector of path variables {xi,j : (i, j) ∈ A}. We denote by y the vector of node

visitation variables {yj : j ∈ N} and represent (2) with the expression y = Γx for an appropriately

selected matrix Γ. We define X as the set of paths that satisfy (1c), (1d), (1e), and (1f).

We relax O to construct a GOP-RDR as follows. A visit to any node i ∈ {1, . . . , n} is rewarded

at the expense of consuming r dwell resources di ∈ <r. Similarly, transit resources ti,j ∈ <r are

consumed when traveling directly from node i to node j. Resources may represent, for example,

various consumables such as time, fuel, and/or money. For notational convenience, we also include

the auxiliary resource status variable ai ∈ <r. This variable is used to track the accumulation of

resources expended along the path. Let a,d ∈ <r(n+2), and t ∈ <r|A| denote vectors of resource

variables; for example a = (aT0 ,a
T
1 , . . . ,a

T
n+1)T . A vehicle may collect rewards according the utility

function f(d) : <r(n+2) 7→ <. We assume without loss of generality that no reward is possible at

nodes 0 and n+1. We assume that f is a concave utility function, where f(0) = 0. The vehicle path

through G must obey η resource expenditure laws on each arc (i, j) ∈ A denoted by the functions

hi,j(ai,aj,di,dj, ti,j) : <5r 7→ <η. The resource expenditure laws account for applications where arc

lengths are allowed to vary as resources. In the static network considered in O, hi,j = ||t̄i,j− ti,j|| for

fixed arc lengths t̄i,j, but in Section 3 arc lengths are not fixed because the nodes of the network are

in motion. The vehicle path must also obey resource expenditure laws at each node i ∈ N denoted

by the functions gi(ai,di) : <2r 7→ <γ and mi(ai,di) : <2r 7→ <µ. We assume that functions hi,j
and gj are convex, and functions mj are affine. The vehicle path must be such that total resource

expenditure stays within the resource limits defined by T ∈ <r. Let the matrix Y ∈ <r(n+2)×r(n+2)

be the diagonal matrix diag(y00, y11, y21, . . . , yn1, yn+10), where 0,1 ∈ <r are a vectors of 0s and

1s respectively. We note that the expression Y d simply returns the dwell resource vector associated

with reward collection nodes in the path x. We now state the GOP-RDR.

Problem P:

Sets

N nodes: i, j ∈ {0, 1, . . . , n+ 1}
A arcs

X paths that satisfy (1c), (1d), (1e), and (1f)

Parameters

T ∈ <r resource expenditure limits

Γ ∈ <(n+2)×|A| path-to-node visitation mapping matrix representing (2)

4

Functions

f : <r(n+2) 7→ < concave reward collection objective function

hi,j : <5r 7→ <η convex resource expenditure law functions

gi,j : <2r 7→ <γ convex node resource expenditure law functions

mi,j : <2r 7→ <µ affine node resource expenditure law functions

Variables

ai node i auxiliary resource variable

di node i dwell resource variable

ti,j arc (i, j) transit resource variable

xi,j arc (i, j) binary path variable

yi node i binary visitation variable;

Y is a diagonal matrix of these variables

Formulation

max
a,d,t,x,y

f(Y d) (3a)

s.t. hi,j(ai,aj,di,dj, ti,j)xi,j ≤ 0, ∀(i, j) ∈ A (3b)∑
j∈N
dj +

∑
(i,j)∈A

ti,j ≤ T (3c)

gj(aj,dj) ≤ 0, ∀j ∈ N (3d)

mj(aj,dj) = 0, ∀j ∈ N (3e)

aj,dj ≥ 0, ∀j ∈ N (3f)

ti,j ≥ 0, ∀(i, j) ∈ A (3g)

y = Γx (3h)

x ∈ X (3i)

The objective (3a) maximizes the reward collected along the path. Constraints (3b) enforce resource

expenditure laws on each arc. Constraint (3c) ensures that total resource expenditure is within

the prescribed limits. Constraints (3d) and (3e) enforce resource expenditure laws at each node.

Concavity of f makes it desirable consume resources d. Constraints (3c) make it undesirable

consume resources t. However, d and t, along with a, are related through constraints (3b) so it

may not be possible to consume t = 0 transit resources. Observe that when node j is not in the

path x, (3d) and (3e) are vacuous because aj and dj can be chosen arbitrarily to satisfy these

constraints provided total resource expenditure (3c) is not exceeded. Constraint (3c) makes dj = 0

desirable in this situation because a higher reward is obtained by consuming more dwell resources

at visited nodes. We assume that dj = 0 is always feasible. Similarly, when arc (i, j) is not in the

path x, constraint (3b) is inactive and the resource constraint (3c) forces ti,j = 0. Constraints (3f)

and (3g) require nonnegative resource expenditure. Binary visitation and path variables are set by

(3h) and (3i) respectively.

This MINLP as posed has a non-convex continuous relaxation. When this is the case most

MINLP solvers such as DICOPT [12] or BONMIN [34] provide no guarantees of finding globally

optimal solutions. The problem can be convexified with a Big-M reformulation. For example, (3b)

5

can be reformulated as

hi,j(ai,aj,di,dj, ti,j) ≤M(1− xi,j),∀(i, j) ∈ A,

for M sufficiently large. We discuss Big-M reformulation and show numerical results in the context

of the SSP in the sequel. Another approach is to use a B&B-based MINLP solver such as BARON

that uses convexifying techniques at each node of a B&B enumeration tree to obtain globally optimal

solutions [22, 28]. This approach is not pursued here, rather we use the underlying structure of P

as a basis for computing solutions.

With these matters in mind, we now proceed to describe a B&B approach that utilizes convex

relaxation problems, avoids Big-M reformulations, and capitalizes on the underlying structure of

P as a basis for branching and pruning. We introduce the notation G(x) = (N(x), A(x)), where

N(x) = {j ∈ N : yj = 1; y0,= 1,y = Γx} and A(x) = {(i, j) ∈ A : xi,j = 1}. For any path x ∈ X,

P can be expressed as the following convex NLP.

Problem P(x):

max
a,d,t

f(Y d) (4a)

s.t. hi,j(ai,aj,di,dj, ti,j) ≤ 0, ∀(i, j) ∈ A(x) (4b)∑
j∈N(x)

dj +
∑

(i,j)∈A(x)

ti,j ≤ T (4c)

gj(aj,dj) ≤ 0, ∀j ∈ N(x) (4d)

mj(aj,dj) = 0, ∀j ∈ N(x) (4e)

aj,dj ≥ 0, ∀j ∈ N(x) (4f)

ti,j ≥ 0, ∀(i, j) ∈ A(x) (4g)

When x is fixed, y can be computed by (2). Variables aj and dj corresponding to unvisited nodes

are removed from the problem. Similarly, variables ti,j corresponding to arcs not traversed are

eliminated. The resulting convex NLP in the remaining variables a,d, and t is efficiently solved by

standard NLP solvers such as MINOS [17]. If we are able to enumerate all possible paths x ∈ X
and solve the associated fixed path NLP, we are assured to find the optimal solution to P.

Observing that since d contributes to reward collection and t consumes resources without reward,

nonzero values of d and small values of t are always desired. We construct the matrix Ĩ by taking

an r(n+2)×r(n+2) identity matrix, and setting the first r diagonal entries and the last r diagonal

entries to zero. The expression Ĩd returns the vector of dwell resources, setting home and recovery

dwell resources to zero. We define δi,j ∈ <r as the smallest possible resource expenditure between

node i and node j. If we consider P(x) and allow reward to be collected at every node with no

transit resource expenditure on any arc, we obtain the following relaxed NLP.

Problem RP(0):

max
a,d

f(Ĩd) (5a)

s.t.
∑
j∈N
dj ≤ T − min

j∈N :
(0,j)∈A

{δ0,j} − min
j∈N :

(j,n+1)∈A

{δj,n+1} (5b)

(3d), (3e), and (3f)

6

Observe that the resource limit decrement on the right hand side of (5b)

min
j∈N :

(0,j)∈A

{δ0,j}+ min
j∈N :

(j,n+1)∈A

{δj,n+1} (6)

is a lower bound on t0,j + tj,n+1,∀j ∈ N̂ . A path that visits any nonempty subset of nodes

N ′ ⊆ N̂ : N ′ 6= ∅ consumes at least (6) transit resources. RP(0) is clearly a relaxation of P.

P is obtained by adding constraints (3b), (3g), (3h), and (3i) to RP(0), while restricting reward

collection (3a) to nodes in the path, and incurring a transit resource expenditure in (3c) that is no

less than (6). Denoting the optimal objective function values of P, P(x), and RP(0) by Z∗, Z(x)∗,

and Z(0)∗, respectively, we state the following result.

Proposition 1. Z(0)∗ ≥ Z∗ ≥ Z(x)∗,∀x ∈ X

Proof. The result follows from the fact that RP(0) is a relaxation of P and that Z∗ = max
x∈X

Z(x)∗.

In order to obtain useful bounds on P, we introduce the notion of a partial path. We define a

partial path x̂` to be the binary vector satisfying constraints (1d), (1e), and (1f), while constraints

(1c) are satisfied for all nodes except the recovery location n + 1 and the last node ` visited. We

define the indicator parameter I` that takes on value 1 when ` = n+ 1, and 0 otherwise.

For any partial path x̂` we have the following convex partial path relaxation NLP.

Problem RP(x̂`):

max
a,d,t

f(Ĩd) (7a)

s.t. hi,j(ai,aj,di,dj, ti,j) ≤ 0, ∀(i, j) ∈ A(x̂`) (7b)∑
j∈N
dj +

∑
(i,j)∈A(x̂`)

ti,j ≤ T − (1− I`)δ`,n+1 (7c)

I`dj = 0, ∀j ∈ N\N(x̂`) (7d)

ti,j ≥ 0, ∀(i, j) ∈ A(x̂`) (7e)

(3d), (3e), and (3f)

We note that when I` = 1, the path is complete, and P(x) and RP(x̂`) are equivalent. Conversely,

when I` = 0, the path is a partial path, (7d) is inactive and resources associated with unvisited

nodes are allowed to take on nonzero values, and the right hand side of (7c) is decremented by

δ`,n+1.

Consider extending the partial path x̂` by adding any arc (`, k) ∈ A to the path as shown in

Figure 1. In this depiction the minimum resource expenditure δ`,n+1 in the partial path x̂` is no

larger than the transit resource expenditure t`,k + δ`,n+1 in the partial path x̂k. Next we show a

result that supports building successive restrictions of RP(x̂`) by adding to the partial path. Let

Z(x̂`)
∗ be the optimal objective function value of RP(x̂`).

Proposition 2. Z(x̂`)
∗ ≥ Z(x̂k)

∗,∀k : (`, k) ∈ A

Proof. Observe that if ` = n + 1, then {k : (`, k) ∈ A} = ∅. Suppose ` ∈ N\{n + 1}. Adding

node k and arc (`, k) to the partial path adds a block of constraints to (7b) and variable t`,k in (7c)

and (7e). Since the increase in resource expenditure along the new partial path is at least δ`,n+1,

RP(x̂k) is a restriction of RP(x̂`) and the result follows.

7

Figure 1: Partial path x̂` (left). Partial path x̂k (right). Transit resource expenditure along partial

path x̂` is no larger than transit resource expenditure along path x̂k.

We present a GOP-RDR B&B framework that begins at the home station and forms partial

paths by adding nodes to a path sequentially, solving restrictions of RP(x̂`) along the way. We

denote the set X̂ as the set of all possible partial paths x̂. Let l ∈ {0, 1, . . . , n+ 1} denote the level

of the B&B enumeration tree, and let Ll ⊆ N be the set of nodes yet to be considered at level l.

We define the set Ω ⊆ X̂ ×N to be a subset of partial path and B&B enumeration tree level pairs.

Let ε ≥ 0 be the absolute optimality gap stopping tolerance.

Algorithm B&B:

1. Initialize ` = 0; x∗ = x̂` = 0; lower bound LB = 0; l = 0; L0 = ∅; Lk = N,∀k = 1, . . . , n+ 1;

and Ω = {(0, 0)}. Solve RP(0). If RP(0) is infeasible, then stop; P is infeasible. Otherwise,

initialize upper bound UB = Z(0)∗.

2. If UB−LB < ε, then stop and return x∗. Otherwise, choose (x̂`, l) ∈ Ω. Add node j to partial

path x̂` to form the extended partial path x̂j ∈ X̂ that contains arc (`, j). Add {(x̂j, l + 1)}
to Ω. Remove j from Ll+1. Solve RP(x̂j).

3. If j = n+ 1 and LB < Z(x̂j)
∗ and RP(x̂j) is feasible, then set LB = Z(x̂j)

∗ and x∗ = x̂j as

the best complete path found thus far.

4. If Ll+1 = ∅ then set UB = max{Z∗n+1, Z
∗
l+1}, where Z∗n+1 is the largest value Z(x)∗ of all

complete paths explored thusfar and Z∗l+1 is the largest value Z(x̂j)
∗ on level l+1 of the B&B

enumeration tree.

5. If Z(x̂j)
∗ < LB or if RP(x̂j) is infeasible, then fathom partial path x̂j by removing from Ω

all elements (x̂j̃, l̃), where x̂j is a subpath of x̂j̃ and l̃ > l.

6. Return to step 2.

This algorithm can be accelerated by obtaining an initial feasible solution x that produces a

better lower bound in step 1, thereby allowing fathoming in step 5 to occur more rapidly. To this

end, we provide a specialized heuristic for the SSP in Section 3.3. We do not prescribe the nature of

branching to be performed step 2. Numerical results discussed in Section 4 use depth-first-search,

but other branching strategies can also be used (see, for example [19] or [29, ch. 2]).

8

3 The Smuggler Search Problem

The Smuggler Search Problem (SSP) is special case of a GOP-RDR that arises in challenging real-

world search operations. This work is motivated by ongoing efforts to detect and interdict the

flow of illicit traffickers in international waters. To accomplish this mission coalition forces strive to

employ a limited number of search assets as effectively as possible, under strict resource constraints,

as they respond to uncertain estimates of how illicit traffickers move in the AOI.

OPs and similar models have been used to solve path-constrained optimal search problems.

Path-constrained optimal search problems are known to be NP-hard [31]. Many approaches which

focus on discrete space and time models can be found in the literature [7, 10, 13, 21, 23]. We

proceed to formulate the SSP, a novel path-constrained optimal search model in continuous space

and time.

Consider a planning scenario where a search vehicle is to be routed throughout an AOI to

detect multiple moving targets and within a D-hour long mission execution period. We assume

that the targets are in linear motion with a constant speed, independent of the search effort. The

search controller has, based on planning factors and intelligence estimates, the information listed

in Table 1.

Maximum cruise speed of the searcher while in transit V

Speed of the searcher while performing search actions V̂

Searcher sensor sweep width W

Searcher endurance time limit T

Scenario time limit D

Number of targets n

Speed of target j Uj

Table 1: Known data available to the search controller

Suppose that there is uncertainty with regard to where and when each target departs, as well

as the value of detecting the target, but the nature of the intelligence allows the search controller

to estimate these values within some range of uncertainty. These data are listed in Table 2.

Expected departure time of target j τj
Time uncertainty range of target j τ̃j
Expected departure location of target j ρj
Expected arrival location of target j ρ̄j
Departure/arrival location uncertainty range of target j ρ̃j
Expected value of detecting target j qj

Table 2: Uncertainty data derived by the search controller

Based on these data, the latest departure time for each target j can be calculated as

τminj = τj +
1

2
τ̃j.

Similarly, the earliest arrival time for each target j can be calculated as

τmaxj = τj −
1

2
τ̃j +

1

Uj
||ρj − ρ̄j||.

9

Lastly, we can calculate the velocity vector of target j, uj as a function of speed, and expected

departure and arrival locations.

We model search within each target’s region of uncertainty (search region) using a random

search law with known sensor sweep width W ; for details on random search models see [37, ch.

2]. We assume that search actions cannot be conducted for more than one target at the same

time. This reflects the operational setting where the searcher is seeking out a specific target looking

for characteristics outlined in intelligence reports. Thus, in the event that search regions overlap

in space and time, the searcher cannot receive additional reward for searching for more than one

target at a time. Given all the available information the search controller wishes to route the search

vehicle through the AOI in order to maximize the expected value of the search effort. We model

this as routing a vehicle across a transportation network G = (N,A), where nodes are defined by

the search regions and arcs are defined by the searchers transit between each pair of moving search

regions.

3.1 Formulation

Since targets are in linear motion, the distance required to travel directly between each (i, j) pair

of search regions can be computed as a function of time using Euclidean distance calculations. We

proceed under the assumption that the path of the searcher is through the center of each search

region. We also assume that the error between Euclidean distance and great circle distance is

small relative to the size of the search regions. Suppose a searcher is searching for target in some

predefined order and that the searcher has just completed searching region i. If ai represents the

time the searcher began searching region i and di represents the duration of the search in region i,

then we can compute the current position pi of the searcher as pi = ρi+(ai+di−τi)ui. We assume

that ai ≥ τi,∀i; the searcher will never arrive to search a target that has not departed. Suppose the

searcher is next routed to region j, and that the transit time from region i to region j is denoted as

ti,j. The position of region j at the moment the searcher arrives is pj = ρj + (ai + di + ti,j − τj)uj.
We can now relate the distance between region i and region j to the distance the searcher can travel

in the same amount of time ||pi − pj|| = V ti,j. We can relax this relationship by recognizing that

the searcher does not always have to travel at maximum cruise speed. The searcher could choose to

travel slower. Thus, ||pi − pj|| ≤ V ti,j, which is second-order cone constraint in the time resources

a,d, and t of the form (3b).

Drawing from search theory [37, ch. 2] we define the detection rate in search region j, αj, as

αj =
WV̂j
τ̃j ρ̃jUj

. (8)

We assume that the searcher speed V̂ is much greater than the target speeds Uj,∀j ∈ N̂ . From the

searcher’s perspective, within each search region, the target is essentially stationary. It is possible to

model the problem where this does not hold [37, sec. 6-1]. However, this assumption approximately

holds in our SSP model, where we consider search aircraft and surface (e.g., boats) smugglers.

This problem can be formulated as the following MINLP, which is a special case of P.

10

Problem SSP:

max
a,d,t,x,y

∑
j∈N̂

qj (1− exp {−αjdjyj}) (9a)

s.t. (||ρi + (ai + di − τi)ui − ρj − (ai + di + ti,j − τj)uj||
. . .− V ti,j)xi,j ≤ 0, ∀(i, j) ∈ A (9b)

(ai + di + ti,j − aj)xi,j ≤ 0, ∀(i, j) ∈ A (9c)∑
j∈N̂

dj +
∑

(i,j)∈A
ti,j ≤ T (9d)

∑
j∈N

dj +
∑

(i,j)∈A
ti,j ≤ D (9e)

aj ≥ τminj , ∀j ∈ N (9f)

aj + dj ≤ τmaxj , ∀j ∈ N (9g)

a0 = 0 (9h)

dn+1 = 0 (9i)

aj, dj ≥ 0, ∀j ∈ N (9j)

ti,j ≥ 0, ∀(i, j) ∈ A (9k)

y = Γx (9l)

x ∈ X (9m)

The objective (9a) is to maximize the expected value of the search effort. (9b) ensures that the

distance between search region i and search region j obeys Pythagorean’s Theorem. Constraints

(9c) propagate arrival times a forward in time as arcs are traversed. (9b) and (9c) correspond to

(3b) in P. Constraints (9d) and (9e), corresponding to (3c) in P, ensure that the plan does not

exceed resource limits T and D respectively. Note that the left summation in (9d) is over the set of

nodes not including the home station and recovery location N̂ . This may appear to be inconsistent

with (3c), however in SSP we could equivalently model two dj terms for each node. One retains the

correct dwell resources at all nodes, and the other is nearly a copy but consumes zero dwell resources

at nodes 0 and n+ 1. We choose the more compact formulation here. Constraints (9f) require that

the vehicle be routed to search regions only after the target has departed. Similarly, constraints

(9g) preclude searching in a region after the target has arrived. (9h) and (9i) are included for

completeness. They require respectively that time resources start at 0 and that the mission ends

upon recovery. (9f), (9g), (9h) and (9i) correspond to (3d) in P. Constraints (9j), (9k), (9l), and

(9m) are as discussed previously.

The dwell-to-transit resource trade-off that underlies SSP can be observed as follows. Consider

the objective (9a), and constraints (9b) and (9d). Since the objective (9a) is monotonically increas-

ing in d, large dwell time is desirable. At the same time, since constraint (9d) limits the searcher’s

flying time, small values of t are desirable. However, due to constraints (9b), going from one search

region to the next consumes transit time. This is the trade-off. Dwell time in a search region cannot

be consumed without also consuming transit time in order to get to said search region.

We define an NLP analogous to P(x) which, for any path x ∈ X, provides the optimal time

resource expenditure. We arrive at this problem by fixing x and y, and retaining from SSP only

the interesting constraints and objective function terms. Recall that N(x) = {j ∈ N : yj = 1; y0,=

11

1,y = Γx} and A(x) = {(i, j) ∈ A : xi,j = 1}. Additionally, we define the set of search regions in

the path N̂(x) = N(x)\{0, n+ 1}.

Problem SSP(x):

max
a,d,t

∑
j∈N̂(x)

qj (1− exp {−αjdj})

s.t. ||ρi + (ai + di − τi)ui − ρj − (ai + di + ti,j − τj)uj|| − V ti,j ≤ 0, ∀(i, j) ∈ A(x)

ai + di + ti,j − aj ≤ 0, ∀(i, j) ∈ A(x)∑
j∈N̂(x)

dj +
∑

(i,j)∈A(x)

ti,j ≤ T

∑
j∈N(x)

dj +
∑

(i,j)∈A(x)

ti,j ≤ D

aj ≥ τminj , ∀j ∈ N(x)

aj + dj ≤ τmaxj , ∀j ∈ N(x)

aj, dj ≥ 0, ∀j ∈ N(x)

ti,j ≥ 0, ∀(i, j) ∈ A(x)

(9h) and (9i)

After a Big-M reformulation, SSP can be equivalently stated as an MINLP with a convex

continuous relaxation. Let MR
i,j be a number that is always greater than the distance between

region i and region j. Let MT
i,j be a number that is always greater than the time required for the

searcher to travel between region i and region j. Let MD
j be a number that is always greater than

the search time in region j.

Problem SSPM

max
a,d,t,x,y

∑
j∈N̂

qj (1− exp {−αjdj}) (11a)

s.t. ||ρi + (ai + di − τi)ui − ρj − (ai + di + ti,j − τj)uj||
. . .− V ti,j ≤MR

i,j(1− xi,j), ∀(i, j) ∈ A (11b)

ai + di + ti,j − aj ≤MT
i,j(1− xi,j), ∀(i, j) ∈ A (11c)

dj ≤MD
j yj, ∀j ∈ N (11d)∑

j∈N̂
dj +

∑
(i,j)∈A

ti,j ≤ T (11e)

∑
j∈N

dj +
∑

(i,j)∈A
ti,j ≤ D (11f)

(9f) through (9m)

The nonlinear interactions between the binary variables and the continuous variables in SSP

are modeled with a Big-M on the right hand sides of (11b), (11c) and (11d). Constraint (11d)

requires that search duration be zero when the corresponding search region is not visited, which

makes it possible to remove the nonlinear interactions in the objective function (3a), yielding (11a).

It is well known that unnecessarily large Big-M values lead to poor continuous relaxations and

12

ultimately slow down computation time [5]. In the case of the SSP, since target motion is linear,

we can compute these values based on the maximum distance between each pair of targets.

3.2 Partial Path Relaxations

For any two target search regions i and j (home base possibly being one of them), the following

convex NLP produces the minimum travel distance between them.

Problem D

δ∗i,j = min
t

||(ρi + (t− τi)ui)− (ρj + (t− τj)uj)||

s.t. max{τmini , τminj } ≤ t ≤ min{τmaxi , τmaxj }

We let δj,n+1 ≡ V −1δ∗j,n+1 be the minimum travel time resource expenditure between search

region j and the recovery location, as described in Section 2. We proceed under the assumption

that the home station and the recovery location are the same physical location, therefore δ0,j =

δj,n+1 = V −1δ∗0,j = V −1δ∗j,n+1. This is usually the case in the type search planning problems we

consider and it imposes no limitations on our model or solution procedures. The SSP instance of

RP(0) is obtained when no path x is specified. We force a to take on lower bound values in order

to allow d to take on highest possible values. When this is done a and t can be eliminated from

the problem, resulting in the following NLP in the search time d.

Problem RSSP(0)

max
d

∑
j∈N̂

qj (1− exp {−αjdj})

s.t. dj ≤ τmaxj − τminj , ∀j ∈ N∑
j∈N̂

dj ≤ T − 2 min
j∈N
{δj,n+1}∑

j∈N
dj ≤ D − 2 min

j∈N
{δj,n+1}

dn+1 = 0

dj ≥ 0 ∀j ∈ N

For any partial path x̂`, we have the following relaxed NLP as a special case of RP(x̂`).

13

Problem RSSP(x̂`)

max
a,d,t

∑
j∈N̂

qj (1− exp {−αjdj})

s.t. (||ρi + (ai + di − τi)ui − ρj − (ai + di + ti,j − τj)uj|| − V ti,j) ≤ 0, ∀(i, j) ∈ A(x̂`)

(ai + di + ti,j − aj) ≤ 0, ∀(i, j) ∈ A(x̂`)∑
j∈N̂

dj +
∑

(i,j)∈A(x̂`)

ti,j ≤ T − (1− I`)δ`,n+1∑
j∈N

dj +
∑

(i,j)∈A(x̂`)

ti,j ≤ D − (1− I`)δ`,n+1

I`dj = 0, ∀j ∈ N\N(x̂`)

ti,j ≥ 0, ∀(i, j) ∈ A(x̂`)

(9f) through (9j)

SSP can be solved by Algorithm B&B using RSSP(x̂`) relaxations and the lower bound ini-

tialization heuristic described next.

3.3 SSP Heuristic

Denote the optimal solution to SSP as Z∗, we observe that if ε = 0 and the initial guess x is

provided to Algorithm B&B where Z(x)∗ = Z∗, then the number of NLP solutions required to

prove x = x∗ is constant regardless of how branching is done in step 2. This is a direct consequence

of the fact that fathoming only depends on the lower bound. Of course this observation is not

unique to our problem setting. In fact, it is true of any branch-and-bound algorithm provided the

algorithm does not include more sophisticated fathoming rules. This observation is the impetus

to develop a reliable way of providing initial solutions to Algorithm B&B, possibly eliminating the

need for complex branching strategies.

In order to provide a good initial solution to Algorithm B&B, we propose a five-phase heuristic

that relies on the knowledge that solving a TOP-RDR entails finding an acceptable balance between

dwell and transit resource expenditure. Ramesh and Brown [18] outline a four-phase heuristic for

the GOP using a bang-for-buck ratio that relates the reward at each node to the bounds on transit

time. We use a similar idea here, however since rewards and transit times are generally not known

quantities, we consider a bang-for-buck ratio that relates expected search value to the area of the

search region. We also add considerations for transit time by clustering targets based on temporal

and spatial proximity. Throughout, we use SSP(x) to quickly determine the value of search plan

at each iteration in the heuristic.

Phase I of the SSP heuristic initializes parameters and solves RSSP(0) in order to rule out

targets that have low search value. In Phase II, remaining targets are grouped into spatial clusters

based on geographical region, then, using a clustering parameter ∆, further grouped into clusters

based on their earliest arrival times τmaxj . In our SSP application, the searcher’s home station

is generally closer to target arrival locations than departure locations. Therefore search is more

likely to take place at the end of the target’s movement track than it is at the beginning. Earlier

target arrivals represent search opportunities that are eliminated earliest in the scenario. Thus,

earlier arriving targets would likely be searched first if they are searched at all. Targets are then

14

ordered within each cluster and entire clusters are ordered with respected to one another. Phase

III performs a feasibility check and, if necessary, systematically removes the lowest value targets (of

those remaining) from consideration in order to find an initial feasible solution. In Phase IV, pairs

of consecutively ordered targets that belong to different clusters are examined in a cluster seam

refinement process. Finally, all remaining targets are considered for removal in Phase V. Further

details of the SSP heuristic are provided in Appendix A.

In the worst case the SSP heuristic requires solving 2n+2 NLPs. This occurs when a feasible path

is found in Phase II, and all targets are considered for removal in Phases IV and V. In this situation

each target occupies its own cluster. This can be prevented in well posed problem instances where

the clustering parameter ∆ is chosen appropriately with respect to the arrival times τmaxj . Since

the NLP subproblems can be solved quickly, approximately 1/10 of a second for large problems,

the heuristic is quite fast even in the worst case.

4 Numerical Results

We consider SSP where smugglers move in a northwesterly direction as they attempt to transport

illicit material from the south. In this scenario, we assume smuggler movement occurs through

corridors defined by coastal strips of likely departure and arrival locations as depicted by the abstract

map shown in Figure 2. Observe that, even though the dotted lines intersect on the spatial map,

target search regions rarely overlap in space and time.

We assume searcher and target performance data that is consistent with known planning factors

for P-3 aircraft and GO FAST smuggler boats. We assume a 24-hour mission execution period

(D). Departure time uncertainty data is randomly generated within the mission planning period

with uncertainty ranging up to four hours. Location uncertainty data is randomly generated where

smugglers are equally likely to depart and arrive anywhere on the aforementioned coastal strips.

Expected value of detecting each target is randomly generated within the range [500, 5000] lbs,

corresponding to estimated payload capacity of GO FAST boats.

We solve 100 randomly generated problem instances with 3, 5, 7, 8, and 10 smugglers and

compare model performance using Algorithm B&B with heuristic initialization applied to SSP

versus solving SSPM directly using two MINLP solvers. For each set of problem instances we

deem the best solver to be the one that identifies the optimal solution in the shortest amount

of average computing time. For the purposes of this numerical experiment, Algorithm B&B is

implemented with a depth-first-search strategy and the optimality tolerance is set to zero, ε = 0.

The SSP heuristic is implemented with temporal clustering parameter ∆ = 6 hours and spatial

clustering corresponding to the southwest (bottom-left) and northeast (top-right) regions shown

in Figure 2. All computations are done on a 64-bit Windows 7 desktop computer (2x Intel Xeon

3.46GHz; RAM 24GB) using GAMS 23.8. We use MINOS to solve all NLP subproblems. In initial

testing, DICOPT and BONMIN with ECP solver option appeared to be the most effective GAMS-

based solvers for directly solving SSPM. Accordingly we limit our MINLP numerical results to

these two solvers. For brevity, we refer to Algorithm B&B with heuristic initialization as B&B

and BONMIN with ECP solver option as BONMIN(ECP). For the remainder of this paper, unless

otherwise stated, searcher and target data is presented in nautical miles, nautical miles per hour,

hours, and pounds; computation runtimes are given in seconds; and optimality gaps are reported

as a percent difference from the optimal objective function value.

15

Figure 2: Target movement tracks are randomly generated with origin and destination points chosen

within coastal strips marked by thick solid bars. Given an origin and a destination, the target track

goes along a straight line within corridors indicated by dotted lines in a northwesterly direction.

The searcher’s home station is identified by “×”. Dotted lines shown illustrate possible target

movement tracks. Randomly generated target movement tracks are not limited to those depicted

here, but stay within the envelope boundaries.

As indicated in Table 3, all three solvers are able to solve all 100 of the 5-target SSPs to

optimality within 13 seconds computing time. For these problem instances BONMIN(ECP) is the

best solver, while B&B yields the slowest average runtime.

We use performance profiles [9] as a method for comparing solver runtimes. Performance profiles

require two components: performance ratios and performance metrics. A performance ratio is a

ratio of the runtime for solver s on problem p to the fastest runtime for all solvers tested on problem

p. A performance metric is the empirical probability, across all problems p, that the runtime for

solver s is within a factor of k of the fastest solver runtime. A performance profile is a distribution

function of the performance metric over factors k.

We see in Figure 3 that BONMIN(ECP) preforms well on 5-target SSPs, with the fastest runtime

for nearly 90% of these problems. DICOPT runtimes stay within a factor of 3 of the fastest runtime

for 90% of problems. B&B lags behind the MINLP solvers, with runtimes within a factor of 7 of the

fastest runtimes for approximately 80% of problems. All of the problem instances being examined

here are solved in 13 seconds or less. On a relative (performance profile) scale BONMIN(ECP)

seems to be the clear winner, but all of these solvers would be acceptable to planners in a practical

sense.

16

B&B BONMIN(ECP) DICOPT

Num Solved 100 100 100

Runtime (sec)

Average 5.77 1.25 2.03

St Dev 2.52 0.30 0.89

St Error 0.25 0.03 0.09

Median 5.44 1.22 1.92

90th Percentile 9.21 1.70 3.08

Min 1.54 0.61 0.61

Max 13.00 1.98 4.99

Table 3: Runtime summary for 5-target SSPs. Num Solved refers to the number of problems out

of 100 that were solved to optimality within 30 minutes. BONMIN(ECP) dominates in all metric

categories and B&B yields the slowest average runtime.

In the 7 to 8-target range the relative performance of these solvers changes dramatically. Table 4

and the performance profile plot, Figure 4, highlight that runtimes of BONMIN(ECP) and B&B

on 7-target SSP instances are nearly identical. DICOPT yields the slowest runtimes of the three

solvers tested.

B&B BONMIN(ECP) DICOPT

Num Solved 100 100 100

Runtime (sec)

Average 32.84 30.47 115.39

St Dev 20.48 16.31 97.76

St Error 2.05 1.63 9.78

Median 27.82 26.19 86.20

90th Percentile 53.06 52.99 240.25

Min 8.77 8.02 15.90

Max 141.07 81.96 618.70

Table 4: Runtime summary for 7-target SSPs. BONMIN(ECP) and B&B have nearly identical

runtimes. DICOPT yields the slowest runtimes of the three solvers tested.

Table 5 shows that B&B is the best solver for the larger 8-target problem instances. B&B

runtimes are, on average, 90 seconds (1.5 minutes), while BONMIN(ECP) runtimes are much larger

at 267 seconds (4.5 minutes). Observe that since the limiting distribution of the sample mean is

normal, and considering the standard error of the average runtimes, we can say with high (> 99%)

confidence that the true mean runtimes for B&B on all 8-target problems in this sample space are

faster than that of the other two solvers.

The performance profile plot (Figure 5) demonstrates that runtimes for BONMIN(ECP) and

DICOPT in nearly all problem instances are several times larger than that of B&B, with over half

of the probability mass for BONMIN(ECP) being in the k = 3 to k = 9 range.

When considering larger, 10-target, SSPs it is clear that B&B is the only viable algorithm among

17

Figure 3: Performance profile for 5-target SSPs. BONMIN(ECP) preforms well on 5-target SSPs,

with the fastest runtime for nearly 90% of these problems. B&B lags behind the MINLP solvers,

with runtimes within a factor of 7 of the fastest runtimes for approximately 80% of problems.

the three solvers tested. Table 6 highlights that B&B is able to solve 97 out of 100 problem instances

within 30 minutes of computing time. The average runtime is 8.5 minutes and 90% of the problems

are solved within 17 minutes of computing time. Meanwhile BONMIN(ECP) and DICOPT are

unable to solve any of the SSP test problems within 30 minutes.

We now quantify how far the BONMIN(ECP) and DICOPT solutions are from the 10-target SSP

optimal solutions by looking at the reported optimality gaps upon termination. Table 7 highlights

that when BONMIN(ECP) and DICOPT terminate upon reaching the 30 minute time limit, the

solution available is usually far from optimal. On average solutions are off by a factor of at least

3.5 (optimality gaps in excess of 350%). For over half of the problems tested, DICOPT is unable

to provide a bound on the optimal solution because the initial MIP for the linearized subproblem

is not solved within 30 minutes.

The trend continues for larger problems. On a set of 25 randomly generated 15-target problem

instances B&B solves each problem instance to optimality in 4667.77 seconds (1.30 hours) on aver-

age, solving 18 out of 25 problem instances within 2 hours. BONMIN(ECP) is unable to solve any

of these problem instances within 2 hours, terminating with an average optimality gap of 949%.

We are able to gain some insight into why B&B outperforms the MINLP solvers as the problem

size increases by examining the branch-and-bound enumeration tree of a representative problem

instance. We consider a 10-target SSP instance that is solved in 324 seconds, near the median

runtime. In order to isolate the efficiency gained by the heuristic, we solve this problem with no

initial solution provided as well as with heuristic initialization. We note that a 10-target SSP results

18

Figure 4: Performance profile for 7-target SSPs. BONMIN(ECP) and B&B each have the best

runtimes in approximately half of the test problems. DICOPT yields the slowest runtimes of the

three solvers tested.

in an enumeration tree of nearly 20 million nodes, spanning 12 levels deep. At each node we solve

RSSP(x̂`). Clearly, Algorithm B&B visits only a small fraction of these nodes due to pruning. Any

path through the tree that has length 12 is a path that visits all target search regions. We use the

term perceived depth to refer to the depth of visited nodes in the enumeration tree. If the average

perceived depth of the tree were large, it would be tantamount to enumerating all possible paths

x ∈ X. Thus, in order for our B&B algorithm to perform efficiently we need that the perceived

depth of the tree remain relatively small for large problems. This is possible due to the dwell-

to-transit resource trade-off that takes place when we consider extensions to partial paths in the

enumeration tree. Table 8 shows the number of nodes at each level of the tree for a representative

problem instance with and without heuristic initialization. We see that the tree is explored no more

than 9 levels deep, as the partial path relaxation provided by RSSP(x̂`) encounters the optimal

solution bound fairly shallow in the tree. The majority of the nodes are visited in levels 5-7 of the

tree. Considering that a 5-target SSP, solvable in only a few seconds, yields an enumeration tree

that is 7 nodes deep, the perceived depth of the tree for larger 10-target SSP is shallow relative to

its problem size.

Table 8 also shows the benefit of using the SSP heuristic to determine the initial guess for B&B.

Runtime increases proportionally to the number of required NLP solutions in the enumeration tree.

Having a good bound on the optimal solution reduces the total number of required NLP solutions

by a factor of 2.3.

We conclude this section with some remarks on the performance of the heuristic presented in

19

B&B BONMIN(ECP) DICOPT

Num Solved 100 100 82

Runtime (sec)

Average 90.01 267.82 876.74

St Dev 72.13 185.82 578.37

St Error 7.21 18.58 57.84

Median 67.38 191.67 737.59

90th Percentile 181.18 500.62 1800

Min 8.74 65.58 57.69

Max 415.33 946.74 1800

Table 5: Runtime summary for 8-target SSPs. B&B is the best solver for these problem instances.

B&B runtimes are, on average, 90 seconds (1.5 minutes), while BONMIN(ECP) runtimes are much

larger at 267 seconds (4.5 minutes)

B&B BONMIN(ECP) DICOPT

Num Solved 97 0 0

Runtime (sec)

Average 515.91 - -

St Dev 697.87 - -

St Error 69.79 - -

Median 313.06 - -

90th Percentile 1006.96 - -

Min 33.27 - -

Max 5048.39 - -

Table 6: Runtime summary for 10-target SSPs. B&B is the only viable solver for these problems.

BONMIN(ECP) and DICOPT are unable to solve any of these problems within 30 minutes of

computing time.

Section 3.3 with respect to the 3, 5, 7, 8, and 10-target SSP test set. The heuristic correctly identifies

223 optimal solutions out of 500 total SSPs tested. Table 9 shows that the accuracy of the heuristic

tends to diminish as the number of targets increases. However, the average relative optimality

gap remains within the 1-3% range throughout. Therefore while the accuracy rate in finding the

optimal solution decreases, the heuristic does not miss by too wide of a margin on average. The

heuristic is able to get within 7% of optimality in at least 90% of all problems tested. In all cases,

the average accuracy rate is driven by one to three poor performing problem instances. While the

average accuracy diminishes, the runtime remains fairly constant. It is at or below half a second for

all problems tested. This is consistent with the worst case runtime analysis presented in Section 3.3.

Observe that, comparing Table 9 to Table 6, on average the heuristic’s 90th percentile optimality

gaps for 10-target problem instances are smaller than the optimality gaps for BONMIN(ECP) and

DICOPT. A problem-by-problem comparison reveals that the heuristic solutions have a smaller

optimality gap in all problem instances.

20

Figure 5: Performance profile for 8-target SSPs. B&B yields the fastest runtimes for nearly all

problem instances. BONMIN(ECP) and DICOPT runtimes are at least three times larger than

that of B&B for over 60% of problems tested.

5 Smuggler Search Problem Model Enhancements

SSP serves as a baseline model for solving many interesting problems that arise in search planning.

Real-world search planning scenarios typically involve developing search plans for multiple searchers,

while accounting for complicated smuggler movement tracks. We show how our model can be

enhanced to capture these difficult planning problems.

5.1 Multiple Searchers

We consider a search planning operation where s ∈ S searchers are available. We model this

planning problem as a GOP-RDR on a searcher-expanded network GS = (NS, AS), where the nodes

are searcher-target pairs NS = {(s, j) : s ∈ S, j ∈ N} and the arcs AS = {(s, i, j) : s ∈ S, (i, j) ∈ A}
represent the transit of searcher s between search region i and search region j. Utilizing the vector

forms of aj,dj and ti,j in P, we allow each of these resource variables to have |S| elements. We

denote by as,j and ds,j the respective arrival time and dwell time of searcher s in search region j,

and we denote by ts,i,j the transit time of searcher s from search region i to search region j. The

multiple searcher SSP is stated as follows.

21

BONMIN(ECP) DICOPT

Num Bounds 100 44

Gap (%)

Average 504 358

St Dev 323 223

Median 433 316

10th Percentile 236 126

90th Percentile 903 551

Min 74 17

Max 1893 1182

Table 7: Optimality gap summary for BONMIN(ECP) and DICOPT on 10-target SSPs. Num

Bounds refers to the number of problem instances out of 100 for which the respective solver provided

a bound on the objective function value within 30 minutes of computing time. Reported solutions

generally differ from the optimal solutions by a large margin, upwards of 350% for both solvers.

DICOPT is unable to report an optimality gap within 30 minutes for 56 problem instances.

Problem SSP-MS:

max
a,d,t,x,y

∑
j∈N̂

qj

(
1− exp

{
−
∑
s∈S
αs,jds,jys,j

})
(15a)

s.t. (||ρs,i + (as,i + ds,i − τs,i)us,i − ρs,j
. . .− (as,i + ds,i + ts,i,j − τs,j)us,j||

. . .− V ts,i,j)xs,i,j ≤ 0, ∀(s, i, j) ∈ AS (15b)

(as,i + ds,i + ts,i,j − as,j)xs,i,j ≤ 0, ∀(s, i, j) ∈ AS (15c)∑
j∈N̂S

ds,j +
∑

(i,j)∈AS
ts,i,j ≤ Ts, ∀s ∈ S (15d)

∑
j∈NS

ds,j +
∑

(i,j)∈AS
ts,i,j ≤ Ds, ∀s ∈ S (15e)

as,j ≥ τmins,j , ∀(s, j) ∈ NS (15f)

as,j + ds,j ≤ τmaxs,j , ∀(s, j) ∈ NS (15g)

as,0 = 0, ∀s ∈ S (15h)

ds,n+1 = 0, ∀s ∈ S (15i)

as,j, ds,j ≥ 0, ∀(s, j) ∈ NS (15j)

ts,i,j ≥ 0, ∀(s, i, j) ∈ AS (15k)

ys = Γxs, ∀s ∈ S (15l)

xs ∈ X, ∀s ∈ S (15m)

Each expression in SSP-MS is a direct extension of its SSP counterpart where as,j, ds,j and

ts,i,j are the arrival time, dwell time, and the transit time of searcher s contained in the vectors

aj,dj and ti,j respectively. We allow resources T and D in (15d) and (15e) respectively to vary by

searcher. This is a useful feature that allows the model to account for heterogeneous searchers. In

22

With Heuristic Without Heuristic

Level NLP Solutions NLP Solutions

1 1 1

2 10 10

3 100 100

4 657 702

5 2008 3024

6 2051 5061

7 714 3354

8 85 720

9 0 40

Total 5626 13012

Runtime (sec) 324.78 676.69

Table 8: Number of NLP solutions on each level of the B&B tree for a representative 10-target

SSP instance. The perceived depth of the enumeration tree is shallow relative to its problem size,

highlighting the resource trade-off that motivates the GOP-RDR and highlights the benefit of the

Algorithm B&B.

the objective function (15a), each exponential term associated with search region j in the random

search model computes detection probability by accumulating total search effort for all searchers.

Algorithm B&B can be used to solve the multiple searcher SSP. We modify the notation in

Algorithm B&B by requiring that the nodes of the enumeration tree be viewed as (s, j)-pairs,

where s ∈ S, j ∈ N . We also vectorize I` and δ`,n+1 in RP(x̂`) to account for path completion

with respect to each searcher, and modify the path completion criterion in step 3 to require that

(s, j) = (s, n + 1),∀s ∈ S. In principle, this can be done for an arbitrary number of searchers,

however the size of the enumeration tree is exponential in the number of searchers |S|. Fortunately,

real-world applications we consider call for search planning with a very limited number of searchers.

Thus, for operational and computational reasons we limit our numerical results to 2-searcher SSPs.

In order to provide a good initial guess to Algorithm B&B, accounting for 2 searchers, we

perform our SSP heuristic sequentially as follows. We set the temporal clustering parameter ∆ = 6

hours. We initialize the path for searcher 2 to consist only of arc (0, n+ 1). This ensures a feasible,

but certainly not optimal, path for searcher 2. We then run the (single-searcher) SSP heuristic

for searcher 1 and fix the resulting path. We then do the same for searcher 2. We improve the

search plan by considering the removal of targets from searcher 1’s path, performing Phase V of

the SSP heuristic. We then do the same for searcher 2. Lastly, we attempt to improve the plan by

allowing the searchers to swap their entire search paths. The modified heuristic returns the best

search plan encountered after the aforementioned steps are completed. We do not consider pairwise

target swaps between searchers nor do we consider a parallel implementation of the SSP heuristic.

Our aim is to quickly provide a good initial solution to Algorithm B&B. While we expect that a

parallel heuristic with pairwise target swapping would produce higher quality solutions on average,

it is our view that the marginal improvement in solution quality would not be worth the increased

computational cost and complexity.

To illustrate the merits of the SSP-MS model, we consider a 2-searcher, 10-target SSP example.

As the numerical results in Section 4 indicate, a significant amount of computing time is usually

23

Number of Targets

3 5 7 8 10

Avg Time (sec) 0.19 0.24 0.30 0.31 0.34

Min Time (sec) 0.14 0.17 0.22 0.19 0.22

Max Time (sec) 0.40 0.42 0.65 0.55 0.67

Num Optimal 80 42 41 31 29

Avg Gap (%) 1 3 2 3 2

90th Percentile Gap (%) 3 7 6 6 6

Max Gap (%) 29 34 23 48 30

Table 9: SSP Heuristic performance results. The heuristic presented in Section 3.3 produces run-

times that are at or below the half-second mark for all 3, 5, 7, 8, and 10-target SSP instances.

Accuracy in finding the optimal solution appears to diminish as problem size increases, however the

average, 90th percentile, and maximum optimality gaps remain fairly stable.

required to solve a 10-target SSP. When another searcher is considered in an already difficult

problem, squaring the number of possible search plans, we should expect that the B&B runtime

would increase substantially. We consider search planning to take place on a 24-hour cycle. Thus,

runtimes that exceed 24 hours are clearly unacceptable. It is apparent that solving the MINLP

directly using either BONMIN(ECP) or DICOPT would not produce a solution in an acceptable

amount of time. For this reason, we proceed using B&B.

The spatial distribution of the targets in this example is split (see Figure 6), with 4 of them in

the southwest region and 6 of them in the northeast region. The speeds, travel times, and expected

detection value of these targets are varied (see Table 11). Given two aerial search assets, a P-3

and an HC-130 (see Table 10), operating from the same home station, we wish to develop a plan

that maximizes the expected detection value. Complete searcher and target data for this problem

instance are provided in Table 10 and Table 11 respectively.

Searcher V V̂ T D W

A 325 205 10 24 15

B 280 240 10 24 15

Table 10: 2-searcher SSP example data is based on known performance specifications for a P-3

(searcher A) and a HC-130 (searcher B).

We select this particular problem out of the 100 randomly generated 10-target problem instances

because it exhibits many of the interesting features we have observed in our study of these problems.

From a planner’s perspective, it is not clear how to form a good plan in this scenario, let alone

an optimal one. Targets 1,2,3, and 5 have high expected detection values q. Good judgment

would dictate that these targets would likely be included in the optimal plan, but it is difficult to

determine the search order, the searcher-to-target assignment, and whether or not other targets will

be searched at all.

With two search assets, it seems reasonable that a search planner would, based on spatial regions,

assign targets 2 and 3 to one searcher, and targets 1 and 5 to the other searcher. As discussed in

Section 3.3, we assume ascending order of expected arrival times. Furthermore, since the targets 2

and 3 appear to be farther away from the home station, it makes sense to assign the faster P-3 to

24

Figure 6: 10-target, 2-searcher example SSP scenario map. 4 targets moving in the southwest region

(lower left) and 6 in the northeast region (upper right). Movement tracks are labeled corresponding

to target numbers shown in Table 11.

those targets. This search plan is reflected in Table 12 as the Manual Plan for 2 searchers.

If the search planner only has one search asset available, developing a good plan somehow appears

even more difficult. While planning to search all the high value targets uses a substantial amount of

travel time, which is a limited resource, it may be too difficult for the planner to determine which

of these targets to rule out. Therefore, the planner may assign all of them to the searcher, again

in order ascending arrival time. This search plan is reflected in Table 12 as the Manual Plan for 1

searcher.

For convenience, we define a p%-solution to be a solution that has an optimality gap of p percent.

Table 12 shows a comparison between results for the manual plans, search plans derived from the SSP

heuristic, and search plans computed using Algorithm B&B. The manual plan for a single searcher

is clearly an inferior course of action, a 17%-solution. More time is spent transiting between search

regions than is spent actually searching for targets. From a resource trade-off perspective, we can

certainly do better. The single searcher heuristic, a 3%-solution, produces a plan that is close to

optimal. Two of the high value targets selected (2 and 5) are correct and in the correct order, but

the heuristic fails to recognize the value of adding target 1 to the plan. The optimal single searcher

plan adds target 1 because the additional transit resource expenditure is worth the incremental

bang-for-buck in searching this additional target.

The manual 2-searcher plan has an optimality gap of 3%, much better than its single searcher

counterpart. This is possible because this problem instance happens to have target movement tracks

for high value targets, two in each region, that coincide nicely with having two search assets. We

25

Target U τ τ̃ ρ ρ̄ ρ̃ q

1 59.5 3 4 (24.9, 3.1) (9.1, 14.3) 64 4282

2 62.3 9 2 (25.7, 10.1) (12.7, 20.2) 55 4554

3 61.7 3 2 (27.0, 11.2) (16.3, 15.2) 85 3236

4 57.0 10 3 (21.2, 1.9) (8.0, 14.7) 59 553

5 56.7 4 3 (21.5, 2.6) (11.5, 13.2) 27 4687

6 59.2 11 1 (26.6, 10.8) (13.0, 20.9) 91 937

7 55.3 12 1 (21.1, 1.8) (5.8, 15.7) 93 661

8 64.5 3 4 (27.7, 11.7) (12.9, 20.6) 61 837

9 64.4 5 4 (24.4, 9.1) (14.3, 15.9) 45 1317

10 58.8 7 1 (24.9, 9.5) (15.8, 15.4) 66 1290

Table 11: 10-target SSP example data is randomly generated as described in Section 4.

see that the 2-searcher heuristic obtains its plan, as expected, by starting with the single searcher

heuristic solution and adding in a plan for the second searcher. The result has each searcher crossing

between geographic regions in their respective paths. This plan is slightly better than the manual

plan and yields an optimality gap of 2%.

Expected Search Search Transit

Detection Runtime Order Time (hrs) Time (hrs)

Manual Plan, 1 searcher 6514 < 0.1 sec 3-5-1-2 4.4 5.6

Heuristic Plan, 1 searcher 7662 0.4 sec 5-2 6.5 3.5

Optimal Plan, 1 searcher 7889 57.6 secs 1-5-2 6.4 3.6

Manual Plan, 2 searchers 12058 < 0.1 sec
A: 3-2 5.8 4.2

B: 5-1 7.1 2.9

Heuristic Plan, 2 searchers 12106 1.1 secs
A: 5-2 6.5 3.5

B: 3-1 6.4 3.6

Optimal Plan, 2 searchers 12373 4.7 hrs
A: 3-10-2 5.9 4.1

B: 1-5 7.2 2.8

Table 12: Comparison of manual, heuristic, and optimal search plans for 10-Target SSP example

with 1 and 2 searchers. Search order includes home station (not shown) at the beginning and end

of all paths. Plans for 2 searcher instances are labeled A and B, and correspond to searcher data

in Table 10. Search time and transit time refer to total time resource expenditure searching and in

transit.

The optimal 2-searcher plan, depicted in Figure 7, achieves a more favorable dwell-to-transit

resource trade-off with a total of 6.9 hours spent in transit. This is possible because of two not-

so-obvious modifications to the manual search plan. First, target 10 is added to searcher A’s path.

This enables the searcher to collect reward for searching another target while allowing target 2 to

get closer to the searcher’s location. Thus, more time is spent searching than in transit. Second,

the order of targets 1 and 5 are swapped in searcher B’s path. This goes counter to earliest arrival

time ordering. This plan takes advantage of the facts that the movement tracks become quite close

(where the dotted lines cross) and that target 5 is essentially coming straight at the home base of

the searcher. Combined, these modifications yield reduced transit time and increased search time.

26

Observe that in the optimal 2-searcher plan there are no targets searched by both searchers, see

Figure 7. One might conclude that solving this problem is equivalent to solving two separate single

searcher SSPs. This is not the case. The optimal solutions shown in Table 12 show that solutions

are not nested with respect to adding searchers. While the optimal 1-searcher plan searches regions

1, 5, and 2, these regions are not allocated to the same searcher in the optimal 2-searcher plan.

While the runtime required to obtain the optimal solution is relatively long, a breath-first-

search of the first three levels of the enumeration tree, done in 9.6 minutes, proves that the objective

function value of the heuristic is guaranteed to be within 20% of optimality. In this problem instance

a search planner under time pressure could choose to use the heuristic search plan, actually (but

unknown to the planner) a 2%-solution, and be assured that this plan is within 20% of optimality.

Figure 7: 10-target, 2-searcher example SSP optimal solution map. Labels indicate search plan

ordering. For example, label “A2(10)” is the searcher A to target 10 assignment, where this search

region appears 2nd in searcher A’s path. All search regions are searched in the bottom-right to top-

left direction due to the direction of target motion. The size of each rectangular block corresponds

to the total area of respective search region during the time when the searcher is performing search

actions in that region.

5.2 Complex Target Motion

Real-world scenarios where SSPs arise can require the use of models that are more complex than

those discussed thus far. For example, a particular target’s movement track may not be along a

straight line. The target may be traveling along a track that follows a particular stretch of coastline,

or the target may navigate around islands or other geographic obstacles. It is also possible that the

27

search region associated with a target changes as the target moves, perhaps due to changing weather

or intelligence-driven changes to the uncertainty ranges themselves. The speed of the target may

also change with ocean state conditions as a smuggler travels. All of these considerations can be

modeled with piecewise linear target movement tracks.

We consider the situation where target motion is nonlinear, but can be approximated by piece-

wise linear segments. We model the nodes N as the segmented search regions. The nodes represent

search regions as in SSP, but here they do not necessary correspond to unique targets. Let F ⊆ N̂

be the set of first segment target paths, one for each actual target. Let B(i) ⊆ N̂ , i ∈ F denote the

set of search region segments for each target. The piecewise linear target motion model is shown

below.

Problem SSP-PWL:

max
a,d,t,x,y

∑
i∈F
qi

(
1− exp

{
−
∑

j∈B(i)

αjdjyj

})
s.t. constraints (9b) through (9m)

SSP-PWL only differs from SSP in the objective function. Similarly to SSP-MS, we sum total

search effort in the exponential. In this case the summation is over all segments in the piecewise

linear target movement track. We set τminj and τmaxj in (9f) and (9g) respectively to define the

connections between target path line segments.

Runtime can be improved by reducing the size of the arc set A, thus reducing the number of

partial path extensions that must be considered in step 2 of Algorithm B&B. Clearly, any arc (i, j)

where j precedes i ∈ B(j) should be eliminated from A. Performing this elimination procedure for

all target path line segments reduces the dimension of X̂ in Algorithm B&B. We have observed

that this can have a noticeable effect on computation time.

To illustrate the merits of the SSP-PWL model, we consider a 2-searcher, 5-target SSP with

piecewise linear target tracks. The additional segments make this problem equivalent in size to

a 12-target SSP. In this scenario, one of the targets, target 1, navigates around an island in the

southwest region. Once past the island, the track of the target becomes more and more uncertain.

Intelligence estimates are solid in estimating the first part of this target’s track, but analysts are

less certain about the target’s arrival location. This target track is modeled by four segments (1a,

1b, 1c, and 1d) with increasing ranges of location uncertainty. Another target, target 2, moves

along a track that follows the coastline in the northeast region. The piecewise linear track for this

target is captured by five segments (2a, 2b, 2c, 2d, and 2e). The other three targets move along

linear tracks. The target movement tracks for this scenario are shown in Figure 8.

Target data for this scenario is given in Table 13. Observe that the location uncertainty ρ̃

for target 1 increases by 25nm in each subsequent segment. This has the effect of increasing the

area of the search region by 50 nm2. The expected departure times τ in subsequent segments,

j ∈ N\F , are derived by simply propagating the first segment forward in time, setting τ to the

expected arrival time of the previous segment. Target departure and arrival locations are chosen to

fit the scenario description and to make the map illustration readily viewable. All other values are

randomly generated as described in Section 4.

This scenario presents a difficult challenge for a search planner. With 2 search assets and

5 targets there are enough resources to make an effort to search all targets, but it is not clear

28

Figure 8: 5-target piecewise linear example map. Target 1 navigates around an island and has

increasing range of location uncertainty. Target 2 moves along a track that follows the coastline.

how to order the search or how determine the searcher-to-target assignment. Perhaps the most

difficult aspect is that the search region for target 1 increases in size as it gets closer to the home

station. Nominally, a good search plan would have a searcher wait at home station while the target

approaches, but doing so in this case makes it harder to detect the target later in the mission

execution period as the search region area increases.

The optimal solution, shown in Figure 9, is obtained in 10.5 hours by using Algorithm B&B with

settings described in Section 5.1. It is clear from the map that the path for searcher A achieves a

favorable dwell-to-transit resource trade-off as search regions are visited at a point that seems close

to the home station. Searcher B is forced to travel a relatively long distance in order to search for

target 1 at a point where its search region has a small area. This allows target 5 to be searched at

a point that is close to the home station. By inspection, this optimal search plan makes sense, but

developing it without using optimization techniques entails making nonintuitive assignments in the

search plan.

A breath-first-search of the first three levels of the enumeration tree, accomplished in 2.7 hours,

provides a solution that is guaranteed to be within 51% of optimality. The solution turns out to

be a 1%-solution. Given only a couple of hours for planning, a search planner could choose to use

this search plan in lieu of the heuristic plan; obtained in 0.7 seconds, but with no optimality gap

guarantee. The heuristic gives a 53%-solution.

29

Target U τ τ̃ ρ ρ̄ ρ̃ q

1a 64.1 0 2 (23, 4) (10, 0) 25 2670

1b 64.1 12.7 2 (10, 0) (10, 5) 50 2670

1c 64.1 17.7 2 (10, 5) (10, 10) 75 2670

1d 64.1 22.7 2 (10, 10) (10, 14) 100 2670

2a 61.4 2 3 (28, 12) (21, 10) 45 890

2b 61.4 9.1 3 (21, 10) (18, 10) 45 890

2c 61.4 12.03 3 (18, 10) (17, 16) 45 890

2d 61.4 18.0 3 (17, 16) (13, 17) 45 890

2e 61.4 22.0 3 (13, 17) (13, 20) 45 890

3 62.7 3 1 (26, 11) (15, 16) 80 2739

4 62.6 10 3 (21, 1) (12, 13) 62 3914

5 55.5 5 1 (28, 12) (13, 20) 91 2547

Table 13: 5-target piecewise linear SSP example data.

Figure 9: 2-searcher, 5-target piecewise linear optimal solution map. Searcher A is assigned the

path 3-5-2d, searching segment d of target 2 last. Searcher B is assigned the path 1b-1c-4, searching

segments b and c of target 1 first. The size of each rectangular block corresponds to the total area

of respective search region during the time when the searcher is performing search actions in that

region.

6 Conclusions

This article introduces a routing problem GOP-RDR and presents a specialized branch-and-bound

algorithm that is built upon partial path relaxations which exploit resource trade-offs that are

30

inherent in these problems. We formulate a search problem SSP as an important special case of a

GOP-RDR and provide an efficient heuristic for computing high quality solutions in a small amount

of time.

Numerical testing on randomly generated SSP instances reveals that our branch-and-bound

algorithm outperforms standard MINLP solvers for problems with 7 or more targets. In large

problem instances, with 10 targets, our algorithm is currently the only viable approach to obtain

optimal solutions within 30 minutes of computing time.

We propose extensions to the SSP which allow practitioners to model realistic search planning

scenarios that involve multiple heterogeneous searchers and complex target motion. We observe

that optimal search plans can usually be explained by an intuitive story, but obtaining these search

plans without using sophisticated optimization techniques would be a difficult task.

Acknowledgement

The second author acknowledges financial support from the Office of Naval Research, Mathematical

Optimization and Operations Research Program.

A SSP Heuristic Algorithm

The SSP heuristic begins by defining ∆ as the temporal clustering parameter, which controls how

close we allow target clusters to be with respect to time. We assume that the problem of interest

can be separated into spatial clusters σ ∈ Σ based on geographical boundaries. This is the case

in our SSP example where smugglers are transiting through water either side of a large land mass.

Furthermore, since we are concerned with seagoing smugglers they cannot move from one region to

another. We denote by Kσ the set of targets that belong to spatial cluster σ.

SSP Heuristic:

Phase I. Initialization

1. Initialize cluster count k = 1, order index o = 1, and null path x = 0. Solve RSSP(0) and

record the optimal solutions d∗. Construct the set of searchable targets Ň = N\{j ∈ N :

d∗j = 0}.
2. Compute bang-for-buck ratios βj = qj/(τ̃j ρ̃jUj),∀j ∈ Ň .

Phase II. Target Clustering

3. For each spatial cluster σ ∈ Σ:

Initialize time window parameter τ̌σ = min
j∈Ň∩Kσ

{τmaxj }. While τ̌σ + ∆ < max
j∈Ň∩Kσ

{τmaxj }:

For each target j ∈ Kσ:

Assign target j to cluster κk if τmaxj ∈ [τ̌σ, τ̌σ + ∆).

Increment τ̌σ = τ̌σ + ∆.

If one or more targets are assigned to cluster κk in this time interval, increment

k = k + 1.

31

4. For each cluster κk:

Order targets j ∈ κk in ascending value of τmaxj . Compute cluster order value νk =

min{τmaxj : j ∈ κk}.
5. For each cluster κk, considered in ascending order value νk:

For each target j ∈ κk:
Assign search order Oj = o and increment o = o+ 1.

6. Assign order O0 = 0 to the home station and order On+1 = |Ň |+ 1 to the recovery location.

7. Form the initial path x by setting xi,j = 1 for all i and j with consecutive orderings Oi and

Oj. Solve SSP(x). Save incumbent path x̄ = x. If the problem is feasible, save the heuristic

objective value Z∗H as the optimal objective function value of this problem. Otherwise, set

Z∗H = −∞.

Phase III. Feasibility Check

8. If Z∗H = −∞:

For all targets j ∈ Ň , considered in ascending order βj:

Do Remove j procedure: { Remove target j from the path x by setting xi,j = 0 (for

i : Oi = Oj − 1), xj,i′ = 0 (for i′ : Oi′ = Oj + 1), and xi,i′ = 1 (for i : Oi = Oj − 1

and i′ : Oi′ = Oj + 1). Remove j from the set Ň . Solve SSP(x). }
If a feasible solution is found, set Z∗H to the objective function value of this solution

and go to step 9.

Phase IV. Cluster Seam Refinement

9. Save incumbent path x̄ = x. For each seam between clusters κk−1 and κk, where k > 1:

Let j be the target in that last order position in cluster κk−1. Let i′ be the target in the

first position in cluster κk. If τmaxj > τmaxi′ and βj < βi′ , do Remove j procedure defined

in step 8. If Z∗H is improved, save incumbent path x̄ = x. Otherwise, reset incumbent

path x = x̄.

Phase V. Greedy Target Removal

10. For each target j ∈ Ň , considered in ascending order βj:

Do Remove j procedure defined in step 8. Solve SSP(x). If Z∗H is improved, save

incumbent path x̄ = x. Otherwise, reset incumbent path x = x̄.

11. Return heuristic path x̄ and solution Z∗H .

References

[1] C. Archetti, A. Hertz, and M. Speranza. Metaheuristics for the team orienteering problem.

Journal of Heuristics, 13(1):49–76, Dec. 2007.

[2] S. Boussier, D. Feillet, and M. Gendreau. An exact algorithm for team orienteering problems.

4OR A Quarterly Journal of Operations Research, 5(3):211–230, 2007.

32

[3] S. Butt and T. M. Cavalier. A heuristic for the multiple tour maximum collection problem.

Computers and Operations Research, 21(1):101–111, 1994.

[4] S. Butt and D. Ryan. An Optimal Solution Procedure for the Multiple Tour Maximum Col-

lection Problem Using Column Generation. Computers and Operations Research, 26:427–441,

1999.

[5] J. D. Camm, A. S. Raturi, and S. Tsubakitani. Cutting Big M Down to Size. Interfaces,

20:61–66, Dec. 1990.

[6] I. Chao, B. Golden, and E. Wasil. A Fast and Effictive Heuristic for the Orienteering Problem.

European Journal of Operational Research, 88(3):475–489, 1996.

[7] R. Dell, J. Eagle, G. Martins, and A. Santos. Using Multiple Searchers in Constrained-Path,

Moving-Target Search Problems. Naval Research Logistics, 43(4):463–480, 1996.

[8] M. Desrochers and G. Laporte. Improvements and extensions to the Miller-Tucker-Zemlin

subtour elimination constraints. Operations Research Letters, 10:27–36, 1991.

[9] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles.

Mathematical Programming, 91(2):201–213, Jan. 2002.

[10] J. Eagle and J. Yee. An optimal branch-and-bound procedure for the constrained path, moving

target search problem. Operations Research, 38(1):110–114, 1990.

[11] B. Golden, L. Levy, and R. Vohra. The orienteering problem. Naval Research Logistics,

34(3):307–318, 1987.

[12] I. E. Grossmann, J. Viswanathan, A. Vecchiette, R. Raman, and E. Kalvelagen. DICOPT user

manual. 2012.

[13] D. Grundel. Constrained search for a moving target. In Proceedings of the 2005 international

conference on Collaborative technologies and systems, CTS’05, pages 327–332, Washington,

DC, USA, 2005. IEEE Computer Society.

[14] T. Ilhan, S. Iravani, and M. Daskin. The orienteering problem with stochastic profits. IIE

Transactions, 40(4):406–421, Feb. 2008.

[15] G. Laporte and S. Martello. The selective traveling salesman problem. Discrete Applied Math-

ematics, 26:193–207, 1990.

[16] H. D. Moser. Scheduling and routing tactical aerial reconaissance vehicles. Master’s thesis,

Naval Postgraduate School, 1990.

[17] B. A. Murtagh, M. A. Saunders, and P. A. Gill. MINOS user manual. 2012.

[18] R. Ramesh and K. M. Brown. An efficient four-phased heuristic for the generalized orienteering

problem. Computers & Operations Research, 18(2):151–165, 1991.

[19] R. Ramesh, Y. Yoon, and M. Karwan. An optimal algorithm for the orienteering tour problem.

ORSA Journal on Computing, 4(2):155–165, 1992.

33

[20] J. O. Royset and D. Reber. Optimized Routing of Unmanned Aerial Systems for the Interdiction

of Improvised Explosive Devices. Military Operations Research, 14(4):5–19, 2009.

[21] J. O. Royset and H. Sato. Route Optimization for Multiple Searchers. Naval Research Logistics,

57(8):701–717, 2010.

[22] N. Sahinidis and M. Tawarmalani. BARON user manual. 2012.

[23] H. Sato and J. O. Royset. Path Optimization for the Resource-Constrained Searcher. Naval

Research Logistics, 57(5):422–440, 2010.

[24] M. Schilde, K. F. Doerner, R. F. Hartl, and G. Kiechle. Metaheuristics for the bi-objective

orienteering problem. Swarm Intelligence, 3(3):179–201, 2009.

[25] J. Silberholz and B. Golden. The effective application of a new approach to the generalized

orienteering problem. Journal of Heuristics, 16(3):393–415, 2010.

[26] W. Souffriau, P. Vansteenwegen, J. Vertommen, G. Vanden Berghe, and D. Van Oudheusden.

A Personalized Tourist Trip Design Algorithm for Mobile Tourist Guides. Applied Artificial

Intelligence, 22(10):964–985, Oct. 2008.

[27] H. Tang and E. Miller-Hooks. A TABU search heuristic for the team orienteering problem.

Computers & Operations Research, 32(6):1379–1407, June 2005.

[28] M. Tawarmalani and N. Sahinidis. Global Optimization of Mixed Integer Nonlinear Programs:

A Theoretical and Computational Study. Mathematical Programming, 99:563–591, 2004.

[29] P. Toth and D. Vigo. The vehicle routing problem, volume 9 of SIAM Monographs on Discrete

Mathematics and Applications. Society for Industrial and Applied Mathematics, 2002.

[30] F. Tricoire, M. Romauch, K. F. Doerner, and R. F. Hartl. Heuristics for the multi-period orien-

teering problem with multiple time windows. Computers & Operations Research, 37(2):351–367,

Feb. 2010.

[31] K. Trummel and J. Weisinger. The Complexity of the Optimal Searcher Path Problem. Oper-

ations Research, 34(2):324–327, 1986.

[32] T. Tsiligirides. Heuristic Methods Applied to Orienteering. Journal of the Operational Research

Society, 35(9):797–809, 1984.

[33] P. Vansteenwegen, W. Souffriau, and D. Van Oudheusden. The orienteering problem: A survey.

European Journal of Operational Research, 209(1):1–10, Feb. 2011.

[34] S. Vigerske. COIN user manual. 2012.

[35] Q. Wang, X. Sun, and B. Golden. Using artificial neural networks to solve generalized orienteer-

ing problems. In C. Dagli, M. Akay, C. Chen, B. Fernandez, and J. Ghosh, editors, Intelligent

Engineering Systems Through Artificial Neural Networks: Volume 6, pages 1063–1068. 1996.

34

[36] X. Wang, B. Golden, and E. Wasil. Using a genetic algorithm to solve the generalized ori-

enteering problem. In B. Golden, S. Ragahavan, and E. Wasil, editors, The Vehicle Routing

Problem: Latest Advances and New Challenges, pages 264–274. 2008.

[37] A. R. Washburn. Search and Detection. INFORMS, Linthicum, Maryland, fourth edition,

2002.

[38] J. Yi. Vehicle Routing with Time Windows and Time-Dependent Rewards: A Problem from

the American Red Cross. Manufacturing & Service Operations Management, 5(1):74–77, 2003.

35

