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Abstract—Cyclops (cyclic-operations) Tensor Framework
(CTF) 1 is a distributed library for tensor contractions. CTF
aims to scale high-dimensional tensor contractions such as those
required in the Coupled Cluster (CC) electronic structure method
to massively-parallel supercomputers. The framework preserves
tensor structure by subdividing tensors cyclically, producing a
regular parallel decomposition. An internal virtualization layer
provides completely general mapping support while maintaining
ideal load balance. The mapping framework decides on the best
mapping for each tensor contraction at run-time via explicit
calculations of memory usage and communication volume. CTF
employs a general redistribution kernel, which transposes tensors
of any dimension between arbitrary distributed layouts, yet
touches each piece of data only once. Sequential symmetric
contractions are reduced to matrix multiplication calls via ten-
sor index transpositions and partial unpacking. The user-level
interface elegantly expresses arbitrary-dimensional generalized
tensor contractions in the form of a domain specific language.
We demonstrate performance of CC with single and double
excitations on 8192 nodes of Blue Gene/Q and show that
CTF outperforms NWChem on Cray XE6 supercomputers for
benchmarked systems.

I. INTRODUCTION

Quantum chemistry is the field of science focused on the
application of quantum mechanics to the study of chemical
problems. While far from the only tool used to study such
problems, quantum chemistry plays a role in elucidating the
design of new materials for energy capture and storage, the
mechanisms of combustion and atmospheric processes, and the
interaction of molecules with many kinds of radiation, which is
fundamental to probing many forms of matter at the atomistic
scale. A major barrier to the application of all quantum chem-
istry methods is their steep computational cost. As a result,
high-performance computers have been used for computational
quantum chemistry for more than 40 years and enormous effort
has been put into designing algorithms and developing soft-
ware that enables the efficient use of such resources. Among
the most common methods of quantum chemistry are quantum
many-body (QMB) methods, which attempt to explicitly solve
the Schrödinger equation using a variety of ansätze. The

1Software and documentation publicly available under a BSD license: http:
//www.eecs.berkeley.edu/∼solomon/cyclopstf/index.html

explicit treatment of electrons in molecules leads to a steep
computational cost, which is nonetheless often of polynomial
complexity, but with the benefit of systematic improvement
via a series of related ansätze. The Coupled Cluster (CC)
family of methods [1], [2] is currently the most popular QMB
method in chemistry due to its high accuracy, polynomial
time and space complexity, and systematic improvability. This
paper focuses on the fundamental kernels of Coupled Cluster
– tensor contractions – and demonstrates a completely new
algorithmic approach that has the potential to enable these
applications on state-of-the-art architectures while achieving a
high degree of efficiency in computation, communication and
storage.

We present a general parallel decomposition of tensors that
efficiently decomposes packed tensor data with any partial
or full tensor symmetry of any dimension. Our mapping
algorithms rearrange the tensor layouts to suit any given tensor
contraction. This tensor decomposition needs minimal padding
and has a regular decomposition that allows the algorithm to
be mapped to a physical network topology and executed with
no load imbalance. Since this decomposition is completely
regular, we automatically search over many possible mappings
and decompositions at run-time, explicitly calculating the
memory usage, communication cost, and padding they require
and selecting the best one. Our mapping framework considers
mappings that unpack or replicate the tensor data, which yields
theoretically optimal communication cost.

We implemented these mapping algorithms in Cyclops Ten-
sor Framework (CTF), a distributed tensor contraction library.
We expose the generality of this framework via an elegant
interface that closely corresponds to Einstein notation, capable
of performing arbitrary dimensional contractions on symmetric
tensors. This interface is a domain specific language well-
suited for theoretical chemists. To demonstrate correctness and
performance we implemented a Coupled Cluster method with
single and double excitations using this infrastructure.

The contributions of this paper are
• a communication-optimal tensor contraction algorithm
• a cyclic tensor decomposition for symmetric tensors
• an automatic topology-aware mapping framework



• a load-balanced virtualization scheme
• a scalable implementation of Coupled Cluster

In this paper, we will start by giving a brief overview of
Coupled Cluster, then detail related work. We define the
Coupled Cluster Singles and Doubles (CCSD) equations that
are realized by our implementation. After presenting this
theory, we will discuss the algorithm we use to parallelize
the CCSD tensor contractions. The implementation of the
algorithm, Cyclops Tensor Framework, will be detailed. We
will present Blue Gene/Q and Cray results for CCSD running
on top of CTF, which show good weak scaling and outperform
NWChem [3].

II. BACKGROUND

Coupled Cluster (CC) is a method for computing an approx-
imate solution to the time-independent Schrödinger equation
of the form

H|Ψ〉 = E|Ψ〉,

where H is the Hamiltonian, E is the energy, and Ψ is
the wave-function. In CC, the approximate wave-function is
defined in exponential form

|Ψ〉 = eT|Φ0〉

where |Φ0〉 is a one-electron reference wave-function, usually
a Hartree-Fock Slater determinant. The T operator in CC has
the form

T = T1 + T2 + T3 . . .

Tn =
∑

a1...an
i1...in

ta1...an
i1...in

a†a1
. . . a†an

ain . . . ai1

where Tn ≡ {ta1...an
i1...in

} is a 2nth rank (dimension) 2 tensor
representing the set of amplitudes for all possible excitations
of n electrons from occupied orbitals in the reference to virtual
(unoccupied) orbitals. Each Tn is computed via a series of
tensor contractions on tensors of rank r ∈ {2, 4, . . . 2n + 2}.
The specific tensor contractions depend on the variation of
CC and can be derived by various algebraic or diagrammatic
methods [4]. Using the truncated operator T = T1 + T2

gives the method commonly known as CCSD (Coupled Cluster
Singles and Doubles) [5]. Removal of T1 gives the basic CCD
method, while further addition of T3 gives the CCSDT (T
- triples) method [6], [7] and T4 gives the CCSDTQ (Q -
quadruples) method [8].

Computationally, tensor contractions can be reduced to
matrix multiplication via index reordering (transposes). This
approach is efficient and commonly used for contractions
on fully dense tensors. However, the tensors which arise in
CC usually have high-dimensional structure. In particular,
permutational symmetry or skew-symmetry (anti-symmetry)
among a set of indices implies that any reordering of the index
set within the tensor will give the same value (with a potential
sign change for anti-symmetry). For example, elements of the
2-particle Hamiltonian vabij are skew-symmetric in a, b and in

2We will use the term dimension to refer to tensor rank or order.

i, j. This permutation symmetry arises from the requirement
that the wave-function for fermions (bosons) be antisymmetric
(symmetric) under the interchange of particles. So, we have

vabij = −vbaij = vbaji = −vabji

where the unique part of the tensor needs to be stored is va<b
i<j .

The coupled cluster amplitudes Tn are also skew-symmetric
for some spins, and can have symmetries among groups of n
indices.

In general, permutational symmetry of n indices implies that
only one of every n! values in the full tensor is unique. This
implies that it suffices to store only 1/n! of the tensor data. In
higher-order methods such as CCSDT and CCSDTQ, which
have 3-dimensional and 4-dimensional symmetries as well as
multiple symmetric index groups in some tensors, the storage
reduction provided by exploiting symmetry is significant (4-
36 times less for various tensors in CCSDT and 16-576 times
less for CCSDTQ). Further, any symmetry preserved within
a contraction (e.g. the output C contains indices that were
symmetric in operands A or B), reduces the computational
cost relative to a non-symmetric contraction.

The challenge in exploiting high-dimensional symmetry is
that the contractions can no longer be trivially reduced to dense
matrix multiplication. Further, since the number of possible as
well as encountered (partial) permutational symmetries grows
factorially with tensor dimension, it is difficult to generalize
and tiresome to specialize. As a result, most implementations
exploit tensor symmetry to a limited extent and perform
redundant work and communication by unpacking or padding
tensors.

III. PREVIOUS WORK

We provide an overview of existing applications and known
algorithms for distributed memory CC and tensor contractions.
We also discuss parallel numerical linear algebra algorithms,
in particular 2.5D algorithms [9], which will serve as a key
motivation for the design of Cyclops Tensor Framework.

A. NWChem and TCE

NWChem [3] is a computational chemistry software pack-
age developed for massively parallel systems. NWChem in-
cludes implementations of CC and tensor contractions, which
are of interest in our analysis. We will detail the paralleliza-
tion scheme used inside NWChem and use it as a basis of
comparison for the Cyclops Tensor Framework design.

NWChem uses the Tensor Contraction Engine (TCE) [10],
[11], [12], to automatically generate sequences of tensor
contractions based on a diagrammatic representation of CC
schemes. TCE attempts to form the most efficient sequence of
contractions while minimizing memory usage of intermediates
(computed tensors that are neither inputs nor outputs). We note
that TCE or a similar framework can function with any dis-
tributed library which actually executes the contractions. Thus,
TCE can be combined with Cyclops Tensor Framework since
they are largely orthogonal components. However, the tuning
decisions done by such a contraction-generation layer should



be coupled with performance and memory usage models of
the underlying contraction framework. In addition, one of the
present authors is working on a new, more flexible generator
for CC contractions which could be more tightly coupled to
CTF.

To parallelize and execute each individual contraction,
NWChem employs the Global Arrays (GA) framework [13].
Global Arrays is a partitioned global-address space model
(PGAS) and allows processors to access (fetch) data which
may be laid out physically on a different processor. Data
movement within GA is performed via one-sided communica-
tion, thereby avoiding synchronization among communicating
nodes, while fetching distributed data on-demand. NWChem
performs different block tensor sub-contractions on all pro-
cessors using GA as the underlying communication layer to
satisfy dependencies and obtain the correct blocks. Since this
dynamically scheduled scheme is not load balanced, NWChem
uses dynamic load balancing among the processors. Further,
since distribution is hidden by GA, the communication pattern
is irregular and possibly unbalanced. Cyclops Tensor Frame-
work attempts to eliminate the scalability bottlenecks of load
imbalance and irregular communication, by using a regular
decomposition which employs a structured communication
pattern well-suited for torus network architectures.

B. ACES III and SIAL

The ACES III package uses the SIAL framework [14], [15]
for distributed memory tensor contractions in coupled-cluster
theory. Like the NWChem TCE, SIAL uses tiling to extract
parallelism from each tensor contraction. However, SIAL has
a different runtime approach that does not require active-
messages, but rather uses intermittent polling (between tile
contractions) to respond to communication requests, so SIAL
can be implemented using MPI two-sided communication. To-
date, ACES III has not implemented arbitrary-order tensor
contractions or methods beyond CCSD(T), so no direct com-
parison can be made for such cases.

C. MRCC

MRCC [16] is a program suite which performs arbitrary-
order calculations for a variety of CC and related methods.
Parallelism is enabled to a limited extent by either using a
multi-threaded BLAS library or by parallel MPI features of
the program. However, the scaling performance is severely
limited due to highly unordered access of the data and exces-
sive inter-node communication. MRCC is currently the only
tenable solution for performing any type of CC calculation
beyond CCSDTQ, and the lack of scalability presents a serious
bottleneck in many calculations.

MRCC uses a string-based approach to tensor contractions
which originated in the development of Full CI codes. In
this method, the tensors are stored using a fully-packed
representation, but must be partially unpacked in order for
tensor contractions to be performed. The indices of the tensors
are then represented by index “strings” that are pre-generated
and then looped over to form the final product. The innermost

loop contains a small matrix-vector multiply operation (the
dimensions of this operation are necessarily small, and become
smaller with increasing level of excitation as this loop involves
only a small number of the total indices). The structured
communication, storage, and contractions algorithms that we
propose in the Cyclops Tensor Framework could then present
a significant improvement in both raw efficiency and paral-
lelization of tensor contractions relative to MRCC.

D. Lower bounds on communication

Since tensor contractions are closely related to matrix
multiplication (MM), it is of much interest to consider the
best known distributed algorithms for MM. Ideally, the per-
formance achieved by any given tensor contraction should
approach the efficiency of matrix multiplication, and generally
the latter is an upper-bound. In particular, we would like to
minimize the communication (number of words of data moved
across the network by any given processor) done to contract
tensors. Since any operation within a tensor contraction maps
to three tensors the same lower bound argument that works
for matrix multiplication applies to tensor contractions.

Given a matrix multiplication or contraction that requires
F/p multiplications on p processors, with M words of mem-
ory on each processor, it is known that some processor must
communicate at least

W = Ω

(
F

p ·
√
M
−M

)
(1)

words of data [17], [18], [19]. If the tensor or matrices are of
size S = Θ(M · p), the communication lower bound is

W2D = Ω

(
F√
p · S

− S

p

)
.

We label this lower bound as W2D because it is achieved
by matrix multiplication algorithms that are most naturally
described on a 2D processor grid. In particular, blocked
Cannon’s algorithm [20] and SUMMA [21], [22] achieve
this communication bandwidth lower bound. We can also see
that, assuming the initial data is not replicated and load-
balanced, there is an absolute (memory-size insensitive) lower-
bound [23], [24],

W3D = Ω

(
F

p2/3 ·
√
S
− S

p

)
This communication lower-bound can be achieved by per-
forming 3D blocking on the computational graph rather than
simply distributing the matrices. An old algorithm known
as 3D matrix multiplication has been shown to achieve this
communication cost [25], [21], [23], [26].

However, in practice, most applications run with some
bounded amount of extra available memory. 2.5D algorithms
minimize communication cost for any amount of physical
memory. In particular, if all operand tensors or matrices are of
size S = Θ(M · p/c), where c ∈ [1, p1/3], the communication
lower bound is

W2.5D = Ω

(
F√

p · c · S
− S

p

)



Using adaptive replication this communication lower-bound
can be achieved for matrix multiplication as well as other
dense linear algebra kernels via the algorithms presented in [9].
Its also important to note that 2.5D algorithms can map
very efficiently to torus network architectures as demonstrated
in [27]. We demonstrate an algorithm and an implementation
of a tensor contraction framework that does no more commu-
nication for each contraction than these lower bounds.

IV. ARBITRARY-ORDER COUPLED CLUSTER

Coupled Cluster is an iterative process, where in each
iteration, the new set of amplitudes T′ are computed from
the amplitudes from the previous iteration T and from the
Hamiltonian H = F + V. The diagonal elements of the one-
particle Hamiltonian F are separated out as a factor D, giving
a final schematic form similar to a standard Jacobi iteration
(although V still contains diagonal elements),

T′ = D−1

[
(F′ + V)(1 + T +

1

2
T2 +

1

6
T3 +

1

24
T4)

]
.

The expansion of the exponential operator is complete at
fourth order due to the fact that the Hamiltonian includes
only one- and two-particle parts. The specific tensors which
compose F′, V, and T are

F′ = (1− δab)fab + fai + f ia + (1− δij)f ij ,
V = vabcd + vabci + vaibc + vaibj + vabij +

vijab + vaijk + vijak + vijkl,

T = T1 + T2 + · · ·+ Tn

= tai + tabij + · · ·+ ta1...an
i1...in

,

where the abcdef . . . indices refer to virtual orbitals while
ijklmn . . . refer to occupied orbitals. The contractions which
must be done can be derived using either algebraic or dia-
grammatic techniques, however the result is a sequence of
contractions such as

zai =
1

2

∑
efm

vamef t
ef
im, or

zabij =
1

4

∑
efmn

vmn
ef tefij t

ab
mn.

Contractions which involve multiple T tensors are factored
into a sequence of contractions involving one or more interme-
diates, such that each contraction is a binary tensor operation.

The equations, as written above, are termed the “spin-
orbital” representation in that the indices are allowed to run
over orbitals of either α or β spin, while only amplitudes
with certain combinations of spin are technically allowed.
Some programs use this representation directly, checking each
amplitude or block of amplitudes individually to determine if
it is allowed (and hence should be stored and operated upon).
However, an alternative approach is the use the spin-integrated
equations where each index is explicitly spin-α, abij . . . , or

spin-β, āb̄̄ij̄ . . . . For example, the second contraction above
becomes,

zabij =
1

4

∑
efmn

vmn
ef tefij t

ab
mn,

zāb̄īj̄ =
1

4

∑
ēf̄m̄n̄

vm̄n̄
ēf̄ tēf̄

īj̄
tāb̄m̄n̄,

zab̄ij̄ =
∑
ef̄mn̄

vmn̄
ef̄ tef̄

ij̄
tab̄mn̄.

While the number of contractions is increased, the total
amount of data which must be stored and contracted is
reduced compared to a naı̈ve implementation of the spin-
orbital method, and without the overhead of explicit spin-
checking.

The amplitudes (and f and v integrals) have implicit per-
mutational symmetry. Indices which appear together (meaning
either both upper or lower indices of a tensor) and which have
the same spin and occupancy may be interchanged to produce
an overall minus sign. In practice this allows the amplitudes
to be stored using the symmetric packing facilities built into
CTF.

A. Interface for Tensor Operations

Cyclops Tensor Framework provides an intuitive domain
specific language for performing tensor contractions and other
tensor operations. This interface is implemented using operator
overloading and templating in C++, with the end result that
tensor contractions can be programmed in the exact same
syntax as they are defined algebraically,

zab̄ij̄ =
∑
ef̄mn̄

vmn̄
ef̄ tef̄

ij̄
tab̄mn̄

⇓

W[“MnIj”] = V[“MnEf”] ∗ T[“EfIj”];

Z[“AbIj”] = W[“MnIj”] ∗ T[“AbMn”];

This interface naturally supports all types of tensor operations,
not just contraction. The number and placement of the unique
indices implicitly defines the operation or operations which
are to be performed. For example, the repetition of an index
within an input tensor which does not appear in the output
tensor defines a trace over that index. Similarly, an index
which appears in all three tensors defines a type of “weighting”
operation while an index which appears multiple times in the
input and once in the output will operate on diagonal or semi-
diagonal elements of the input only. The weighting operation
deserves special attention as it is required in CC to produce
the new amplitudes T′ from Z = HeT,

T′ = D−1Z

⇓

T[“AbIj”] = Dinv[“AbIj”] ∗ Z[“AbIj”];



Additionally, Equation-of-Motion CC (EOM-CC) and many
other related techniques have terms that require computation
of only the diagonal elements of a tensor contraction or require
replication of the result along one or more dimensions, both of
which can be expressed easily and succinctly in this interface.
For example, the diagonal tensor elements used in EOMIP-
CCSD include terms such as,

H̄aij̄
aij̄

← W ij̄
ij̄

and

H̄aij̄
aij̄

←
∑
ē

vij̄aēt
aē
ij̄ ,

which can be expressed in CTF as,

Hbar[“AIj”] + = W[“IjIj”];

Hbar[“AIj”] + = V[“IjAe”] ∗ T[“AeIj”];

B. Application to CCSD

The CCSD model, where T = T1 + T2, is one of the
most widely used coupled cluster methods as it provides a
good compromise between efficiency and accuracy, and is
fairly straightforward to derive and implement. In particular,
CCSD is only slightly more computationally expensive than
the simpler CCD method [28] but provides greater accuracy,
especially for molecular properties such as the gradient and
those derived from response theory. Formally, CCD and CCSD
have the same leading-order cost: O(n2

on
4
v), where no and nv

are the number of occupied and virtual orbitals, respectively.
The spin-orbital equations for CCSD are relatively simple,

and are, in factorized form,

τabij = tabij +
1

2
P a
b P

i
j t

a
i t

b
j ,

F̃m
e = fme +

∑
fn

vmn
ef tfn,

F̃ a
e = (1− δae)fae −

∑
m

F̃m
e t

a
m −

1

2

∑
mnf

vmn
ef tafmn

+
∑
fn

vanef t
f
n,

F̃m
i = (1− δmi)f

m
i +

∑
e

F̃m
e t

e
i +

1

2

∑
nef

vmn
ef tefin

+
∑
fn

vmn
if tfn,

W̃mn
ei = vmn

ei +
∑
f

vmn
ef tfi ,

W̃mn
ij = vmn

ij + P i
j

∑
e

vmn
ie tej +

1

2

∑
ef

vmn
ef τefij ,

W̃ am
ie = vamie −

∑
n

W̃mn
ei tan +

∑
f

vma
ef t

f
i

+
1

2

∑
nf

vmn
ef tafin ,

W̃ am
ij = vamij + P i

j

∑
e

vamie tej +
1

2

∑
ef

vamef τ
ef
ij ,

zai = fai −
∑
m

F̃m
i t

a
m +

∑
e

fae t
e
i +

∑
em

vma
ei t

e
m

+
∑
em

vaeimF̃
m
e +

1

2

∑
efm

vamef τ
ef
im −

1

2

∑
emn

W̃mn
ei teamn,

zabij = vabij + P i
j

∑
e

vabie t
e
j + P a

b P
i
j

∑
me

W̃ am
ie tebmj

− P a
b

∑
m

W̃ am
ij tbm + P a

b

∑
e

F̃ a
e t

eb
ij − P i

j

∑
m

F̃m
i t

ab
mj

+
1

2

∑
ef

vabefτ
ef
ij +

1

2

∑
mn

W̃mn
ij τabmn,

tai = (Da
i )
−1
zai ,

tabij =
(
Dab

ij

)−1
zabij ,

where the permutation operator P a
b [. . . a . . . b . . . ] =

[. . . a . . . b . . . ]− [. . . b . . . a . . . ].
Recasting these equations in terms of spin-integrated quanti-

ties adds additional contractions. Most terms in the expression
for zai and zabij are unchanged except for the addition of
spin labels and a change in overall factor. However, terms
which contain permutation operators become more compli-
cated, especially term 3 of zabij (and the equation for its
intermediate). The symmetry properties of the amplitudes
allow for some simplification, though, as the explicit permu-
tation operators can be implied by the symmetry relations in
the specification of the output tensor. For example, if two
antisymmetric matrices are multiplied together and the result
is then antisymmetrized, the result, in terms of fully packed
storage requires six separate operations. All of these operations
can be represented by a single contraction call in the CTF
interface if the output tensor is specified to have antisymmetry,

C[ab] = P a
b A[ac]×B[cb],

C[a < b] =
∑
c

{
A[a < c]B[c < b]−A[a < c]B[b < c]

−A[c < a]B[c < b]−A[b < c]B[c < a]

+A[b < c]B[a < c] +A[c < b]B[c < a]
}

⇓
/* A, B, and C are antisymmetric */
C[“ab”] = A[“ac”] ∗ B[“cb”];

An interface layer to automatically produce the necessary spin-
integrated contractions has also been implemented, so that the
code can be written entirely in terms of the simple spin-orbital
quantities. With these simplifications, the total amount of code
to perform a single CCSD iteration is only 41 lines.

C. Higher-order Coupled Cluster

Higher order CC methods (CCSDT, CCSDTQ, CCSDTQP,
etc.) are theoretically very similar to CCD and CCSD, how-
ever, several important computational distinctions arise. First,
as the order increases, the highest set of Tn amplitudes grows
relatively much larger than the Hamiltonian elements and the



other T amplitudes. The computation time in terms of FLOPS
is dominated by a handful of contractions involving this largest
amplitude set. However, the sheer number of small contrac-
tions which must be done in addition can instead dominate
the wall time if they are not performed as efficiently or do
not parallelize as well. Thus, the efficiency of small tensor
contractions and strong-scalability of the parallel algorithm
become relatively much more important for higher order CC.

Second, since the total memory and/or disk space available
for the computation is effectively constant, high orders of CC
necessitate the use of a smaller number of occupied and virtual
orbitals. This shrinks the length of each tensor dimension,
threatening vectorization and increasing indexing overhead.
CTF currently uses a sequential contraction kernel which uses
a cyclic blocking with a fixed tile size to avoid vectorization
problems for packed tensors. While extremely short edge
lengths could still cause excessive overhead in this scheme
(due to the padding needed to fill out the fixed-length tiles),
good performance should be retained in most circumstances.

V. TENSOR DECOMPOSITION AND CONTRACTION

We define a tensor contraction between A ∈ RI1×...Ik , B ∈
RI1×...Il into C ∈ RI1×...Im as

ci1...im =
∑

j1...jk+l−m

ai1...im−lj1...jk+l−m
·bj1...jk+l−mim−l+1...im .

Tensor contractions reduce to matrix multiplication via index
folding. We define a folding

|i1 . . . in| = {I1 × . . . In} →

[
1 :

n∏
i=1

Ii

]
,

for instance |ijk| = {i, j, k} → i + I1 · j + I1 · I2 · k. Any
contraction can be folded into matrix multiplication in the
following manner,

c|i1...im−l|,|im−l+1...im| =∑
|j1...jk+l−m|

a|i1...im−l|,|j1...jk+l−m| · b|j1...jk+l−m|,|im−l+1...im|.

So here A, B, and C can be treated simply as matrices, albeit,
in general, the index ordering may have to be transposed.
Tensors can also have symmetry, we denote antisymmetric
(skew-symmetric) index groups as

t[i1...ij ...ik...in] = −t[i1...ik...ij ...in]

for any j, k ∈ [1, n]. For the purpose of this analysis, we will
only treat antisymmetric tensors, for symmetric matrices the
non-zero diagonals require more special consideration. Using
the notation I⊗n = I × · · ·×

(n−1)-times
I , we denote a packed (folded)

antisymmetric layout as a map from an index to a interval of
size binomial in the tensor edge length

|i1 < i2 < . . . in| = {I⊗n} →
[
1 :

(
I

n

)]

so given a simple contraction of antisymmetric tensors, such
as,

c[i1...im−l],[im−l+1...im] =∑
j1...jk+l−m

a[i1...im−l],[j1...jk+l−m] · b[j1...jk+l−m],[im−l+1...im],

we can compute it in packed antisymmetric layout via

c|i1<...im−l|,|im−l+1<...im| = (k + l −m)! ·
∑

|j1<...jk+l−m|

a|i1<...im−l||j1<...jk+l−m| · b|j1<...jk+l−m||im−l+1<...im|.

The above contraction is an example where all symmetries are
preserved. Any preserved symmetries must be symmetries of
the contraction graph G = (V,E) where vertices are triplets
defined by,

va1...akb1...blc1...cm = (aa1...ak
, bb1...bl , cc1...cm).

Broken symmetries are symmetries which exists in one of A,
B, or C, but not in G. For example, we can consider the
contraction

c[ij]kl =
∑
pq

a[ij][pq] · bpk[ql]

which corresponds to contraction graph elements v[ij]klpq .
The symmetry [ij] is preserved but the symmetries [pq] and
[ql] are broken. While each preserved contraction allows a
reduction in floating point operations, broken contractions
allow only preservation of storage. The broken symmetries
can be unpacked and the contraction computed as

c|i<j|kl = 2 ·
∑
pq

a|i<j|pq · bpkql

or the broken symmetries can remain folded, in which case
multiple permutations are required,

c|i<j|kl = 2
∑
|p<q|

a|i<j||p<q| · bpk|q<l| − a|i<j||p<q| · bpk|l<q|

−a|i<j||q<p| · bpk|q<l| + a|i<j||q<p| · bpk|l<q|

Our framework makes dynamic decisions to unpack broken
symmetries in tensors or to perform the packed contraction
permutations, based on the amount of memory available. We
will show that in either case, our approach is communication-
optimal. All preserved symmetries are always kept in packed
layout, so no extra computation is preformed.

A. Cyclic tensor decomposition

A blocked distribution implies each processor owns a con-
tiguous piece of the original tensor. In a cyclic distribution, a
cyclic phase defines the periodicity of the set of indices whose
elements are owned by a single processor. For example, if
a vector is distributed cyclically among 4 processors, each
processor owns every fourth element of the vector. For a
tensor of dimension d, we can define a set of cyclic phases
(p0, p1, . . . , pd−1), such that processor Pi0,i1,...,id−1

owns all
tensor elements whose index (j0, j1, . . . , jd−1) satisfies

jk = ikmod(pk)



Blocked layout Block-cyclic layout Cyclic layout

Red denotes padding / load imbalanceGreen denotes fill (unique values)

Fig. 1. The load-imbalance incurred or padding necessary for blocked, block-cyclic, and cyclic layouts.

for all k ∈ {0, 1, . . . , d}. A block-cyclic distribution general-
izes blocked and cyclic distributions, by distributing contigu-
ous blocks of any size b cyclically among processors. Cyclic
decompositions are commonly used in parallel numerical lin-
ear algebra algorithms and frameworks such as ScaLAPACK
(block-cyclic) [29] and Elemental (cyclic) [30]. Our method
extends this decomposition to tensors.

Like matrix multiplication, tensor contractions are invariant
with respect to a similarity permutation on A and B,

PCPT = PA ·BPT = (PAPT ) · (PBPT )

This invariance means that we can permute the ordering of
rows in columns in a matrix or slices of a tensor, so long
as we do it to both A and B and permute PCPT back
to C. This property is particularly useful when considering
cyclic and blocked distributions of matrices and tensors. We
can define a permutation, P , that permutes a tensor elements
from a blocked to a cyclic layout. Conversely, we can run
an algorithm on a cyclic distribution and get the answer in a
blocked distribution by applying a permutation, or run exactly
the same algorithm on a blocked distribution and get the cyclic
answer by applying a permutation.

The main idea behind Cyclops Tensor Framework is to
employ a cyclic distribution to preserve packed symmetric
structure in sub-tensors, minimize padding, and generate a
completely regular decomposition, susceptible to classical lin-
ear algebra optimizations. Each processor owns a cyclic sub-
tensor, where the choice of cyclic phases in each dimension
has the same phase for all symmetric indices. By maintaining
the same cyclic phase in each dimension, the algorithm ensures
that each the sub-tensor owned by any processor has the
same structure and structure as the whole tensor. Further,
minimal padding on each sub-tensor allows for every sub-
tensor to have the exact same shape only with different entries.
Figure 1 demonstrates the difference in padding (or load-
imbalance) required to store exactly the same sub-tensors on
each processor. It is evident that only a cyclic layout can
preserve symmetry as well as maintain load balance. Overall
the amount of padding required for CTF is equivalent to setting
the block size b = p1/d, since we must add up the padding on
each processor.

B. Distributed contraction of tensors
Our decomposition gives us tensors in cyclic layouts dis-

tributed over a torus topology. These tensors can be replicated
over some dimensions, which means blocking of all indices is
done. The distributed algorithm for tensor contractions can be
efficiently defined as a generalized nested SUMMA algorithm.
If the dimensions of two tensors with the same contraction
index are mapped onto different torus dimensions, a SUMMA
algorithm is done on the plane defined by the two torus
dimensions. For each pair of indices mapped in this way, a
nested level of SUMMA is done.

The communication cost of the recursive SUMMA al-
gorithm is asymptotically the same as a single SUMMA
algorithm done on a matrix of the same size as the tensor
distributed on a 2D network with the same number of nodes
as the higher-dimensional torus network. SUMMA is known
to be communication-optimal given that no extra memory is
utilized (weak-scaling regime). Thus, our recursive distributed
contraction algorithm is also communication-optimal for a
large problem size. To get optimality for irregularly shaped
tensors, we also make the dynamic choice of which pair of
tensors needs to be communicated (multicasts must be done
on A and B, and reductions on C).

However, we are also interested in strong scaling, in order
to compute small tensor contractions rapidly. Such efficiency
is necessary for higher order CC methods which require many
different contractions. To do strong scaling, one computes
a problem of the same size on more processors and aims
to reduce the time to solution. In this scaling regime, more
memory must be available than the amount necessary to store
the tensor operands and output. Therefore, we can replicate
tensor data and avoid communication. We always replicate the
smallest one of the three tensors involved in the contraction to
minimize the amount of memory and communication overhead
of replication.

By taking consideration of the size of all of the tensors
and doing replication up to the given memory constraints, we
obtain an algorithm that partitions the tensor data in a com-
munication optimal fashion. In particular, if we must compute
F multiplies to do a contraction, we exploit as much memory
as possible and select an algorithm that minimizes the amount



of data communicated for each tensor. Since we exploit the
maximum replication and employ an optimal algorithm for
contraction along each pair of indices the communication
bandwidth cost comes out to be

W = O

(
F

p ·
√
M
−M

)
where M is the memory. This −M term is achieved by
avoiding the migration of input tensors wherever possible. This
communication cost matches the bandwidth lower bound for
matrix multiplication (Equation 1). If the contraction involves
r symmetric permutations due to broken symmetries,

W = O

(
r ·
(

F/r

p ·
√
M
−M

))
= O

(
F

p ·
√
M
− rM

)
.

Evidently, performing symmetric premutations is useful only
if the data-input size approaches the total data-movement cost
for the contraction, which is uncommon. Note that if adaptive
replication was not done, performing unpacking could be faster
than doing permutations, since the unpacked contraction would
effectively utilize more available memory.

C. On-node contraction of tensors

To perform the on-node contraction, we perform non-
symmetric transposes of the tensors. In particular, we move all
dimensions which do not correspond to groups of symmetric
indices whose symmetry is broken within the contraction. If
symmetries are not broken, we can simply fold the symmetric
indices into one bigger dimension linearizing the packed
layout. We perform an ordering transposition on the local
tensor data to move linearized dimensions forward and the
broken symmetric dimensions in the back of the tensors. To
do a sequential contraction, we can then iterate over the broken
symmetric indices (or unpack the symmetry) and call matrix
multiplication over the linearized indices. For instance, the
contraction from the start of this section,

c[ij]kl =
∑
pqr

a[ij][pq] · b[pqk][rl]

would be done as a single matrix multiplication for each
block, if all the broken symmetries are unpacked. However, if
all the broken symmetries are kept folded, the nonsymmetric
transpose would push forward the folded index corresponding
to |i < j|, so that the sequential kernel could iterate over pqkrl
and call a scale operation for each |i < j|.

VI. AUTOMATIC MAPPING OF CONTRACTIONS

Each contraction can place unique restrictions on the map-
ping of the tensors. In particular, our decomposition needs
all symmetric tensor dimensions to be mapped with the same
cyclic phase. Further, we must satisfy special considerations
for each contraction, that can be defined in terms of indices
(we will call them paired tensor dimensions) which are shared
by a pair of tensors in the contraction. These considerations
are

1) dimensions which are paired must be mapped with the
same phase

2) for the paired tensor dimensions which are mapped to dif-
ferent dimensions of the processor grid (are mismatched)

a) the mappings of two pairs of mismatched dimensions
cannot share dimensions of the processor grid

b) the subspace formed by the mappings of the mis-
matched paired dimensions must span all input data

We want to satisfy these constraints for a general case of
any torus network of any dimension and shape, and be able to
select an optimal mapping. The mapping framework of CTF
achieves this.

A. Topology-aware network mapping

Any torus topology can be folded into a number of tori
of smaller dimension. Depending on the dimensions of the
tensors and the torus network, the tensor should be mapped to
some folding of the network. Given a folding of the network,
the optimal mapping should minimize the surface area of the
sub-tensors. This mapping should have the longest indices
of the largest tensor mapped to the longest processor grid
dimensions. This implies a greedy index assignment algorithm
can efficiently find the best mapping for a given folded
network. Cyclops Tensor Framework defines all foldings for a
given network and selects mappings onto them dynamically.

Once a tensor is defined or a tensor contraction is invoked,
CTF searches through all topologies and selects the best
mapping which satisfies the constraints. The search through
mappings is done entirely in parallel among processors, then
the best mapping is selected across all processors. The map-
ping logic is done without reading or moving any of the tensor
data and is generally composed of integer logic that executes
in a trivial amount of time with respect to the contraction. We
construct a ’ghost’ mapping for each valid topology and each
ordering of tensors. The distributed contraction algorithm is
constructed on each ghost mapping, and its communication
and memory overheads are evaluated. If the ghost mapping
is suboptimal it is thrown out without ever dictating data
movement. Once a mapping is decided upon, the tensors are
redistributed. Mappings in which tensors are replicated are
also considered, with corresponding replication and reduction
kernels generalizing 2.5D algorithms.

The best mapping can be selected according to a perfor-
mance model. The amount of virtualization (to be described
in the next section), communication, memory usage, and nec-
essary redistributions is explicitly calculated for each mapping
and the optimal one is selected. Generally, we attempt to
not exceed the memory, not perform more than some factor
of virtualization when possible, and minimize communication
given those constraints. However, other performance models
may be used and the best one may depend on the architecture
and the scientific problem of interest.

B. Virtualization

Cyclops Tensor Framework performs virtualization to create
a level of indirection between the task decomposition and the
physical network topology. We provide a virtualization scheme
that is guaranteed to generate a load balanced decomposition



Fig. 2. Virtualization as used in CTF to perform contractions. This diagram demonstrates a mapping for a contraction of the form c[kl]i =
∑

j a[jkl] · b[ij].
In this case, we have a 4-by-2 processor grid, and a 4-by-4-by-4 virtual grid.

for any given tensor contraction (tensors of any symmetry,
any dimension, and any index map defining the contraction).
Further, we parameterize the virtual decomposition so that it
is effectively a multiple of the processor grid, which insures
that each processor owns the same number of sub-blocks. This
scheme reduces the problem of mapping tensors with symme-
try to mapping padded tensors with no symmetry. For example,
in Figure 2, the 3D virtualized mapping is decomposed among
the processors so that each processor is contracting a matrix
of symmetric tensors with a vector of symmetric tensors into
a matrix of symmetric tensors. The mapping is defined so that
by the time the distributed contraction algorithm is executed,
it need not be aware of the symmetry of the sub-tensors but
only of their size.

We do not use a dynamically scheduled virtualization ap-
proach such as the overdecomposition embodied by the
Charm++ runtime system [31]. Instead, we define the vir-
tualization so that its dimensions are a multiple of the
physical torus dimensions and generate a regular mapping.
This approach maintains perfect load-balance and achieves
high communication and task granularity by managing each
virtualized sub-grid explicitly within each processor.

C. Redistribution of data

To satisfy each new set of restrictions for a contraction
the mapping must change and tensor data must be reshuffled
among processors according to the new mapping. Since the
redistribution can potentially happen between every contrac-
tion, an efficient implementation is necessary. However, the
data must first be given to CTF by the user application. We
detail a scheme for input and output of data by key-value
pairs, as well as a much more efficient algorithm for mapping-
to-mapping tensor redistribution. Since Coupled Cluster and
most other scientific applications are iterative and perform
sequences of operations (contractions) on the same data, we
assume input and output of data will happen less frequently
than contractions.

To support general and simple data entry, CTF allows the
user to write tensor data bulk-synchronously into the tensor
object using key-value pairs. This allows the user to write

data from any distribution that was previously defined, and
to do so with any desired granularity (all datbe a at once or
by chunks). Redistribution happens by calculating the cyclic
phase of each key to determine which processor it belongs on.
Once counts are assembled the data is redistributed via all-to-
all communication. After this single redistribution phase, each
processor should receive all data belonging to its sub-tensors,
and can simply bin by virtual block then sort it locally to
get it into the right order. This key-value binning scheme is
essentially as expensive as a parallel sorting algorithm.

When transitioning between distributions, which we expect
to happen much more frequently than between the application
and user, we can take advantage of existing knowledge about
the distribution. Between each distribution the cyclic phase
along each dimension of the tensor can potentially change.
This implies that each element might migrate from any given
processor to another. Further, depending on the cyclic phase,
the amount of padding could change along each dimension
of the tensor. Additionally, due to the blocking schemes
employed within each processor (to be described in the next
section), the local ordering of the elements on each processor
can change.

Our solution is to communicate the data while preserving
the global ordering of elements in the communicated buffer.
Each processor iterates over its local data in the order of
the global index of the data, and computes the destination
processor. The reverse process is performed in order for each
processor to determine what data is received from which
processor.

Redistributions require communication, however, they are
a lower-order communication term with respect to a tensor
contraction. Each piece of data must be migrated only once,
and a trade-off between latency and bandwidth is made by the
selection of an all-to-all algorithm.

VII. PARALLEL PERFORMANCE

A. Implementation details

The implementation uses no external libraries except for
MPI [32], BLAS, and OpenMP. All code is tightly integrated
and written in C/C++. Computationally expensive routines are
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Fig. 3. Figure 3(a) displays the strong scaling of matrix multiplication of 32K-by-32K square matrices. Figure 3(b) shows weak scaling of CCSD on Blue
Gene/Q. The number of occupied orbitals ranged from 100 to 250 and the number of virtual orbitals ranged from 400 to 1000.

threaded and/or parallelized with MPI. Performance profiling
is done by hand and with TAU [33].

B. Architectures

Cyclops Tensor Framework targets massively parallel archi-
tectures and is designed to take advantage of network topolo-
gies and communication infrastructure that scale to millions
of nodes. Parallel scalability on commodity clusters should
benefit significantly from the load balanced characteristics of
the workload, while high-end supercomputers will additionally
benefit from reduced inter-processor communication which
typically becomes a bottleneck only at very high degrees of
parallelism. We collected performance results on two state-
of-the-art supercomputer architectures, IBM Blue Gene/Q and
Cray XE6. We also tested sequential and multi-threaded per-
formance on a Xeon desktop.

The sequential and non-parallel multi-threaded performance
of CTF is compared to NWChem and MRCC. The platform is
a commodity dual-socket quad-core Xeon E5620 system. On
this machine, we used the sequential and threaded routines of
the Intel Math Kernel Library. This platform, as well as the
problem sizes tested reflect a typical situation for workloads on
a workstation or small cluster, which is where the sequential
performance of these codes is most important. Three problem
sizes are timed, spanning a variety of ratios of the number of
virtual orbitals to occupied orbitals.

The second experimental platform is ‘Hopper’, which is
a Cray XE6 supercomputer, built from dual-socket 12-core
“Magny-Cours” Opteron compute nodes. We used the Cray
LibSci BLAS routines. This machine is located at the NERSC
supercomputing facility. Each node can be viewed as a four-
chip compute configuration due to NUMA domains. Each
of these four chips have six super-scalar, out-of-order cores
running at 2.1 GHz with private 64 KB L1 and 512 KB
L2 caches. Nodes are connected through Cray’s ‘Gemini’
network, which has a 3D torus topology. Each Gemini chip,
which is shared by two Hopper nodes, is capable of 9.8 GB/s

bandwidth. However, the NERSC Cray scheduler does not
allocate contiguous partitions, so topology-aware mapping
onto a torus cannot currently be performed.

The final platform we consider is the IBM Blue Gene/Q
(BG/Q) architecture. We use the installations at Argonne and
Lawrence Livermore National Laboratories. On both installa-
tions, IBM ESSL was used for BLAS routines. BG/Q has a
number of novel features, including a 5D torus interconnect
and 16-core SMP processor with 4-way hardware multi-
threading, transactional memory and L2-mediated atomic op-
erations [34], all of which serve to enable high performance
of the widely portable MPI/OpenMP programming model. The
BG/Q cores run at 1.6 GHz and the QPX vector unit supports
4-way fused multiply-add for a single-node theoretical peak
of 204.8 GF/s. The BG/Q torus interconnect provides 2 GB/s
of theoretical peak bandwidth per link in each direction, with
simultaneous communication along all 10 links achieving 35.4
GB/s for 1 MB messages [35].

C. Results

We present the performance of a CCSD implementation on
top of Cyclops Tensor Framework. The CCSD contraction
code was extended from CCD in a few hours of work and
is very compact. For each contraction, written in one line
of code, CTF finds a topology-aware mapping of the tensors
to the computer network and performs the necessary set of
contractions on the packed structured tensors.

1) Sequential performance: The results of the sequential
and multi-threaded comparison are summarized in Table I. The
time per CCSD iteration is lowest for NWChem in all cases,
and similarly highest for MRCC. The excessive iteration times
for MRCC when the nv

no
ratio becomes small reflect the fact

that MRCC is largely memory-bound, as contractions are per-
formed only with matrix-vector products. The multi-threaded
speedup of CTF is significantly better than NWChem, most
likely due to the lack of multi-threading of tensor transposition
and other non-contraction operations in NWChem.



TABLE I
SEQUENTIAL AND NON-PARALLEL MULTI-THREADED PERFORMANCE

COMPARISON OF CTF, NWCHEM, AND MRCC. ENTRIES ARE AVERAGE
TIME FOR ONE CCSD ITERATION, FOR THE GIVEN NUMBER OF VIRTUAL

(nv ) AND OCCUPIED (no) ORBITALS.

nv = 110 nv = 94 nv = 71
no = 5 no = 11 no = 23

NWChem 1 thread 6.80 sec 16.8 sec 49.1 sec
CTF 1 thread 23.6 sec 32.5 sec 59.8 sec
MRCC 1 thread 31.0 sec 66.2 sec 224. sec
NWChem 8 threads 5.21 sec 8.60 sec 18.1 sec
CTF 8 threads 9.12 sec 9.37 sec 18.5 sec
MRCC 8 threads 67.3 sec 64.3 sec 86.6 sec

TABLE II
CCSD ITERATION TIME ON 64 NODES OF HOPPER FOR nv VIRTUAL

ORBITALS AND no OCCUPIED ORIBTALS:

system no nv CTF NWChem
w5 25 180 14 sec 36 sec
w7 35 252 90 sec 178 sec
w9 45 324 127 sec -
w12 60 432 336 sec -

2) Performance scalability: On the Cray XE6 machine, we
compared the performance of our CCSD implementation with
that of NWChem. We benchmarked the two codes for a series
of water systems. In Table II, we detail the best time to solution
achieved for each water problem by NWChem and CTF on 64
nodes of Hopper. The execution of NWChem was terminated
if it did not complete a CCSD iteration by half an hour of
execution, which is denoted by a dash in the table. NWChem
completed CCSD for the w9 water system on 128 nodes, at
the rate of 223 sec/iteration. On 128 nodes, CTF performed
this task in 73 sec/iteration, 3-times faster than NWChem.

As a simple benchmark of the mapping framework, we
compare the performance of matrix multiplication (which
is a tensor contraction), done by CTF with the distributed
matrix multiplication performance of ScaLAPACK [36] on
Blue Gene/Q. CTF performs topology-aware mapping on the
architecture and employs optimized collective communication.
As a result (Figure 3(a)) CTF achieves significantly better
strong scalability and achieves one petaflop/s on 16,384 nodes
(262K cores).

The parallel weak scaling efficiency of our CCSD imple-
mentation on Blue Gene/Q is displayed in Figure 3(b). This
weak scaling data was collected by doing the largest CCSD run
that would fit in memory on each node count and normalizing
the efficiency by the operation count. Going from 512 to
8192 nodes (130K cores), the efficiency actually increases,
since larger CCSD problems can be done, which increases
the ratio of computation over communication. We maintain
high efficiency (30% of theoretical peak) to 8,192 nodes of
BG/Q. The application was run with 4 MPI processes per
node and 16 threads per process. Results at higher scales are
expected to improve by reducing the number of MPI ranks and
running with one process per node. However, this will require
running with 32-64 threads, a challenge for index transposition
and redistribution kernels. Investigation of better blocking and

TABLE III
A PERFORMANCE BREAKDOWN OF IMPORTANT KERNELS FOR A CCSD

ITERATION DONE BY CTF ON A SYSTEM WITH no = 200 OCCUPIED
ORIBTALS AND nv = 800 VIRTUAL ORBITALS ON 4096 NODES (65K

CORES) OF MIRA.

kernel % of time complexity architectural bounds
matrix mult. 45% O(n4

vn
2
o/p) flops/mem bandwidth

broadcasts 20% O(n4
vn

2
o/p
√
M) multicast bandwidth

prefix sum 10% O(p) allreduce bandwidth
data packing 7% O(n2

vn
2
o/p) integer ops

all-to-all-v 7% O(n2
vn

2
o/p) bisection bandwidth

tensor folding 4% O(n2
vn

2
o/p) memory bandwidth

threading schemes for transposition kernels will be necessary.
Table III lists profiling data for a run of CTF on 4096 nodes

(65K cores) of BG/Q. Nearly half the execution is spent in
matrix multiplication, showing the relatively high efficiency
of this calculation (24% of theoretical floating point peak).
The prefix sum, data packing, and all-to-all-v operations are
all part of tensor redistribution, which has a large effect on
performance. The table lists the architectural bounds for each
kernel, demonstrating that the application is stressing many
components of the hardware with significant computations.

VIII. FUTURE WORK

Different types of sparsity in tensors will also be considered
in Cyclops Tensor Framework. Tensors with banded sparsity
structure can be decomposed cyclically so as to preserve
band structure in the same way CTF preserves symmetry.
Completely unstructured tensors can also be decomposed
cyclically, though the decomposition would need to perform
load balancing in the mapping and execution logic.

Cyclops Tensor Framework will also be integrated with a
higher-level tensor manipulation framework as well as CC
code generation methods. We have shown a working imple-
mentation of CCSD on top of CTF, but aim to implement
much more complex methods. In particular, we are targeting
the CCSDTQ method, which employs tensors of dimension up
to 8 and gets the highest accuracy of any desirable CC method
(excitations past quadruples have a negligible contribution).
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