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Abstract

The paper presents a generalized regression technique centered on a superquantile (also called
conditional value-at-risk) that is consistent with that coherent measure of risk and yields more
conservatively fitted curves than classical least-squares and quantile regressions. In contrast to
other generalized regression techniques that approximate conditional superquantiles by various
combinations of conditional quantiles, we directly and in perfect analog to classical regression
obtain superquantile regression functions as optimal solutions of certain error minimization
problems. We show the existence and possible uniqueness of regression functions, discuss the
stability of regression functions under perturbations and approximation of the underlying data,
and propose an extension of the coefficient of determination R-squared for assessing the goodness
of fit. The paper presents two numerical methods for solving the error minimization problems
and illustrates the methodology in several numerical examples in the areas of uncertainty quan-
tification, reliability engineering, and financial risk management.

1 Introduction

Analysts and decision makers are often concerned with a random variable describing possible ‘cost,’
‘loss,’ or ‘damage.’ The interest may be focused on a single ‘system’ or could involve study and com-
parison across a multitude of systems and designs. In either case, it may be beneficial to attempt to
approximate such a loss random variable Y in terms of an n-dimensional explanatory random vector
X that is more accessible in some sense. This situation naturally leads to least-squares regression
and related models that estimate conditional expectations. While such models are adequate in
many situations, they fall short in contexts where a decision maker is risk averse, i.e., is more con-
cerned about upper-tail realizations of Y than average loss, and views errors asymmetrically with
underestimating losses being more detrimental than overestimating. We focus on such contexts
and therefore maintain an orientation of Y that implies that high realizations are unfortunate and
low realizations are favorable. Of course, a parallel development with an opposite orientation of
the random variable Y , focused on profits and gains, and concerns about overestimating instead of
underestimating is also possible but not pursued here.

Quantile regression (see [16, 9] and references therein) accommodates risk-averseness and an
asymmetric view of errors by estimating conditional quantiles at a certain probability level such as
those in the tail of the conditional distribution of Y . A quantile corresponds to ‘value-at-risk’ (VaR)
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in financial terminology and relates to ‘failure probability’ in engineering terms. Quantile regression
informs the decision maker about these quantities conditional on values of the explanatory random
vector X. However, a quantile is not a coherent measure of risk in the sense of Artzner et al.
[2] (see also [7]); it fails to be subadditive. Consequently, a quantile of the sum of two random
variables may exceed the sum of the quantiles of each random variable at the same probability
level, which runs counter to our understanding of what ‘risk’ should express. Moreover, quantiles
cause computational challenges when incorporated into decision optimization problems as objective
function, failure probability constraint, or chance constraint. The use of quantiles and the closely
related failure probabilities is therefore problematic in risk-averse decision making; see [2, 25, 20, 21]
for a detailed discussion.

A superquantile of a random variable, also called conditional value-at-risk, average value-at-
risk, and expected shortfall1, is an ‘average’ of certain quantiles as described further below. It’s a
coherent measure of risk well suited for risk-averse decision making and optimization; see [28] for
its application in financial engineering, [13] for military applications, and [20] for use in reliability
engineering. While this risk measure has reached prominence in risk-averse optimization, there has
been much less work on regression techniques that are consistent in some sense with it. In this
paper, we derive such a superquantile regression methodology, study its properties, and propose
means to assess the goodness-of-fit. The importance of such a regression methodology becomes
apparent by considering the following two situations.

Suppose that a loss is given by a random variable Y , but our primary concern is with the
conditional loss given that an explanatory random vector X takes on specific values. We aim to
select these values judiciously in an effort to minimize the conditional loss. We denote by Y (x)
the conditional random variable Y given that X = x ∈ IRn. Of course, ‘minimizing’ Y (x) is not
well-defined and a standard approach is to minimize a risk measure of Y (x); see for example [21].
An attractive choice is to use a superquantile measure of risk, which as mentioned above is coherent
and also computationally approachable. While in some contexts a superquantile of Y (x) can be
evaluated easily for any x ∈ IRn, there are numerous situations, especially beyond the financial
domain, where only a data base of realizations of Y (x) is available for various x. In the latter
situation, there is a need for building an approximating model, based on the data, for the relevant
superquantile of Y (x) as a function of x. We refer to this as superquantile tracking. In comparison,
if the goal were to minimize the expectation of Y (x), then least-squares regression would yield a
model that approximates that conditional expectation. Likewise, if the goal were to minimize a
quantile of Y (x), quantile regression would provide a model of the conditional quantile. While these
models are valuable for analysts and decision makers focused on the expectation and quantile risk
measures, they don’t provide estimates of conditional superquantiles. In essence, the same need for
estimating conditional superquantiles arises in reliability engineering when the goal is to determine
a ‘design’ x with buffered failure probability of Y (x) being no larger than a given probability level,
which corresponds to a constraint on a superquantile of Y (x) [20].

Another situation arises when the explanatory random vector X is beyond our direct control,
but the dependence between the loss random variable Y andX makes us hopeful that, for a carefully
selected regression function f : IRn → IR, the random variable f(X) may serve as a surrogate for Y .
When the distribution of X is known, at least approximately, and f has been determined, then the
distribution of f(X) is usually easily accessible. That distribution may then serve as input to further
analysis, simulation, and optimization in place of the unknown distribution of Y . Such surrogate
estimation may arise in numerous contexts. ‘Factor models’ in financial investment applications
(see for example [6, 15]), where Y may be the loss associated with a particular asset and X a
vector describing a small number of macroeconomic ‘factors,’ is a result of surrogate estimation.

1We prefer the application-neutral name ‘superquantile’ when deriving methods applicable broadly.

2



‘Uncertainty quantification’ (see for example [17, 8]) considers the output of a system described by
a random variable Y , for example measuring damage, and estimates its moments and distribution
from observed realizations as well as knowledge about the distribution of the input to the system
characterized by a random vector X. A main approach here centers on surrogate estimation with
f(X) serving as an estimate of Y . In this situation, an essential question is what criterion should
be used for selecting f . Clearly, one would like the error random variable Zf := Y − f(X) to be
small in some sense. However, minimizing the mean-squared error of Zf would not reflect a greater
concern about underestimating Y , i.e., underestimating losses, than overestimating. We may want
to assess the error of Zf in a manner that is ‘consistent’ with our use of a superquantile as risk
measure.

In this paper, we develop a ‘generalized’ regression technique that addresses the issue of su-
perquantile tracking and surrogate estimation. The technique is an extension of least-squares and
quantile regression, which center on expectations and quantiles, respectively, to one that focuses
on superquantiles.

The foundation of least-squares and quantile regression is the fact that mean and quantiles
minimize the expectation of certain convex random functions. A natural extension to superquantile
regression could then possibly involve determining a random function that when minimizing its
expectation, we obtain a superquantile. However, such a random function doesn’t exist [10, 5],
which has lead to studies of indirect approaches to superquantile regression grounded in quantile
regression.

For a random variable with a continuous cumulative distribution function, a superquantile
equals a conditional expectation of the random variable given realizations no lower than the corre-
sponding quantile. Utilizing this fact, studies have developed kernel-based estimators for the con-
ditional probability density functions, which are then integrated and inverted to obtain estimators
of conditional quantiles. An estimator of the conditional superquantile is then finally constructed
by integrating the density estimator over the interval above the quantile [26, 4] or forming a sample
average [14]. These studies also include asymptotic analysis of the resulting estimators under a
series of assumptions, including that the data originates from certain time series.

A superquantile of a random variable is defined in terms of an integral of corresponding quan-
tiles with respect to the probability level. Since the integral is approximated by a weighted sum
of quantiles across different probability levels, an estimator of a conditional superquantile emerges
as the sum of conditional quantiles obtained by quantile regression; see [18, 19], which also show
asymptotic results under a set of assumptions including the continuous differentiability of the cumu-
lative distribution function of the conditional random variables. Similarly, [5] utilizes the integral
expression for a superquantile, but observes that a weighted sum of quantiles is an optimal so-
lution of a certain minimization problem; see [21]. Analogously to the situation in least-squares
and quantile regression, an optimization problem therefore yields an estimator of a conditional su-
perquantile. Though, in contrast to the case of least-squares and quantile regression, the estimator
is ‘biased’ due to the error induced by replacing an integral by a finite sum. Under a linear model
assumption, [5] also constructs a conditional superquantile estimator using an appropriately shifted
least-squares regression curve based on quantile estimates of residuals. In both cases, asymptotic
results are obtained for a homoscedastic linear regression model. Under the same model, [27] stud-
ies ‘constrained’ regression, where the error random variable Zf = Y − f(X) is minimized in some
sense, for example in terms of least square or absolute deviation, subject to a constraint that limits
a superquantile of Zf . While this approach doesn’t lead to superquantile regression in the sense
we derive below, it highlights the need for alternative techniques for regression that incorporate
superquantiles in some manner.

The need for moving beyond classical regression centered on conditional expectations is therefor
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now well recognized and has driven even further research towards estimating conditional distribution
function, i.e., Prob(Y (x) ≤ y) for all y ∈ IR, using nonparametric kernel estimators (see for example
[11]) and transformation models (see for example [12]). Of course, conditional distribution functions
provide the ‘full’ information about Y (x) including its quantiles and superquantiles, and therefor
also provide a means to inform a risk-averse decision maker. In this paper, however, we directly
focus on superquantiles, which we believe deserve special attention due to their prominence in risk
analysis.

A framework for ‘generalized’ regression is laid out in [22, 21] and regression functions are
obtained as optimal solutions of optimization problems of the form minf E(Zf ), where E is ameasure
of error and f is restricted to a certain class of functions such as the affine functions. Least-squares
regression is obtained by E(Zf ) = E[Z2

f ], quantile regression with the Koenker-Bassett measure of
error, but many other possibilities exist. While it is not possible to determine a measure of error that
is of the expectation type and yields a superquantile, in this paper we show that when allowing for
a broader class of functionals, a measure of error that generates a superquantile is indeed available.
Such a measure of error is also hinted at in our recent paper [24], but the present paper gives the first
comprehensive treatment. In contrast to previous studies towards superquantile regression, which
utilize indirect approaches and quantile regression, we here offer a natural extension of least-squares
and quantile regression. We replace the mean-squares and Koenker-Bassett error measures by a new
error measure, and then simply minimize that error of Zf to obtain a regression function. Under few
assumptions, we establish the existence of a regression function, discuss its uniqueness, and examine
stability under perturbations of the distribution of (X,Y ) for example caused by sampling. We
omit a discussion of simple linear models with independent and identically distributed (iid) noise
as we believe that there is little need for quantile and superquantile regression in such contexts
as least-squares regression with an appropriate shift suffices. In fact, we don’t separate models
into (additive) deterministic and stochastic terms. In many applications, especially in the area of
uncertainty quantification, heteroscedasticity and dependence are prevalent making linear iid and
additive models of little value.

Section 2 describes measures of regret and error, first in the context of quantile regression and
then for the extension to superquantile regression. Section 3 defines superquantile regression as the
minimization of a measure of error, discusses existence and uniqueness of the regression function,
and provides asymptotic results. Section 4 proposes an approach for assessing the goodness-of-fit
of regression function obtained by superquantile regression. Section 5 deals with computational
methods for superquantile regression and Section 6 gives illustrative examples.

2 Quantiles, Superquantiles, and Errors

While our development centers on superquantiles, it is beneficial to maintain a parallel description
of quantiles. As we see below, quantile regression, which is achieved by minimizing a Koenker-
Bassett error of the random variable Zf , provides a road map for the construction of superquantile
regression, which is simply achieved by minimizing another measure of error. We start, however,
with definitions of quantiles, superquantiles, and corresponding measures of regret and error.

2.1 Definitions

For α ∈ [0, 1], the α-quantile of a random variable Y with cumulative distribution function FY is
defined as

qα(Y ) := min{y ∈ IR | FY (y) ≥ α}.
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Its quantiles are as fundamental to Y as the distribution function, but are problematic to incorporate
in risk analysis and optimization due to their lack of coherency as well as computational challenges.
Superquantiles have more favorable properties. For α ∈ [0, 1), the α-superquantile of a random
variable Y is defined as

q̄α(Y ) :=
1

1− α

1∫
α

qβ (Y ) dβ. (1)

Since a superquantile is a coherent measure of risk and by the virtue of being an ‘average’ of
quantiles is also more stable than a quantile in some sense, it’s well suited for applications. For
α = 1, we define q̄α(Y ) := supY (the essential supremum). Since q̄0(Y ) = E[Y ], we therefore focus
on α ∈ (0, 1) throughout the paper to avoid distractions by these special cases.

In reliability terminology, quantiles and superquantiles correspond to failure and buffered fail-
ure probabilities. The failure probability of a loss random variable Y is

p(Y ) := Prob(Y > 0) = 1− FY (0),

which corresponds to
p(Y ) = 1− α with α such that qα(Y ) = 0

if there is no probability atom at zero. Analogously to the latter expression, the buffered failure
probability (see [20]) of a loss random variable Y is defined as

p̄(Y ) := 1− α with α such that q̄α(Y ) = 0. (2)

A requirement that p̄(Y ) ≤ 1− α is therefore equivalent to the constraint that q̄α(Y ) ≤ 0. Conse-
quently, in applications with a buffered failure probability constraint on a (conditional) loss random
variable Y (x) as well as when the goal is to minimize a superquantile of Y (x) directly, there are
needs for estimating q̄α(Y (x)) as a function of x ∈ IRn. Quantiles and superquantiles are connected
through a trade-off formula that leads to quantile regression as discussed next.

2.2 Measures of Regret and Error in Quantile Regression

Both α-quantiles and α-superquantiles, α ∈ [0, 1), of a loss random variable Y are expressed in
terms of an optimization problem involving the quantity

Vα(Y ) :=
1

1− α
E[max{Y, 0}], (3)

which is a measure of regret that quantifies the displeasure with realizations of Y above zero; see
[21]. Quantiles and superquantiles then follow as

qα(Y ) = argmin
C0∈IR

{C0 + Vα(Y − C0)} (4)

q̄α(Y ) = min
C0∈IR

{C0 + Vα(Y − C0)} , (5)

where we for simplicity assume that an optimal solution is unique. In general, this may not be the
case and, traditionally, the lowest optimal solution has been defined as the quantile.

The expression for qα(Y ) is the essential building block for quantile regression, but since we
ultimately would like to go beyond the class of constant functions as candidates for a regression
function we need to pass to a measure of error Eα constructed from Vα by setting

Eα(Y ) := Vα(Y )− E[Y ]
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for any loss random variable Y (with E[|Y |] < ∞). A measure of error quantifies the degree of
‘nonzeroness’ in a random variable; see [21]. Direct application of this definition and a recognition
that a constant term in an objective function is immaterial with respect to the optimal solution
gives that

qα(Y ) = argmin
C0∈IR

Eα(Y − C0), (6)

where again the set of optimal solutions may not be a singleton and

Eα(Y ) =
1

1− α
E[max{Y, 0}]− E[Y ] = E

[
α

1− α
max{Y, 0}+max{−Y, 0}

]
is a (scaled) Koenker-Bassett error [16]. Quantile regression centers on computing this argmin with
“minimizing the error of Y −C0 over C0 ∈ IR” replaced by “minimizing the error of Y − f(X) over
a class of functions f : IRn → IR”, often taken to be the affine functions. We view qα(Y ) as the
‘closest’ scalar to the random variable Y under a Koenker-Bassett error.

If our goal simply were to estimate q̄α(Y ) of a loss random variable Y for a given α ∈ (0, 1), the
above expressions would have sufficed, possibly passing to an empirical distribution given by a sam-
ple if FY is unknown. In the present context, however, connections with the underlying explanatory
random vector X and the focus on the ‘approximation’ of Y warrants a parallel development to
that of quantile regression centered on a superquantile. In view of the above review of quantile
regression, it’s clear that superquantile regression will involve the minimization of some measure of
error that returns the superquantile as argmin2. The next subsection develops such a measure by
first constructing a corresponding measure of regret.

2.3 Measures of Regret and Error in Superquantile Regression

We start this subsection by establishing the finiteness of a superquantile under the assumption
that the loss random variable Y has a finite second moment and write Y ∈ L2(Ω) := {Y : Ω →
IR | E[Y 2] <∞}.

We know from [21] that q̄α is a convex, positively homogenous, monotonic, and averse3 func-
tional on L2(Ω) for α ∈ (0, 1). A superquantile is also bounded by [24, Theorem 3], which we repeat
here with a different proof. We adopt the notation µ(Y ) = E[Y ] and σ2(Y ) = E[(Y − µ(Y ))2].

Proposition 1 For Y ∈ L2(Ω) and α ∈ (0, 1) one has that

q̄α(Y ) ≤ µ(Y ) +
1√

1− α
σ(Y ). (7)

Proof: Suppose that the quantile qα(Y ), viewed as a function of the probability level, is continuous
at α. Let Iα be the indicator function of the interval [qα(Y ),∞) with probability 1− α. We then
have by the Schwartz inequality that

(1− α)q̄α(Y − µ(Y )) = E[(Y − µ(Y ))Iα] ≤
√
E[(Y − µ(Y ))2]

√
E[I2α] = σ(Y )

√
1− α.

Then, since q̄α(Y − µ(Y )) = q̄α(Y ) − µ(Y ), the result follows from dividing by 1 − α. Thus, (7)
is valid under the continuity assumption about the quantile, which is true for all but at most
countably many α. By continuity of both sides of (7) with respect to α, it must then hold for all

2Classical least-squares regression can be viewed similarly as returning a (conditional) expectation as argmin when
minimizing mean-square measure of error, i.e., E[Y ] = argminC0∈IR E[(Y − C0)

2].
3We recall that a functional F : L2(Ω) → IR = IR ∪ {−∞,∞} is averse if F(X) > E[X] for all nonconstant

X ∈ L2(Ω).
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α ∈ (0, 1).

The measure of regret that serves in the context of superquantile regression is defined for any
loss random variable Y and α ∈ (0, 1) as

V̄α(Y ) :=
1

1− α
V̄0(Y ), (8)

where

V̄0(Y ) :=

1∫
0

max{0, q̄β(Y )}dβ. (9)

These expressions appear in [24], which also explains their discovery. Here, we provide an alter-
native, direct proof of how they lead to a superquantile. We start, however, with two preliminary
results and the definition of a corresponding error measure.

Lemma 1 For Y ∈ L2(Ω),

V̄0(Y ) ≤ σ(Y ) + max{0, µ(Y ) + σ(Y )}. (10)

Proof: From (7) and (9) we have

V̄0(Y ) ≤
1∫

0

max{0, θY (β)}dβ for θY (β) = µ(Y ) +
1√

1− β
σ(Y ). (11)

We consider three cases. In Case 1, we suppose that θY (β) ≥ 0 for all β ∈ [0, 1]. Then the right
hand side of (11) is given by

1∫
0

θY (β)dβ = µ(Y ) + σ(Y )

1∫
0

(1− β)−1/2dβ with

1∫
0

(1− β)−1/2dβ = 2. (12)

Therefore, V̄0(Y ) ≤ µ(Y ) + 2σ(Y ) in Case 1. In Case 2a, we suppose that θY (β) ≤ 0 for all
β ∈ (0, 1). Then obviously V̄0(Y ) ≤ 0. Finally, in Case 2b, let θY (β) < 0 for some β ∈ (0, 1), but
not all. Then necessarily σ(Y ) > 0 and µ(Y ) ≤ −σ(Y ), and θY (β) strictly increases with respect
to β. Let ᾱ be the unique β ∈ (0, 1) with θY (ᾱ) = 0, namely when

√
1− ᾱ =

σ(Y )

−µ(Y )
. (13)

Then we have that

1∫
0

max{0, θY (β)}dβ =

1∫
ᾱ

θY (β)dβ = (1− ᾱ)µ(Y ) + σ(Y )

1∫
ᾱ

(1− β)−1/2dβ

= (1− ᾱ)µ(Y ) + 2σ(Y )
√
1− ᾱ

=
σ(Y )2

µ(Y )2
µ(Y ) + 2σ(Y )

σ(Y )

−µ(Y )

=
σ(Y )2

−µ(Y )
≤ σ(Y ).

7



Thus, in Case 2b we get V̄0(Y ) ≤ σ(Y ). The conclusion then follows by putting together the three
cases.

We observe that for α ∈ (0, 1), V̄α is a convex, positively homogeneous, monotonic, and averse
functional on L2(Ω), which follows from the properties of the superquantile [21], and by the above
result it is also finite, and consequently continuous. A corresponding measure of error is defined
for Y ∈ L2(Ω) by

Ēα(Y ) := V̄α(Y )− E[Y ] (14)

and referred to as a superquantile error. Obviously, Ēα is also convex and positively homogeneous.
It also satisfies the following properties.

Proposition 2 For any α ∈ (0, 1) and Y ∈ L2(Ω), a superquantile error satisfies
(a) Ēα(Y ) = 0 when Y ≡ 0,
(b) Ēα(Y ) > 0 when Y ̸≡ 0, and
(c) Ēα(Y ) ≥ min{1, α/(1− α)}|E[Y ]|.

Proof: Since q̄β(0) = 0 for all β ∈ [0, 1], (a) follows trivially.
Since V̄α is averse, we have that for Y ∈ L2(Ω), Ēα(Y ) = V̄α(Y )−E[Y ] > E[Y ]−E[Y ] = 0 when

Y is not a constant. To complete part (b), we therefore only need to consider nonzero constants.
If Y is a positive constant K, then

1

1− α

∫ 1

0
max{0, q̄β(Y )}dβ − E[Y ] >

∫ 1

0
max{0, q̄β(Y )}dβ − E[Y ] = K − E[Y ] = 0.

If Y is a negative constant K, then

1

1− α

∫ 1

0
max{0, q̄β(Y )}dβ − E[Y ] =

1

1− α

∫ 1

0
max{0,K}dβ − E[Y ] = 0− E[Y ] > 0,

which completes part (b).
Since q̄β(Y ) ≥ E[Y ] for all β ∈ [0, 1], we have whenever E[Y ] ≥ 0 the bound

1

1− α

∫ 1

0
max{0, q̄β(Y )}dβ − E[Y ] ≥ 1

1− α

∫ 1

0
max{0, E[Y ]}dβ − E[Y ] =

α

1− α
E[Y ].

When E[Y ] < 0,

1

1− α

∫ 1

0
max{0, q̄β(Y )}dβ − E[Y ] ≥ 1

1− α

∫ 1

0
max{0, E[Y ]}dβ − E[Y ] = −E[Y ].

Part (c) then follows by combining the two results.

In view of Proposition 2 and the above discussion, Ēα is a regular measure of error in the sense
of [21].

We are now ready to show that a superquantile is a unique optimal solution of optimization
problems involving V̄α and Ēα. As mentioned, the connection between a superquantile and V̄α is
also reached in Theorem 7 of [24] through different means. The direct proof in the present paper
and the connection with a superquantile error are new.

Theorem 1 (Superquantile as optimal solution) For Y ∈ L2(Ω) and α ∈ (0, 1),

q̄α(Y ) = argmin
C0∈IR

{C0 + V̄α(Y − C0)} = argmin
C0∈IR

Ēα(Y − C0). (15)

8



Proof: Let φ(C) = C + V̄α(Y − C) and ψβ(C) = max{0, q̄β(Y ) − C}. These are both convex
functions of C, and ψβ is nonincreasing. We can use the criterion that

C̄ ∈ argmin
C

φ(C) ⇐⇒ φ′
+(C̄) ≥ 0, φ′

−(C̄) ≤ 0,

where, because of the monotonicity of ψβ ,

φ′
+(C) = 1 +

1

1− α

1∫
0

(ψβ)
′
−(C)dβ, φ′

−(C) = 1 +
1

1− α

1∫
0

(ψβ)
′
+(C)dβ,

(ψβ)
′
+(C) =

{
−1 if q̄β(Y ) > C,
0 if q̄β(Y ) ≤ C,

(ψβ)
′
−(C) =

{
−1 if q̄β(Y ) ≥ C,
0 if q̄β(Y ) < C.

Therefore
1∫

0

(ψβ)
′
+(C)dβ =

1∫
0

(ψβ)
′
−(C)dβ = −(1− γ) for C = q̄γ(Y ),

in which case (ψβ)
′(C) = (ψβ)

′
+(C) = (ψβ)

′
−(C) = 1− (1− γ)/(1− α). Thus, (ψβ)

′(C) = 0 corre-
sponds to C = q̄γ(Y ) for γ = α. Consequently, the first equality of the theorem holds. The second
follows directly from (14) and the fact that a constant in an objective function is immaterial with
regard to the argmin.

Being analogous to (4) and (6), the foundations for quantile regression, the expressions (15)
provide the path to superquantile regression as developed in the remainder of the paper. In fact,
Theorem 1 shows that q̄α(Y ) is the uniquely ‘closest’ scalar to Y in the sense of the superquantile
error.

While not the focus here, the optimal objective function value in (15) defines a measure of risk
(see [24])

R̄α(Y ) := min
C0∈IR

{C0 + V̄α(Y − C0)} = q̄α(Y ) + V̄α(Y − q̄α(Y ))

for Y ∈ L2(Ω) analogously to q̄α(Y ) in (5). A corresponding measure of deviation, which quantifies
the nonconstancy in a random variable, is given by

D̄α(Y ) := min
C0∈IR

Ēα(Y − C0) = R̄α(Y )− E[Y ].

We note that parallel to (1) (see [24]), R̄α(Y ) = 1/(1− α)
∫ 1
α q̄β(Y )dβ and, consequently,

D̄α(Y ) =
1

1− α

∫ 1

α
q̄β(Y )dβ − E[Y ].

The measures of regret, error, risk, and deviation V̄α, Ēα, R̄α, and D̄α, α ∈ (0, 1), form a family of
risk quadrangles in the sense of [21] that corresponds to the statistic q̄α. The measure of deviation
D̄α plays a central role in the remainder of the paper as it facilitates simplifications, goodness-of-fit
tests, and computational methods.

3 Superquantile Regression

Theorem 1 and the development leading to quantile regression direct us to a new regression method-
ology that is centered on a superquantile error. The next subsection poses the regression problem,
provides its properties, and discusses stability under perturbations. The section ends with a dis-
cussion of superquantile tracking.
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3.1 Regression Problem

While Theorem 1 shows that the ‘best’ scalar approximation of a random variable Y in the sense
of a superquantile error is the corresponding superquantile, we now go beyond the class of constant
functions to utilize the connection with an underlying explanatory random vector X. We focus on
regression functions of the form

f(x) = C0 + ⟨C, h(x)⟩, C0 ∈ IR,C ∈ IRm,

for a given ‘basis’ function h : IRn → IRm. This class satisfies most practical needs including that
of linear regression where m = n and h(x) = x. Extensions beyond this class are also possible but
not dealt with here.

For any h : IRn → IRm and α ∈ (0, 1), we define the superquantile regression problem

P : min
C0∈IR,C∈IRm

Ēα (Z(C0, C)) ,

where
Z(C0, C) := Y − (C0 + ⟨C, h(X)⟩)

is the error random variable, whose distribution depends on C0, C, h, and the joint distribution of
(X,Y ). We denote by C̄ ⊂ IRm+1 the set of optimal solutions of P and refer to (C̄0, C̄) ∈ C̄ as a
regression vector.

The objective function Ēα(Z(·, ·)) is well-defined and finite when the distribution of (X,Y ) and
h is such that Z(C0, C) ∈ L2(Ω) for all C0 ∈ IR,C ∈ IRm. A sufficient condition that ensures this
property is that Y, h1(X), ..., hm(X) ∈ L2(Ω) as shown next, where we adopt the notation

H = h(X), Hi = hi(X), i = 1, 2, ...,m.

Lemma 2 If Y,H1, ...,Hm ∈ L2(Ω), then Z(C0, C) ∈ L2(Ω) for all C0 ∈ IR,C ∈ IRm.

Proof: Let M < ∞ be such that E[Y 2] ≤ M and E[H2
i ] ≤ M , i = 1, 2, ...,m. Since |⟨C,H⟩| ≤

∥C∥
∑m

i=1 |Hi| and ⟨C,H⟩2 ≤ ∥C∥2
∑m

i=1(Hi)
2, we find thatE[|⟨C,H⟩|] ≤ ∥C∥mM andE[⟨C,H⟩2] ≤

∥C∥2mM . Consequently,

E[(Y − C0 − ⟨C,H⟩)2] ≤ E[(Y − C0)
2] + 2|E[(Y − C0)⟨C,H⟩]|+ E[⟨C,H⟩2] (16)

≤ M + 2(∥C∥m1/2M + (M + |C0|)∥C∥mM) + ∥C∥2mM.

In surrogate estimation, C̄0+⟨C̄, h(X)⟩, with (C̄0, C̄) ∈ C̄, provides the best approximation of Y
in the sense of a superquantile error. For example, after having computed (C̄0, C̄), the analysis could
proceed with examining the moments, quantiles, and superquantiles of C̄0+⟨C̄, h(X)⟩ as surrogates
for the corresponding quantities of Y . If X is Gaussian and h is affine, then C̄0 + ⟨C̄, h(X)⟩ is a
Gaussian approximation of Y easily examined and utilized in further studies. It may also be of
interest to examine C̄0 + ⟨C̄, h(X)⟩ under hypothetical distributions of X.

A direct consequence of the Regression Theorem in [21] (see also Theorem 3.1 in [22]) we
obtain that a regression vector can equivalently be determined from a measure of deviation D̄α.

Proposition 3 Suppose that Y,H1, ..., Hm ∈ L2(Ω). Then, the set of regression vectors C̄ of P is
equivalently obtained as

C̄ =

{
(C̄0, C̄) ∈ IRm+1 | C̄ ∈ argmin

C∈IRm
D̄α(Z0(C)), C̄0 = q̄α(Z0(C̄))

}
,

where Z0(C) := Y − ⟨C, h(X)⟩.
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Proposition 3 implies computational advantages as the (m+ 1)-dimensional optimization problem
P is replaced by a problem in m dimensions with a simpler objective function, which we fully utilize
in Sections 5 and 6. Moreover, the result also proves beneficial in analysis of regression vectors.

The existence of a regression vector is ensured by the next result, which also provides conditions
for uniqueness.

Theorem 2 (Existence and uniqueness of regression vector) If Y,H1, ..., Hm ∈ L2(Ω), then P is a
convex problem with a set of optimal solutions C̄ that is nonempty, closed, and convex.

(a) C̄ is bounded if and only if the random vector X and the basis function h satisfy the
condition that ⟨C, h(X)⟩ is not constant unless C = 0.

(b) If in addition, for every (C0, C), (C
′
0, C

′) ∈ IRm+1, with C ̸= C ′, there exists a β0 ∈ [0, 1)
such that

0 ≤ q̄β(Z(C0, C) + Z(C ′
0, C

′)) < q̄β(Z(C0, C)) + q̄β(Z(C
′
0, C

′)) (17)

for all β ∈ [β0, 1), then C̄ is a singleton.

Proof. Since Y ∈ L2(Ω) implies that Ēα(Y ) <∞ by Lemma 1, we deduce the two first conclusions
from Theorem 3.1 in [22]. Hence, we only need to show that C̄ is a singleton.

Suppose for the sake of a contradiction that (C0, C), (C
′
0, C

′) ∈ C̄ and (C0, C) ̸= (C ′
0, C

′), with
corresponding optimal value ξ ≥ 0, i.e., ξ = Ēα(Z(C0, C)) = Ēα(Z(C ′

0, C
′)). We consider two cases.

First, suppose that ξ = 0. By Proposition 2, Z(C0, C) = Z(C ′
0, C

′) = 0 and consequently

C0 + ⟨C,H⟩ = C ′
0 + ⟨C ′, H⟩,

which implies that ⟨C − C ′,H⟩ = C ′
0 − C0. Under the assumption that ⟨C, h(X)⟩ is only constant

when C = 0, we must have that C −C ′ = 0. Then, also C ′
0−C0 = 0 follows, which contradicts the

hypothesis that (C0, C) ̸= (C ′
0, C

′).
Second, suppose that ξ > 0. If C = C ′, then a direct consequence of Proposition 3 and the

fact that every random variable has a unique superquantile at each probability level, is that also
C0 = C ′

0, which again contradicts our hypothesis. Consequently, we focus on the case with C ̸= C ′,
for which there exists a β0 such that (17) holds for all β ∈ [β0, 1). Trivially, then

max{0, q̄β(Z(C0, C) + Z(C ′
0, C

′))} < max{0, q̄β(Z(C0, C))}+max{0, q̄β(Z(C ′
0, C

′))}

for β ∈ [β0, 1). If β ∈ (0, 1) is such that q̄β(Z(C0, C) + Z(C ′
0, C

′)) < 0, then

max{0, q̄β(Z(C0, C) + Z(C ′
0, C

′))} ≤ max{0, q̄β(Z(C0, C))}+max{0, q̄β(Z(C ′
0, C

′))}

as the left-hand side vanishes and the right-hand side is nonnegative. Hence,∫ 1

0
max{0, q̄β(Z(C0, C)+Z(C

′
0, C

′))}dβ <
∫ 1

0
max{0, q̄β(Z(C0, C))}dβ+

∫ 1

0
max{0, q̄β(Z(C ′

0, C
′))}dβ

and also
Ēα(Z(C0, C) + Z(C ′

0, C
′)) < Ēα(Z(C0, C)) + Ēα(Z(C ′

0, C
′)). (18)

Let
(C ′′

0 , C
′′) = (1/2)(C0, C) + (1/2)(C ′

0, C
′)

and therefore
2Z(C ′′

0 , C
′′) = Z(C0, C) + Z(C ′

0, C
′).

By the optimality of ξ, the positive homogeneity of Ēα, and (18), we find that

2ξ ≤ 2Ēα(Z(C ′′
0 , C

′′)) = Ēα(2Z(C ′′
0 , C

′′)) < Ēα(Z(C0, C)) + Ēα(Z(C ′
0, C

′)) = 2ξ,
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which cannot hold. In view of this contradiction, the conclusion follows.

While Theorem 2 gives a sufficient condition for uniqueness of the regression vector, in general
uniqueness cannot be expected. For example, suppose that the random vector (X,Y ), withX scalar
valued, has the possible and equally likely realizations (1, 1), (2, 2), and (3, 1). Then, q̄β(Z0(C)) =
max{1 − C, 2 − 2C, 1 − 3C} for β > 2/3 and E[Z0(C)] = 4/3 − 2C. It’s straightforward to show
that for α > 2/3, any C ∈ [−1, 1] minimizes D̄α(Z0(·)). Consequently, in view of Proposition 3,
any C ∈ [−1, 1], with a corresponding C0 = max{1− C, 2− 2C, 1− 3C}, minimizes Ēα(Z(·, ·)) for
α > 2/3. The minimum error is 2/3.

A unique regression vector is indeed achieved in the normal case as stated next.

Proposition 4 Suppose that (H,Y ) is normally distributed with positive definite variance-covariance
matrix. Then, C̄ is a singleton.

Proof: Let Σ be the variance-covariance matrix of (H,Y ), with Cholesky decomposition Σ = LL⊤.
For any β ∈ (0, 1) and C ∈ IRm, Z0(C) is also normal with mean µ(Z0(C)) = ⟨C̃, E[(H,Y )]⟩ and
variance σ2(Z0(C)) = ⟨C̃,ΣC̃⟩, where C̃ = (−C, 1). Thus,

q̄β(Z0(C)) = µ(Z0(C)) + kβσ(Z0(C)) = µ(Z0(C)) + kβ∥L⊤C̃∥,

where kβ = ϕ(Φ−1(β))/(1 − β), with ϕ and Φ being the standard normal probability density and
cumulative distribution functions, respectively.

For C,C ′ ∈ IRm, with C ̸= C ′, there is no constant k > 0 such that (−C, 1) = k(−C ′, 1).
Let C̃ = (−C, 1) and C̃ ′ = (−C ′, 1). Since Σ is positive definite, the upper-triangular matrix L⊤

is unique and full rank. Consequently, the null space of L⊤ contains only the zero vector and
L⊤(C̃ − kC̃ ′) ̸= 0 for all scalars k > 0. Since the triangle inequality for two vectors holds strictly
whenever the two vectors cannot be expressed as a positive multiple of each other, we therefore
find that

∥L⊤C̃ + L⊤C̃ ′∥ < ∥L⊤C̃∥+ ∥L⊤C̃ ′∥.

Now suppose for the sake of a contradiction that C,C ′ ∈ IRm both minimize D̄α(Z0(·)) and
attain the minimum value ξ ∈ IR, but C ̸= C ′. Let

C ′′ = (1/2)C + (1/2)C ′,

C̃ ′′ = (−C ′′, 1), and γα =
∫ 1
α kβdβ/(1− α) > 0. Then,

D̄α(Z0(C
′′)) =

1

1− α

∫ 1

α
q̄β(Z0(C

′′))dβ − E[Z0(C
′′)]

= µ(Z0(C
′′)) + γα∥L⊤C̃ ′′∥ − µ(Z0(C

′′))

=
γα
2
∥L⊤C̃ + L⊤C̃ ′∥

<
γα
2
(∥L⊤C̃∥+ ∥L⊤C̃ ′∥)

=
1

2

(
µ(Z0(C)) + γα∥L⊤C̃∥ − µ(Z0(C))

)
+

1

2

(
µ(Z0(C

′)) + γα∥L⊤C̃ ′∥ − µ(Z0(C
′))

)
=

1

2

(
D̄α(Z0(C))

)
+

1

2

(
D̄α(Z0(C

′))
)

=
1

2
(ξ + ξ) = ξ.
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However, this contradicts the optimality of C,C ′ and we reach the conclusion.

We next turn to consistency and stability of the regression vector. Of course, the joint dis-
tribution of (X,Y ) is rarely available in practice and one may need to pass to an approximating
empirical distribution generated by a sample. Moreover, perturbations of the ‘true’ distribution
of (X,Y ) may occur due to measurement errors in the data and other factors. We consider these
possibilities and let (Xν , Y ν) be a random vector whose joint distribution approximates that of
(X,Y ) in some sense. For example, (Xν , Y ν) may be governed by the empirical distribution gen-
erated by an independent and identically distributed sample of size ν from (X,Y ). Presumably, as
ν → ∞, the approximation of (X,Y ) by (Xν , Y ν) improves as stated formally below. Regardless
of the nature of (Xν , Y ν), we define the approximate error random variable

Zν(C0, C) := Y ν − C0 − ⟨C, h(Xν)⟩,

and the corresponding approximate superquantile regression problem

P ν : min
C0∈IR,C∈IRm

Ēα (Zν(C0, C)) .

The next result shows that as (Xν , Y ν) approximates (X,Y ), a regression vector obtained from P ν

approximates one from P , which provides the justification for basing a regression analysis on P ν .
Below, we let →d denote convergence in distribution and

Hν = h(Xν) and Hν
i = hi(X

ν), i = 1, 2, ...m.

Theorem 3 (Stability of regression vector) Suppose that (Xν , Y ν), ν = 1, 2, ..., and (X,Y ) are
n + 1-dimensional random vectors such that (Xν , Y ν) →d (X,Y ) and that the basis function h is
continuous except possibly on a subset S ⊂ IRn with Prob(X ∈ S) = 0. Moreover, let Hi, Y ∈ L2(Ω),
supν E[(Hν

i )
2] <∞, i = 1, 2, ...,m, and supν E[(Y ν)2] <∞.

If {(C̄ν
0 , C̄

ν)}∞ν=1 is a sequence of optimal solutions of P ν , with α ∈ (0, 1), then every accumu-
lation point of that sequence is a regression vector of P .

Proof: Let (C0, C) ∈ IRm+1 be arbitrary. By the continuous mapping theorem (see for example
Theorem 29.2 [3]),

Zν(C0, C) = Y ν − C0 − ⟨C, h(Xν)⟩ →d Z(C0, C) = Y − C0 − ⟨C, h(X)⟩.

By the assumed moment conditions, there exists a constant M < ∞ that bounds from above the
terms

max
i
E[|Hi|], max

i
E[(Hi)

2], sup
ν,i

E[|Hν
i |], sup

ν,i
E[(Hν

i )
2], E[|Y |], E[Y 2], sup

ν
E[|Y ν |], sup

ν
E[(Y ν)2].

In view of Lemma 2 and its proof, we deduce that

E[(Y ν − C0 − ⟨C,Hν⟩)2] ≤M + 2(∥C∥m1/2M + (M + |C0|)∥C∥mM) + ∥C∥2mM (19)

for all ν. Hence, Zν(C0, C) is uniformly integrable (for fixed C0, C) and

E[Zν(C0, C)] → E[Z(C0, C)] <∞; (20)

see [3], Theorem 25.12 and its corollary.
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By [24, Theorem 4], a sequence of random variables converges in distribution to a random vari-
able if and only if the corresponding α-superquantiles, viewed as functions of the probability level α,
converge uniformly on every closed subset of (0, 1). Consequently, q̄β(Z

ν(C0, C)) → q̄β(Z(C0, C))
uniformly in β on closed subsets of (0, 1). Moreover, since the 0-superquantile coincides with the
expectation, (20) implies that q̄0(Z

ν(C0, C)) → q̄0(Z(C0, C)) also holds. These facts and the obser-
vation that the superquantile of any random variable is continuous and nondecreasing as a function
of the probability level, ensure that for any ϵ > 0 and δ ∈ (0, 1), there exists an integer ν(ϵ, δ) such
that for all ν ≥ ν(ϵ, δ),

sup
β∈[0,1−δ]

|q̄β (Zν(C0, C))− q̄β (Z(C0, C))| ≤ ϵ

2(1− δ)
. (21)

Then, ∣∣∣∣∫ 1−δ

0
max{0, q̄β(Zν(C0, C))}dβ −

∫ 1−δ

0
max{0, q̄β(Z(C0, C))}dβ

∣∣∣∣ (22)

≤
∫ 1−δ

0
|q̄β(Zν(C0, C))− q̄β(Z(C0, C))| dβ (23)

≤
∫ 1−δ

0

ϵ

2(1− δ)
dβ =

ϵ

2
(24)

for all ν ≥ ν(ϵ, δ). Following an argument similar to that in Lemma 1, we find that∫ 1

1−δ
max{0, q̄β(Z(C0, C))}dβ ≤ δ1/2σ(Z(C0, C))+max{0, δµ(Z(C0, C))+ δ1/2σ(Z(C0, C))}. (25)

Moreover, the reasoning that lead to (19) also gives

|µ(Z(C0, C))| ≤M + |C0|+ ∥C∥mM. (26)

These facts show that there exists a positive constant M̃ <∞ (which depends on C0 and C) such
that |µ(Z(C0, C))|, σ(Z(C0, C)) ≤ M̃ . Hence, from (25), we find that∫ 1

1−δ
max{0, q̄β(Z(C0, C))}dβ ≤ 3M̃δ1/2. (27)

Let ϵ < 12M̃ and δϵ = (ϵ/(12M̃))2. Then, 3M̃δ
1/2
ϵ = ϵ/4 and∫ 1

1−δϵ

max{0, q̄β(Z(C0, C))}dβ ≤ ϵ

4
. (28)

An identical result holds for Zν(C0, C). Consequently, for all ν ≥ ν(ϵ, δϵ),∣∣∣∣∫ 1

0
max{0, q̄β(Zν(C0, C))}dβ −

∫ 1

0
max{0, q̄β(Z(C0, C))}dβ

∣∣∣∣
≤

∣∣∣∣∫ 1−δϵ

0
max{0, q̄β(Zν(C0, C))}dβ −

∫ 1−δϵ

0
max{0, q̄β(Z(C0, C))}dβ

∣∣∣∣
+

∫ 1

1−δϵ

max{0, q̄β(Zν(C0, C))}dβ +

∫ 1

1−δϵ

max{0, q̄β(Z(C0, C))}dβ

≤ ϵ

2
+
ϵ

4
+
ϵ

4
= ϵ.
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This fact, (20), and the assumption that (C0, C) is arbitrary, imply that Ēα(Zν(·, ·)) → Ēα(Z(·, ·))
pointwise on IRm+1. Lemma 1 and the above moment assumptions imply that Ēα(Zν(·, ·)) and
Ēα(Z(·, ·)) are finite-valued functions. They are also convex, which follows directly from the con-
vexity of Ēα on L2(Ω) and the affine form of Zν and Z as functions of C0 and C. Consequently, by
Theorem 7.17 in [23], Ēα(Zν(·, ·)) epiconverges to Ēα(Z(·, ·)). The result then follows from Theorem
7.31 in [23].

When the approximating problem P ν is constructed using an independent identically dis-
tributed sample of size ν from the distribution of (X,Y ), we obtain the following corollary which
follows from the properties of the empirical distribution.

Corollary 1 Suppose that the basis function h is continuous except possibly on a subset S ⊂
IRn with Prob(X ∈ S) = 0 and that Hi, Y ∈ L2(Ω), i = 1, 2, ...,m. Moreover, let (Xν , Y ν)
be distributed according to the empirical distribution generated by an independent and identically
distributed sample of size ν from the distribution of (X,Y ). Then, the conclusion of Theorem 3
holds.

We next examine the rate of convergence of regression vectors obtained from the approximate
problem P ν to those of P corresponding to the ‘true’ distribution. Quantification of the stability of
the set of optimal solutions of an optimization problem under perturbations depends on a ‘growth
condition’ of the problem, which is difficult to quantify for P ; see [23, Section 7J]. Consequently,
we focus on the better behaved ϵ-regression vectors of P defined for ϵ > 0 as

C̄ϵ :=
{
(C0,ϵ, Cϵ) ∈ IRm+1

∣∣∣∣Ēα(Z(C0,ϵ, Cϵ)) ≤ min
C0∈IR,C∈IRm

Ēα(Z(C0, C)) + ϵ

}
,

with an analogous definition of the ϵ-regression vectors of P ν denoted by C̄ν
ϵ . The rate with which

C̄ν
ϵ tends to C̄ϵ depends, naturally, on the rate with which (Xν , Y ν), underlying P ν , tends to (X,Y )

of P in some sense. Before we make a precise statement, we introduce a convenient notion of
distances between any two nonempty sets A,B ⊂ IRm+1. For ρ ≥ 0, let

d̂Iρ(A,B) := inf{η ≥ 0|A ∩ ρIB ⊂ B + ηIB,B ∩ ρIB ⊂ A+ ηIB},

where IB is the Euclidean ball in IRm+1 with unit radius and center at the origin. Roughly, d̂Iρ(A,B)
is the smallest amount the sets need to be ‘enlarged’ to ensure they contain the other one, with an
exclusive focus on points no further from the origin than ρ. This restriction facilitates the treatment
of unbounded sets.

As we see next, the rate of convergence is directly related to the rate with which the random
vector

∆ν := (Hν −H,Y ν − Y ),

describing the approximation error, tends to zero.

Theorem 4 (Rate of convergence of regression vector) Suppose that (Xν , Y ν), ν = 1, 2, ..., and
(X,Y ) are n + 1-dimensional random vectors generating P ν and P , respectively. Moreover, let
Hi, Y ∈ L2(Ω), supν E[(Hν

i )
2] < ∞, i = 1, 2, ...,m, and supν E[(Y ν)2] < ∞. Let ρ0 > 0 be such

that ρ0IB ∩ C̄ ̸= ∅ and ρ0IB ∩ C̄ν ̸= ∅.
Then, for ρ > ρ0, there exist positive constants k1, k2, and k3 (dependent on ρ) such that for

any ϵ > 0 and ν = 1, 2, ...,

d̂Iρ(C̄ν
ϵ , C̄ϵ) ≤

(
1 +

4ρ

ϵ

)[
E[∥∆ν∥]

(
k1max

{
0, log

(
1

E[∥∆ν∥]

)}
+ k2

)
+ k3∥E[∆ν ]∥

]
whenever E[∥∆ν∥] > 0 and d̂Iρ(C̄ν

ϵ , C̄ϵ) = 0 otherwise.
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Proof: By Theorem 3(a) of [24], for β ∈ [0, 1),

|q̄β(Zν(C0, C))− q̄β(Z(C0, C))| ≤
1

1− β
E[|Zν(C0, C)− Z(C0, C)|]

=
1

1− β
E[|⟨C̃,∆ν⟩|]

≤ 1

1− β
∥C̃∥E[∥∆ν∥], (29)

where C̃ = (−C, 1). Then, for δ ∈ (0, 1),∣∣∣∣∫ 1−δ

0
max{0, q̄β(Zν(C0, C))}dβ −

∫ 1−δ

0
max{0, q̄β(Z(C0, C))}dβ

∣∣∣∣
≤

∫ 1−δ

0
|q̄β(Zν(C0, C))− q̄β(Z(C0, C))| dβ (30)

≤ ∥C̃∥E[∥∆ν∥]
∫ 1−δ

0

1

1− β
dβ = −∥C̃∥E[∥∆ν∥] log δ.

Let ρ > ρ0 and M be an upper bound on first and second moments of |Hi|, |Hν
i |, |Y |, and |Y ν | as

in the proof of Theorem 3. Then, for ∥(C0, C)∥ ≤ ρ, it follows by (26) that

|µ(Z(C0, C))| ≤M + ρ+ ρmM

and by (16) that

σ(Z(C0, C)) ≤ (M + 2(ρm1/2M + (M + ρ)ρmM) + ρ2mM)1/2,

with identical bounds for |µ(Zν(C0, C))| and σ(Zν(C0, C)). LetMρ be the larger of the two previous
right-hand sides.

By (25), analogously to (27), we have that for ∥(C0, C)∥ ≤ ρ,∫ 1

1−δ
max{0, q̄β(Z(C0, C))}dβ ≤ 3Mρδ

1/2 (31)

and similarly with Z(C0, C) replaced by Zν(C0, C).
We also find that for ∥(C0, C)∥ ≤ ρ,

|E[Zν(C0, C)]− E[Z(C0, C)]| = |⟨C̃, E[∆ν ]⟩| ≤ ∥C̃∥∥E[∆ν ]∥ ≤ (1 + ρ)∥E[∆ν ]∥. (32)

Then, collecting the results of (30), (31), and (32), we obtain that for ∥(C0, C)∥ ≤ ρ,

|Ēα(Zν(C0, C))− Ēα(Z(C0, C))|

≤
∣∣∣∣∫ 1

0
max{0, q̄β(Zν(C0, C))}dβ −

∫ 1

0
max{0, q̄β(Z(C0, C))}dβ

∣∣∣∣+ ∣∣∣E[Zν(C0, C)]− E[Z(C0, C)]
∣∣∣

≤
∣∣∣∣∫ 1−δ

0
max{0, q̄β(Zν(C0, C))}dβ −

∫ 1−δ

0
max{0, q̄β(Z(C0, C))}dβ

∣∣∣∣
+

∫ 1

1−δ
max{0, q̄β(Zν(C0, C))}dβ +

∫ 1

1−δ
max{0, q̄β(Z(C0, C))}dβ

+
∣∣∣E[Zν(C0, C)]− E[Z(C0, C)]

∣∣∣
≤ −(1 + ρ)E[∥∆ν∥] log δ + 6Mρδ

1/2 + (1 + ρ)∥E[∆ν ]∥. (33)
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We next determine the choice of δ ∈ (0, 1) that minimizes the previous bound and consider two
cases. First, if

0 < kρ(E[∥∆ν∥])2 < 1,

with
kρ := (2(1 + ρ)/(6Mρ))

2,

then differentiation gives that the bound is minimized with δ = kρ(E[∥∆ν∥])2. Second, if

kρ(E[∥∆ν∥])2 ≥ 1,

then
Mρ ≤ 4(1 + ρ)E[∥∆ν∥]/6

and the bound

−(1 + ρ)E[∥∆ν∥] log δ + 6Mρδ
1/2 + (1 + ρ)∥E[∆ν ]∥

≤ −(1 + ρ)E[∥∆ν∥] log δ + 4(1 + ρ)E[∥∆ν∥]δ1/2 + (1 + ρ)∥E[∆ν ]∥

for any δ ∈ (0, 1). Consequently, combining the two cases, there exist constants k1, k2, and k3
(which depend on ρ), such that for ∥(C0, C)∥ ≤ ρ,

|Ēα(Zν(C0, C))− Ēα(Z(C0, C))|

≤ k1E[∥∆ν∥]max

{
0, log

(
1

E[∥∆ν∥]

)}
+ k2E[∥∆ν∥] + k3∥E[∆ν ]∥

≤ E[∥∆ν∥]
(
k1max

{
0, log

(
1

E[∥∆ν∥]

)}
+ k2

)
+ k3∥E[∆ν ]∥.

Direct application of Example 7.62 and Theorem 7.69 of [23] then yields the conclusion forE[∥∆ν∥] >
0, where the additional coefficient (1 + 4ρ/ϵ) originates in that theorem. Finally, if E[∥∆ν∥] = 0,
then, in view of (29) and the fact that this implies that ∥E[∆ν ]∥ = 0, we find that for ∥(C0, C)∥ ≤ ρ,

|Ēα(Zν(C0, C))− Ēα(Z(C0, C))| = 0.

The final conclusion then follows by again invoking Example 7.62 and Theorem 7.69 of [23].

Theorem 4 shows that the distance between C̄ν
ϵ and C̄ϵ is almost proportional to E[∥∆ν∥],

but with a minor correction by a logarithmic term. If the approximation (Xν , Y ν) is caused by
measurement errors of magnitude 1/ν, i.e., the absolute value of each component of (Xν−X,Y ν−Y )
is no greater than 1/ν almost surely, then E[∥∆ν∥] ≤

√
m+ 1/ν and the expressions can be

simplified. For ξ > 0, log x ≤ xξ for sufficiently large x ∈ IR. Consequently, for any ξ ∈ (0, 1) and
sufficiently large ν,

d̂Iρ(C̄ν
ϵ , C̄ϵ) ≤

(
1 +

4ρ

ϵ

)
k

ν1−ξ
,

where k > 0 can be determined from k1, k2, k3, and m. That is, the Euclidean distance between an
ϵ-regression vector of P ν to one of P is O(νξ−1) for ξ ∈ (0, 1) arbitrarily close to zero.
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3.2 Superquantile Tracking

We next turn to the situation where we seek to estimate q̄α(Y (x)) for x ∈ IRn, or a subset thereof,
with the goal of eventually minimizing, at least approximately, q̄α(Y (x)) by a judicious choice of x.
Of course, with incomplete knowledge about the distributions of Y (x) this is a difficult task that
can be achieved only approximately. For example, there is no guarantee that a regression function
f = C̄0 + ⟨C̄, h(·)⟩, with (C̄0, C̄) ∈ C̄ obtained by solving P using α ∈ (0, 1), tracks q̄α(Y (x)), i.e.,
f(x) = q̄α(Y (x)) for all x ∈ IRn. The hope of such ‘exact’ tracking becomes even less realistic when
P must be replaced by an approximation P ν as typically required in practice. However, ‘local’
tracking is possible, at least approximately, with an appropriate weighing of the data available as
we discuss next.

We consider the situation where there is a sample of Y (x) for a set of x, but the sample is not
large enough to allow pointwise estimation of q̄α(Y (x)) for every x of interest. There may even be
no x for which there are multiple samples of Y (x). Concentrating on a particular x̂ ∈ IRn, we hope
to estimate q̄α(Y (x̂)) by using samples from Y (x) for x near x̂, weighted appropriately. The weights
should be nonnegative, sum to one, and can be thought of as an artificially constructed probability
distribution associated with the sample. Specifically, suppose that xi, i = 1, ..., ν, are the points
where the sample is observed and yi, i = 1, ..., ν, are the corresponding realizations of Y (xi). When
estimating a superquantile at x̂, we put more ‘trust’ on sample points taken near x̂ and consequently
the weight of (xi, yi) may be inversely proportional to ∥xi − x̂∥, with an appropriate adjustment if
x̂ coincides with an xi.

A justification for the approach follows directly from Theorem 3 through the next proposition.

Proposition 5 Suppose that the assumptions of Theorem 3 hold and that the probability distribu-
tion of (X,Y ) is degenerate at x̂ ∈ IRn+1 in the sense that Prob((X,Y ) ≤ (x, y)) = φ(y), for all
y ∈ IR and x ≥ x̂, where φ(y) = Prob(Y (x̂) ≤ y), and Prob((X,Y ) ≤ (x, y)) = 0 otherwise. If
{(C̄ν

0 , C̄
ν)}∞ν=1 is a sequence of optimal solutions of P ν , with α ∈ (0, 1), then along every convergent

subsequence we have that C̄ν
0 + ⟨C̄ν , h(x̂)⟩ tends to q̄α(Y (x̂)).

Proof. For the given degenerate distribution of (X,Y ), C0 + ⟨C, h(X)⟩ = C0 + ⟨C, h(x̂)⟩ al-
most surely. Consequently, P reduces to the error minimization problem of Theorem 1 and
C̄0 + ⟨C̄, h(x̂)⟩ = q̄α(Y (x̂)) for every (C̄0, C̄) ∈ C̄. The conclusion then follows from Theorem
3.

Suppose that the weights of (xi, yi), i = 1, 2, ..., ν, in the above construction are chosen to
approximate the degenerate distribution of Proposition 5, for example by setting them inversely
proportional to ∥xi − x̂∥. Then, in view of Proposition 5, a solution of P ν , constructed using
those weights as an artificial probability distribution for (Xν , Y ν), leads to an approximation of the
considered superquantile at x̂. Of course, this procedure can be repeated for different points x̂ to
generate a ‘global’ assessment of q̄α(Y (x)) as a function of x and eventually facilitate optimization
over x. Moreover, the process can be repeated with new or augmented sample points in a straight-
forward manner. In a situation where a sample is not fully randomly generated but x-points are
determined by an analyst, the approach may even motivate scattering those points near a point of
interest x̂ instead of concentrating them all at x̂ exactly. The former approach certainly results in
a better ‘global’ understanding of a superquantile as a function of x, but may prove to be a more
economical route to estimate a superquantile at x̂ too. We examine this situation numerically in
Section 6.
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4 Validation Analysis

Regression modeling must be associated with means of assessing the goodness-of-fit of a computed
regression vector. In least-squares regression, the coefficient of determination

R2 = 1− SSRes

SST
,

where SSRes denotes the residual sum of squares and SST the total sum of squares, provides a
means for such an assessment. While R2 can’t be relied on exclusively, it provides an indication
of the goodness of fit that is easily extended to the present context of superquantile regression. In
our notation,

R2 = 1− E[Z(C0, C)
2]

σ2(Y )
, (34)

and similarly when passing to an approximate random vector (Xν , Y ν). From Example 1’ in [21],
we know that the numerator in (34) is an error measure applied to Z(C0, C) and that it corresponds
to the deviation measure σ2(·). Moreover, the minimization of that error of Z(C0, C) results in
the least-squares regression vector. According to [21], these error and deviation measures are in
correspondence and belong to a ‘risk quadrangle’ that yields the expectation as its statistic. This
observation motivates the following definition of a coefficient of determination for superquantile
regression model.

Definition 1 In superquantile regression, the coefficient of determination of a regression vector
(C0, C) ∈ IRm+1 is given by

R̄2
α(C0, C) := 1− Ēα(Z(C0, C))

D̄α(Y )
. (35)

In fact, a similar definition can be formulated for any generalized regression consisting of minimizing
an error of Zf , with then another measure of error in the numerator and a corresponding deviation
measure, in the sense of [21], in the denominator. As in the classical case, higher values of R̄2

α

are better, at least in some sense. However, R̄2
α ≤ 1, which is apparent from the nonnegativity

of the error and deviation measures. Indeed, P aims to minimize the error of Z(C0, C) by wisely
selecting the regression vector (C0, C) and thereby also maximizes R̄2

α. The error is ‘normalized’
with the overall ‘nonconstancy’ in Y as measured by its deviation measure to more easily allow for
comparison of coefficients of determination across data sets.

It’s possible to obtain large coefficients of determination by adding explanatory terms to a
regression model, i.e., increasing m, but without necessarily achieving a more useful model. Hence,
it’s usual in least-squares regression to also evaluate an adjusted coefficient of determination that
penalizes any term added to the model that doesn’t reduce variability substantially. This quantity
only increases if a new term reduces SSRes/(ν −m) as seen by the definition

R2
Adj = 1− SSRes/(ν −m)

SST/(ν − 1)
, (36)

where ν is the number of observations. Naturally, then, we define an adjusted coefficient of deter-
mination for superquantile regression similarly in the case where the distribution of (X,Y ) has a
finite support of cardinality ν.

Definition 2 In superquantile regression, the adjusted coefficient of determination of a regression
vector (C0, C) ∈ IRm+1 is given by

R̄2
α,Adj(C0, C) := 1− Ēα(Z(C0, C))/(ν −m)

D̄α(Y )/(ν − 1)
. (37)

Again, similar expressions are available for other generalized regression techniques.

19



5 Computational Methods

The computational task of carrying out superquantile regression consists of solving the convex op-
timization problem P , or in practice the approximate problem P ν due to incomplete distributional
information and other sources of approximations. In this section, we describe convenient means
for solving P ν when (Xν , Y ν) has a discrete joint distribution with ν possible realizations. Re-
gardless of the distribution of (Xν , Y ν), a reformulation of P ν in terms of the deviation measure
D̄α is beneficial. In view of Proposition 3, the task of determining a regression vector (C̄ν

0 , C̄
ν)

reduces to that of minimizing D̄α(Z
ν
0 (·)), setting C̄ν equal to an optimal solution, and then setting

C̄ν
0 = q̄α(Z

ν
0 (C̄

ν)). Since it’s straightforward to compute every superquantile of a random variable
with a discrete probability distribution, we focus on the minimization problem, which takes the
following form after writing out the expression for the deviation measure in this case

Dν : min
C∈IRm

1

1− α

∫ 1

α
q̄β(Z

ν
0 (C))dβ − E [Zν

0 (C)] .

The next subsections describe two computational methods for solving Dν when the distribution of
(Xν , Y ν) is discrete.

5.1 Analytical Integration

While one might at first get the impression that numerical integration is required in solving Dν ,
this may not actually be needed as shown next. Suppose that (Xν , Y ν) has a discrete distribution
with support (xj , yj), j = 1, 2, ..., ν, and Prob((Xν , Y ν) = (xj , yj)) = 1/ν for j = 1, 2, ..., ν. This is
the case typically encountered in applications, where (xj , yj), j = 1, 2, ..., ν, is the data assumed to
be equally likely to occur. We then obtain significant simplifications in Dν .

For any fixed C ∈ IRm, the cumulative distribution function of Zν
0 (C) is a piecewise constant

function with at most ν steps. The range of the distribution function is {0, 1/ν, 2/ν, ..., 1} or a
subset thereof. By partitioning the integral over β in Dν according to this range, accounting for
the fact that the integral starts at α, the problem can in this case be written as

min
C∈IRm

1

1− α

ν∑
i=να

∫ βi

βi−1

q̄β(Z
ν
0 (C))dβ − E[Zν

0 (C)], (38)

where να := ⌈να⌉, with ⌈a⌉ being the smallest integer no smaller than a ∈ IR, βνα−1 = α, and
βi = i/ν, for i = να, να + 1, ..., ν. In view of (4) and (5),

q̄β(Z
ν
0 (C)) = min

Uβ∈IR
Uβ +

1

1− β
E[max{Zν

0 (C)− Uβ , 0}] (39)

= qβ(Z
ν
0 (C)) +

1

1− β
E[max{Zν

0 (C)− qβ(Z
ν
0 (C)), 0}]

for each β ∈ [0, 1). However, the special piecewise-constant structure of the cumulative distribution
function of Zν

0 (C) implies that qβ(Z
ν
0 (C)) is constant as a function of β on (βi−1, βi) for every

i = να, να + 1, ..., ν. Consequently, Uβ , β ∈ (α, 1) in (39) can be replaced by a finite number of
variables so that (38) takes the form

min
C∈IRm

1

1− α

ν∑
i=να

∫ βi

βi−1

min
Ui∈IR

(
Ui +

1

1− β
E[max{Zν

0 (C)− Ui, 0}]
)
dβ − E[Zν

0 (C)].
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The last integral simplifies further since for β ∈ (βν−1, βν) = (1− 1/ν, 1),

q̄β(Z
ν
0 (C)) =M(C) := max

j=1,2,...,ν
yj − ⟨C, xj⟩.

Consequently, (38) takes the form

min
C∈IRm

1

1− α

ν−1∑
i=να

∫ βi

βi−1

min
Ui∈IR

(
Ui +

1

1− β
E[max{Zν

0 (C)− Ui, 0}]
)
dβ +

M(C)

ν(1− α)
− E[Zν

0 (C)].

The order of minimization is immaterial and we can equivalently consider

min
C∈IRm,U∈IRν−να

1

1− α

ν−1∑
i=να

∫ βi

βi−1

(
Ui +

1

1− β
E[max{Zν

0 (C)− Ui, 0}]
)
dβ +

M(C)

ν(1− α)
− E[Zν

0 (C)],

where we let U = (Uνα , Uνα+1, ..., Uν−1). For i = να, να + 1, ..., ν − 1, we define

ai :=

∫ βi

βi−1

1

1− β
dβ = log(1− βi−1)− log(1− βi).

Using this notation, (38) simplifies further to

min
C∈IRm,U∈IRν−να

1

1− α

ν−1∑
i=να

(βi − βi−1)Ui +
1

1− α

ν−1∑
i=να

E[max{Zν
0 (C)− Ui, 0}]ai

+
M(C)

ν(1− α)
− E[Zν

0 (C)].

By introducing another set of auxiliary variables and using the standard transcription technique
for handling max-functions, we reach the linear program

Dν
LP : min

C,U,V,W

1

1− α

ν−1∑
i=να

(βi − βi−1)Ui +
1

ν(1− α)

ν−1∑
i=να

ν∑
j=1

aiVij

+
1

ν(1− α)
W − 1

ν

ν∑
j=1

(yj − ⟨C, h(xj)⟩)

s.t. yj − ⟨C, h(xj)⟩ − Ui ≤ Vij , i = να, . . . , ν − 1 , j = 1, . . . , ν

0 ≤ Vij , i = να, . . . , ν − 1 , j = 1, . . . , ν

yj − ⟨C, h(xj)⟩ ≤ W, j = 1, . . . , ν

C ∈ IRm

U = (Uνα , . . . , Uν−1) ∈ IRν−να

V = (Vνα,1, . . . , Vν−1,ν) ∈ IR(ν−να)ν

W ∈ IR.

This equivalent reformulation of Dν involves m+ (ν − να)(ν + 1) + 1 variables and 2(ν − να)ν + ν
inequality constraints. While να = ⌈να⌉ may be relatively close to ν in practice, the linear program
could become large-scaled when ν is large and decomposition algorithms may be needed.

Alternatively, we consider next a numerical integration-based scheme that avoids some auxil-
iary variables and constraints, and also handles the situation when the distribution of (Xν , Y ν) is
not uniformly discrete.
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5.2 Numerical Integration

The integral in Dν is easily approximated by standard numerical integration schemes. Suppose
that the interval [α, 1] is divided into µ subintervals, where α ≤ β0 < β1 < . . . < βµ−1 < βµ ≤ 1
and wi ≥ 0, i = 0, 1, ..., µ, are factors specific to the integration scheme. An approximation of Dν

then takes the form

Dν,µ : min
C∈IRm

1

1− α

µ∑
i=0

wiq̄βi
(Zν

0 (C))− E [Zν
0 (C)] .

For large µ, an optimal solution of Dν,µ is close to that of Dν , as seen next, under conditions that
are satisfied by essentially all commonly used numerical integration schemes.

Proposition 6 Suppose that for any continuous function g : [α, 1] → IR, a numerical integration
scheme with discretization points α ≤ β0 < β1 < . . . < βµ−1 < βµ ≤ 1 and factors wi ≥ 0, i =
0, 1, ..., µ, satisfies ∣∣∣∣∣

µ∑
i=0

wig(βi)−
∫ 1

α
g(β)dβ

∣∣∣∣∣ → 0

as µ→ ∞. Let {C̄ν,µ}∞µ=1 be a sequence of optimal solutions of Dν,µ under this numerical integra-
tion scheme. Then, every accumulation point of {C̄ν,µ}∞µ=1 is an optimal solution of Dν .

Proof: For any C ∈ IRm, q̄β(Z
ν
0 (C)) is finite and continuous as a function of β. Consequently,

the assumption on the numerical integration scheme applies and the objective function of Dν,µ

converges pointwise to that of Dν , as µ→ ∞. The objective functions are also finite and convex in
C, which follows directly from the convexity of q̄α on L2(Ω) and the affine form of Zν

0 as a function
of C. Consequently, by Theorem 7.17 in [23], the objective function of Dν,µ epiconverges to that
of Dν and the conclusion follows from Theorem 7.31 in [23].

While specialized solvers such as Portfolio Safeguard [1] handle Dν,µ directly with little dif-
ficulty under many circumstances, the problem is typically nonsmooth and standard nonlinear
programming solvers may fail. However, following a simple reformulation of Dν,µ, utilizing (5),
yields the following equivalent linear program, where we assume for convenience that βµ < 1:

min
C,U,V

1

1− α

µ∑
i=0

wi

Ui +
1

1− βi

ν∑
j=1

pjVij

 −
ν∑

j=1

pj(yj − ⟨C, h(xj)⟩)

s.t. yj − ⟨C, h(xj)⟩ − Ui ≤ Vij , i = 0, 1, ..., µ , j = 1, ..., ν

0 ≤ Vij , i = 0, 1, ..., µ , j = 1, ..., ν

C ∈ IRm

U = (U0, U1, ..., Uµ) ∈ IRµ+1

V = (V0,1, ..., Vµ,ν) ∈ IR(µ+1)ν .

If βµ = 1, then a straightforward modification is required based on the fact that q̄1(Z
ν
0 (C)) =

maxj=1,2,...,ν y
j−⟨C, xj⟩. The linear program consists of m+µ+1+ν(µ+1) variables and 2ν(µ+1)

constraints, which may be substantially less than what follows from the analytical integration
approach for large ν. In practice, we find that a moderately large µ suffices as shown in the next
section.
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6 Numerical Examples

In this section, we illustrate superquantile regression in three numerical examples. The first ex-
ample is artificially constructed, with known conditional superquantiles. The second example is
an instance from the uncertainty quantification literature. The third example arises in investment
analysis. Computations are mostly carried out in Matlab version 7.14 on a 2.26 GHz laptop with
8.0 GB of RAM using Portfolio Safeguard [1] with VAN as the optimization solver for Dν,µ. When
solving Dν

LP we employ GAMS version 23.7 with the CPLEX 12.3 solver on a 4.0 GB, 2.50 GHz
laptop.

6.1 Example 1: Solutions Methods and Tracking

We start by considering a loss random variable

Y = X1 +X2ϵ, almost surely,

where ϵ is a standard normal random variable and X = (X1, X2) is uniformly distributed on
[−1, 1] × [0, 1], with ϵ,X1, and X2 independent. We consider a regression function of the form
f(x) = C0 + C1x1 + C2x2 and set α = 0.90.

We first examine the computational effort required to obtain an approximate regression vector.
Table 1 shows computing times for solving Dν

LP for increasingly larger sample sizes ν obtained by
independent draws from (ϵ,X1, X2). While the results correspond to single instances of Dν

LP , the
times vary little between two samples of the same size and the computing times are therefore
representative. As expected from the discussion at the end of Section 5.1, the computing time
grows quickly as the sample size ν increases. In addition to the inconvenience of long computing
times, memory requirements become problematic. Dν

LP has a special structure and we anticipate
significant reduction in computing times and memory needs resulting from tailored algorithms.
However, the development of such algorithms is beyond the scope of the paper.

ν 100 200 300 400 500 600 700 800 900 1000 1500 2000

Time 0 0 2 6 17 32 45 65 163 174 996 2972

Table 1: Computing times (sec.) to solve Dν
LP for increasing sample size in Example 1.

Second, we consider the alternative approach based on solving Dν,µ. While this approach
introduces a numerical integration error, Proposition 6 indicates that the error is negligible for
large µ. In fact, as we see next empirically, moderately large µ suffices. Moreover, the substantial
reduction in problem size, as compared to that of Dν

LP , reduces computing times dramatically.
Since q̄β(Z

ν
0 (C)) may be nonsmooth as a function of β, standard numerical integration error

bounds may not apply. However, since q̄β(Z
ν
0 (C)) is continuous and nondecreasing as a function of

β, the use of left-endpoint and right-endpoint numerical integration rules in Dν,µ provide lower and
upper bounds on the optimal value of Dν , respectively. Table 2 shows solution vectors (C0, C1, C2)
for µ = 100, µ = 1000, left-endpoint, right-endpoint, and Simpson’s numerical integration rules,
and sample sizes of ν = 100 and ν = 10000. Each solution of Dν,µ is obtained quickly, in about
0.5 and 5 seconds for ν = 100 and ν = 10000, respectively; see the last column of Table 2. We
also show the corresponding coefficient of determination R̄2

α for each instance. For ν = 100, the
solutions and R̄2

α are insensitive to the numerical integration rule as well as µ. The obtained
solutions are essentially identical to the regression vector obtained from Dν

LP ; see Row 8 of Table
2. For µ = 10000, we note some differences but magnitudes are small. In this case, we are unable
to solve Dν

LP due to its size. We observe that as indicated by the coefficients of determination, the
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Rule ν µ C0 C1 C2 R̄2
0.90 Time

Left Endpoint 100 100 0.0630 1.0951 1.5841 0.568 0.07
Left Endpoint 100 1000 0.0630 1.0951 1.5841 0.568 0.79
Right Endpoint 100 100 0.0630 1.0951 1.5841 0.568 0.08
Right Endpoint 100 1000 0.0630 1.0951 1.5841 0.568 0.83

Simpson’s 100 100 0.0630 1.0951 1.5841 0.568 0.09
Simpson’s 100 1000 0.0630 1.0951 1.5841 0.568 0.77
Analytic 100 NA 0.0630 1.0951 1.5841 0.568 0.05

Left Endpoint 10000 100 0.0835 1.0049 1.6374 0.392 0.58
Left Endpoint 10000 1000 0.0820 1.0048 1.6423 0.392 5.91
Right Endpoint 10000 100 0.0799 1.0050 1.6492 0.392 0.56
Right Endpoint 10000 1000 0.0816 1.0048 1.6435 0.392 5.00

Simpson’s 10000 100 0.0818 1.0048 1.6429 0.392 0.56
Simpson’s 10000 1000 0.0818 1.0048 1.6430 0.392 5.27

Table 2: Solution vectors, coefficients of determination, and computing times (sec.) for Example 1
with varying integration rule as well as number of intervals µ and observations ν.

linear model f(x) = C0+C1x1+C2x2 doesn’t fully capture the variability of the data and a study
of other models may be warranted. However, we omit such an investigation and instead turn to
superquantile tracking.

Third, we examine conditional values of Y given realizations of X = (X1, X2), i.e., superquan-
tile tracking. For x = (x1, x2), Y (x) = Y |X = x is normally distributed with mean x1 and variance
x22. Consequently, it is straightforward to compute that

q̄0.9(Y (x)) = x1 + 1.7550x2.

Table 2 shows vectors that only track q̄0.9(Y (·)) approximately, as C0, C1, and C2 deviate from 0,
1, and 1.755, respectively. In fact, there is in general no guarantee that every regression function
f will satisfy f(x) = q̄α(Y (x)) for all x, even for large sample sizes. As indicated by Proposition
5, however, a superquantile of Y (x) can be estimated by approximating a degenerate distribution
of (X,Y ) at x. Table 3 shows such ‘local’ estimates of q̄0.9(Y (x)) near x = (0.5, 0.5). Specifically,
using ν = 500 we compute C0, C1, and C2 by solving Dν

LP as above, with X sampled uniformly
from [−1, 1]× [0, 1]. We repeat these calculations 10 times with independent samples and obtain the
aggregated statistics of Column 2 of Table 3. The second row gives an approximate 95% confidence
interval for the mean value of C0 + 0.5C1 + 0.5C2 across the 10 meta-replications. The interval
contains q̄0.9(Y ((0.5, 0.5))) = 1.3775, but is somewhat wide. Proposition 5 indicates that sampling
from a smaller set [0.45, 0.55]× [0.45, 0.55] will tend to improve the estimate of q̄0.9(Y ((0.5, 0.5))).
Column 3 of Table 3 illustrates this effect, by showing results comparable to those of Column 2 and
Row 2, but for the smaller interval. As expected, the confidence interval for C0 + 0.5C1 + 0.5C2

narrows around the correct value. The last column shows similar results, but now for sampling
of X uniformly on [0.495, 0.505] × [0.495, 0.505]. The estimate of q̄0.9(Y ((0.5, 0.5))) improves only
marginally, with the residual uncertainty being due to the inherent variability in the (relatively
small) samples. The narrow sampling interval causes the last estimate to be similar to that obtained
by the standard empirical estimate from 500 realization of Y ((0.5, 0.5)), which yields the confidence
interval (1.312, 1.462).

While sampling on smaller sets gives better local estimates of q̄0.9(Y (x)), the global picture
deteriorates. The last three rows of Table 3 show corresponding approximate 95% confidence
intervals for C0, C1, and C2, respectively. While C0+C1x1+C2x2 generated by the set [−1, 1]×[0, 1]
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provides a reasonably good global picture of q̄0.9(Y (x)), the smaller sets lose that quality as seen
from the wide confidence intervals. In view of the above results, we see that an analyst that can
choose “design points,” i.e., points x at which to sample Y (x), should balance the need for accurate
local estimates with that of global estimates. In fact, even if the primary focus is on estimating
q̄α(Y (x)) for a given x, as we see in this example, it may be equally effective to spread the samples
of X near x instead of exactly at x, and then obtain some global information about q̄α(Y (·)) too.
Our methodology provides a flexible framework for estimating q̄α(Y (x)) even if there is only a small
number of realization of Y (x), or even none, available. The estimates are based on realization of
Y (x′) for x′ near x. None of the numerical examples in this paper include data with more than one
realization of Y (x) for any x.

X range: [−1, 1]× [0, 1] [0.45, 0.55]2 [0.495, 0.505]2

C0 + 0.5C1 + 0.5C2 (1.349, 1.575) (1.329, 1.475) (1.330, 1.473)

C0 (0.029, 0.123) (-2.414, 1.784) (-23.715, 18.329)
C1 (0.971, 1.075) (-0.229, 3.597) (-11.063, 25.656)
C2 (1.523, 1.975) (-1.686, 5.186) (-33.916, 35.701)

Table 3: Approximate 95% confidence intervals when tracking q̄0.9(Y (·)) in Example 1 near x =
(0.5, 0.5) using shrinking sampling ranges for X. The correct value q̄0.9(Y ((0.5, 0.5))) = 1.378.

6.2 Example 2: Uncertainty Quantification

The next example arises in uncertainty quantification of a rectangular cross section of a structural
column under uncertain material properties and uncertain loads; see [8] for details. The performance
of the column is described by the random variable

Y = −1 +
4X1

wd2X3
+

X2
2

w2d2X2
3

, almost surely, (40)

where the moment load X1 and the axial load X2 are normally distributed with mean 2000 and
standard deviation 400, and mean 500 and standard deviation 100, respectively, and the material
strengthX3 is lognormally distributed with parameters 5 and 0.5, withX1,X2, andX3 independent.
(We note that the orientation of the performance random variable is switched compared to that of
[8] for consistency with our focus on ‘losses’ instead of ‘gains.’) We set the width w = 3, and the
depth d = 12.

We seek to quantify the ‘uncertainty’ in Y by surrogate estimation. Of course, in this case,
this is hardly necessary; direct use of (40) suffices. However, in practice, an analytic expression
for a system performance, as in (40), is rarely available. One then proceeds with determining a
regression function f : IR3 → IR, based on a sample of input-output realizations, such that f(X),
with X = (X1, X2, X3), approximates Y in some sense. To mimic this situation, we consider a
sample of size 50000 drawn independently from X, the corresponding realizations of Y according
to (40), and two forms of the regression function. The first model is linear and takes the form

f1(x) = C0 + C1x1 + C2x2 + C3x3

and the second one utilizes basis functions h1(x) = x1/x3 and h2(x) = (x2/x3)
2 and is of the form

f2(x) = C0 + C1x1/x3 + C2x
2
2/x

2
3.

In view of (40), we expect f1 to be unable to capture interaction effects between variables and its
explanatory power may be limited. In contrast, f2 uses the correct basis functions, but even then
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Model α C0 102C1 104C2 104C3 R̄2
α

f1 0.999 -0.6797 0.0156 7.9000 -9.1100 0.154
f1 0.99 -0.8084 0.0150 3.8000 -8.2700 0.190
f1 0.9 -0.8579 0.0107 1.5900 -7.7000 0.260
f1 0.75 -0.8705 0.0090 1.0800 -7.5900 0.301
f1 LS -0.8827 0.0070 0.5921 -7.7180 0.571*

f2 0.999 -1.0457 1.8640 0.0300 NA 0.902
f2 0.99 -1.0450 1.6182 0.0400 NA 0.891
f2 0.9 -1.0308 1.3393 0.0200 NA 0.894
f2 0.75 -1.0261 1.2595 0.0200 NA 0.893
f2 LS -1.0179 1.1315 0.0056 NA 0.979*

Table 4: Approximate regression vectors and coefficients of determination in Example 2 for varying
α and least-squares (LS) regression. An asterisk indicates that the coefficient of determination is
determined by (34).

f2(X) may deviate from Y due to the finite sample size used to determine the regression vector.
Table 4 confirms this intuition by showing approximate regression vectors for both models over
a range of probability levels α as well as for the least-squares (LS) regression. The vectors are
obtained in less than 15 seconds by solving Dν,µ, with ν = 50000, µ = 1000, and Simpson’s rule.
The last column of Table 4 shows R̄2

α (classical coefficient of determination according to (34) in the
case of least-squares regression), which is low for f1 and high for f2 as expected.

In uncertainty quantification and elsewhere, surrogate estimates such as f1(X) and f2(X) are
important input to further analysis and simulation. Table 5 illustrates the quality of these surrogate
estimates in this regard by showing various statistics of f1(X) and f2(X) as compared to those of
Y . Row 2, Columns 3-10 show estimated mean, standard deviation, superquantiles at 0.75, 0.9,
0.99, 0.999, probability of failure, and buffered probability of failure (see (2)) of Y , respectively,
using a sample size of 107 and standard estimators. Coefficients of variation for these estimators are
ranging, approximately, from 10−5 for the mean to 0.02 for the probability of failure. Rows 3-6 of
Table 5 show similar results, using the same sample, for f1(X), with α = 0.999, 0.99, 0.9, and 0.75,
respectively. We notice that as α increases, f1(X) becomes increasingly conservative. In fact, for
α = 0.999, f1(X) is conservative in all statistics. Superquantile regression with smaller α fails to be
conservative for some ‘upper-tail’ statistics. Interestingly, f1(X) based on α is conservative for all
superquantiles up to and including q̄α in these tests. These observations indicate that in surrogate
estimation the probability level α should be selected in accordance with the superquantile statistic of
interest. We can then expect to obtain conserve estimates even for relatively poor surrogates. Row
7 of Table 5 gives corresponding results for f1(X) under the least-squares regression fit. While this
fit provides an accurate estimate of the mean (see Column 3), the upper-tail behavior is represented
in a nonconservative manner.

Rows 8-12 of Table 5 show comparable results to those above, but for the f2(X) models. As
also indicated in Table 4, f2(X) is a much better surrogate of Y than f1(X) and essentially all
quantities improve in accuracy. For example, f2(X) based on superquantile regression overesti-
mates the buffered failure probability only moderately with α = 0.999, 0.99, and 0.9, and slightly
underestimate with α = 0.75; see the last column of Table 5. In contrast, least-squares regression
underestimates the buffered failure probability substantially even for this supposedly ‘accurate’
model. Of course, least-squares regression centers on conditional expectations and as basis for
estimating tail behavior may hide potentially dangerous risks.
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Model α µ σ q̄0.75 q̄0.9 q̄0.99 q̄0.999 103p 103p̄

Y NA -0.8436 0.0996 -0.7113 -0.6211 -0.3501 0.0091 0.3575 1.052

f1(X) 0.999 -0.1259 0.1297 0.0305 0.0856 0.1868 0.2635 158.1838 376.995
f1(X) 0.99 -0.4575 0.1027 -0.3370 -0.2963 -0.2225 -0.1669 0 0
f1(X) 0.9 -0.6940 0.0828 -0.6016 -0.5728 -0.5219 -0.4843 0 0
f1(X) 0.75 -0.7641 0.0777 -0.6795 -0.6544 -0.6106 -0.5786 0 0
f1(X) LS -0.8439 0.0748 -0.7653 -0.7439 -0.7077 -0.6819 0 0

f2(X) 0.999 -0.7611 0.1647 -0.5381 -0.3961 -0.0053 0.44953 3.4410 9.713
f2(X) 0.99 -0.7979 0.1431 -0.6042 -0.4808 -0.1413 0.25383 1.4909 4.206
f2(X) 0.9 -0.8263 0.1184 -0.6660 -0.5640 -0.2831 0.04375 0.4702 1.332
f2(X) 0.75 -0.8337 0.1113 -0.6830 -0.5870 -0.3229 -0.0155 0.3194 0.899
f2(X) LS -0.8451 0.1000 -0.7097 -0.6235 -0.3864 -0.1104 0.1539 0.440

Table 5: Statistics of f1(X) and f2(X) in Example 2 as compared to those of Y . Columns 3-10
show mean, standard deviation, superquantiles at 0.75, 0.9, 0.99, 0.999, probability of failure, and
buffered probability of failure, respectively.

6.3 Example 3: Investment Analysis

The last example is a case study taken from the “Style Classification with Quantile Regression”
documentation in Portfolio Safeguard [1] and deals with the negative return of the Fidelity Magellan
Fund as predicted by the explanatory variables Russell 1000 Growth Index (X1, RLG), Russell 1000
Value Index (X2, RLV), Russell Value Index (X3, RUJ), and Russell 2000 Growth Index (X4, RUO).
(We change the orientation from ‘return’ to ‘negative return’ to be consistent with the orientation
of a loss random variable in the present paper.) The indices classify the style of the fund; see [1]
for details. There are ν = 1264 total observations available.

Regression α C0 C1 (RLG) C2 (RLV) C3 (RUJ) C4 (RUO) R̄2
α

Least-squares NA 0.0010 -0.5089 -0.5180 0.0484 0.0061 0.9824*
Quantile 0.75 0.0045 -0.5438 -0.4518 0.0159 0.0173 —

Superquantile 0.75 0.0095 -0.5036 -0.4723 0.0192 0.0009 0.8735
Quantile 0.90 0.0089 -0.5177 -0.4602 0.0156 -0.0001 —

Superquantile 0.90 0.0138 -0.4837 -0.4912 0.0223 -0.0019 0.8722

Table 6: Approximate regression vectors and coefficients of determination in Example 3 for model
f1. An asterisk indicates that coefficient of determination is determined by (34).

We start by considering a linear model f1(x) = C0+C1x1+C2x2+C3x3+C4x4 and compare the
obtained approximate regression vectors for least-squares, quantile, and superquantile regression
under α = 0.75 and 0.90, as shown in Table 6. Dν is solved through Dν,µ with Simpson’s rule and
µ = 1000, while quantile regression is carried out directly in Portfolio Safeguard’s Shell Environment
[1]. Table 6 also shows the coefficients of determination, where for least-squares regression we use
(34). The fits are good and a majority of the variability in the data is captured. However, the
small values of C4 and also the corresponding p-value from the least-squares regression point to
the possible merit of dropping X4 (RUO) as explanatory variable. We from now on focus on
superquantile regression. A new model f2(x) = C0 + C1x1 + C2x2 + C3x3 yields the approximate
regression vectors of Table 7, which also shows the obtained adjusted coefficients of determination
R̄2

α,Adj . The switch from R̄2
α to R̄2

α,Adj enable us to better compare fits across models with different
number of explanatory variables. In comparison, adjusted coefficients of determination for f1, with
α = 0.75 and 0.90, are 0.8732 and 0.8719, respectively. Consequently, the fit improves slightly by

27



dropping X4 (RUO).

Regression α C0 C1 (RLG) C2 (RLV) C3 (RUJ) R̄2
α,Adj

Superquantile 0.75 0.0095 -0.5028 -0.4728 0.0200 0.8733
Superquantile 0.90 0.0138 -0.4855 -0.4906 0.0210 0.8720

Table 7: Approximate regression vectors and adjusted coefficients of determination in Example 3
for model f2.

We further reduce the model to a single explanatory variable and examine the four possibilities
in Table 8. We find that R̄2

α,Adj deteriorates, but only moderately for the model C0 + C1X1. This
simple model captures much of the variability in the data set. A somewhat poorer fit is achieved by
X2 (RLV), which is illustrated in Figure 1 for α = 0.90. That figure also depicts the corresponding
quantile and least-squares regression lines. It’s apparent that superquantile regression provides a
distinct perspective from the other regression techniques of potential significant value to a decision
maker.

Model α C0 C1 (RLG) C2 (RLV) C3 (RUJ) C4 (RUO) R̄2
α,Adj

C0 + C1X1 0.75 0.0137 -0.8228 — — — 0.7380
C0 + C1X1 0.90 0.0218 -0.8189 — — — 0.7248
C0 + C2X2 0.75 0.0321 — -1.0668 — — 0.5940
C0 + C2X2 0.90 0.0475 — -1.0727 — — 0.5702
C0 + C3X3 0.75 0.0515 — — -0.7745 — 0.4103
C0 + C3X3 0.90 0.0714 — — -0.6949 — 0.4162
C0 + C4X4 0.75 0.0344 — — — -0.5498 0.3962
C0 + C4X4 0.90 0.0512 — — — -0.5145 0.2593

Table 8: Approximate regression vectors and adjusted coefficients of determination in Example 3
for superquantile regression with single-variable models.

7 Conclusions

The paper presents a superquantile regression methodology centered on the minimization of a mea-
sure of error analogous to classical least-squares and quantile regression. We establish the existence
of a regression function, discuss its possible uniqueness, and its stability under perturbation, for
example caused by sample approximations of a true distribution. A new coefficient of determina-
tion allows us to quantify the goodness of fit. We show that superquantile regression requires the
solution of a linear program, as in the case of quantile regression, or alternatively of an optimiza-
tion problem with superquantile (conditional value-at-risk) constraints. Our computational tests
demonstrate that superquantile regression is computationally tractable, provides new insight about
tail-behavior for quantities of interest, and offers a complementary tool for the risk-averse decision
maker.
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Figure 1: Regression lines in Example 3 for model C0 + C2X2.
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