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Final Report for PECASE FA9550-08-1-0325 

First-principles modeling of mechanics and chemistry of materials 
Ju Li 

Department of Materials Science and Engineering 

University of Pennsylvania, 3231 Walnut Street 

Philadelphia, PA 19104-6272, USA 

 

Abstract 

Recent experiments on nanostructured materials, such as nanoparticles, nanowires, nanotubes, 

nanopillars, thin films, and nanocrystals have revealed a host of ‗‗ultra-strength‖ phenomena, 

defined by stresses in a material component generally rising up to a significant fraction > 1/10th 

of its ideal strength – the highest achievable stress of a defect-free crystal at zero temperature. 

While conventional materials deform or fracture at sample-wide stresses far below the ideal 

strength, rapid development of nanotechnology has brought about a need to understand ultra-

strength phenomena, as nanoscale materials apparently have a larger dynamic range of 

sustainable stress (‗‗strength‖) than conventional materials. Ultra-strength phenomena not only 

have to do with the shape stability and deformation kinetics of a component, but also the tuning 

of its physical and chemical properties by stress. Reaching ultrastrength enables ‗‗elastic strain 

engineering‖, where by controlling the elastic strain field one achieves desired electronic, 

magnetic, optical, phononic, catalytic, etc. properties in the component, imparting a new 

meaning to Feynman‘s statement ‗‗there‘s plenty of room at the bottom‖. We are investigating 

the principal deformation mechanisms of ultra-strength materials. The fundamental defect 

processes that initiate and sustain plastic flow and fracture, and the mechanics and physics of 

both displacive and diffusive mechanisms are being modeled at the atomistic and electronic-

structure levels. Also, electrochemistry coupled with mechanics dictates the microstructural 

evolution and service life of many materials, and underlies problems such as stress-corrosion 

cracking and battery cyclability. While atomistic and first-principles modeling is adept at looking 

at the finer details of energetics and microstructural evolution, it often needs help from 

experiments to identity the key performance-limiting microstructural processes. To resolve this 

bottleneck we have created a nanoscale electrochemical testing platform inside a transmission 

electron microscope (TEM), and performed direct observations of the electrochemical reactions 

of the individual nanowires. SnO2, ZnO, Si, Ge, graphene and carbon nanotube anodes and 

LiFePO4 nanowire cathode have been tested so far. Lithium embrittlement is found to be a 

persistent issue. These in situ TEM experiments greatly complement our modeling efforts, and 

together they provide unprecedented details on how materials degrade in service due to 

combined electrochemical-mechanical actions.  

 

Fundind History 
 

This PECASE award was initially granted to the PI at Ohio State University as FA9550-07-1-

0007.  Only $25,916 was spent out of the $500,000 budget, before the project was transferred to 
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the University of Pennsylvania as FA9550-08-1-0325, with a total budget of $474,083, and 

budget dates of  May 1, 2008 - Nov. 30, 2012. 

 

Results 
 

The PI used the PECASE grant to perform a range of research activities on first-principles 

modeling of mechanics and chemistry of materials, in combination with critical experiments 

such as in situ electron microscopy.   The publications supported by FA9550-08-1-0325 are 

listed in
1-30

   in order of relevance for the high-temperature materials program.   These work can 

be roughly categorized into the following: 

Simulation of Coupled Displacive-Diffusional Processes – In the majority of solid-state 

processes, coupled displacive-diffusional processes is a rule rather than an exception. 

Mechanistic studies of these processes require modeling capabilities at atomistic length scales 

but diffusional time scales, which is beyond the reach of current molecular dynamics (MD) 

methods. Partially supported by this project, a new computational method called Diffusive 

Molecular Dynamics (DMD) is being developed
1
, which, unlike the MD, captures diffusional 

and displacive evolution of complex microstructures at the atomic scale by coarse graining over 

atomic vibrations and evolving a continuous occupational probability of atomic density clouds. 

Derived in grand canonical ensemble, DMD is a chemical mean-field extension of the variational 

Gaussian method coupled with the master equation for diffusion solved on a discrete and moving 

atomic grid. It combines long-range elastic effects and short-range atomic interactions 

simultaneously with gradient thermodynamics and allows for simultaneous displacive and mass-

action dynamics such as lattice diffusion. We are also developing corresponding phase-field 

descriptions of these transformations, which eventually could seamlessly link to DMD as in the 

quasi-continuum approach. 

Studying Slow Dynamics - In order to study the slow dynamics in glassy materials
30

 in general, 

we have developed a Markovian network model to calculate the shear viscosity of deeply 

supercooled liquids based on sampling of an atomistic energy landscape. Shear stress relaxation 

is calculated from a master-equation description in which the system follows a transition-state 

pathway trajectory of hopping among local energy minima separated by activation barriers, 

which is in turn sampled by accerlated MD-based algorithms
6
. Quantitative connection is 

established between the temperature variation of the calculated viscosity and the underlying 

potential energy and inherent stress landscape of several glasses
11,12

, showing a different 

landscape topography or 'terrain' is needed for low-temperature viscosity from that associated 

with high-temperature viscosity
11

. We have also developed an accerlated 'strain-boost' MD 

algorithm
6
, inspired by the Eshelby transformation formalism, that could provide more 

effecicient sampling of the shear transformation zone (STZ) event in glasses. 



3 

 

In particular, silica (SiO2) glass is one of the essential materials in human civilization for making 

household items, window panes, lenses and optical fibers. An important reason for its wide 

adaptation is its formability near the glass-transition temperature (Tg > 1100C). SiO2 glass at 

room temperature, however, is usually brittle due to fracture instability. But when the ―brittle‖ 

glass is confined in extremely small dimensions at tens of nanometres, the nature of flow and 

fracture may change. Newest experiments performed at Sandia Center for Integrated 

Nanotechnologies (CINT) show that glass nanowires with diameters less than 20 nm can become 

ductile at room temperature, with surprisingly large tensile plastic elongations up to 18%. 

Remarkably, these ductile glass nanowires also possess high flow strengths, and are thus much 

more energy-absorbing and damage-tolerant than expected. Atomistic modeling indicates that 

the unexpected ductility is due to the development of a surface affected zone in the nanowires, 

which enhances ductility by producing more bond-switching events per irreversible bond loss. 

Investigating Solid-state Amorphization Processes - We have studied the solid-state 

amorphization of phase-change nanowires
4
 and large shape change of oxide nanowires during 

electrochemical lithiation, which share certain common characteristics with strain glasses (both 

solid-state, and both with significant transformation strains). We found that upon electrochemical 

charging, a reaction front propagated progressively along the nanowire, causing the nanowire to 

swell, elongate, and spiral. The reaction front contains a high density of mobile dislocations, 

which are continuously nucleated and absorbed at the moving front. This dislocation cloud 

indicates large in-plane misfit stresses and is a structural precursor to electrochemically driven 

solid-state amorphization. Because amorphization-induced volume expansion, plasticity, and 

pulverization of electrode materials are the major mechanical effects that plague the performance 

and lifetime of high-capacity anodes in lithium-ion batteries, our observations provide important 

mechanistic insight for the design of advanced batteries, as well as damage mechanisms in strain 

glasses. In the modeling effort we have also given a first-principles account of the observed 

room-temperature lithium diffusivity in amorphous lithium oxide
5
. 

High-temperature sublimation of graphene – We have performed in situ transmission electron 

microscopy (TEM) and modeling of how graphene sublimes at high temperatures. Curvy 

nanostructures such as carbon nanotubes and fullerenes have extraordinary properties but are 

difficult to pick up and assemble into devices after synthesis. We have performed experimental 

and modeling research into how to integrate curvy nanostructures on flat graphene, taking 

advantage of the fact that graphene bends easily after open edges have been cut on it, which can 

then fuse with other open edges, like a plumber connecting metal fittings. By applying electrical 

current heating to few-layer graphene inside an electron microscope, one effectively anneals out 

the radiation damage and observes the in situ creation of many interconnected, curved carbon 

nanostructures
7
, such as graphene bilayer edges (BLEs) aka ―half nanotubes‖, BLE polygons, 

and nanotube-BLE junctions connecting multiple layers of graphene. A novel piezoelectric effect 

causes the BLEs to have large permanent electric dipoles of 0.87 and 1.14 Debye/Å for zigzag 

and armchair inclinations, respectively
10

. Unlike carbon nanotubes which fold graphene by 2 

rotation and are highly poly-disperse in chiralities and radius, BLEs are highly mono-disperse 
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structures due to the  rotation and a lattice orientation constraint during processing
3
. Further 

investigations indicate that multiple-layer graphene offers unique opportunities for tailoring 

carbon-based structures and engineering novel nano-devices with complex topologies.  In 

particular, we show it is possible to create a metal-semiconductor-metal graphene-nanotube 

junction device with 0.8eV electronic gap
9
. 

Nanoscale electrochemical tests: in situ TEM experiments and modeling - Electrochemistry 

coupled with mechanics dictates the microstructural evolution and service life of many materials 

in the energy industry and transportation, and underlies problems such as stress-corrosion 

cracking and battery cyclability. While atomistic and first-principles modeling is adept at looking 

at the finer details of energetics and microstructural evolution, it often needs help from 

experiments to identity the key performance-limiting microstructural processes. To resolve this 

bottleneck we have created a nanoscale electrochemical testing platform
2,5

 inside a transmission 

electron microscope (TEM), consisting of electron-transparent single nanowire electrodes and an 

ionic liquid electrolyte, and performed direct observations of the electrochemical reactions of the 

individual nanowires. SnO2, ZnO, Si, Ge, graphene and carbon nanotube anodes and LiFePO4 

nanowire cathode have been tested so far. Lithium embrittlement is found to be a persistent issue. 

These in situ TEM experiments
13,28

 greatly complement our modeling efforts
1,6,9,11

, and together 

they provide unprecedented details on how materials degrade in service due to combined 

electrochemical-mechanical actions. 

Utra-strength materials - Recent experiments on nanostructured materials, such as 

nanoparticles, nanowires, nanotubes, nanopillars, thin films, and nanocrystals have revealed a 

host of ‗‗ultra-strength‖ phenomena, defined by stresses in a material component generally rising 

up to a significant fraction > 1/10th of its ideal strength – the highest achievable stress of a 

defect-free crystal at zero temperature. While conventional materials deform or fracture at 

sample-wide stresses far below the ideal strength, rapid development of nanotechnology has 

brought about a need to understand ultra-strength phenomena, as nanoscale materials apparently 

have a larger dynamic range of sustainable stress (‗‗strength‖) than conventional materials. 

Ultra-strength phenomena not only have to do with the shape stability and deformation kinetics 

of a component, but also the tuning of its physical and chemical properties by stress. Reaching 

ultrastrength enables ‗‗elastic strain engineering‖, where by controlling the elastic strain field 

one achieves desired electronic, magnetic, optical, phononic, catalytic, etc. properties in the 

component, imparting a new meaning to Feynman‘s statement ‗‗there‘s plenty of room at the 

bottom‖. We are investigating the principal deformation mechanisms of ultra-strength materials. 

The fundamental defect processes that initiate and sustain plastic flow and fracture, and the 

mechanics and physics of both displacive and diffusive mechanisms are being modeled at the 

atomistic and electronic-structure levels.
8,13,28

 

Elastic Strain Engineering – An optoelectronic material with a spatially varying bandgap that is 

tunable is highly desirable for use in photovoltaics, photocatalysis and photodetection. Elastic 
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strain has the potential to be used to achieve rapid and reversible tuning of the bandgap. 

However, as a result of plasticity or fracture, conventional materials cannot sustain a high 

enough elastic strain to create sufficient changes in their physical properties. Recently, an 

emergent class of materials—named ‗ultrastrength materials‘—have been shown to avoid 

inelastic relaxation up to a significant fraction of their ideal strength. In the paper ―Strain-

engineered artificial atom as a broad-spectrum solar energy funnel‖ 
29

, we illustrate theoretically 

and computationally that elastic strain is a viable agent for creating a continuously varying 

bandgap profile in an initially homogeneous, atomically thin membrane. We propose that a 

photovoltaic device made from a strainengineered MoS2 monolayer will capture a broad range of 

the solar spectrum and concentrate excitons or charge carriers. 
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