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Abstract - This paper analyzes the effects of special 
target-sensor geometries, particularly, some degenerate 
cases (near singular observation matrix), on the 
performance of target positioning and tracking. A 
scenario of practical significance is when two or more 
sensors form nearly parallel line of sight (LOS) vectors to 
targets. Examples include netted radars that happen to 
line up their observations in azimuth. Such encounter 
geometry is degenerate for conventional methods. In this 
paper, we first analyze conventional estimates in such 
degenerate geometry and then describe three adapted 
methods, namely, a geometric 1D solution for 2D 
scenarios, a reduced-order least squares method, and a 
subspace least squares method. Simulation results are 
presented to compare the methods. The analysis provides 
the basis for active sensor management performance 
prediction and optimization via sensor placement/ 
assignment. 

Keywords: Target tracking, Degenerate geometry, Active 
sensor management, Performance prediction 

1. Introduction 
The estimation accuracy of a target positioning and 
tracking system is determined by two factors. One is the 
errors in target measurements (ranges, bearings, or both). 
The other is the geometry between the targeting sensors 
and the target, which is captured in the observation matrix 
made of line of sight (LOS) vectors. One way to 
characterize the effect of geometry on estimation accuracy 
is to use the geometric dilution of precision (GDOP) [8]. In 
a poor geometry with not enough independent 
measurements and/or nearly collinear LOS vectors, the 
observation matrix is ill-conditioned, which presents a 
numerical difficulty to invert the solution matrix. The poor 
geometry not only inflates the variance of the position 
estimates but also amplifies any biases that may be present 
in the measurements [9]. 

A particular scenario of practical significance is when two 
or more sensors form nearly parallel LOS vectors to 
targets. Examples include co-located sensors and bistatic 
radars that happen to line up in azimuth. Such scenarios 
also occur in other applications such as narrow sky view of 
GPS satellites in urban canyons and radio beacons along a 
corridor and cell phone towers along a freeway. These 
degenerate geometries are detrimental to positioning. 

Several methods have been used in the literature to bound 
estimation errors. For a rank-deficient observation matrix, 
the null space is not empty and the solution is not unique 

and one way to solve the problem is to place constraints on 
the solution. A circular restriction (or a spherical 
constraint) leads to the so-called ridge regression [1, 3]. A 
more general formulation is Tikhonov regularization, 
which includes a constraint term on the solution (i.e., a 
penalty on each variable) in addition to the measurement 
error term in the performance index, which is also referred 
to the regularized least squares (RLS) [5]. Other means 
can be used to obtain similar results, including heuristic 
diagonal loading, use of prior knowledge such as road 
information [6, 7], and use of prior knowledge as fictitious 
measurements [4]. 

In Sect. 2, we first present an analysis of conventional 
estimates in degenerate geometry. Next, in Sect. 3, we set 
forth three methods adapted to singular geometry, namely, 
a geometric 1D solution for 2D scenarios, a reduced-order 
least squares method, and a subspace least squares method. 
In Sect. 4, we present comparative simulation results of the 
methods with analysis. Finally we conclude the paper with 
a summary and future work and its implication for active 
sensor placement and adaptive resource management. 

2. Regular Methods in Degenerate Geometry 
The maximum likelihood estimate (MLE) is derived and 
analyzed in degenerate geometry. 

2.1 Maximum Likelihood Estimate 

Consider two sensors located at s1 and s2. Both detect the 
same target located at t. The range measurements are 
denoted by: 

ri = ||t - si||2 + ni (1) 

where ni is an independent zero-mean Gaussian noise with 
varaince σi

2 for i = 1 and 2. 

For a possible target location estimate at x, the un-
normalzied likelihood surface is given by: 
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The maximum likelihood estimate is given by: 

)}({maxargˆ xx
x

LML =  (3) 

It is clear from (3) that the maximum is reached when the 
exponential arguments are zero. It is equivalent to finding 
the intersection of two circles as: 

0|||| 2 =−− iir sx , i = 1, 2 (4) 
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Without loss of generality, assume that sensor 1 is located 
at (x1, 0) and sensor 2 at (-x1, 0), as shown in Fig. 1. We 
now consdier three cases. 

Case 1: r1 + r2 ≥ 2x1. In this case, use of range 
measurements of r1 and r2 leads to the following estimate: 
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as long as the range variance is equal for both sensors.  

For ranging sensors, unlike bearings sensors, an ambiguous 
solution exists, arising from the intersection of two circles. 
However, if the target has been tracked, the ambiguity is 
resolved (knowing which side of the baseline the target 
lies). 

Case 2: r1 + r2 = 2x1. In this case, it can be seen from (5b) 
and (5c) that ŷ  = 0, which is the so-called degenerate case 
in which the LOS vectors are parallel. The Fisher 
information matrix (FIM) for the two ranging sensors with 
a target on the baseline of the sensors is singular. This 
would indicate that the localization algorithm becomes 
degenerate. Eq. (5a) can be further written as: 
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In general, for two sensors located at x1 and x2 along the x-
axis with their range measurements r1 and r2 to a target also 
on the x-axis. Then an intuitive solution constrained on the 
baseline ( y  = 0) is the average of the two measurements 
given by: 

11 rxx =−  (7a) 

22 rxx =−  (7b) 

Subtracting (7b) from (7a) gives: 

22
1221 rrxxx −++=  (8a) 

2
12 rr −= , if x1 = -x2 (8b) 

The intuitive averaging (8) is the same as the MLE (6) if r1 
+ r2 = 2x1, which is also Method 1 discussed in Section 3.1. 

Case 3: r1 + r2 < 2x1. In this case, the circles do not 
intercept as shown in Fig. 2. There are four possible 
solutions: 

Solution 1 from (5a): ( x̂ , 0), abbreviated as “sect” (9a) 
Solution 2: ( +x̂ = x1 – r1, 0), “posi” (9b) 
Solution 3: ( −x̂ = -x1 + r2, 0), “nega” (9c) 
Solution 4 from (8b): ( x , 0), “ave” (9d) 

Note that the average of Solutions 2 and 3 is Solution 4: 
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22
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In this case, it can be seen from the geometry of Fig. 2 that 
the ML estimate occurs on the baseline and in the middle of 
two measurements, denoted by Ax̂ . 

To prove this, we take two steps. First, for all possible 
estimates on the baseline, we will show that the one in the 
middle of two mesurements, Ax̂ , maximizes the likelihood 
function (2). Denote the measurement prediction error by 

2||ˆ|| iii rr sx −−=Δ , i = 1, 2 (11) 

Then maximizing the likelihood function (2) is equivent to 
minimizing the log likelohood as: 
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Insepecting Fig. 2 reveals the following constraint: 

crrxrr =+−=Δ+Δ )(2 21121  (13) 

where c is a constant for the given measurements r1 and r2.  

The Lagrangian for the constrained minimization is: 
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2

2
2

1 crrrr −Δ+Δ+Δ+Δ=Λ λ  (14) 

The necessray conditions are given by: 
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021 =−Δ+Δ crr  (15c) 

From (15), the minimial solution is: 

221
crr =Δ=Δ  (16) 

Second, it is easy to see from the geometry of Fig. 2 that 
the range measurement prediction errors at Ax̂ , denoted by 
Δr1( Ax̂ ) and Δr2( Ax̂ ), are smaller than those at Bx̂ , denoted 
by Δr1( Bx̂ ) and Δr2( Bx̂ ). By sequence, the ML estimate 
occurs on the baseline and in the middle of two 
measurements, which is Ax̂ . 

2.2 Analysis of ML Estimates 

The following simulation compares four solutions, (i) ( x̂ , 
+ŷ ) from (5a) and (5b) called “posi,” (ii) ( x̂ , −ŷ ) from (5a) 

and (5c) called “nega,” (iii) ( x , y  = 0) from (9d) called 
“ave,” and (iv) ( x̂ , 0) from (9a) called “sect.” In Case 3, 
the y-component of these solutions is set to zero. 

Example 1. The two sensors are located at s1 = (100, 0) and 
s2 = (-100, 0), respectively. The target is at (10, 0). The 
range measurements are subject to independent zero-mean 
Gaussian noise with varaince σ1

2 = σ2
2 =  22.  

1394
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Fig. 3 shows that the solutions “posi Δ” and “nega ∇” from 
the intersection of two circles are indeed the ML estimates. 
However, the ML estimates are driven by noisy range 
measurements (91.5981, 111.8818) off the baseline where 
the true target × lies. It also shows that the solution “ave ◊” 
is constrained on the baseline and it is closer to the truth 
(10.1418) than the x-coordinate of the ML estimates 
(10.3183). 

When r1 + r2 < 2x1, the circles do not intercept. In this case, 
it can be seen from the geometry that the the ML estimate 
occurs on the baseline. For the same simulation setting, the 
results for r1 + r2 < 2x1 are shown for two sample runs in 
Figs. 4(a) and 4(b), respectively.  

The circular intersection (“sect” o) and average (“ave” ◊) 
solutions are close to true target (×) but the “ave” is slightly 
closer than “sect.” For the case that the circles do not 
intersect, the peak of the likelihood surface actually occurs 
along the baseline with x̂  somewhere between the “sect” o 
and average “ave” ◊ solutions with ŷ  = 0. 

However, one of “posi” Δ and “nega” ∇ is closer to the true 
target (×) but it is difficult to tell which one, though. The 
mean value of “posi” Δ and “nega” ∇ is exactly the same as 
the “ave” ◊ as shown in (10), as depicted in Fig. 2. 

Essentially, the ML estimate will be biased to lie on the 
baseline (when the target is on the baseline). As a result, 
the achieved localization performance can be finite despite 
the fact that the unbiased Cramer-Rao lower bound 
(CRLB) claims that the error is infinite. The ML 
performance is lower bounded by the “biased” CRLB. 

Due to the intersecting circle geometries, the achievable 
localization accuracy gets worse as the baseline 2x1 grows 
to infinity because of the lack of curvature at the target 
location on the baseline. Lacking curvature, the intersecting 
circles would lead to larger uncertainties about the cross-
range estimate. This effectively transforms the geometry 
from 2D to 1D. 

3. Methods Adapted to Degenerate Geometry 
Three methods for degenerate geometry are presented 
together with simulation analysis. 

3.1 Method 1: 1D Solution for a 2D Scenario 

For network-based sensing and targeting applications, it is 
more likely for a target to get close to or even cross the 
baseline of sensors. In such cases, the changes in GDOP 
may be significant, leading to degenerate cases. 

Indeed, when a target is close to or crosses the baseline, the 
2D solution is no longer applicable because the observation 
matrix is rank-deficient with near parallel LOS vectors. 
However, it is a quasi-1D scenario when near the baseline. 
Assume that two sensors are located at x1 and x2. The 
sensor range measurements are r1 and r2. The 1D estimate 
derived from the two measurements (7) is given by (8). The 
resulting position error is σx = √2/2σ, which is equivalent to 
having a GDOP of 0.707, the lowest of the 2D solution. A 
practical question then is when to switch from the 2D 
solution to the 1D solution. 

As shown in Fig. 5, two sensors are at known locations s1 
and s2. A target is at an unknown location u0, to be 
estimated by the two sensors with ranging measurements r1 

 

 

 

 

 

 

 
Fig. 1 Encounter Geometry with r1 + r2 ≥ 2x1 

 

 

 

 

 

 

 
Fig. 2 Encounter Geometry with r1 + r2 < 2x1 
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Fig. 3 Solutions when r1 + r2 ≥ 2x1 
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Fig. 4(a). Solutions when r1 + r2 < 2x1 
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Fig. 4(b). Solutions when r1 + r2 < 2x1 
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and r2 having the measurement error variances σ1
2 and σ2

2, 
respectively. Note that the LOS vector is calculated from 
an initial estimate u1, which may be far away from the true 
state u0. A situation arises where u0 is very close to the 
baseline linking s1 and s2 so that the true lines of sight are 
close to parallel. The geometry has a very poor GDOP. 
However, since u1 has a large error, the resulting LOS 
vectors produce a GDOP, which is erroneously small, thus 
allowing for a solution. As the estimate gets to the true 
location, the estimated geometry is worsening. At this 
point, the poor geometry offers a clear sign for making a 
decision to switch from the 2D solution to the 1D solution. 
The process is illustrated with the following example.  

Example 2. Referring to Fig. 5, there are two sensors 
located at s1 = [0, 0] and s2 = [1000, 0], respectively. The 
true target is located at u0 = [50, 0.1]. The measurement 
error is R = 1. Without knowing the exact target location, 
the tracking algorithm initializes its state u1 = u0 + [dx, dy] 
where dx and dy are the initial offset in x and y, 
respectively. The following values are considered: 

dy = 1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101 
dx = 1, 101, 201, 301, 401 

As discussed above, an arbitrary initialization u1 may 
provide a reasonable value for the initial GDOP estimate. 
However, such an initial estimate, if far away from the true 
location, cannot provide a meaningful update despite its 
offering of a reasonable value for the initial GDOP 
estimate. Fig. 6 shows the GDOP as a function of dy for 
several dx. For small dy, the initial estimate u1 is close to 
the true value u0 near the x-axis and the corresponding 
estimated LOS vectors from u1 to s1 and s2 become parallel. 

As shown in Fig. 7, for dy > 10, all initial estimates even 
with large dx are updated to within 25 to 50. However, for 
dy < 10, the updated state errors are larger than their initial 
errors even with small dx. Note that dy = 10 is the corner 
point where GDOP takes a sharp turn in values. 

Fig. 7 indicates that direct application of the least squares 
solution in a poor geometry can lead to errors even worse 
than the initial errors. 

Finally, note that this 1D solution introduces a bias because 
it ignores the distance off the baseline. Fig. 8 shows the 
position errors of the 1D solution (bias plus noise) 
compared to those of the 2D solution (GDOP times noise) 

for noise errors of σ = 1 and 10 m, respectively. As 
expected, the 1D solution error grows linearly, while the 
2D solution error drops exponentially, with the distance 
from the baseline. The intersection point is about 55 m 
for σ = 1 m and 180 m for σ = 10 m, respectively. 
Depending on the separation of sensors and the 
measurement error variance σ, the intersection point may 
be determined and thus serves as the threshold for switch 
between the 1D and 2D solutions. 

3.2 Method 2: Reduced-Order Least Squares Solution 

Given the linearized observation equation with poor 
geometry, a reduced-order least squares solution may be 
used to obtain an otherwise unavailable solution. To start, 
we perform singular value decomposition (SVD) on the 
observation matrix as: 

TUSVH =  (17) 

where H is an m×n matrix, U is an m×m orthonormal 
matrix, S = diag{[λ1, …, λn]} is an n×n diagonal matrix 
with the singular values λi arranged in a descending order, 
and V is an n×n orthonormal matrix. 

The ordinary least square solution can be written as: 

zUVSx T1−=Δ  (18) 

where S-1 = diag{[λ1
-1, …, λn

-1]}. 

The solution is acceptable if the values of all λi
-1 are on the 

similar order of magnitude. However, in poor geometry 
cases, numerical issues arise when some of λi

-1 are off by 
two or more orders of magnitude. 

The reduced-order least squares solution is to retain “good” 
singular values while discarding “bad” singular values. It 
applies a threshold testing as: 
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With the k largest singular values retained, the resulting 
solution is then written as: 

zUSVx T1~~ −=  (20a) 
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1 −−− = kdiag λλS  (20b)  
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Example 3. Continue with the previous example. Now the 
tracking algorithm initializes its target state u1 = u0 + [dx, 
dy] where dx = 1, 51, 101 and dy = 1, 2, 3, 4, 5, 6, 7, 8, 9, 
and 10, respectively. Fig. 9 shows the location errors as a 
function of dy = 1 through 10 for dx = 1 (blue), 51 (green), 
and 101 (red).  

For the regular LS solution, when dy > 6, the initial 
estimation errors (with dotted line marks •), even with 
large dx, are updated to within 10 (with circular line marks 
o). However when small dy < 6, the updated state errors 
(with circular line marks o) are larger than their initial 
errors (with dotted line marks •) even with small dx. 
Consistent with Fig. 7, Fig. 9 also indicates that direct 
application of the least squares solution in a poor geometry 
can lead to errors even worse than the initial errors. 

The reduced-order least squares solutions (20) are shown in 
Fig. 9 as the cross points (×). They are all smaller than the 
initial estimates even in poor geometries. For dx = 1, the 
location error is dominated by dy. The error reduction with 
conventional LS solution (o) depends on dy, that is, no 
reduction for dy < 6 and some reduction for dy > 6. 
However, with the reduced-order LS, the error reduction 
(blue crosses), even though small, is consistent.  

The error reductions are more pronounced for dx = 51 
(green crosses) and 101 (red crosses) when dy < 5. For 
these poor geometry cases, the results provided by the 
reduced-order LS solution are remarkable, which provide 
much better error reduction along the direction in the x-axis 
than in the y-axis. 

3.3 Method 3: Subspace Least Squares Solution 

An alternative approach to obtaining the 1D solution for a 
2D scenario is the subspace least squares solution applied 
to the linearized observation equation with poor geometry. 
To start, we decompose the original state space x ∈ X = Rn 
into two orthogonal subspaces with dimensions k and n-k, 
denoted by A and B, respectively, such that A ⊕ B = X. 

Assume that we have found a matrix A whose columns 
span the subspace of A, that is, A ∈ A = Rn×k. Similarly, 
the columns of a matrix B span the subspace of B, that is, 
B ∈ B = Rn×(n-k). The original solution can now be written 
as: 

BA xBxAx Δ+Δ=Δ  (21) 

The linearized measurement equation can be written as: 

nxHz +Δ=  (22a) 
nxBxAH +Δ+Δ= )( BA  (22b) 
nxHBxHA +Δ+Δ= BA  (22c) 

If B is chosen such that HB ≈ 0, then 

nxHAz +Δ≈ A  (23a) 
zAHHAHAx TTTT

A
1)( −=Δ  (23b) 

More generally, following the approach of [2], we can 
rewrite (22b) (ignoring the noise term) as: 
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Multiplying the first block of rows of (24c) by 
BTHA(ATHA)-1 and subtracting it from the second block of 
rows of (24c) (i.e., block Gaussian elimination) gives: 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
Δ
Δ

⎥
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⎤
⎢
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⎡

g
zA

x
x

G0
HBAHAA T

B

A
TT

 (25a) 

where 

HBAHAAHABHBBG TTTT 1)( −−=  (25b) 
zAHAAHAIBg ))(( 1 TTT −−=  (25c) 

Note that G is called the Schur complement of ATHA. 
From (25a), it can be seen that: 

gxG =Δ B  (26a) 
)( B

T
A

T xHBzAxHAA Δ−=Δ  (26b) 

from which xA and xB can be found to obtain the full 
solution x with (21). 

Clearly, the subspace least squares solution depends on 
how the two subspaces are chosen. For our 2D scenarios, 
we first perform an affine transformation that translates and 
rotates the coordinates such that s1 is at the origin of the 

1397



 6

transformed coordinate system and s2 is along the x-axis. 
Construct the first basis from s1 and s2 as: 

212

12
1 ss

sse
−
−=  (27a) 

Construct the second basis perpendicular to e1 as 

12 01
10

ee ⎥
⎦

⎤
⎢
⎣

⎡ −
=  (27b) 

The affine transformation is given by 

[ ] )( 121 sxeeξ −= T  (27c) 

In the new coordinate system, we can select the two 
orthogonal subspaces as 

⎥
⎦

⎤
⎢
⎣

⎡
=

0
1

A ,     ⎥
⎦

⎤
⎢
⎣

⎡
=

1
0

B  (28) 

Denote the observation matrix by 

⎥
⎦

⎤
⎢
⎣

⎡
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⎦

⎤
⎢
⎣

⎡
=

2221

1211

2

1

hh
hh

T

T

h
h

H  (29) 

With (28) and (29), from (25a) and (25b), we have 

11

21121122

h
hhhh −=G  (30a) 

11

211112

h
hzhz −=g  (30b) 

As a result, the solution is given by 

21121122

211112

hhhh
hzhz

B −
−=Δx  (31a) 

BA h
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h
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11

12

11

1  
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11

12

11

1

hhhh
hzhz

hhhh
hzhz

h
h

h
z

−
−=

−
−−=  (31b) 

Example 4. Continue with the previous example where the 
tracking algorithm initializes its target state u1 = u0 + [dx, 
dy] with dx = 1, 51, and 101 and dy = 1, 2, 3, 4, 5, 6, 7, 8, 9, 
and 10, respectively. Fig. 10 shows the location errors as a 
function of dy = 1 through 10 for dx = 1 (blue), 51 (green), 
and 101 (red). 

Again for the regular LS solution, for dy > 5, the initial 
estimation errors (with dotted line marks •), even with 
large dx, are updated to within 10 (with circular line marks 
o). However, for small dy < 5, the updated state errors 
(with circular line marks o) are larger than their initial 
errors (with dotted line marks •), even with small dx. The 
results are consistent with Figs. 7 and 9, indicating that 
direct application of the least squares solution in a poor 
geometry can lead to errors even worse than the initial 
errors. 

The subspace least squares solutions (26) as the diamond 
points (◊) are shown in Fig. 10 in comparison to the 

reduced-order least squares solutions (20) as the cross 
points (×). They are all smaller than the initial estimates 
even in poor geometries. The details are shown in Fig. 11. 

For dx = 1 (the blue curves), the location error is dominated 
by dy. The error reduction with conventional LS solution 
(o) depends on dy, that is, no reduction for dy < 6 and some 
reduction for dy > 6. However, the error reduction of 
subspace LS (blue diamonds) is consistent as is the 
reduced-order LS solution (blue crosses).  

As shown in Fig. 10, the error reductions are more 
pronounced for dx = 51 (green diamonds) and dx = 101 
(red diamonds) when dy < 5. For these poor geometry 
cases, the results provided by the subspace LS solution are 
significant. 

Fig. 10 also shows the location error reduction of the 
reduced-order LS, which seemly outperforms the subspace 
LS, both are superior over the conventional LS. 

4. Parameter Analysis with Simulation 
Several Monte Carlo simulations are conducted to obtain 
statistical results of the positioning performance as a 
function of design parameters. In the following figures, the 
curves (◊) marked as “MLE” in legends are for the MLE 
solution, which is a weighted non-linear least squares, 
calculated using (5). The curves (o) marked as “regular LS” 
in legends are actually iterated linear least squares, which 
entail starting with an initial estimate, linearizing the 
nonlinear measurement equations, solving for the errors, 
and updating the estimate. The curves () marked as “ave” 
in legends are calculated using (8). The curves (>) and (<) 
are for the reduced order and subspace solutions from 
Sections 3.2 and 3.3, respectively. 

Example 5: Effect of Initialization. The two sensors are 
located at (500, 0) and (-500, 0), respectively. The target is 
at (50, 0.1). The range measurements are subject to 
independent zero-mean Gaussian noise with varaince σ1

2 
= σ2

2 =  22. The initial position estimate is set as an offset 
from the true position at: 

[ ]θθ sincosˆ d=Δx  (32) 

where θ = 10o and d is varied from 0 to 270. 

The updated position errors (RMS) of various algorirthms 
as a function of the initial position errors are shown in Fig. 
12. The RMS errors are calculated based on 1000 Monte 
Carlo runs. The ML estimate (◊) remains unaffected by the 
initial position estimate. This is understandable because it 
is solved from the closed form nonlinear equations without 
iteration from an initial condition. 

The average estimate () is also not affected by the initial 
estimate because it is constrained to lie on the baseline. 

The regular LS estimate (o) actually improves as the offset 
from the true position increases. This is because the 
observation matrix at a larger distance from the singular 
target location, albeit erroneous, produces a smaller GDOP. 
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However, this updating effectiveness flattens out and then 
gets worse due to large linearization errors. 

With poor geometry, the iterated LS does not improve the 
estimate per iteration. For example, let the initial position 
error be 100. According to the figure, the updated position 
error is about 35. A second update with an initial error of 
35 will increase the error back to 100. An oscillation 
behavior occurs, no convergence as one might desire. 

The reduced order (>) and subspace (<) solutions exhibit an 
error that increases almost linearly with the initial position 
error. After one update, both methods can find a good 
estimate for the x-component while the y-component is not 
worse than that of the initial condition. 

Example 6: Effect of Target Position with Fixed Initial 
Estimate Offset. In the second simulation, the target true 
position is at (50, dy) where dy is varied from 0 to 65. The 
initial position error off the true position is by a fixed 
amount of (40.3771, 7.1196). The results are shown in Fig. 
13 where the RMS errors are calculated based on 1000 
Monte Carlo runs. 

Since the initial estimate is off the true position by a fixed 
amount and the true position moves away from the 
baseline, the geometry improves for the regular LS solution 
(o). 

The ML solution (◊) also improves as the two circles 
crosses at an increased angle at the intersection point away 
from the baseline. 

The average solution () stays on the baseline. That is why 
its error increases linearly with the true position offset from 
the baseline. 

The reduced order (>) and subspace (<) solutions produce a 
good estimate for the x-component while their y-component 
is about the same as the initial condition. Since the initial 
estimate has a fixed offset about 7, the errors of both 
solutions therefore remain about the same. 

Example 7: Effect of Target Position with Fixed Initial 
Estimate. Instead of a fixed offset from the true position, 
the initial condition itself is fixed at (200, 20) in the third 
simulation. Again, the target true position is at (50, dy) 
where dy is varied from 0 to 65. The results are shown in 

Fig. 14 where the RMS errors are calculated based on 1000 
Monte Carlo runs. 

The ML solution (◊) also improves as the two circles 
crosses at an increased angle at the intersection point away 
from the baseline. This trend will flat out and start to 
reverse when the two circles become parallel at a far 
distance. 

Since the true position moves away from baseline, the 
regular LS solution (o) remains the same (over dy = 0 to 
40) and then gets worse. This is because with a fixed initial 
condition and fixed sensors, the LOS vectors are constant, 
which is acceptable for small offsets from the baseline. At 
large offset, the LOS vectors no longer point to the correct 
directions. The LS solution errors increase due to 
initialization errors. 

The average solution () stays on the baseline, which 
explains its error increases linearly with the true position 
offset from the baseline. 

Since the reduced order (>) and subspace (<) solutions tie 
their y-component to the initial condition, which is 20, their 
errors first decreases as the true position y moves away 
from the baseline (y = 0) toward 20 and then increases 
linearly as the true position y moves away from 20 toward 
100. 

Discussions and Remarks 

The study shows degenerate cases for conventional 
methods and suggests several methods to deal with such a 
geometry. Practical questions are how one knows a priori 
that the target is near the baseline and how one initializes 
the adapted methods. To solve this problem, we start with 
our knowledge about our sensor placement, based on which 
we know different regions in which different methods 
should be used if the target enters such regions. 

Regardless where the true target is, the initial estimate and 
the sensor locations provide a perceived geometry. This 
perceived geometry, which may be totally wrong, shows a 
different degree of effectiveness in position error reduction 
for a linearized LS solution. For poor geometry, if the 
initial condition is closer to the true target, the updated 
solution may be steered farther away from the truth. 
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Without an initial estimate, the nonlinear ML estimate from 
the closed-form solutions provides two performance 
bounds, one off the baseline (that is, one of the two circle 
intersect points) and one on the baseline (the average 
solution). However, the on-baseline solution (the best 
solution one can get) needs the prior information. The off-
baseline solution is affected by a geometry factor. 

The subspace method throws away the part in the direction 
perpendicular to the baseline while the reduced order 
method ignores the smaller singular value, both implying a 
near baseline encounter. However, both solutions are 
affected by the y-component of the initial condition. But 
they are no worse than the LS and are between the two ML 
estimates, depending on the initial condition and the actual 
offset. 

If one has prior information that the target is on the 
baseline (or near the baseline), then one can insert the prior 
information in the MLE to get better results (if the prior 
information is correct). With the prior information, the 
Fisher information matrix can be made non-singular by 
reducing the order. Similarly, an iterative method that 
incorporates the prior (as pseduo measurements or 
constraints) may also be developed. 

Scanning radars may provide coarse azimuth angles, which 
can be used to indicate a possible degenerate encounter. 
Monitoring GDOP is another way to assess the geometry. 

5. Conclusions 
For a given sensor configuration, the performance of target 
positioning and tracking algorithm depends, on one hand, 
on the sensor accuracy and, on the other hand, on the 
geometry of the given sensor configuration. Indiscriminate 
application of conventional least squares method may lead 
to large position errors caused by noise amplification due to 
poor GDOP. As a result, the performance measure can be 
used for processing algorithms selection and optimization 
for target positioning. 

In this study, we investigated the MLE in degenerate 
geometry and proposed three approaches for such cases in a 
2D scenario, namely, (i) geometrical 1D  solution, (ii) 
reduced-order LS solution, and (iii) subspace LS solution, 
which were compared to the conventional least squares 
solution in computer simulations. There are three 
significant findings: 

• Although the predicted LOS vectors can be chosen by an 
“arbitrary” initial estimate (that is, to produce a favorable 
GDOP), such an initialization may not necessarily lead to 
meaningful updates for next available measurements. In 
other words, the initialization has to be in the vicinity of 
the true location to reflect the geometry, albeit “poor,” 
and to allow for measurement update to improve the 
solution. 

• For a poor geometry, near-truth initialization leads to 
large errors with conventional methods due to noise 
amplification. Initialization with large errors would not 
provide much error reduction. 

• The reduced-order solution outperforms other solutions 
even in poor geometries. As a result, the ratio of singular 
values (the largest vs. the smallest) of the observation 
matrix can be calculated and used as a test to determine 
when to apply the reduced-order solution as a means to 
switch from the full 2D solution to the degenerate 1D 
solution. The eigenvalue ratios are tied to GDOP. 

The development of these methods adapted to degenerate 
cases can aid adaptive sensor management and active 
sensor placement strategies in target acquisition and track 
maintenance.   

Future work includes extending the 2D solution and its 
degenerate 1D solution to higher dimensions and applying 
the methods for target tracking and other applications such 
as GPS in urban canyons. Additionally, testing the methods 
for operational scenarios with multiple targets and multiple 
sensors would require parameter selections between the 
realizable and degenerate cases as related to situational 
awareness of all targets in an area of interest. 
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