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Executive Summary 

The UWA Project Team, in alphabetical order, consists of: 

• Dr Vanessa Bowden (UWA – School of Psychology) 

• Janelle Braithwaite (UWA – Oceans Institute) 

• Stephanie Chen (UWA – School of Psychology) 

• Associate Professor Shayne Loft (UWA – School of Psychology) 

• Daniel Morrell (UWA – School of Psychology) 

• Daphne Tan (UWA – School of Psychology) 

 

Background.  The Situation Present Assessment Method (SPAM) has been identified as a potential 

tool to measure Situation Awareness (SA) in the submarine environment as part of its research into 

human and system performance.  The current research builds on previous work (Loft & Morrell, 

2011) that found SPAM could predict performance in simulated submarine track management and 

was sensitive to changes in task demands, information uncertainty, and task disruptions.  The 

current research further assesses the utility of SPAM for measuring SA and examines the impact of 

automation in a higher fidelity simulated submarine track management task. 

 

Objectives.  The first objective was to complete a literature review of the benefits and risks that task 

automation poses for SA and performance for tasks where individuals monitor and control complex 

dynamic displays (report delivered to AOARD in April 2012).  The second objective was to further 

establish the predictive validity of SPAM in a higher fidelity simulated submarine track management 

task by using SPAM to predict task performance.  We compared the predictive validity of SPAM to 

the predictive validity of the Situation Awareness Global Assessment Technique (SAGAT).  The third 

objective was to demonstrate the sensitivity of SPAM and SAGAT to manipulations of task 

automation, and to examine the impact of task automation on performance.  The fourth objective 

was to examine whether SPAM or SAGAT administration were disruptive by assessing their impact 

on subjective workload and performance.  

 

Method. One-hundred and seventy seven participants completed a simulated submarine track 

management task.  Participants monitored a conventional radar (picture) display and an adjacent 

waterfall display.  Following training on Day 1, half the participants were allocated to a task 

automation condition and the other half completed Day 2 without task automation.  On Day 2, 

participants completed one test scenario where their SA was assessed using SPAM, one scenario 

where SA was assessed using SAGAT, and one control scenario where neither SPAM nor SAGAT were 

administered.  After each of the three scenarios, participants also completed the Situation 

Awareness Rating Technique (SART), a subjective measure of SA. Performance was measured on a 

closest point of approach (CPA) task, a contact (vessel) classification task, and an emergency surface 

task.  Participants classified the contacts represented on the picture display as ‘Friendly’, ‘Enemy’, or 

‘Merchant’ depending on the contacts behaviour.  Participants were also required to mark the CPA 

of other contacts to Ownship.  The emergency surface task required information to be integrated 

from both the classification task and the CPA task.  Participants in the task automation condition had 

the closest point of approach task automated for some contacts. Subjective workload was measured 

at various points during each trial using the Air Traffic Workload Input Technique (ATWIT), and post-

trial using the NASA Task Load Index (NASA-TLX).  
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Results.  Predictive Validity of SPAM and SAGAT:  SPAM significantly predicted unique variance in all 

three performance tasks (closest point of approach, contact classification, and emergency surface 

task) over and above the variance predicted by the subjective SA and subjective workload measures. 

SPAM accuracy was a more reliable predictor than SPAM response time.  SPAM and SAGAT 

measures were significantly correlated, although the amount of shared variance was minimal. 

Sensitivity of SPAM and SAGAT to Automation: The SPAM measure was not sensitive to automation 

(neither was SAGAT).  However, the automation manipulation also failed to impact on subjective 

workload or on most performance measures, which suggests that the automation may not have 

been effective.  Effect of Automation on Performance: The automation of the closest point of 

approach task for some contacts (vessels) actually caused poorer closest point of approach decisions 

for the other vessels not automated, compared to the condition not provided automation at all.  

Automation Usage: Although participants were told that the automation was 100% reliable, only 

40% of participants in the automation condition accepted every automated closet point of approach 

decision.  Disruptive Effects of SA Measurement: The administration of SPAM did not significantly 

increase subjective workload (as measured by the ATWITT and NASA-TLX) or task performance 

compared to the control condition with no SA measurement.  However, SAGAT administration 

significantly increased both within-scenario and post-scenario rated subjective workload compared 

to the control condition. 

 

Conclusions. Both SPAM and SAGAT had significant predictive validity in a simulated submarine track 

management task.  It was important that SPAM and SAGAT predicted task performance variance 

over and above the subjective SA measure (SART) because there is no doubt that SART is the easiest 

measure to prepare and administer.  However, the administration of SAGAT significantly increased 

subjective workload.  Thus, predictive validity provided by SAGAT compared to SPAM came at the 

cost of increased participant subjective workload rating.  Since SAGAT disrupts the operator from the 

tasks at hand, this may limit its use in the submarine control room.  In contrast, SPAM administration 

does not require the task operation to be paused, and also better simulates the command team 

interaction typical of operational settings.  The finding that task automation impaired other non-

automated performance task elements is consistent with the findings of our literature review that 

automation can disengage the operator from the task and impact decision making.  The fact that not 

all participants used the automation, despite it being 100% reliable, is indicative that some 

participants may not have trusted the automated decisions. In naval operations, it may be more 

important for SA that track managers work to resolve certain elements of uncertainty rather than 

passively reacting to automation system output. Care must be taken generalising the findings to real 

naval operations given the laboratory task and the student participant sample.  This 

notwithstanding, we have taken a crucial further step towards demonstrating that SPAM can 

potentially be used to assess operator SA in naval submarine track management. 
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1. Background and Objectives 

The sensor and information systems employed on submarines are designed to assist human 

decision making.  Understanding the effectiveness with which such technology supports submarine 

decision making is difficult.  The challenge partly stems from the difficulty in definition and 

measurement of the ‘situation awareness’ (SA) that is required for command to make decisions.  SA 

is often assumed to be provided by display technology but it really only exists in the heads of 

decision makers at any level of the submarine command team.  SA has been shown to provide the 

foundation for safe and efficient performance in work systems as diverse as combat aviation 

(Vidulich, McCoy, & Crabtree, 1995), anaesthesiology (Gaba, Howard, & Small, 1995), and air traffic 

control (Durso, Hackworth, Truitt, Crutchfield, & Nikolic, 1999).  While a handful of papers have 

reported broad task analysis of submarine personnel   (Ehret, Gray, & Kirschenbaum, 1997, 2000; 

Kirschenbaum, 2011), there has only been one study to date that has defined and measured SA in 

simulated submarine track management (see DSTO-UWA Research Agreement number 352520; Loft 

& Morrell, 2011).  The next phase of the research (funded by both the Australian Defence Science 

and Technology Organisation - DSTO, and AOARD) that is reported in the current document 

continues to examine SA measurement and the impact of task automation in simulated submarine 

track management.  

There are a variety of subjective methods used to measure SA, including asking operators to 

rate their own SA, or having subject matter experts evaluate the degree to which other operators 

exhibit SA.  However, objective query-based techniques provide more accurate SA measurement.  

The Situational Awareness Global Assessment Technique (SAGAT) is the most widely used and 

validated query-based SA measure (Salmon, Stanton, Walker, & Green, 2006).  SAGAT focuses on the 

product of SA using recall techniques, uncovering information of which the operator is consciously 

aware.  SAGAT employs timed freezes in a task, during which elements in the display are blocked, 

and operators recall what was happening at the time of the freeze.  However, the fact that SAGAT 

disrupts the operator from the tasks at hand may limit its use in the submarine control room.  This is 

because much of the cognitive work of the control room team involves the management of 

uncertainty stemming from the fact the submarine’s passive sensors do not yield veridical range 

information.  Temporarily removing access to the display would lead to the mental picture of the 

situation being quickly lost.  Hence, assessing SA in real-time appears the most advantageous in a 

practical sense for submarine track management. 

The Situation Present Assessment Method (SPAM; Durso & Dattel, 2004) is potentially suited 

to the submarine environment because it measures SA in real-time without pausing task operations.  

SPAM distinguishes workload from SA by warning the operator that a question is in the queue, and 

waiting until the operator accepts the question.  SPAM probe acceptance time is measured as the 

time between when the experimenter asks the participant whether they were ‘ready’ to the time 

that the participant accepts the question.  Following this, the SA question is asked and SPAM 

response time is measured as the time between when the experimenter completes asking the 

question to the time the participant answers (Durso & Dattel, 2004).  The logic underlying SPAM is 

that operators who have better SA will know where to find appropriate information and thus be able 

to respond faster or more accurately.  It is arguable that SPAM simulates the command team 

interactions typical of submarine operations (i.e., live unsolicited requests for information from the 

Officer on the Watch to the track manager). SPAM has been effectively used to measure SA and to 
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predict performance in work domains of air traffic control and driving (Durso, Bleckley, & Dattel, 

2006; Durso & Dattel, 2004; Durso et al., 1999).  

Loft and Morrell (2011; DSTO-UWA Research Agreement number 352520) conducted the 

first set of experiments using SPAM in simulated submarine track management.  The first objective 

was to determine if SPAM was a sensitive measure of SA and if it predicted performance; under 

conditions of varying uncertainty, workload, and task disruption.  Loft and Morrell (2011) developed 

a simulation of submarine track management in consultation with the DSTO called SIM(sub).  In 

three laboratory experiments, participants performed SIM(sub) tasks such as deciding whether they 

could fire on enemy contacts using rules of engagement and detecting contact heading changes.  

Participants also responded to SPAM probes designed to measure their SA of the current and future 

state of the display.  In a fourth experiment SPAM was applied within a small team setting under 

more realistic field conditions (using the T106 combat system) and with trained Royal Australian 

Navy (RAN) submariners.  

In Experiments 1-3 participants were less accurate and slower to respond to SPAM questions 

that assessed SA of the future display situation compared to SA of the current display situation.  This 

finding was replicated across manipulations of uncertainty, workload, and task disruption, and was 

also replicated in Experiment 4 using the T106 combat system with trained RAN operators.  Thus, it 

was difficult for participants to project future states of the simulated tack management display, even 

though the dynamic elements on the track management display were evolving quite slowly.  

Loft and Morrell (2011) also found that SPAM differentially predicted performance.  In 

Experiments 1, 2, and 3 the time that participants took to decide if they could fire on enemy 

contacts was dependent on their ability to access and interpret information related to the current 

display; that is, this task was most uniquely predicted by current SPAM questions.  In contrast, 

performance tasks that required participants to prioritise when and where to allocate attention 

were predicted by future SPAM questions, which reflected participants’ SA of how the relationships 

between contacts on the display would evolve.  However, in Experiment 2 the relationship between 

current SA and performance was moderated by the contact uncertainty manipulation.  In this case, 

SA for the current display was more likely to predict performance under conditions of low 

uncertainty, and SA for the future display was more likely to predict performance under conditions 

of high uncertainty. In Experiment 3, task disruptions reduced participants’ SA and performance.  

The number of vessels on the display (the workload manipulation) negatively impacted on 

performance but had no influence on SA.  

The experiments by Loft and Morrell (2011) suggest that SPAM can potentially be a sensitive 

measure of SA and could be used to predict performance in submarine track management.  It was 

also established that the SPAM technique was sensitive to task demands such as workload impacts, 

information uncertainty, and task disruptions of the type that would be expected at sea.  However, 

there are many research questions pertaining to the potential use of SPAM in submarine track 

management left unanswered by Loft and Morrell (2011). First, it is crucial to demonstrate the 

predictive validity of the SPAM measurement method in a higher fidelity simulation of submarine 

track management and in which participants receive more task training.  Second, it is important to 

examine the extent to which SPAM can predict task performance when compared to the predictive 

validity of the more well-established SAGAT measure. Third, it is possible that SPAM or SAGAT 
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probes may be distracting, providing additional loading that would take away from primary task 

performance. To examine this, we need to include additional control conditions where SPAM or 

SAGAT questions are not administered during the simulated submarine track management task.  In 

addition, it is important to examine the impact of task automation on SA and task performance. 

The first objective of the current project was to complete a literature review of the benefits 

and risks that task automation poses for SA and performance for tasks where individuals monitor 

and control complex dynamic displays (this report was delivered in April 2012).  The second 

objective was to further establish the predictive validity of SPAM in a higher fidelity simulated 

submarine track management task.  We compared the predictive validity of SPAM to the predictive 

validity of SAGAT. The third objective was to demonstrate the sensitivity of SPAM and SAGAT to 

manipulations of task automation, and to examine the impact of task automation on performance.  

The fourth objective was to examine whether SPAM or SAGAT administration are disruptive by 

assessing their impact on subjective workload and performance. 

2. Method 

2.1. Participants 

179 participants from the undergraduate population at UWA completed two days of testing.  

There were 57 males and 122 females with a mean age of 21.3 years. 

2.2. The SIM(sub)3.0 Program 

 SIM(sub)3.0 was developed and runs in the MATLAB programming environment.  

Participants observed and interacted with two display screens (two 22 inch monitors arranged side-

by-side). The left monitor presented a simplified but conventional maritime radar (tactical picture) 

display and the right monitor presented a submarine sonar bearing history or ‘waterfall’ display (see 

Figure 1).  Participants were required to attend to both displays in order to perform several different 

tasks; a contact classification task, a closest point of approach task, and an emergency surface task.  

Each of these tasks is described in greater detail in the sections below. 

2.2.1. Contact Classification task 

Participants classified the contacts (vessels) presented on picture display as ‘Friendly’, 

‘Enemy’ or ‘Merchant’. Accurate classification of contacts required the participants to make rule 

based judgements using the information presented on both their picture and waterfall displays.  To 

complete a classification, participants used the mouse to select a contact and then entered a 

classification option using labelled keys (‘F’ for friendly, ‘E’ for enemy, and ‘M’ for merchant).  Once a 

contact was classified, the icon on the radar display changed from a yellow circle to the icon 

designating the new classification (green triangle for friendly, red square for enemy, and inverted 

white triangle for merchant) and the associated track on the waterfall display changed from a yellow 

line to the classified icon colour (see Figure 2). 
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Figure 1. Photograph showing the experimental setup.  The left monitor shows the picture display, and the 

right monitor shows the waterfall display.  Participants wore headphones throughout the experiment and 

responded with a combination of mouse and keyboard entries. 

 

Participants were able to determine which waterfall track belonged to which contact by 

checking the contact number associated with the track (small number to the right of the start of 

each track on the waterfall display).  Participants were able to re-classify contacts as many times as 

they wanted while that contact remained present on the picture display.

Contacts were classified according to the following rules: 

 

1. Friendly – To be classified as a friendly, the contact must have remained within 5 km of 

Ownship for at least four minutes. 

2. Enemy – To be classified as an enemy, the contact must have zigged three times within a 

six minute period (where a zig is an angular change in direction of at least 45 degrees, 

performed over less than 30 seconds). 

3. Merchant – To be classified as a merchant, the contact must have remained within a 

shipping lane for at least four minutes. 
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Figure 2. The left image is the picture display, and the right image shows the waterfall display in SIM(sub)3.0.  On the picture display, the concentric rings indicate the distance from Ownship 

in the centre of the screen.  The rings extend in 5 km increments.  The parallel white lines indicate a shipping lane.  Four contacts are currently displayed in this figure: the red square 

indicates a contact that has been classified as an enemy, the green triangle is a friendly, the white inverted triangle is a merchant, and the yellow circle has yet to be classified.  The lines 

projecting from the centre of each icon indicate the current heading of each contact and the numbers indicate which contact each is.  The waterfall display has the angle relative to Ownship 

on the x-axis, and the time elapsed in minutes on the y-axis.  Each contact track is numbered and the colour matches the classification given to the contact.  Participants can mark the closest 

point of approach with a small white x, and can mark horizontal blue lines to keep track of timing.  When a contact abrupts off the screen (e.g. vessel 3), the track terminates. 
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Successful application of these rules required a participant to judge how long each contact 

had been behaving a certain way (for example, how long contact 4 had been within 5 km of 

Ownship).  As such, participants needed to track time.  To assist with this, the y-axis of the waterfall 

display indicated time elapsed in minutes (using a one minute scale).  By right-clicking on the 

waterfall display participants could leave a blue horizontal line to mark the beginning/end of certain 

target contact behaviours.  In addition to this, each participant was provided with a pencil and paper 

to write notes throughout the experiment.  Participants could, for example, record when a contact 

changed course or moved into a different target area.  

  

Contact classification performance was measured using: 

1. Accuracy – The total number of correct classification actions performed. 

2. Response Time – The speed at which a correct classification action was made.  This 

response time was relative to when the contact had spent enough time performing the 

classification rule target behaviour (e.g., had spent four minutes in a shipping lane).  

 

During each scenario there were a total of nine contacts that remained on the display long 

enough to be classified.  These contacts were on screen for a total of eight minutes each.  There 

were always four contacts on the display.  Every two minutes a contact would abrupt out (disappear 

from the picture display and cease to be updated on the waterfall display), and a new contact would 

abrupt in.  One purpose of this was to remove classified contacts from the display and to allow new 

unclassified contacts to appear without building up participant workload by increasing the number 

of contacts to monitor.  The second purpose was to simulate operational settings where contacts 

abrupt in and out of the display.  Contact movement on the display was constant at 30 km/hr and 

the contact position and heading was updated every 0.25 seconds.  Ownship remained stationary. 

2.2.2. Closest Point of Approach (CPA) task 

In addition to classifying contacts, participants were required to mark the closest point of 

approach (CPA) of contacts to Ownship.  To determine CPA, participants needed to monitor the 

change in track gradient on the waterfall display as well as the changes in contact heading on the 

picture display.  Participants were asked to mark any CPAs that occurred on the waterfall.  A CPA 

could be marked by clicking the closest point of approach on the contacts waterfall display track 

with the mouse.  When the participant left-clicked on this point, a CPA designation icon was then 

attached to the contact track (analogous to the labelling conducted by track managers).  In this case, 

a small white cross appeared wherever the participant left-clicked on the waterfall display. 

The SIM(sub) program determined a contact CPA to Ownship as the point where the radial 

distance between a contact and Ownship changed from decreasing to increasing.  In other words, a 

CPA occurred when a contact went from heading towards Ownship, to heading away from Ownship.  

The number of CPAs in each scenario ranged between 9 and 12.  Not all contacts had a CPA – for 

example, a contact might have headed consistently away from Ownship.  To be scored as correct, 

participants needed to mark CPAs on the waterfall display within ± 5 degrees on the x-axis and ± 0.4 

minutes on the y-axis from the actual position that the CPA occurred. 
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CPA task performance was measured by: 

 

1. Accuracy – The number of CPAs marked out of the total number of CPAs presented.   

2.2.3. Emergency Surface Task 

In addition to the Contact classification task and the CPA task, participants also completed 

an emergency surface task. The purpose of this emergency surface task was to introduce a 

performance measure that required information to be summarised from both the classification task 

(predominantly using radar display) and the CPA task (predominantly using waterfall display). 

 

This task involved sending a recommendation to the Officer on Watch that Ownship was 

safe to make an emergency surface.  Participants did this by pressing the ‘s’ key.  Each of the 

scenarios lasted for 24 minutes, and within each scenario there was a single window of between 2 

and 3 minutes duration where the following emergency surface conditions were satisfied: 

 

1. No unidentified or enemy vessels were within 5 km of Ownship (participants used the 

picture display to judge this). 

2. At least one CPA had occurred in the last 5 minutes (participants used the waterfall 

display to judge this). 

 

Emergency surface performance was measured by: 

1. Accuracy – Whether the surface was performed during the correct time window. 

2. Response Time –The speed of the emergency surface after the required conditions were 

satisfied.   

 

When participants performed an emergency surface the message “Emergency surface 

successful” appeared in red in the centre of the picture display.   

2.3. Situation Awareness Measurement 
On Day 1 of the experiment participants were trained on how to perform the simulated 

submarine track management tasks.  On Day 2 they completed three test scenarios.  In one test 

scenario they were required to respond to online SPAM questions (hereafter referred to as the 

SPAM condition).  In another scenario they answered offline SAGAT questions (SAGAT condition).  In 

their third scenarios, participants were not presented with either SPAM or SAGAT questions (control 

condition).  In all three scenarios, including the control conditions, the SART subjective measure of 

SA was administered at the end of each scenario in the form of a written questionnaire.   

2.3.1. SPAM Administration  

 SPAM questions were presented at regular intervals. There were 160, 220, or 280 seconds 

delay between SPAM questions.  The questions were delivered over the headphones, and this 

auditory presentation provided face validity (it more closely replicates the conditions in a submarine 

control room compared to questions presented visually on the screen as in Loft and Morrell, 2011). 

Each question began with a ready prompt (“Are you ready for a question?”) and was followed by a 

SPAM question (e.g. “Is vessel four currently heading towards the shipping lane?”). The SA probes 

were designed to assess Level 1, 2, and 3 SA.  Within each SPAM scenario there were: two Level 1 
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questions, three Level 2 questions, and one Level 3 question (there were a total of six questions 

delivered in each SPAM scenario).  The question template for SPAM scenarios was as follows: 

 

Level 1 SA: 

1. Which vessel is currently in X? 

2. Is vessel Y currently heading towards X? 

Level 2 SA: 

1. How many times has vessel Y zigged? 

2. Has there been a CPA in the past five minutes? 

3. Has vessel Y been in area X for at least Z minutes? 

Level 3 SA: 

1. Could vessel Y be in area X within the next four minutes? 

 

*Note that the values of X, Y, and Z varied for each of the three scenarios.  

 

Participants were instructed to respond to the ready prompt by pressing the ‘Y’ key when 

they were ready to answer the SPAM question.  They had a 30 second window following the ready 

prompt in which they could accept the question.  If the participant failed to press ‘Y’ during this 

interval, no SPAM question was asked.  Once a participant had indicated readiness, the SPAM 

question was presented over headphones.  To answer a question, the participants pressed single 

digit numeric keys (0 – 9), or ‘Y’ for yes, or ‘N’ for no.  They were instructed to answer all questions 

based on the current state of their displays at the time the question was asked (as opposed to based 

on when they responded).  The reason for this was that the situation on the displays was constantly 

evolving and we wanted to ensure that all participants were responding to a similar current display.  

There was a 30 second window following the SPAM question in which participants could enter a 

response.  If the participant failed to enter any response, or answered after the 30 second window 

elapsed, then the SPAM question was considered missed and scored as incorrect. SPAM questions 

were also scored incorrect if participants provided the wrong answer.  To help participants answer 

questions about the future state of the display, participants could right-click with the mouse on any 

contact on the radar display to bring up a four-minute trajectory circle placed around the contact.  

This light green circle indicated how far that particular contact would be able to move in any 

direction within the next four minutes. 

 

SPAM was measured by: 

1. SPAM Accuracy – The proportion of SPAM questions correctly answered. 

2. SPAM Probe time – The speed at which participants indicated readiness by accepting 

the question (for correct answers only).  This response time likely indicates how hard the 

participant was working at the time the probe was administered. 

3. SPAM Response time – The time taken to answer SPAM questions after the probe was 

accepted and the content of the question was delivered (for correct answers only). 
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2.3.2. SAGAT Administration  

 In the SAGAT condition, the simulation was paused (and the screen blanked) four times each 

scenario.  During this task pause the participants’ SA was queried by the presentation of a number of 

SAGAT questions.  The SAGAT procedure we employed, and the template we used for SAGAT 

questions, was based on recommendations by Jones and Endsley (2004).  The questions were 

presented visually (i.e., in written form) on the display.  When a SAGAT freeze occurred within a 

scenario, a blank map was presented to participants on the picture display (the scenario map and all 

contacts were removed) and the waterfall display was blanked. The participants were first instructed 

to click on the blank map to locate one of the four contacts which was on the screen at the time of 

the freeze.  The vessel they needed to locate was specified, e.g. “Place vessel 4 on the screen”.  This 

SAGAT question assessed Level 1 SA and was always the first SAGAT question presented.  

Participants were then presented five additional SAGAT questions.  Half of these questions 

were identical to those presented during SPAM administration. Participants were asked one 

additional Level 1 SA question (two Level 1 in total – including the vessel location question), three 

Level 2 questions, and one Level 3 question.  There were a total of six questions delivered during 

each SAGAT freeze and the question template for SAGAT scenarios was as follows: 

Level 1 SA (two asked per freeze): 

1. Place vessel Y on the screen. 

2. Which vessel is currently in X? 

3. Is vessel Y currently heading towards X? 

Level 2 SA (three asked per freeze): 

1. How many times has vessel Y zigged? 

2. Has there been a CPA in the past five minutes? 

3. Has vessel Y been in area X for at least Z minutes? 

4. What was the last vessel to appear/disappear from the display? 

5. Has vessel Y had a CPA? 

6. What was the last vessel to enter area X? 

Level 3 SA (one asked per freeze): 

1. Could vessel Y be in area X within the next four minutes? 

2. Could vessel Y be north/south/east/west of Ownship in four minutes time? 

 

*Note that the values of X, Y, and Z varied for each of the three scenarios. 

SAGAT performance was measured by: 

1. SAGAT Accuracy – The proportion of SAGAT questions correctly answered. 

2. SAGAT Response time – The time taken to answer SAGAT questions (for correct answers 

only). 

2.3.3. SART Administration 

Following completion of each of the three test scenarios, participants completed the 10-

dimension paper-based SART questionnaire (Selcon & Taylor, 1990).  Participants provided ratings 

on a number of scales regarding the degree to which they perceived: 1) the demands on their 

resources, 2) their supply of resources, and 3) their understanding of the situation.  A SART score 
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was generated by combining scores on the three subscales.  This combined score provided a 

measure of subjective SA [SA = Understanding – (Demand-Supply)].  

2.4. Measuring Workload 

2.4.1. NASA-TLX  

The NASA-TLX (Hart & Staveland, 1988) was administrated at the completion of each 

scenario.  The NASA-TLX is a two-part paper-based procedure for measuring subjective workload 

based on ‘magnitude of workload’ ratings and the ‘sources of workload’ weightings.  Participants 

made magnitude of workload ratings for the scenario on six 20-point scales: mental demand, 

physical demand, temporal demand, performance, effort, and frustration.  After finishing each of the 

three test scenarios, the participants completed 15 pair-wise scale comparisons (e.g., mental 

demand vs. frustration) for each task type (CP task, contact classification task, and emergency 

surface task). That is, participants rated which source of workload (e.g., mental demand vs. 

frustration, temporal demand vs. effort, etc) contributed most to their workload for each task. These 

pair-wise comparisons provided the unique relative weighting for each of the scales (mental 

demand, physical demand, temporal demand, performance, effort, and frustration).  Participants’ 

overall NASA-TLX score was determined by multiplying the magnitude of workload ratings for each 

scale by the corresponding workload weighting for the corresponding scale, adding the values for all 

the scales together, and then dividing the total by 15. 

2.4.2. ATWIT 

The Air Traffic Workload Input Technique (ATWIT - Stein, 1985) measured mental workload  

in real-time by presenting workload probes on screen that required participants to indicate what 

level of workload they were experiencing at that particular moment.  The advantages to using an 

online workload measure is that recorded changes in workload within a scenario (unlike the NASA-

TLX which only provides a single estimate of subjective workload at the end of a scenario and is thus 

more reliant on participant memory). 

ATWIT probes were delivered four times during each scenario. The workload probes in the 

scenarios where SAGAT was administered were delivered either 15 seconds before a SAGAT freeze, 

or 15 seconds after a SAGAT freeze (equal numbers were delivered before and after a SAGAT 

freeze).  In the SPAM scenarios, the ATWIT probes were also delivered 15 seconds before or after 

the SPAM question.  It is crucial to note that the presentation of ATWIT was not a predictive cue that 

a SPAM/SAGAT question would follow. This is because ATWIT probes were only presented before 

two of the six SPAM questions, and before two of the four SAGAT question sets. ATWIT probes 

appeared on the screen with the message “Rate your workload” (where 1 was very low workload, 

and 10 was very high workload).  Participants clicked on the number between 1 and 10 that most 

accurately represented how hard they were currently working.  Each workload probe only remained 

on the screen for 10 seconds, after which it disappeared. 

2.5. Procedure 

2.5.1. Day 1 

 The experiment was conducted over two days (with one day separation). Due to the 

complexity of the task, a two hour training session was designed to introduce participants to 

simulated submarine track management. The training day began with a 30 minute computer-driven 
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presentation which covered all of the requirements of the experiment.  This presentation also 

included a short narrated video of the task.  Participants were encouraged to ask questions at any 

point on the training day. Following completion of the training presentation, the participants 

completed two practice scenarios, one with embedded SAGAT questions and one with embedded 

SPAM questions.  The practice sessions also included all other measurements (NASA-TLX, ATWIT and 

SART were all delivered).  At the end of each training scenario participants were presented with 

written feedback on the screen and the experimenter discussed any areas of poor performance with 

the participant – reiterating the relevant task details or rules as required.  This feedback included the 

participants’ CPA and contact classification accuracy, emergency surface success, and the proportion 

of SPAM or SAGAT questions answered correctly.  Both training scenarios were completed without 

automation.  At the beginning of Day 2 the participants received a short 10 minute refresher 

presentation where the important information from Day 1 was condensed and repeated.  

Participants in the automation condition had extra slides in their refresher presentation that 

introduced how automation would be provided. 

2.5.2. Day 2  

 On Day 2 participants completed three scenarios.  The experiment consisted of a mixed 

(within subjects /between subjects) design. The within subjects factor was SA measurement (SAGAT, 

SPAM, or control). In one scenario participants were required to respond to online SPAM questions.  

In another scenario they answered offline SAGAT questions.  In their third scenario, participants 

were not presented with either SPAM or SAGAT questions (control condition). In all three scenarios, 

including the control conditions, the SART subjective measure of SA was administered at the end of 

each scenario. In each scenario ATWIT and the NASA-TLX were administered.   

2.5.3. Automation Manipulation   

 Participants were randomly allocated to either the automation or no-automation condition.  

Participants in the no-automation condition were required to mark all CPAs that occurred on the 

waterfall display, as per training.  Participants in the automation condition had some of their CPAs 

automatically marked on the waterfall display.  This automation marked a cross on the waterfall 

display whenever a contact reached its closest point of approach to Ownship. The automation 

however only applied to CPAs that were inside the 5 km radius from Ownship (within the first 5 km 

ring marked from Ownship on the picture display; see Figure 2).  Thus, participants in the 

automation condition were explicitly told that they were still required to manually mark the CPAs 

occurring in the area more than 5 km from Ownship.  When a CPA was automatically marked, a 

message appeared on the screen that said “Accept CPA?” and that message remained until the 

participant clicked either ‘accept’ or ‘reject’.  An auditory tone coincided with the CPA notification to 

capture participants’ attention. 

If participants clicked ‘accept’ then the automation alert message disappeared and the 

automated CPA marking remained on the waterfall display.  If participants clicked ‘reject’ then the 

alert message disappeared and the automated CPA marking was removed from the waterfall display. 

Automation messages time out after 90 seconds if participants click neither accept nor reject.  At 

this point the automation message box disappeared and the automated CPA was removed from the 

waterfall display.  The automation applied to approximately half of the scripted CPAs (the other half 

occurred outside the 5km to Ownship so were required to be manually detected).  
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3. Results 

3.1. Data Management and Descriptive Statistics 
 Response time outliers were removed at the within-subject level. That is, any response time 

more than 2.5 standard deviations from a participant mean for the contact classification task, SPAM 

question set, or the SAGAT question set were excluded. This resulted in two participants’ data being 

trimmed for the contact classification task, and one for the SAGAT question set.  

To ensure that there were no significant differences in skill acquisition over training between 

the participants assigned to the automation condition and participants assigned to the no-

automation condition, the performance data from the training scenarios on Day 1 were analysed.  

All participants completed training without the assistance of automation, regardless of whether they 

were subsequently assigned to the automation or no-automation condition on Day 2. The Day 1 data 

revealed no significant difference between participants in the automation and no automation 

condition on accuracy or response time on the emergency surface task (ts < 1), CPA task (ts < 1), or 

contact classification task (ts < 1). On Day 1 there were also no significant differences between 

participants in the automation and no automation condition on the SPAM measures (ts < 1) or  

SAGAT measures (t(163) = 1.63, p = 0.11). There was also no difference between the two groups on 

ATWIT-before (t < 1), ATWIT-after (t(326) = 1.56, p = 0.12), NASA-TLX (t(329) = 1.48, p = 0.14), or the 

SART measures (t < 1). Thus, as would be expected from the fact we randomly assigned participants 

to the Day 2 automation and no automation conditions, there were no differences in responses from 

these two groups on Day 1.   

Table 1 summarises the descriptive statistics for each condition (SPAM, SAGAT, and Control) 

on Day 2 collapsed across the automation and no-automation between-subject conditions.  

Participants performed well on both the emergency surface and the contact classification task, but 

found the CPA task more difficult.  It should be noted that response times for SPAM questions 

presented in Tables 1 and 2 are for correct SPAM responses only.  Thus, one potentially important 

correlation that is not shown in Tables 1 and 2 is the relationship between SPAM accuracy and 

overall SPAM response time (for both correct and incorrect SPAM responses).  There was a trending 

negative correlation between SPAM accuracy and SPAM response time (r = -0.126, p =.09). This 

indicates that SPAM accuracy decreased as SPAM response time increased. This is important 

because it shows that participants were more likely to answer SPAM incorrectly if they took longer 

to make SA decisions.  Although this correlation does not reach significance, it clearly indicates that 

it was not the case that faster SA responders were also less accurate (in that case we would have 

expected a positive correlation, i.e., speed-accuracy trade-off). 

Correlations between variables as a function of the three within subject conditions (SPAM, 

SAGAT, and Control) are presented in Tables 2, 3, and 4, respectively.  The before-ATWIT, after-

ATWIT, and the NASA-TLX workload measures were highly correlated, indicating concurrent validity.  

Interestingly, SPAM probe acceptance time (a proxy for workload according to the designers of 

SPAM – Durso & Dattel, 2004) did not correlate with the workload measures. The subjective SA 

measure (SART) did not correlate significantly with any performance or SA measure. However, SART 

correlated with the subjective workload measures in all three experimental conditions; participants 

rated that they had higher SA when they also rated that they were under a higher level of workload. 
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Table 1. Descriptive statistics (standard deviations are in parentheses) for the SPAM, SAGAT, and control conditions.  The data below are collapsed across the 

automation and no-automation conditions. Response times (RT) are in seconds.  

 

 

    
SA Measures 

        

 SPAM probe RT 
 

SPAM accuracy SPAM RT 
(correct only)  

SAGAT 
accuracy 

SAGAT RT        SART      

SPAM 1.73 (1.31) 0.86 (0.13) 1.97 (1.01) - - 5.25 (1.41) 

SAGAT - - - 0.67 (0.19) 6.01 (1.51) 5.29 (1.39) 

Control - - - -  5.18 (1.46) 

       

   Task 
Performance  

   

 Emergency 
surface hit rate 

Emergency 
surface RT 

CPA hit rate 
(outer) 

Classification 
hit rate 

Classification 
RT (sec) 

 

SPAM 0.76 (0.43) 31.99 (42.34) 0.54 (0.25) 0.74 (0.23) 19.30 (13.43)  

SAGAT 0.74 (0.44) 40.99 (46.53) 0.56 (0.25) 0.74 (0.22) 19.51 (13.64)  

Control 0.75 (0.43) 30.57 (36.76) 0.56 (0.27) 0.76 (0.22) 18.80 (12.97)  

       

    
Subjective 
Workload 

   

  
ATWIT-before 

 
ATWIT-after 

 
NASA-TLX 

   

SPAM 5.16 (1.78) 5.32 (1.68) 10.50 (3.45)      

SAGAT 5.13 (1.67) 5.56 (1.65) 10.82 (3.18)      

Control 5.02 (1.72) 5.20 (1.69) 10.22 (3.27)    
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Table 2. Correlations between performance, SA, and workload measures for the SPAM condition.  Significant correlations are indicated by asterisks (* is 

significant at the 0.05 level, and ** is significant at the 0.01 level). 

 1. Emergency 
surface RT 

2. CPA hit 
rate (outer) 

3.Classification hit 
rate 

4.Classification 
RT 

5. SPAM 
probe RT 

6. SPAM 
RT  

7. SPAM 
accuracy 

8. ATWIT 
(before) 

9.ATWIT 
(after) 

10. NASA-
TLX  

11.SART  

1. - -0.252** -0.170* 0.293** 0.065 0.105 -0.085 0.102 0.102 0.165 -0.006 

2.  - 0.179* -0.163* -0.152* -0.204** 0.229** -0.024 -0.013 -0.068 0.064 

3.   - -0.146 0.053 -0.176* 0.301** -0.187* -0.147* -0.269** -0.045 

4.    - 0.034 0.109 -0.180* 0.150* 0.103 0.216** 0.026 

5.     - 0.202** 0.027 0.134 0.097 0.147 0.001 

6.      - -0.297** 0.149* 0.162* 0.133 -0.035 

7.       - -0.086 -0.112 -0.095 -0.087 

8.        - 0.884** 0.696** 0.293** 

9.         - 0.725** 0.342** 

10.          - 0.384** 

11.           - 
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Table 3. Correlation between performance, SA, and workload measures for the SAGAT condition.  Significant correlations are indicated by asterisks (* is 

significant at the 0.05 level, and ** is significant at the 0.01 level). 

 1. Emergency 
surface RT 

2. CPA hit rate 
(outer) 

3. Classification 
hit rate 

4. Classification 
RT 

5. SAGAT 
accuracy 

6. SAGAT RT 7. ATWIT 
(before) 

8. ATWIT  
(after) 

9. NASA - 
TLX 

10. SART  

1. - -0.023 -0.345** 0.211** -0.159 -0.021 -0.027 -0.102 0.040 -0.077 

2.  - 0.192** -0.232** 0.277** -0.107 -0.007 -0.020 -0.067 -0.033 

3.   - -0.237** 0.444** -0.055 -0.039 0.005 -0.193* 0.075 

4.    - -0.258** 0.121 0.050 0.065 0.091 -0.102 

5.     - 0.018 -0.028 -0.060 -0.176* 0.053 

6      - 0.012 0.065 -0.02 -0.061 

7.       - 0.889** 0.662** 0.233** 

8.        - 0.679** 0.337** 

9.         - 0.270** 

10.          - 
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Table 4. Correlation between performance, SA, and workload measures for the Control condition.  Significant correlations are indicated by asterisks (* is 

significant at the 0.05 level, and ** is significant at the 0.01 level). 

 1. Emergency 
Surface RT 

2. CPA hit rate 
(outer) 

3. Classification 
hit rate 

4. Classification 
RT 

5. ATWIT 
(before) 

6. ATWIT 
(after) 

7. NASA- TLX 8. SART  

1. - -0.038 -0.203* 0.312** 0.057 0.056 0.078 0.027 

2.  - 0.233** -0.132 0.014 -0.082 -0.222** -0.004 

3.   - -0.117 -0.100 -0.128 -0.238** -0.004 

4.    - 0.074 0.064 0.124 -0.101 

5.     - 0.866** 0.695** 0.354** 

6.      - 0.695** 0.309** 

7.       - 0.326** 

8.        - 
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3.2. Predictive Validity of SPAM and SAGAT SA Measurements  
 SAGAT accuracy was found to be significantly correlated with SPAM accuracy, r = 0.20, p < 0.05. 

SAGAT response time was found to be significantly correlated with SPAM response time, r = 0.30, p < 

0.01. Concurrent validity was therefore demonstrated, but there was only a modest amount of shared 

variance between the SAGAT and SPAM measures. 

Hierarchical multiple regressions were then conducted to examine the extent to which SPAM 

and SAGAT predicted unique variance in each performance measure over and above the variance in 

performance explained by the automation manipulation  and by the subjective SA (SART) and workload 

(ATWIT & NASA-TLX) measures.  In the first block of the hierarchical multiple regressions we entered 

automation (categorical variable), SART, NASA-TLX, ATWIT-Before and ATWIT-After.  In the second block 

of the hierarchical multiple regressions we entered either SPAM (probe response time, and accuracy and 

response time to question) or SAGAT (accuracy and response time).  Please note that separate 

hierarchical multiple regression analyses were conducted to assess the predictive validity of SPAM and 

SAGAT, because these two SA measures were administered in different scenarios (i.e., they represented 

a within-subjects variable).   

3.2.1. CPA Accuracy 

 The automation provided to some of the participants on Day 2 was designed to assist 

participants by automating the detection of CPAs that occurred within 5 km of the Ownship. If 

participants accepted the automation then CPA performance should be 100% accurate for these 

contacts and there is no variance in CPA for the SA measures to predict.  However, participants in the 

automation condition were still required to detect the CPA’s for contacts located outside the 5 km zone 

from Ownship, and thus we can assess whether SPAM and SAGAT can predict variance in this 

performance. But first, to confirm that there was no difference in the inherent difficulty of detecting 

contact CPAs that occurred within 5 km compared to those that occurred outside the 5 km zone, we 

compared the hit rates for inner and outer radius CPAs for the participants not provided automation.  

For these participants in the no-automation condition, there was no significant difference in CPA 

performance for contacts located in the inner compared to outer 5km radius (t > 1).  Thus, to allow for 

comparison between the automation and no-automation condition (i.e., to allow automation to be 

entered as a categorical predictor into the regression equation), we only included CPA performance for 

the vessels located outside the 5 km zone.  

In the first regression, CPA hit rate was entered as the criterion variable and SPAM probe 

response time, SPAM accuracy, and SPAM (question) response times were entered as the predictors in 

the second block.  The first model was found to be significant, F (5, 167) = 3.53, p < 0.01, with 

automation a significant predictor (β = -0.29, p < 0.01).  The provision of automation resulted in a poorer 

CPA hit rate (for contacts outside the 5 km radius that needed to be detected manually) than the 

provision of no-automation.  The first model explained 10% of the variance in the CPA hit rate.  The 

second model was also significant, F (8, 164) = 4.46, p < 0.01, and the significant predictors were 

automation (β = -0.27, p < 0.01) and SPAM accuracy (β = 0.19, p < 0.05).  The R2 change for the second 

model was significant (p < 0.01) and the second model explained an additional 8% of variance in CPA. 
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A second regression was conducted with CPA hit rate entered as the criterion, and SAGAT 

accuracy and response time entered as the predictors in the second block.  The first model was not 

significant (F < 1) and only accounted for 1% of the variance in CPA hit rate.  The second model was 

significant, F (7, 166) = 2.45, p < 0.05, and it accounted for an additional 8% of variance in CPA.  There 

was only one significant predictor in the second model and that was SAGAT accuracy (β = 0.28, p < 0.01). 

In summary, neither the workload measures nor SART (the subjective measure of SA), were 

significant predictors of CPA performance.  However, both SPAM and SAGAT accuracy predicted CPA 

performance above the factors entered in the first model (ATWIT, NASA, SART, and automation).  SPAM 

response time was also a significant predictor, though SAGAT response time was not.  The data indicate 

that as participants’ SA increased, as measured by SPAM and SAGAT, they detected more CPAs that 

occurred for vessels outside the 5 km radius.  Automation was a significant negative predictor of 

performance, but in the SPAM condition only. This indicates that automating CPAs for vessels located 

within the 5km radius of Ownship has a negative impact on the ability of participants to manually detect 

CPAs for vessels that occurred outside the 5 km radius, a point we return to later in this report. 

3.2.2. Contact Classification Accuracy 

Classification accuracy was entered as the criterion and SPAM probe response time, SPAM 

accuracy, and SPAM (question) response time were entered in the second model.  Both models were 

significant (F (5, 167) = 3.54, p < 0.01 and F (7, 165) = 5.34, p < 0.01, for the first and second models 

respectively).  The first model accounted for 10% of the variance in contact classification accuracy, with 

NASA-TLX a significant predictor (β = -0.29, p < 0.01).  The second model accounted for an additional 

10% of variance in contact classification accuracy, with NASA-TLX (β = -0.29, p < 0.01) and SPAM 

accuracy (β = 0.27, p < 0.01) both significant predictors. 

In the SAGAT condition, classification accuracy was entered as the criterion, and SAGAT 

response time and accuracy were entered as the predictors in the second model.  Both models were 

significant (F (5, 168) = 3.29, p < 0.01 and F (7, 166) = 7.68, p < 0.01, for the first and second models 

respectively).  The first model accounted for 9% of the variance in contact classification accuracy, with 

NASA-TLX a significant predictor (β = -0.36, p < 0.01).  The second model accounted for an additional 

16% of variance, and NASA-TLX (β = -0.24, p < 0.01), ATWIT-after (β = 0.35, p < 0.05), and SAGAT 

accuracy (β = 0.41, p < 0.01) were significant predictors. 

In summary, both SPAM and SAGAT accuracy predicted contact classification accuracy over and 

above the factors entered in the first model (ATWIT, NASA, SART, and automation).  As participants’ SA 

increased, as measured by SPAM and SAGAT, the accuracy of contact classification increased.  Subjective 

workload was also a significant predictor of contact classification accuracy; as participants’ subjective 

workload ratings increased so did their accuracy on the contact classification task.   

3.2.3. Contact Classification Response Time 

In addition to classification accuracy, we repeated the regression analyses outlined above for 

response times (correct only) to the contact classification task.  For the SPAM condition, the first model 

was almost significant, F (5, 164) = 2.09, p = 0.07, with NASA-TLX a significant predictor (β = 0.29, p < 
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0.05).  The first model accounted for 6% of the variance in contact classification response time.  The 

second model was significant, F (7, 162) = 2.35, p < 0.05, with NASA-TLX (β = 0.29, p < 0.05) and SPAM 

accuracy (β = -0.17, p < 0.05) both significant predictors.  The second model added an additional 3% of 

variance in contact classification response time.  

For the SAGAT condition, the first model was not-significant, F (5, 167) = 1.08, p = 0.37, and 

accounted for 3% of the variance in classification response time.  The second model was significant, F (7, 

165) = 2.42, p < 0.05, and accounted for an additional 6% of the variance in classification response time. 

The only significant predictor in the second model was SAGAT accuracy (β = -0.25, p < 0.01). 

 In summary, the hierarchal regression analyses conducted on the contact classification response 

time data were consistent with the analyses for the contact classification accuracy data. SPAM accuracy 

and SAGAT accuracy predicted unique variance in classification task response time over and above the 

control variables.  Participants with higher SA as measured by SPAM and SAGAT responded more quickly 

to the contact classification task (correct responses only).   

3.2.4. Emergency Surface Task Accuracy 

To examine the extent to which SPAM and SAGAT predicted accuracy on the emergency surface 

task (binary data; success versus failure) we used logistic regression. In the logistic regression, 

emergency surface accuracy was the criterion, and SPAM probe response time, SPAM accuracy, and 

SPAM (question) response time were entered as predictors in the second model (predictors in the first 

model remained the same as in the hierarchical regressions).  The first model was significant, χ2 (5, N = 

173) = 11.16, p = 0.048.  The Wald criterion indicated that only NASA-TLX was close to making a 

significant contribution to the model (p = 0.09) and the first model accounted for 9% of the variance (as 

determined by the Nagelkerke R-square).  The second model was also significant, χ2 (2, N = 173) = 15.70, 

p < 0.01, and accounted for an additional 22% variance in emergency surface accuracy. SPAM accuracy 

(p = 0.02) and SPAM response time (p = 0.02) were significant predictors. 

For the SAGAT condition, emergency surface accuracy was the criterion, and SAGAT accuracy 

and response time were entered as predictors in the second model.  The first model was not significant 

(p = 0.30). The Wald criterion indicated that only NASA-TLX was close to making a significant 

contribution to the first model (p = 0.06).  The first model accounted for 5% of the variance (as 

determined by the Nagelkerke R square).  The second model was significant, χ2 (2, N = 174) = 15.91, p < 

0.01 and accounted for an additional 17% variance in emergency surface accuracy.  SAGAT accuracy (p = 

0.001) and SAGAT response time (p = 0.03) were significant predictors. 

In summary, SPAM and SAGAT accuracy and response time predicted unique variance in the 

accuracy of the emergency surface task, over and above the SART and workload control variables.  

Participants with higher SA as measured by SPAM and SAGAT responded more accurately to the contact 

classification task.  

3.2.5. Emergency Surface Task Response Time 

We repeated the regression analyses outlined above for response time (correct only) to the 

emergency surface task.  Emergency surface response time was entered as the criterion variable, and 



 

23 
 

SPAM variables were entered as the predictors in the second model.  The first model was not significant, 

F < 1, and accounted for 3% of the variance in emergency surface response time.  The second model was 

also not significant, F < 1 and only added an additional 1% to the total variance accounted for. For the 

SAGAT condition, the first model was non-significant, F (5, 123) = 1.35, p = 0.25, and accounted for 5% of 

the variance in emergency surface response time.  The second model was also not significant, F (2, 121) 

= 2.33, p = 0.10, and accounted for an additional 4% of the variance. 

3.3. Automation and the Disruptive Effects of SPAM and SAGAT  

3.3.1 Use of Automation 

 Given tha participants were told that the CPA automation tool was 100% reliable it was 

expected that the vast majority of people would choose to accept the decisions by made the automation 

on every occasion.  However, when the use of automation was examined, only 40% of participants in the 

automation condition accepted the automated CPA decision on every occasion.  Overall, 26% of 

participants rejected one automated CPA decision, which could have been due to the participant still 

learning how the automation functioned or due to participants missing an automation alert message 

due to data limitations in allocation of attention.  However, that still left 34% of participants who 

rejected automation on multiple occasions.  The average number of automation rejections from this last 

group of participants was five.  We re-analysed all the data presented in this report with these 34% of 

participants from the automation condition excluded (including the analyses reported in the sections 

below).  The rationale here was that the effects of automation on the various measures may be more 

detectable by only including participants that consistently used the CPA decisions provided by the 

automation.  However, we essentially found the same patterns of data as that included in this report 

when we re-analysed the data in this fashion.  

3.3.2. Sensitivity of SPAM and SAGAT to Automation 

In order to examine the sensitivity of SPAM and SAGAT to automation, three independent-

samples t-tests were conducted with automation as a between subjects variable.  There was no 

significant effect of automation on SPAM response time (t < 1), SPAM accuracy (t < 1), SAGAT response 

time (t (177) = 1.07, p = 0.29), or SAGAT accuracy (t < 1).  This suggests that automation had no effect on 

participants’ objective SA as measured by either SPAM or SAGAT.  

3.3.3. Effects of SA Administration (and Automation) on Subjective Workload – ATWIT 

 A 3 condition (SPAM, SAGAT, control) x 2 automation (no automation, automation) x 2 ATWIT 

probe placement (before, after) mixed-factor ANOVA was conducted to determine whether SA 

measurement or automation increased subjective workload as measured by the ATWIT probes.  

Condition and ATWIT probe placement were within-subjects factors, and automation was a between-

subjects factor.  The dependent variable was the ATWIT subjective workload score (between one and 

ten).  The data are presented in Figure 3. 

 There was a significant main effect of condition, F(2, 352) = 4.82, p < 0.01, partial-η2 = 0.05. Post-

hoc paired-samples t-tests revealed that the SAGAT condition (M = 5.35) had significantly higher ATWIT 

subjective workload scores than the control condition (M = 5.11; t(178) = 3.18, p < 0.01).  There was no 
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significant difference between SPAM (M = 5.24) and either the SAGAT condition t(178) = -1.35, p = 0.18, 

or the control condition, t(178) = 1.67, p = 0.10.  ATWIT probe placement had a main effect on ATWIT 

workload, F(1, 176) = 47.72, p < 0.01, partial-η2 = 0.21; workload was higher for probes administered 

after SA questions (M = 5.36) than for those administrated before SA questions (M = 5.11).  There was 

no main effect of automation, however there was a trend towards automation reducing subjective 

workload (automation M = 5.04, no automation M = 5.43), F(1, 176) = 2.81, p = 0.10, partial-η2 = 0.02. 

The aforementioned main effects of condition and ATWIT probe placement were qualified by a 

significant interaction between condition and probe placement, F(2, 352) = 5.23, p < 0.01, partial-η2 = 

0.03.  As illustrated in Figure 3, the increase in ATWIT subjective workload scores in the SAGAT condition 

was most pronounced for the probes delivered 15 seconds after the SAGAT freeze occurred, which is 

exactly what would be expected if SAGAT administration was responsible for the subjective workload 

increase. This suggests that SAGAT has the potential to be disruptive by increasing operators’ subjective 

workload.  There was no conclusive evidence this was the case for SPAM, although the p value for the 

SPAM vs. control post-hoc comparison was trending toward significance (p = 0.10).   

 

 

 

Figure 3.  ATWIT subjective workload score for the three within-subjects conditions (SPAM, SAGAT, and Control). 

The left graph shows ATWIT scores for the automation condition, and the right graph shows ATWIT scores for the 

no automation condition.  ATWIT scores are separated into ATWIT probes that occurred before an SA question, 

and AWTIT probes that occurred after.  Error bars represent the standard error of the mean. 

 

3.5.2. Effects of SA Administration (and Automation) on Subjective Workload – NASA-TLX 

 A 3 condition (SPAM, SAGAT, control) x 2 automation (no automation, automation) mixed factor 

ANOVA was conducted to determine the extent to which automation and the SAGAT/SPAM 

administration increased subjective workload as measured by NASA-TLX.  Condition was the within-
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subjects factor, and automation was the between-subjects factor.  The dependent variable was the 

NASA-TLX, where higher NASA-TLX scores indicated higher subjective workload. 

 As illustrated in Figure 4, there was a significant main effect of condition on the NASA-TLX (F(2, 

348) = 6.47, p < 0.01, partial-η2 = 0.04).  Post-hoc paired-samples t-tests revealed that the SAGAT 

condition (M = 10.83) had significantly higher subjective workload than the control condition (M = 10.22; 

t(176) = 3.46, p < 0.01), and the SPAM condition (M = 10.50; t(176) = -2.14, p < 0.05).  There was no 

significant difference between the control and SPAM conditions, t(175) = 1.38, p = 0.17.  There was no 

main effect of automation on NASA-TLX workload, F(1, 174) = 1.49, p = 0.22, partial-η2 = 0.01. 

Thus, entirely consistent with the ATWIT data, the NASA-TLX subjective workload scores suggest 

that SAGAT has the potential to be disruptive by increasing operator subjective workload. There was no 

conclusive evidence that this was the case for SPAM. 

 

 

Figure 4.  NASA-TLX for the three within-subjects conditions (SPAM, SAGAT, and Control), separated into 

automation and no-automation conditions.  Error bars represent the standard error of the mean. 

 

3.5.3. Effects of SA Administration (and Automation) on CPA hit rate (outer 5km) 

 A 3 condition (SPAM, SAGAT, control) x 2 automation (no automation, automation) mixed factor 

ANOVA was conducted on the extent to which automation and SAGAT/SPAM administration impacted 

task performance as measured by CPA hit rate (for manually detected  CPAs occurring outside the 5 km 

radius).  Condition was the within-subjects factor, and automation was the between-subjects factor.  

The dependent variable was the CPA hit rate. 

 There was no significant effect of condition on CPA hit rate (F < 1) or automation, however there 

was a trending main effect of automation (F(1, 178) = 3.34, p = 0.07, partial-η2 = 0.02), where 

automation led to a poorer CPA hit rate (automation M = 0.53, no-automation M = 0.58).  This was 

qualified by an interaction between condition and automation (F(2, 356) = 3.57, p < 0.05, partial-η2 = 

0.02).  Figure 5 shows that this interaction was due to the CPA hit rate being much lower in the 

automation condition, compared to the no automation condition, when SPAM was being administered 
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during the scenario. In contrast, the effect of automation on CPA performance was smaller for the 

SAGAT and control conditions.  This result is consistent with outcomes from the hierarchical multiple  

regression analyses where automaton was a significant negative predictor of CPA performance for 

contacts located outside the Ownship’s 5 km radius under conditions were SPAM was being 

administered. Specifically, under SPAM conditions, , the automation of CPAs for contacts located inside 

Ownship’s 5 km radius led to 5% poorer manual CPA performance for contacts located outside the 

ownship’s 5 km radius when compared to the no automation condition in which participants were 

charged with manually detecting all CPAs, regardless of their location.    

 

 

Figure 5.  CPA hit rate (between 0 and 1) for the three within-subjects conditions (SPAM, SAGAT, and control), 

separated into automation and no-automation conditions.  Error bars represent the standard error of the mean. 

 

3.5.4. Effects of SA Administration (and Automation) on Contact Classification Accuracy and 

Response Time 

A 3 condition (SPAM, SAGAT, control) x 2 automation (no automation, automation) mixed factor 

ANOVA was conducted to determine the extent to which automation and SAGAT/SPAM administration 

impacted on contact classification.  Condition was the within-subjects factor, and automation was the 

between-subjects factor.  This analysis was conducted with classification response time and 

classification hit rate as the dependent variables. Figure 6 displays the data.  There was no main effect of 

condition (F(2, 356) = 1.20, p = 0.30, partial-η2 = 0.01) or automation (F < 1) (and no interaction).  There 

was also no effect of condition (F < 1) or automation (F < 1) on classification response time (and no 

interaction).   
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Figure 6.  Contact classification performance for three within-subjects conditions (SPAM, SAGAT, and Control), 

separated into automation and no-automation.  The left figure shows contact classification hit rate (0 – 1.0), and 

the right figure shows response time (seconds).  Error bars represent the standard error of the mean. 

 

3.5.5. Effects of SA Administration (and Automation) on Emergency Surface Task Accuracy 

and Response Time. 

 A 3 condition (SPAM, SAGAT, control) x 2 automation (no automation, automation) mixed factor 

ANOVA was conducted to determine the extent to which automation and SAGAT/SPAM administration 

impacted emergency surface task performance. Condition was the within-subjects factor, and 

automation was the between-subjects factor.  This analysis was conducted with emergency surface 

response time and then emergency surface accuracy as the dependent variables. There was no main 

effect of condition or of automation on emergency surface accuracy (and no interaction, all F < 1).  

There was also no main effect of either condition (F(2, 168) = 1.78, p = 0.17, partial-η2 = 0.02) or 

automation (F < 1) on emergency surface response time (and no interaction).  

 

Figure 7.  Means for all three within-subjects conditions (SPAM, SAGAT, and Control), separated into automation 

and no-automation.  The left figure shows emergency surface accuracy (0 or 1), and the right figure shows 

response time (seconds).  Error bars represent the standard error of the mean.  
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4. Discussion and Conclusions 
 The first objective of the current project was to complete a literature review of the benefits and 

risks that task automation poses for SA and performance for tasks where individuals monitor and 

control complex dynamic displays.  This report was delivered to AOARD in April 2012.  The second phase 

of the project, on which this current report is based, also makes a significant contribution to the DSTO 

long term work program that aims to provide design advice into future submarine projects.  Specifically, 

the current research builds directly on previous work (Loft & Morrell, 2011) by examining SA 

measurement and the impact of task automation in higher fidelity simulated submarine track 

management.  The data presented here clearly indicate that both SPAM and SAGAT could predict 

significant variance in task performance.  Crucially, the evidence suggests that the predictive validity of 

SPAM was comparable to the predictive validity of SAGAT.  It was important that SPAM and SAGAT both 

predicted task performance variance over and above the subjective SA measure (SART) because there is 

no doubt that SART would be easier to prepare and administer in applied naval settings.  Another crucial 

finding of the current research was that SAGAT administration, but not SPAM administration, increased 

participant ratings of subjective workload (also see Pierce, 2012). Thus, the predictive validity provided 

by SAGAT came at the cost of increased participant subjective workload ratings.  If SAGAT disrupts the 

operator from the tasks at hand, this would limit its use in the submarine control room.  Assessing SA in 

real-time using SPAM may prove to be the most advantageous in a practical sense for submarine track 

management; SPAM administration does not require the task operation to be paused, and also better 

simulates the kinds of command team interactions typical of operational settings.   

 

 The finding that task automation impaired other non-automated elements of the performance 

tasks is consistent with the findings of our literature review that automation can disengage the operator 

from the task and subsequently negatively impact decision making. More specifically, the poorer task 

performance when automated assistance was provided could be due to some form of out-of-the-loop 

performance deficit (Endsley & Kiris, 1995).  Out-of-the-loop performance deficits generally occur when 

the operator is faced with a failure in the automation, or some other abnormal system occurrence.  In 

the current study, the automation did not fail, but CPA events requiring manual detection were less 

frequent with the provision of automation. By introducing automation, we further reduced the number 

of CPAs that participants had to detect manually by half. It is possible that participants in the 

automation condition allocated less attention to the CPA task. This interpretation is consistent with 

other research showing that participants returning to manual functioning from high level automation 

take a longer time to recover compared to individuals operating under lower levels of automation 

(Endsley & Kiris, 1995; Kaber, Omal, & Endsley, 2000; Manzey, Reichenbach, & Onnasch, 2012) – the 

greater the degree of automation, the harder it is to return to manual functioning.   

 

Related to this, another explanation for the poor automation outcomes in the current study is 

that we ‘fractionized’ the CPA task. Vortac and Manning (1994) demonstrated that automation was less 

successful when it was only applied to a portion of a complex task.  They argued that automation will 

improve performance and decrease workload only if it reduces the overall number of task modules that 

a participant has to complete.  Given that CPA automation was only applied to a portion of the total 
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CPAs, it could be argued that this particular type of automation fractionated the task.  However, 

although automating CPAs within a specific region of space did create an additional rule that the 

participants needed to remember, it did not add an extra task by breaking up a more complex one.  This 

could explain why participants were poorer on the CPA task when they were assigned to the automation 

condition, but not worse on any other performance or workload measures.  While the obvious answer 

to this issue would be to automate the entire CPA task, this would likely increase the out-of-the-loop 

performance problems even further (Endsley & Kiris, 1995). 

The fact that not all participants used the automation, despite it being 100% reliable, is 

indicative that some participants may have been protecting themselves from these pitfalls of 

automation. Many factors affect whether an individual chooses to use the automated assistance 

provided in a task, and not just the reliability of the automation itself.  Individual dispositional factors 

such as propensity to trust and extraversion have been linked to automation usage (Lee & Moray, 1992, 

1994; Paul, Rovira, & Lee, 2011).  With the current data there was a correlation between being an 

automation rejecter (two or more rejections) and gender, where females were more likely than males to 

reject the automation (r = 0.133, p < 0.05).  It would certainly be of value to conduct future studies 

looking at individual differences in more detail.  Several studies have also shown that trust in 

automation is linked with perceived reliability across time (Adams, 2007; Cassidy, 2009; Parasuraman, 

Molloy, & Singh, 1993).  The participants in this study had two half hour practice scenarios before 

commencing the experimental conditions.  It could be that more ‘proof’ of the reliability of CPA 

automation was required to convince some of the participants, and future research could provide this 

during training.  This is not to say that being hesitant about trusting automation is always a negative 

trait.  When an individual’s trust in automation exceeds the reliability and robustness of the automation 

then it becomes problematic (Parasuraman et al., 1993; Parasuraman, Sheridan, & Wickens, 2008).   

One must take care generalising the current findings to real naval operations given the use of 

the medium fidelity task and the student participant sample.  This notwithstanding, we have taken a 

crucial further step towards demonstrating that SPAM can potentially be used to assess operator SA in 

naval submarine track management. In future research we will replicate these findings using naval 

personnel in simulations of Collins Class Submarine combat systems.  Gaining an unobtrusive, real-time 

measure of SA is a priority for Defence researchers attempting to design new information handling 

systems and evaluate the utility of off-the-shelf technologies.  Research in the submarine context is to 

date limited and the unique requirements of the submarine, together with the specific command team 

procedures in the submarine control room, need to be better understood so that emerging technology 

might be exploited effectively.  It is expected, for example, that the volume and variety of sensor data 

may increase dramatically with technological change in coming years.  How the data are translated and 

communicated to the human needs to be carefully managed, filtered, and processed to ensure peak 

operational performance and safety.  The capability of the submarine will depend, as it always has, on 

the human achieving SA appropriate to the task at hand.  Interface design must begin with identification 

of the dynamic information needs or SA requirements of the submarine operator.  
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