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THE CHALLENGES OF C-BAND MISSILE TELEMETRY

Michael Rice
Brigham Young University

Provo, Utah, USA

ABSTRACT

The differences between S-band and C-band systems are summarized in the context of missile
telemetry. The most important challenges of C-band operation are identified: for air-to-air and air-
to-surface systems, the relative small size of these missiles limits their ability to source additional
DC power and handle increased heat loading due to potentially less-efficient C-band telemetry
transmitters. For surface-to-air systems, the prospect of reduced link margin and potential tracking
problems associated with narrower beamwidth antennas are the dominant issues for interceptor
type systems whereas the power and heat issues associated with less-than-unity telemetry trans-
mitters are the dominant issues for anti-air warfare systems. The potential problems for C-band
telemetry of surface-to-surface systems appear to be more like the fixed-wing aircraft issues, many
of which have been resolved.

INTRODUCTION

This is not an easy paper to write. Missile testing represents a bewildering array of different (and
difficult) scenarios, many of which have little in common other than the presence of an airborne
transmitter. Consequently, it is difficult for a single conference paper to capture all of the nuances
of each and every system and nearly impossible to draw conclusions that apply fully to every
missile test scenario. But we must try. This paper represents a first step in what the author hopes
blossoms into a valuable technical dialogue.

The 2007 World Radio Conference (WRC) spectrum allocations to aeronautical telemetry were
intended to reduce congestion in the traditional L- and S-bands. The hope was (and is) that by aug-
menting the spectrum available for testing, more meaningful tests (involving an increasing number
of instrumented test articles each with an increasing telemetry data rate requirement) could be con-
ducted with fewer scheduling delays. The post-WRC’07 frequency bands available to aeronautical
telemetry are listed in Table 1. Note that lower C-band is available only for federal government
users whereas middle C-band is available to both federal government and non-federal-government
users. The NTIA and FCC have considered federal and non-federal use of lower C-band for aero-
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Table 1: Aeronautical telemetry frequency bands after WRC’07

Name Frequencies (MHz) Comments

Lower L-Band 1435 – 1525 Telemetry is the primary service (part of mo-
bile service) in the USA

Lower L-Band 1525 – 1535 Mobile satellite service (MSS) is the primary
service, telemetry is secondary in the USA

Upper L-Band 1755 – 1850
Lower S-Band 2200 – 2290 Telemetry (for unmanned vehicles only) is a

co-primary service in the USA
Upper S-Band 2360 – 2395 Telemetry is the primary service in the USA1

Lower C-Band 4400 – 4940 WRC 2007 allocation to telemetry2

Middle C-Band 5091 – 5150 WRC 2007 allocation to telemetry3

Upper C-Band 5925 – 6700 WRC 2007 allocation to telemetry4

1 Prior to 1997, the Upper S-band extended from 2310 to 2390 MHz. The lower portion of Upper
S-band was reallocated in two separate auctions in 1997: 2320–2345 MHz was assigned to digital
audio radio (today’s Sirius-XM satellite radio) and 2305–2320 MHz and 2345–2360 MHz were
assigned to wireless communication services.

2 Prior to WRC 2007, lower C-band was available for aeronautical telemetry by federal government
users in the USA. The WRC 2007 allocation extended use of this band for aeronautical telemetry to
all of ITU Region 2. Non-federal-government users will not be allowed to use this band for time
being, but may be in the future.

3 In the USA, the NTIA and FCC made middle C-band available to aeronautical telemetry by both
federal government and non-federal government users.

4 The WRC 2007 allocation allows aeronautical telemetry on a non-interfering basis. Upper C-band is
home to point-to-point microwave links by users such as railroads, oil companies, gas companies,
etc. and VSAT satellite terminals used to link convenience stores, fast-food chains, etc.

nautical telemetry, but as of this writing, the NTIA and the FCC have agreed to pursue no regula-
tory action. Upper C-band is already crowded, but may be useable on a location-dependent basis.
Those readers interested in the origins of the frequency band letter designations will find Table 2
interesting. The use of “C” for “compromise” to designate the 4–8 GHz band suggests the curi-
ous mental image of group of radio engineers arguing over the frequencies that define the S- and
X-bands.

The potential for the WRC’07 allocations to alleviate the well-documented congestion at L- and
S-bands has generated considerable interest in how telemetry systems might behave at C-band.
The questions being asked are the usual ones: How is operation at C-band the same as L/S-band
operation? How is it different and what changes need to be made to expand range capability to
C-band? What is the impact of C-band on airborne instrumentation? On ground stations?

Recent tests at Edwards AFB described by Temple and Selbrede [2, 3] successfully demonstrated
C-band telemetry operation for fixed-wing aircraft. As a result of these tests, the Test Pilot School
(TPS) has expanded its telemetry capability to include C-band [4]. Given the current L-band
congestion at the Air Force Flight Test Center (AFFTC), the expectation is that most of the TPS
missions will use C-band telemetry in the foreseeable future.
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Table 2: Origins of the frequency band designations (from [1])

Band Frequency Range Origin of Name

HF Band 3 – 30 MHz High Frequency
VHF Band 30 – 300 MHz Very High Frequency
UHF Band 300 – 1000 MHz Ultra High Frequency
L Band 1 – 2 GHz Long Wave
S Band 2 – 4 GHz Short Wave
C Band 4 – 8 GHz Compromise between S and X
X Band 8 – 12 GHz X for “cross” (as in crosshair) with reference

to its use in WW II for fire control
Ku Band 12 – 18 GHz Kurz-under
K Band 18 – 27 GHz Kurz (German for short)
Ka Band 27 – 40 GHz Kurz-above
V Band 40 – 75 GHz Very High Frequency5

W Band 75 – 110 GHz W follows V in the alphabet
mm Band 110 – 300 GHz the wavelength is 1 – 3 mm
5 This occurrence of the phrase “very high frequency” should not be confused with the use of

the same phrase for the VHF band.

While the Temple-Selbrede tests answered the questions for fixed-wing systems, the answers for
missile telemetry remain unclear. The fact that “missile telemetry” is such a diverse undertaking
means general conclusions are nearly impossible to make. To help bring order to the chaos, the
following approach is taken:

1. To manage the presence of so many variables, the discussion assumes the minimum num-
ber of simultaneous changes to the telemetry system. If a reader’s current S-band system
tests 16-inch diameter missiles, then a 16-inch diameter missile is assumed for the C-band
discussion. The same is true for a 2.75-inch diameter system. If a reader’s current ground
station antenna uses a 5-meter parabolic reflector as the S-band receive antenna, then the
same antenna, with the minimum retrofitting required for C-band operation, is assumed.
This approach allows the reader to understand how C-band operation might impact each
element of the telemetry system.

2. Missile systems are partitioned into three broad categories: Air-to-air and air-to-surface sys-
tems, surface-to-air systems, and surface-to-surface systems.

The challenges of C-band telemetry are different in each category and are discussed in detail later.
Before that discussion, some general comments are in order.

3



SOME GENERAL COMMENTS

Modulations: PCM/FM and SOQPSK-TG PCM/FM is the dominant modulation used in S-
band missile telemetry. The major factor for the dominance of PCM/FM over SOQPSK-TG for
S-band telemetry is chronological: missile systems tend to last a long time and most of the current
missile contracts were established prior to the adoption of SOQPSK-TG as an IRIG 106 standard in
2002. Consequently, highly integrated S-band telemetry packages based on PCM/FM were built-in
to the contracts.

Because the bandwidth requirement for SOQPSK-TG is half that of PCM/FM, switching from
S-band PCM/FM to S-band SOQPSK-TG essentially doubles the spectrum available for missile
testing. Curiously, the prevailing thought in the missile telemetry community is that the logistical
and contractual difficulties of such a change render it impractical. Because targets tend to be
developed under less-stringent contractual constraints, SOQPSK-TG-based telemetry packages are
increasingly common in drones and target missiles.

The issues that make C-band different from S-band are mostly independent of the modulation.
It is through phase noise, frequency uncertainty, and Doppler shift that C-band operation has the
potential to impact the performance of the modulation and demodulation. A commonly used rule
of thumb is that oscillator phase noise increases 6 dB with each octave increase in the center fre-
quency. Consequently, given the fact that C-band is just over one octave above S-band, one expects
a 6-dB increase in oscillator phase noise. For bit rates of 5–10 Mbit/s and higher, such an increase
is barely noticeable. At low bit rates (say, 100–200 kbits/s) such an increase in phase noise is
a problem. Transmitters mounted in missiles experience a high degree of shock and vibration.
Shock and vibration cause incidental FM and incidental FM contributes an additional source of
phase noise. How significant this additional phase noise is depends on a number of very compli-
cated factors. In the absence of any more detail, the only reliable generalization is that relative to
S-band, the phase noise due to shock and vibration at C-band won’t be better.

The Doppler shift is due to motion by the transmitter, the receiver, or both. The relative velocity
between the transmitter and receiver may be resolved into two components: the tangential velocity
vt which is the velocity component perpendicular to the line-of-sight, and the radial velocity vr
which is the velocity component along the line of sight. The shift in carrier frequency is a function
of the radial velocity component:

∆f =
vr
λ

(cycles/s) (1)

where λ is the wavelength of the RF carrier. This shows that the Doppler shift increases with de-
creasing wavelength. Because C-band wavelength about one-half that of S-band, the Doppler shift
at C-band is twice that at S-band. Consequently, receivers and demodulators need to accommodate
higher frequency offsets. Whether or not this necessitates a change to existing receivers and de-
modulators (in addition to the changes required to channelize C-band) depends on the sensitivity
of the S-band design to an uncompensated frequency shift as well as on the radial velocity com-
ponent. The experience to date shows that SOQPSK-TG works just fine at C-band for fixed-wing
aircraft. [2, 3].
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Multipath Propagation Multipath propagation tends to be a problem in two scenarios in missile
telemetry. The first is when the missile is low on the horizon from the receiver’s point of view.
Here strong “bounces” off the ground or ocean are the primary issue. The second scenario occurs
at launch. In some cases, this is identical to the first scenario. For surface-to-air systems using
large missiles, the launch complex often has towers and other structures that generate an additional
source of multipath propagation.

Because C-band carriers have a shorter wavelength than S-band carriers, potential reflecting sur-
face appear more “rough.” The increased roughness tends to scatter more of the electromagnetic
wavefront away from the receiver. This reduces the strength of the multipath interference. An-
other important factor in multipath interference is the beamwidth of the receive antenna. Because
the receive antenna beamwidth is narrower at C-band than at S-band, the C-band antenna tends to
attenuate off-boresite reflections more than S-band. Consequently, the increased “spatial filtering”
at C-band tends to reduce the power of multipath propagation received by the demodulator.

In summary, C-band multipath propagation is not worse than S-band multipath propagation. A
consequence of this observations is that existing solutions to multipath problems (such as the use of
multiple ground-based antennas with best source selectors or strategically located receive antennas
near the bases of launch complexes) should also work at C-band.

Antennas The gain of an antenna is a function of the ratio of the aperture size to the wavelength.
Consequently, for a fixed aperture size, antenna gain increases with decreasing wavelength. But
the increased gain is accompanied by increased directionality (i.e., narrower beams in the radiation
pattern [transmit antennas] or the gain pattern [receive antennas]). This is the typical approach to
receive antenna design. On the other hand, if the aperture size decreases as wavelength decreases
in such as way that the ratio of aperture dimension to wavelength remains constant, then the gain
remains the same. This is the typical approach to transmit antenna design.

In missile telemetry, the most common transmit antenna configuration is a wrap-around antenna.
Wrap-around antennas comprise patches, whose optimal dimensions are determined by the wave-
length. The telemetry signal is connected to each antenna element (patch) to approximate as closely
as possible a uniform radiation pattern. The number of patches is determined by both the wave-
length and the missile diameter. Consequently, multiband antennas using this configuration are
hard. For a missile equipped with an S-band wrap-around antenna to operate in C-band, the S-
band wrap-around antenna should be replaced by a C-band wrap-around antenna.

Suppose, for the purposes of illustration, that the S-band wrap around antenna comprises three
patches as shown in Figure 1 (a) and suppose that the resulting radiation pattern is the one shown
below the wrap-around antenna. The radiation pattern shows three lobes and three nulls. The nulls
are a result of the interference pattern between adjacent patches. Because the radiation pattern is
not uniform, antenna specifications in missile telemetry tend to a sort of “worst case” metric. An
example might be “90% of the gain values must be greater than -7 dBi.” Now consider the C-band
wrap-around antenna shown in Figure 1 (b). Because the wavelength at C-band [6 cm (2.36 in) at
5000 MHz] is approximately half the S-band wavelength [13 1/3 cm (5.25 in) at 2250 MHz], the
dimensions of the C-band patches are about half those of the S-band patches and there are twice
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azimuth plane 
radiation patterns 

(a) (b) 

Figure 1: Wrap around antennas and corresponding azimuth plane gain patterns: (a) S-band; (b)
C-band. The gain patterns are meant to illustrate the basic concepts and should not be interpreted
as representations of real gain patterns.

as many patches in the C-band antenna. Consequently, the resulting radiation pattern displays six
lobes and six nulls. Because the C-band antenna contains twice as many elements as the S-band
antenna, the interference patterns tend to get more complicated and can be harder to control. As
a result, it might be more difficult for a C-band wrap-around antenna to meet a “90% of the gain
values must be greater than -7 dBi” specification.

The most common receive antenna configuration is the parabolic reflector. The boresite gain is

G0 =

(
πD

λ

)2

ηi (2)

where D is the diameter, λ is the wavelength, and ηi is the illumination efficiency. This shows that
for a fixed diameter, the receive antenna gain increases with decreasing wavelength (increasing RF
frequency). The beamwidth is proportional to λ/D and thus decreases with decreasing wavelength.
The reduced beam width can have important implications for target acquisition and tracking.

Link Budgets The link budget does not capture all of the issues involved in the behavior of C-
band telemetry, but it is a good starting point. A simplified version of the link budget equation is
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[5] [
C

N0

]
dB

=

[
PTGT (θ, φ)

]
︸ ︷︷ ︸

EIRP

dB
+

[(
λ

2πR

)2
]

︸ ︷︷ ︸
spreading loss

dB

+

[
GR(θ′, φ′)

Teq

]
dB

− [k]dB − [L]dB (3)

where

PT = transmitter power
GT (θ, φ) = the transmit radiation pattern in the direction θ, φ

λ = the wavelength of the RF carrier
R = the distance between the transmitter and receiver

GR(θ′, φ′) = the receive antenna gain in the direction θ′, φ′

Teq = the equivalent noise temperature of the antenna-receiver-
demodulator system

k = Boltzman’s constant (−228.6 dB-W/K)
L = all other losses, such as cable loss from the transmitter to

the transmit antenna, polarization loss, tracking loss, atmo-
spheric loss, rain loss, plume attenuation, etc.

C/N0 = the received carrier-to-noise density ratio6

All of the terms on the right-hand side of (3), except Boltzman’s constant k, are wavelength-
dependent, though some have a stronger dependence than others. A summary of these dependen-
cies is as follows.

1. The termsGT (θ, φ) andGR(θ′, φ′) are the gains of the transmit and receive antennas, respec-
tively. The dependencies between antenna gains and wavelength are summarized above.

2. The RF transmitter power PT : As of this writing, the available C-band telemetry transmitters
are capable of producing the RF power typical of missile telemetry (e.g., 1, 2, 5, and 10 W).
It is also the case that the power efficiency of these transmitters is less than that of their
L- and S-band counterparts. In terms of the parameters captured by the link budget, the
term PT in (3) is not a function of wavelength. The impact of power efficiency on system
performance is described below.

3. The spreading loss is proportional to the square of the wavelength. Note that antenna gain is
also proportional to the square of the wavelength.

6For FM systems, the quantity of interest is the “carrier-to-noise ratio” denoted C/N here. The relationship
between C/N and C/N0 in a bandwidth B Hz is[

C

N

]
dB

=

[
C

N0

]
dB

−
[
B

]
dB

.

For digital communications, the quantity of interest is Eb/N0. The relationship between Eb/N0 and C/N0 for a bit
rate Rb bits/s is [

Eb

N0

]
dB

=

[
C

N0

]
dB

−
[
Rb

]
dB

.
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4. The equivalent noise temperature Teq: The dominant contributors to the equivalent system
temperature are the “sky temperature” and the noise figure of the low-noise amplifier (LNA)
at or near the antenna feed. The “sky temperature” does not show significant variation in
the range of wavelengths corresponding to L-band through C-band. LNA noise figures are
generally worse at C-band than at S-band; how much worse depends on the manufacturer,
operating environment, etc. Consequently, one finds higher equivalent noise temperatures at
C-band than at S-band.

5. The loss term L is, in general, higher at C-band than at S-band. Cable losses, atmo-
spheric/rain attenuation, and plume attenuation are higher at C-band than at S-band. Fur-
thermore, given the narrower beamwidth of an antenna operating at C-band, one can expect
increased pointing error losses from the receive antenna.

The forgoing observations suggest the following conclusions:

1. Assuming the nulls in the wrap-around transmit antennas can be properly managed, the EIRP
is independent of wavelength.

2. Theoretically, the increased spreading loss is offset by the increased G/T of the receiver
system. But, because the Teq is higher at C-band, G/T does not increase as much as the
spreading loss. The net result is increased loss.

3. The additional losses are higher at C-band.

The main point is a C-band missile telemetry system must operate with less link margin than an
S-band missile telemetry system. How much of a problem this is depends on the application.

AIR-TO-AIR AND AIR-TO-SURFACE SYSTEMS

Air-to-air and air-to-surface missiles tend to be small and fast-moving. Mission times are relatively
short — from a few tens of seconds to two minutes. Whereas the distance flown by the missile
after launch is relatively short, the sortie can often be far away from the telemetry receiving station
— several tens to 100 miles. For this reason, airborne relays are often used in these test missions.
For test sorties within the radio horizon of the ground-based antennas, test ranges tend to “run out
of horizon” before they “run out of link budget.”

Some missile systems are housed in canisters or inside the the aircraft fuselage prior to launch. Be-
cause propagation directly from these missiles to the ground-based telemetry antenna or airborne
relay system is difficult, “re-radiation pods” are used to capture the telemetry signals from the mis-
siles, demodulate the signals, then remodulate the bits on a different carrier using an unobstructed
antenna. Typically 1/2-W, 1-W, 2-W, and 5-W transmitters are used to transmit telemetry signals
carrying anywhere from several hundred kbits/s to 12 Mbits/s. As of this writing, most telemetry
in this class takes place in S-band, the re-radiation pods use L-band as the downlink band, and
instrumented targets tend to be in upper L-band.

The major challenges here are linked to the small missile diameter. Typically, a battery is used

8



Table 3: A summary of the DC current and heat dissipation requirements for S-band and C-band
telemetry transmitters producing 5 W of RF output power. The current requirements are based on
a 28 VDC power supply.

S-Band C-Band
η = 29.5% η = 17.1%

IDC 605 mA 1044 mA
Pheat 12 W 24 W

to supply power to the telemetry package in an air-to-air missile after launch. The DC-current
available to power the telemetry transmitter is limited by the size and weight of the battery. The
size and weight of the battery are limited by the size of the host system. Consequently, any change
that requires more current may present a huge challenge.

The power required by a telemetry transmitter is determined by the RF output power Pout and the
DC-to-RF efficiency of the telemetry transmitter η, defined by

η =
RF output power
DC input power

=
Pout

VDCIDC
(4)

where VDC and IDC are the power supply voltage and current, respectively. The input power VDCIDC

is the power supplied by the missile power supply and is used to power all functions of the trans-
mitter: the input circuitry, buffer amplifiers, clocks, signal processing hardware (either “analog” or
“digital”), mixers, RF circuits, and RF power transistors. All of these contribute to a less-than-unity
efficiency. Typically, the power supply voltage is fixed1 so that the “power budget” is thought of in
terms of current. The current required by a Pout-W telemetry transmitter with efficiency η operating
with a VDC power supply is

IDC =
Pout

ηVDC
. (5)

The largest single contributor is the RF power amplifier which consumes on the order of 50% of
the input power. It is here that operation at C-band has the most impact.

A typical 5-W S-band transmitter has an efficiency of approximately η = 29.5%. Assuming a
28 VDC power supply voltage, the required DC current is 605 mA. As of this writing, a typical
value for the efficiency of a 5-W C-band transmitter is η = 17.1%. As before, assuming a 28
VDC power supply voltage, the required DC current is 1044 mA. These data are summarized
in Table 3. Because C-band transmitters are less efficient than their S-band counterparts, more
current is required to produce the desired RF output power. This means that C-band operation
requires either a larger battery or shorter transmission time.

128 VDC is a common value. However, use of the word “fixed” needs to be qualified in this context. The true
value of a 28 VDC missile power supply may vary from 22 VDC to 34 VDC. Perhaps “nominal” is a better word than
“fixed.” Even so, power budgets are most often quantified in terms of current and this thinking presumes a “fixed”
power supply voltage.
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The other important issue raised by less-than-unity transmitter efficiency is heat dissipation. In
large test articles, the test article can be used as the “heat sink.” Unfortunately, the relatively
small sizes of air-to-air systems makes using the missile body as the “heat sink” problematic. To
first-order approximation, the heat load generated by the telemetry transmitter is

Pheat = VDCIDC − Pout =

(
1 − η

η

)
Pout. (6)

For a fixed output power, the heat load increases as the efficiency decreases. Examples for a 5-W
transmitter are shown in Table 3. Here, the decreased efficiency associated with C-band operation
produces an increased heat load.

SURFACE-TO-AIR SYSTEMS

This class of systems includes “interceptor missiles” (and their targets) and “anti-air warfare mis-
siles” (and their targets). Because the issues for these two systems are different, they are considered
separately.

Interceptor Missiles These missiles tend to be much larger than their air-to-air/air-to-surface
counterparts. A typical test scenario involves the launch of one or more targets (large missiles)
and one or more interceptor missiles. The “end game,” where the interceptors and targets meet
with hopefully devastating results, occurs at a high altitude. Safety considerations and the long
distances over which the tests are conducted tend to push the locations of operational tests over
the ocean. Both the interceptors and targets are instrumented, and telemetry downlinks primarily
use the upper L- and S-bands. Telemetry data rates are high — several tens of Mbits/s and mission
duration is a function of the target and interceptor trajectories. It is not uncommon for telemetry
links to operate over several hundred to 2,000 miles.

Because of their large size, the issues of power supply and heat loading are less critical in this
class. The test challenges are associated enormous distances over which the link must be main-
tained. Because of the large distances separating the airborne transmitter and ground-based re-
ceiver, telemetry receiving sites use large receive antennas whose correspondingly large gains are
requited to close the link. Examples include 3-meter, 5-meter, and 7-meter dishes at Kwajalein
Island, a 13-meter dish at PMRF, 44-foot and 35-foot dishes at Vandenberg AFB, 20-foot, 50-foot,
and 80-foot dishes at Cape Canaveral.

Link margin is at a premium in these scenarios and the loss of even a few dB can be huge prob-
lem. As explained earlier in this paper, relative to S-band, C-band operation is characterized by
increased atmospheric and rain attenuation, increased connector and cabling, reduced G/T, and
possible reductions in transmit antenna gain. These characteristics all contribute to reduced link
margins and comprise one of the major challenges with C-band.

An additional concern for link margin is the behavior of wrap-around antennas at C-band. This
behavior was explored above in the discussion accompanying Figure 1. The fact that the radiation
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Table 4: A comparison of beamwidth of a parabolic reflector antenna as a function of RF carrier
frequency and antenna diameter. The carrier frequencies used to compute the beamwidths are 1780
MHz (Upper L-band), 2245 MHz (S-band), and 5000 MHz (C-band).

UL-Band S-Band C-Band
diameter (m) φnull-null φ3dB-3dB φnull-null φ3dB-3dB φnull-null φ3dB-3dB

3 7.860◦ 3.371◦ 6.230◦ 2.673◦ 2.796◦ 1.200◦

5 4.714◦ 2.022◦ 3.737◦ 1.604◦ 1.678◦ 0.720◦

7 3.366◦ 1.445◦ 2.669◦ 1.145◦ 1.198◦ 0.514◦

10 2.356◦ 1.011◦ 1.868◦ 0.802◦ 0.839◦ 0.360◦

13 1.813◦ 0.778◦ 1.437◦ 0.617◦ 0.645◦ 0.277◦

15 1.571◦ 0.674◦ 1.245◦ 0.535◦ 0.559◦ 0.240◦

17 1.386◦ 0.595◦ 1.099◦ 0.472◦ 0.493◦ 0.212◦

20 1.178◦ 0.506◦ 0.934◦ 0.401◦ 0.419◦ 0.180◦

patterns for C-band wrap-around antennas can have twice as many nulls as their S-band counter-
parts is a real concern. The “nightmare scenario” for these tests is the situation where, during the
“end game” (say, the last second of the test), the airborne interceptor or target has rolled into a
position such that the ground-based receive antenna is looking directly into one the nulls of the
transmit radiation pattern.

The second major potential issue with C-band operation is receive antenna pointing. As explained
above, the test scenarios for interceptor missiles require large ground-based receive antennas:
parabolic reflector antennas with diameters ranging from a few meters to 20 meters. Large an-
tennas provide the gain required to close the link, but achieve this gain with a narrow beamwidth.
A beamwidth that is too narrow may negatively impact the ability to (re)acquire an airborne trans-
mitter. The most difficult scenario in this class is where the missile (or target) “pops up” over
the radio horizon. The narrower the receive antenna beamwidth, the more precisely the “pop up”
position must be known—and this is difficult.

To give the reader a feel for the potential magnitude of the problem, a comparison of the beamwidth
of a parabolic reflector antenna as a function of frequency band and antenna diameter is listed in
Table 4. The data show that as frequency or diameter or both increase, the beamwidth decreases.

C-band experiments at the Air Force Flight Test Center [2] and the Test Pilot School [3] docu-
ment satisfactory C-band tracking performance using an 8-foot (2.4 m) antenna. C-band channel
sounding experiments, described in [6], also demonstrated satisfactory tracking behavior using the
8-foot receive antenna. The author’s experience during these channel sounding experiments was
that the antenna operators found it more difficult to acquire the C-band signal, but that post acqui-
sition autotracking worked well. The data of Table 4 show that dishes with diameters 10-meters or
more have smaller beamwidths than the current crop of L- and S-band antennas. In this sense, the
C-band target acquisition with such dishes is unknown territory.

As for tracking, C-band performance may be inferred from the fact that C-band radars routinely
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track missiles and other airborne targets using similarly-sized antennas. The temptation is to con-
clude that C-band tracking of telemetry signals will not be a problem when using large radar-sized
dishes. The enthusiasm may not be warranted: C-band radars are equipped with special reinforced
mounts and dedicated servo-motors specifically designed for the task. Because the assumed mi-
gration plan is to retrofit existing ground station antennas with C-band feeds, it is an open question,
as of this writing, whether such retro-fitted telemetry antennas can be used to acquire and track a
C-band telemetry signal.

Anti-Air Warfare Missiles A typical example of this class is a missile, launched from a ship,
whose intended targets are fixed and rotary-wing aircraft, UAVs, or anti-ship cruise missiles [7].
The tests are usually conducted on a sea range with the telemetry receiver sites located on the
shore or nearby island. Like their air-to-air or air-to-surface counterparts, these missiles tend to be
small and travel at high velocities. Consequently, weight, heat, and available current are important
considerations whose impacts have already been explored in the context of air-to-air and air-to-
surface systems.

Additional concerns here are multipath interference and radio horizon. Multipath interference is
not worse at C-band. Unlike the interceptor missile scenario, the “end game” tends to be at a
much lower altitude. Thus the radio horizon tends to be on the order of one- to two-hundred miles.
This limits the distance over which radio telemetry link must be closed. Because the usable radio
horizon depends on the altitudes of the airborne transmitter and ground-based receiver, the choice
between L-, S-, or C-band has very little (if any) impact on this issue.

SURFACE-TO-SURFACE SYSTEMS

Cruise missiles dominate this class. A cruise missile is characterized by an airframe with small
wings and a tail assembly for stabilization. The missile is usually powered by a jet engine thus
enabling a non-ballistic trajectory. The range is few hundred to one thousand miles [8].

In the context of this paper’s emphasis, cruise missiles testing is quite similar to fixed wing aircraft
testing. The presence of a jet engine means available power is rarely the limiting factor. The
relatively large size is able to accommodate the heat load of less-than-unity efficiency telemetry
transmitters. The major difference between a cruise missile test and a traditional fixed-wing aircraft
test is the distance over which the test must be conducted. For long range tests, a “chase aircraft”
is used to relay or record the cruise missile telemetry signal.

Because a typical cruise missile test is very similar to a fixed-wing aircraft test, the lessons learned
from the Temple-Selbrede tests [2, 3] are relevant. Based on this information, the tentative conclu-
sion is that operation at C-band presents few challenges not already addressed by the fixed-wing
aircraft test community.
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CONCLUSIONS

In summary, the general differences between S-band and C-band propagation have been summa-
rized in the context of missile telemetry. Of all the differences between C- and S-band systems,
three issues have emerged as potentially significant challenges: 1) reduced power efficiency of
C-band transmitters, 2) reduced link margin, and 3) narrower antenna beamwidths.

The first issue is most important for air-to-air and air-to-surface missiles. Because of their small
size, these systems are limited in their ability to source power to the telemetry transmitter and
handle the heat generated by less-than-unity efficiency telemetry transmitters. Because link margin
has not been a limiting factor for air-to-air and air-to-surface missile testing at S-band, it is not
anticipated that issues 2 and 3 will be significant challenges at C-band.

For “interceptor missile” surface-to-air systems, issue 1 is less important because the missiles
tend to be larger and capable of handling higher heat loads and sourcing more power. The sig-
nificant challenge is ultimately link margin. Link margin is already a major concern at S-band.
The prospect of lower link margins associated with C-band operation is a real concern. Higher
gain receive antennas may not be a feasible solution because higher gain dishes are necessarily
larger diameter dishes, and larger diameter dishes have even narrower beamwidths. Too-narrow
beamwidths could pose huge problems for large retro-fitted telemetry antennas. On the other hand,
“anti-air warfare missile” surface-to-air systems are dominated by the same challenges as the air-
to-air missiles.

Finally, surface-to-surface missiles tend to look like fixed-wing aircraft. The issues for C-band
operation for fixed-wing aircraft were explored in [2, 3]. Consequently, C-band testing of surface-
to-surface missiles presents few challenges not already addressed by the fixed-wing community.

Whether or not these issues are insurmountable depends on a number factors impossible to list
here. One thing that can be counted on is the dedication of creative test engineers to make impos-
sible things work. C-band operation is not the first time the test community has been faced with
tremendous technical challenges, and it is almost certain this will not be the last time.
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