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propellant combustion, and related issues 

Final Report 

J.Buckmaster dba Buckmaster Research 
2014 Boudreau Drive 

Urbana, IL 61801 
limey@illinois.edu; tel: 217.621.9786  

October 23, 2009 
 

1. Introduction: Solid propellants and their combustion 

1.1 The Solicitation 

Provide a code to accurately predict the entire flight of aluminum particles from the propellant 
surface through the nozzle exit plane (for nozzle impact studies and plume signature studies) 
together with a prediction of the effective properties (thermal conductivity and measures of 
mechanical strength such as Young’s modulus, Poisson’s ratio) of the binder, ammonium 
perchlorate, and aluminum spheroids which together constitute a solid propellant. A code is 
sought that will accurately model/simulate the effective properties and burning of composite 
solid rocket propellants. Composite propellants are composed of energetic particulates, typically 
of ammonium perchlorate (oxidizer) and aluminum (fuel) bound together with a polymeric 
binder constituting 10-12% of the propellant volume. Particulate packing is critical to both the 
combustion and mechanical properties, and so the code must contain a robust packing capability. 
Once the packs have been created numerically, they must be burnt numerically. The code should 
predict the statistics of the aluminum agglomeration on the surface of an aluminized 
heterogeneous propellant since the dynamics of these agglomerates (detachment from the 
surface, transport in the chamber flow, burning, impact of aluminum oxide particulate on the 
nozzle which abrades the nozzle, and creation of an exhaust signature) is of critical importance to 
the performance of solid rocket engines. 

Phase II: Development of marketable codes. 

1.2 Background 

Heterogeneous reactive materials are widely used as rocket propellants and in explosives. The 
solicitation is concerned with propellants, but the tools developed in response to the solicitation 
can in many cases be of use in the explosive context also. Since the Air Force has interests in 
explosives as well as in rockets, we have paid some attention to this closely related area with a 
view to marketing codes to a wider audience than that directly implied by the solicitation. In 
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addition, there is at least one component here that is likely to be of interest to a wide range of 
business interests, and that is the packing module. Certain kinds of business need to create 
heterogeneous materials with prescribed component fractions and that is a non-trivial problem 
when the added ingredients that are to be placed in the matrix are to occupy a large volume 
fraction. With these other issues not forgotten, we shall discuss the propellants that are at the 
heart of the solicitation.  

Solid propellant rockets, used as missiles, boosters during the launch phase of the space shuttle, 
etc., are typically fueled by oxidizer particles (e.g. ammonium perchlorate, AP) embedded in a 
rubbery fuel-binder (e.g. hydroxyl-terminated polybutadiene, HTPB). Other chemical choices are 
possible, but it is convenient in our discussion to invoke AP both in its own right, and as a 
surrogate for the oxidizer, and HTPB both in its own right and as a surrogate for the binder.  

Some 80% or so of the volume needs to be AP, i.e. the packing density is high, a challenge to the 
modeling of the morphology. Often aluminum particles are added, along with the AP, since they 
burn in the AP-HTPB combustion products to raise the chamber temperature and therefore 
increase the specific impulse. Note that Tsiolkovsky’s famous equation makes it clear that 
appropriate measures of rocket performance only increase logarithmically with propellant mass 
so that the smallest increases in performance by other means are highly valued.  

Unfortunately, the addition of aluminum exacts a price. The particles are sized in the tens of 
microns, but sit around on the surface of the propellant (in the HTPB melt layer) where they 
agglomerate. The agglomerates are sized in the hundreds of microns. After detachment, these 
agglomerates pass through the chamber and can scour the nozzle walls or accumulate behind the 
leading lips of re-entrant nozzles. In the latter case, the accumulated mass can be deleterious to 
rocket performance. The agglomerates also contribute to flow losses within the chamber. The 
ability to predict the statistics of the agglomerates would be an invaluable tool in propellant 
development, and is one of the major interests raised in 
conversations with major players in the rocket industry.  

Figure 1 shows a cartoon of a burning aluminized 
propellant, and gives some clues as to the complexity of 
the process. The essential physics within the propellant 
is unsteady three-dimensional heat conduction with 
different properties (conductivities, densities etc.) for 
the different components. The gas-phase is governed by 
the reactive Navier-Stokes equations and the Mach 
number is small so that a zero Mach number code is 
required. The number of reactants and reactions is huge, 
far too many to be precisely modeled within the three-
dimensional, unsteady context, and so global kinetics 

Figure 1. Cartoon of a burning 
heterogeneous propellant. 
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schemes must be adopted. The well-known Beckstead-Derr-Price model is one that is suitable, 
and is characterized by:  

• The primary diffusion flame, reaction between AP gases and HTPB gases; 
• The AP decomposition flame, exothermic decomposition of primary AP gases to form reac-

tive products; 
• The secondary diffusion flame, reaction between HTPB gases and the products of the AP 

decomposition flame. 

A numerical model of Figure 1 can be used for a number of purposes. For example, it can be 
used to predict: the mean burning rate; gas-phase fluctuations beyond the combustion layer, 
fluctuations which define boundary conditions for the turbulent chamber flow; variations of the 
burning rate due to an impinging acoustic wave, a matter of importance in chamber stability 
studies; and the formation of aluminum agglomerates at the surface, and their subsequent 
detachment. It hardly needs to be pointed out that these are highly challenging problems, 
challenging both to the modeler, and to the code constructor.  

The modeling of Figure 1 is a crucial component of the solicitation. An equally crucial com-
ponent is the modeling of the chamber flow, something best carried out in an LES (large eddy 
simulation) context (DNS is inadequate). This can be used to describe the flight of the aluminum 
agglomerates, during which they burn to form oxide. The chamber flow itself is not without 
interest, of course, a notable issue being time fluctuations in the head-end pressure, fluctuations 
which can be important to rocket-casing fatigue life. Moreover, strong eddies in the chamber 
flow can impinge on the surface of the burning propellant and might contribute to erosive 
burning, a phenomenon that is only recently being understood. 

The importance of this modeling if it can be used to create a design tool for the rocket industry 
can hardly be overemphasized. Propellant development and rocket development is a hugely 
expensive empirical game, presently guided only by crude, back-of-the-envelope modeling, and 
the experience and genius of the development engineers. The latter component is undoubtedly 
what makes it work, but real improvement in performance and significant cost-cutting can only 
come about if more sophisticated design tools are implemented. We live in an age of remarkable 
sophistication insofar as numerical simulations are concerned, with ready access to large parallel 
computing platforms, but neither the industry nor the mainstream university propellant commu-
nity works within this modern framework.  
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2. Phase II Technical Objectives 

The proposed technical objectives were: 

1. At the present time, we can pack circles, spheres, ellipses, and ellipsoids; we pack in periodic 
cuboids. We shall construct marketable codes that can pack in other geometries; and we have 
good reason to believe that it might be possible to pack arbitrary shapes, something hitherto 
not accomplished by anyone. The latter would be of great importance for explosives 
modeling, e.g. HMX. Our goal is to make it possible to execute all packing codes in a laptop 
environment. 

2. The solicitation calls for methods for calculating the effective (large-scale) thermal and me-
chanical properties of a heterogeneous pack. We have devised a strategy for calculating the 
thermal properties with accuracy sufficient for our past purposes, but have not examined 
mechanical properties; AP/HTPB mixtures are essentially visco-elastic. This so-called 
homogenization problem is not an easy one, and there are no standard strategies in 3-
dimensions that can inevitably lead to a general solution (we solved the thermal property 
problem using ad hoc methods which were tested numerically). Moreover, homogenization is 
not a uniquely defined problem, and the only truly legitimate results are bounds. Strategies 
for periodic heterogeneities exist, and can provide useful estimates for these bounds. Dr 
Karel Matous, a noted expert on this subject, will work with us as a consultant, and we 
expect to generate an addendum to the packing code that can calculate data of value to the 
engineering community.  

3. At the present time we can numerically burn AP/HTPB/Al packs using the 3-step chemistry 
identified in Section 1. A key component of the model is the specification of the kinetics 
parameters, parameters for what is, after all, false kinetics, and so cannot be determined from 
chemistry fundamentals. Instead, “hand-fitting” of certain empirical data is employed, such 
as one-dimensional burning rates of fine-AP/HTPB blends. Three-dimensional data is never 
used (except for validation purposes). Now although it is likely that AP propellants have a 
long future, there is significant interest in other propellant components, such as HMX, and 
certainly other ingredients are relevant to the explosives problem. And so a key component 
of a useful marketable code is likely to be a kinetics specification module in which the 
“fitting” is done in an optimal fashion, by machine, for a prescribed set of target data (one-
dimensional burning rates, stability boundaries, and the like).  

4. Aluminum plays an important role in the solicitation, and the problem of agglomeration is of 
enormous importance to the rocket industry. How it comes about is not well understood, and 
there are different opinions as to the nature of the controlling physical ingredients. In this 
connection there is a significant lacuna in the DOE funded work, as the DOE goals can be 
achieved without an accurate determination of the agglomerate statistics. We have worked on 
agglomeration and we believe that given the mean agglomerate diameter it is possible to 
accurately predict the standard deviation of the distribution (assuming, as seems true, that the 
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distribution can be described log-normally) simply from the pack geometry. A key question 
is whether we can predict the mean diameter. 

5. Chamber flow simulations using LES (large-eddy simulations) require boundary conditions 
at the propellant surface, a specification of the velocity and temperature fluctuation statistics. 
Calculations carried out so far under DOE auspices use white-noise statistics. By numerically 
burning a propellant and extending the calculations out to the millimeter scale, beyond the 
flame zone, it is possible to determine the correct statistics. We believe that this will play an 
important role in the calculations of the chamber flow.  

6. The chamber flow is an important component of the motor description of course, and drives 
the “flight of the agglomerates” identified in the solicitation. Flow numerical modules have 
been developed as part of the DOE program, but a number of issues of importance to the 
present objectives remain unexamined. These include: an examination of the role that dif-
ferent surface statistics plays in the nature of the turbulent flow, and the distribution of the in-
flight agglomerates; an examination of whether nozzle impact and scouring by agglomerates 
can be reasonably quantified; an examination of powerful eddies near the nozzle entrance to 
see the role they play in defining the near-surface flow, and whether this near-surface flow 
could affect the burning rate (erosive burning); more accurate treatments of the agglomerate 
combustion; an accounting of droplet (liquid aluminum oxide) break-up at high Weber 
numbers.  
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3. Meeting the Technical Objectives 

[The paragraph numbering in this section corresponds to the numbering of section 2.] 

The technical objectives identified above are ambitious for a Phase I plus Phase II funding level 
(2.75 years and $850,000); consequently, we were not able to meet every objective. However, 
significant progress and commercialization was done for a number of the items. Below we 
briefly discuss our accomplishments for each item listed above. More details are provided in 
Section 4. 

1. Packing: We aimed to do four things: 

• Develop a webpage for commercialization. 
• Add various refinements so that exit is always graceful (no Nans). 
• Develop sphere packs in volumes other than cuboids, e.g. right circular cylinders. Of 

particular significance here is that rigid walls define parts of the pack boundary, and very 
little is known on how such boundaries could affect the pack properties. Conversations 
with Aerojet engineers in the Spring of 2006 made it clear that the industry is very 
interested in being able to predict the effect of the chamber boundaries on the burning 
rate. 

• Develop the ability to pack arbitrary shapes, and not just spheres or spheroids, the shapes 
to be defined using level-sets. This would be an important break-through. It would be 
invaluable in constructing morphology models of HMX explosives or igniters, for 
example. 

We were able to accomplish all four items. A webpage was built for the general packing 
code, a number of algorithm refinements were done to improve performance, we are now 
able to pack spheres in a cylinder and an annulus, and we are now able to pack shapes other 
than spheres. 

The packing code (which we call Rocpack) has been commercialized and a web page 
dedicated for software sales has been created. The link can be found at 
http://fermat.cse.uiuc.edu/rocpack/index.html. The web page allows a potential user to make 
a variety of small but representative packs before purchasing. A User Manual has been 
written and is available on the web; a copy is attached in the Appendix. Figure 2 is a screen 
shot of the home page of Rocpack. 

More details can be found in Section 4. 
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Figure 2. Home page of Rocpack webpage. 
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2. Material Properties: The strategy adopted in the program has three ingredients.  

The first is to construct a small pack that is statistically identical (to some appropriate order) 
to the real (large) pack. The statistics of the large pack can be determined experimentally in 
the case of a physical pack (using tomomicrography), or numerically from a numerically 
constructed pack. The latter is easily done; and we have demonstrated that the former is 
possible. The small pack is used in the subsequent calculations. 

The second is a mathematical (analytical) one in which a general framework is constructed 
which can be used to determine property bounds for any property for which the underlying 
characteristic operator is elliptical (heat conduction is an obvious example). This is non-
trivial, and has been completed. 

The third is the actual evaluation of property bounds using the second strategy for a 
particular property. This is computationally intensive. Results have been obtained for elastic 
properties, and a paper is presently being written in which these results will be reported in the 
archival literature. Because this paper is presently only available in draft form, not for public 
distribution, we merely show the draft abstract here: 

“In this report, we use the well-known Hashin-Shtrikman variational principle to obtain 
the overall mechanical properties of heterogeneous polydisperse particulate 
composites. The emphasis is placed on the efficient numerical integration of complex 
three-dimensional integrals and on aspects of the anisotropic material response. In 
many previous works, only short range elastic interactions have been considered, and 
most of the work had been done in two-dimensions using artificial and statistically 
isotropic probability functions. In this work, we consider both short and long range 
interactions and focus on the efficient numerical integration, which allows us to 
accurately capture the underlying three-dimensional anisotropic nature of particulate 
systems. For this purpose, we numerically calculate the complete statistics of real 
packs, which are numerically or tomographically generated. We use the parallel 
adaptive sparse Smolyak integration method with hierarchical basis to integrate 
complex singular integrals containing the product of probability functions and the 
second derivative of Green’s function. We exploit the geometrical characteristics of our 
integrand, i.e., we use spherical coordinates to define the basis functions and the 
integration. Selected examples illustrate both the numerical and physical facets of our 
work. First, we show the reduction of integral points for spherical systems. Then, we 
comment on the parallel scalability of our method and on the numerical accuracy 
associated with the integration of a singular function. To investigate the ability of our 
scheme to capture the anisotropic nature of packs, we validate the solver using 
experimental data and solve a lattice type system. Finally, we report on the elastic 
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constants computed for the modeled particulate system that is tomographically 
characterized.” 

 
3. Kinetics Fitting: We have demonstrated that global kinetics parameters can be determined 

by using optimization strategies that examine a wide range of data, including surface 
temperature, burn-rate sensitivity (to temperature changes), burning rates, burn-rate 
sensitivity for one or more of the 
propellant components, 1-D linear 
stability, low pressure deflagration 
limits, etc. The idea is to obtain this 
data experimentally for a typical 
propellant pack; and then, once the 
kinetics parameters are calculated, using 
them to explore, numerically, the 
properties of different packs with the 
same ingredients but different particle 
distributions and volume fractions. The 
principle is that the kinetics parameters 
do not change just because the 
morphology changes. The latter has 
been demonstrated in earlier work that 
we did in which the parameters were 
determined using non-optimal ad-hoc 
strategies. Thus Figure 3 shows burning 
rate predictions (circles joined by a 
solid curve) compared to experimental data for four propellants. There are convincing 
reasons to believe that the experimental data of M21 is not correct. 
 
We are prepared to engage with the rocket industry in this matter, but conversations with 
various players reveals an unwillingness to believe in the value of global kinetics. This is an 
odd position to take, as global kinetics is certainly seen as useful in, for example, the 
automobile industry, but we have no way of overcoming these cultural handicaps. Related to 
this, one of the major rocket companies has their own packing code, one that is vastly inferior 
to ours, and cannot be used in the same way (for example, to calculate material properties in 
the manner we describe in Section 2.2), and yet one they persist in using. 
 

4. Agglomeration: We have demonstrated that by using a numerically defined aluminum-
loaded pack and using a specified length Sd against which aluminum particle separation 
distances are measured, it is possible to predict the agglomeration distribution provided the 
mean is specified. Sd is chosen to match the latter. We had hoped that it might be possible to 

 

Figure 3. Burn rate predictions (circles joined 
by a solid curve) compared to experimental data 
for four propellants. 
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identify a pattern from which Sd could be determined from elementary properties of the pack, 
such as the mean of the distance between large AP particles; we identified this as a high-risk, 
high-payoff strategy. We have not been able to do this. We are currently of the belief that the 
problem of agglomeration can only be solved using a detailed simulation of aluminized pack 
combustion that accounts for the detailed physics acting on each aluminum particle. To carry 
this out would take a large effort, at the least an exclusively focused STTR. 
 
As evidence of its importance we note that the December 2009 JANNAF meeting (43rd 
Combustion Subcommittee) has several presentations devoted to aluminum agglomeration. 
Furthermore, we have heard a manager at one of the leading aerospace rocket companies say 
that “aluminum agglomeration modeling is one of our highest priorities”. 
 

5. The effects of propellant morphology on the chamber flow. 

We have shown how the statistics of the fluctuating flow field generated by a burning 
propellant can be determined. Of particular importance are the joint pdf correlations of 
temperature and normal velocity which can have a significant effect on head-end pressure 
oscillations that can lead to motor instability. Because of the enormous amounts of energy 
that characterize rocket combustion, there is always the concern that motor instabilities can 
lead to failure. 

6. Chamber flow and nozzle erosion: 

6a. Chamber Flow: 

We are able to carry out large scale chamber flow calculations, including the transport of 
aluminum particles. However, because of the magnitude of the numerical problem, full motor 
simulations (chamber and nozzle) cannot resolve the nozzle boundary layers. One can 
question the accuracy of nozzle erosion calculations from such calculations. Moreover, the 
chamber simulations alone use advanced codes that can only run in a large parallel 
environment, not available to the rocket industry. Indeed, in the design of the 5 section 
enlargement of the 4 section solid propellant boosters used on the space shuttle, an 
enlargement needed for the planned shuttle replacement, ATK contracted with our university 
partner (CSE at the University of Illinois) to carry out appropriate simulations.  
 
For these reasons we decided to focus on the following issues: 

• A simplification of the chamber flow simulations by using an asymptotic strategy 
valid for high aspect ratio chambers. 

• A partial uncoupling of the chamber flow and the nozzle flow in which complete 
motor simulations sans boundary layer resolution are used to calculate the chamber 
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flow, and then this solution is used to specify inlet boundary conditions for a fully 
resolved nozzle flow calculation. The latter focuses on erosion. 

• An examination of the effects of non-uniform inlet conditions (arising from 
propellant morphology and/or chamber flow turbulence) on the nozzle flow. 

 
Finally, because of our long-standing interest in propellant combustion we have long been 
interested in erosive burning, and the asymptotic strategy that we adopted for the chamber 
flow turned out to be an ideal tool for an examination of this poorly-understood problem. 
 
More details are provided in Section 4. 
 
6b. Nozzle Erosion: 

We made significant progress on the modeling and simulation of erosion of solid rocket 
nozzles. A more complete description of the work is provided in Section 4. We note here, 
however, that a key finding of our research is that using turbulent inlet conditions has a 
significant effect on the time-averaged erosion rate when compared to using uniform inlet 
conditions. This is important because industry standard is to use uniform inlet conditions 
when computing the heat flux to the nozzle wall. Furthermore, our work is fully coupled (i.e., 
we resolve the boundary layer along the nozzle walls and so have complete coupling between 
the nozzle flow and the wall-normal unsteady heat equation in the solid phase), whereas 
virtually all industry codes are decoupled. The value of our work has recently been 
recognized by ATK in that we are writing a follow-up joint STTR proposal with 
IllinoisRocstar LLC. More details about this collaboration are given in Section 4.6. 
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4. More Details 

4.1 Packing 

The packing of arbitrary shape particles was completed. Rocpack packs polydisperse particles in 
cuboids, cylinders, or annuli [1]. The original goal was to pack spherical AP particles to a high 
packing density. The code can construct packs 
with prescribed size-distribution statistics, 
which match those of physically constructed 
packs. The first version of the code was fully 
parallel, but recent algorithmic improvements 
now allow the code to run efficiently on a 
laptop. Some examples of packs generated by 
Rocpack are shown in Figure 4. 

For energetic crystals, we have been working 
with Dr. Daniel Hooks, Los Alamos National 
Laboratory (LANL), to generate realistic 
shapes. Figure 5 shows typical shapes of 
crystals grown at LANL. Shown below them are 
corresponding crystal morphologies generated 
by SHAPE, a software program from Soft Shape 
(http://shapesoftware.com/). The input files 
were provided by Dr. Hooks. The SHAPE 
software allows us to generate realistic 
representations of the energetic crystals. The 
output from SHAPE is then used as input into 
our packing code, Rocpack. Corresponding 
packs generated by Rocpack are shown in 
Figure 6. In each pack there are 40 large crystals 
and 400 smaller crystals, with sizes of 1 and 0.3, 
respectively. The packs are small and are only 
meant to be representative of the capabilities of Rocpack. The packing fraction is roughly 0.53 
for all three packs. The binder regions are shown as voids. Note that our packing code can pack 
any combination of spheres and crystals. A number of manuscripts detailing the work have been 
published in archival journals. These are listed in Section 6. A few of the more relevant 
manuscripts are attached in the Appendix. 

 

 

 
Figure 4: Examples of packs generated by 
Rocpack. Top: Polydisperse particles in 
cuboid and cylinder. Middle left: 
Ellipsoids. Middle right: HMX crystals. 
Bottom left: Seven-perforated igniter 
grains. Bottom right: Pharmaceutical gel 
capsules. 
 

http://shapesoftware.com/�


Buckmaster Research  FA9550-07-C-0123 

5 
 

 

4.2 Material Properties 

Significant progress was made on material modeling and determining the material properties for 
heterogeneous propellants. To determine the material properties two items are required, namely 
(i) a representation of the pack, and (ii) a proper 
mathematical framework that can use the output 
from the pack (such as 1st, 2nd and 3rd order 
statistics) as input, and compute the upper and 
lower bounds of various properties (such as 
thermal conductivity, Young’s modulus, etc.). 
To address the items two avenues of research 
were carried out. The first was the development 
of the computational tools necessary to gather 
the statistics from either a computational 
representation of the material, such as using 
Rocpack, or from a micro-CT scan. Figure 7 
shows a scanned image of an AP/HTPB 
propellant. The scan resolution is 2.818 microns 
per pixel. Since the particle shapes are non-
spherical, it was determined that building the 
proper tools would be easier for spherical glass beads. And so several packs of glass beads were 
created and then imaged. Voxel data was collected and a histogram constructed. Once the voxel 
data was collected and analyzed, an equivalent pack of spheres was generated having the same 
centers as the glass beads. A pack such constructed is hereafter called a “voxel pack”, and should 
be distinguished from a pack generated by Rocpack. Since the glass beads are not all exactly 
spherical, replacing them with spheres creates a pack with some overlap, but this overlap was 
determined to be less than 0.05%, an acceptable error. Once the pack is constructed the statistics 

 
Figure 5. Crystals of HMX, PETN and 
RDX grown at LANL. Lower images 
were constructed by SOFTSHAPE.  
 

 

Figure 6. Particle pack morphologies created by 
Rocpack. Packs consist of 40 large and 400 
small crystals of HMX (left), PETN (middle), 
and RDX (right). The packing fraction for all 
three packs is roughly 0.53. 

 

Figure 7. Micro-CT scan of AP-based 
propellant. 
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can then be determined. However, the voxel 
pack is typically large, containing many tens of 
thousands of particles, and is too large to be 
used for the material properties code. So a 
smaller pack is constructed, called a unit cell, 
which has the same statistics as the voxel pack. 
Such a pack is constructed using a genetic 
algorithm with objective functions defined by 
the statistics. Figure 8 shows the voxel pack 
constructed from the micro-CT scan of glass 
beads, the unit cell reconstruction pack, and a 
histogram comparing the volume fraction of the 
voxel data, the voxel pack, and the unit cell 
pack. As expected, the overall agreement is 
good. Once the unit cell is constructed material 
properties can be computed. Figure 9 shows 
Young’s modulus for a particular pack. Note 
that only the lower bound is shown for the 
numerical results. Computing the upper bound 
is straightforward and results will be published 
in the near future. 

A manuscript describing the three-dimensional 
unit cell from micro-CT scans has been written 
and submitted. The abstract for this paper is 
given below as Abstract 1, and the submitted 
manuscript can be found in the Appendix. A 
manuscript discussing the computation of 
Young’s modulus is currently being written; its 
abstract appears in Section 3.2. 

Abstract 1: In this paper, we present a 
systematic approach for characterization and 
reconstruction of statistically optimal 
representative unit cells of polydisperse 
particulate composites. Tomomicrography is 
used to gather rich three-dimensional data of a 
packed glass beads system. First-, second- and 
third-order probability functions are used to 
characterize the morphology of the material, and 
the parallel augmented simulated annealing 

 

Figure 8. 3-D pack containing 19,123 
particles (top left) and reconstructed unit 
cell containing 1082 particles (top 
right).Volume fraction of the particles 
between the voxel pack, the 3-D pack and 
the reconstructed unit cell (bottom). 

 

Figure 9. Comparison of Young’s modulus 
between experimental data and the 
isotropic and anisotropic numerical results. 
The numerical results are for the lower 
bound estimates. 
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algorithm is employed for reconstruction of the statistically equivalent medium. Both the fully 
resolved probability spectrum and the geometrically exact particle shapes are considered in this 
study, rendering the optimization problem multidimensional with a highly complex objective 
function. A ten-phase particulate composite composed of packed glass beads in a cylindrical 
specimen is investigated, and a unit cell is reconstructed on massively parallel computers. 
Further, rigorous error analysis of the statistical descriptors (probability-functions) is presented 
and a detailed comparison between statistics of the voxel-derived pack and the representative cell 
is made. 

4.3 Kinetics Fitting 

Most of our work on this problem took place during the Phase I effort, but a brief discussion here 
is appropriate. The goal is to identify kinetics data (for false kinetics) using a wide variety of 
available data, and to do this in an optimal fashion, i.e. by minimizing a fitness function. To 
ensure convergence to the global minimum, rather than a local minimum, a genetics algorithm is 
used. This is computationally intensive, requiring a parallel environment. 

Figure 10 is a comparison of the model burn rates of AP-HTPB blends with detailed kinetics 
results of Beckstead at a pressure of 20atm. Figure 11 compares burn rates of blends with 
experimental data.   

 

Figure 10. Comparison of burn rates as a 
function of percent AP. Experiments (red 
symbols); detailed kinetics (blue); optimized 
global model (black dash). 

Figure 11. Comparisons of burn rates as a 
function of pressure. Experiments shown as 
symbols; simulations as solid curves. 
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4.4 Agglomeration 

We are able to numerically “burn” three-dimensional propellant packs that contain a modest 
number of aluminum particles, but with serious limitations on the physics controlling the 
aluminum. These particles do not melt, they do not reside for any time on the propellant surface 
(and so do not migrate in the melt layer at the surface) but pass through the surface as the 
surrounding propellant burns away. But once free of the surface they are subject to fluid 
mechanical forces, calculated by integrating the surface stress. These forces generate lateral 
motion and rotation in addition to a mean downstream motion, and videos show that the 
dynamics is qualitatively similar to experimental observations. A snapshot is shown in Figure 12. 

For many propellants the aluminum 
particles do reside for a time on a 
surface melt layer, and migrate in that 
layer. We have a model which examines 
the surface temperature for a three-
dimensional burning pack, and assumes 
that each aluminum particle is a surface 
point which migrates because of surface 
tension variations that arise because of 
temperature variations. We have shown 
that, on average (we examine a large 
number of points) the distance of a point 
from its starting position is a linear 
function of time (i.e. a dispersal speed is 
well defined) for a certain time interval, 
and then the distance is capped. The 
concept of a maximum radial migration 
distance is an important one, for it 
means that any one particle, after arriving at the surface at some point, can only come in contact 
with other particles that come to the surface within a radius from this point that is no more than 
twice the maximum radial migration distance. Moreover, they must get to the surface in a timely 
fashion, and the joint migration necessary for contact must occur before particle detachment 
occurs. 

This picture makes it clear that the problem of agglomeration is a complex one, and the 
numerical challenges are huge. The problem of detachment alone is challenging. Are there short 
cuts? 

Clearly it might be possible to define a small number of fundamental parameters which control 
agglomeration. These might include: the mean surface residence time of a particle; the mean 
radial surface migration speed during the time when that speed is well defined; the maximum 

 

Figure 12. Surface topography and temperature 
level-surfaces at one instant of time. 
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radial migration distance; the mean particle diameter; the mean burning rate of the pack. Then, 
knowing the particle distribution within the pack, determined from Rocpack, and the various 
sizes of these particles, it might be possible to predict the agglomeration statistics, specifically 
the mean agglomeration size and the distribution about that size. However, it is also quite likely 
that the distributions about the various means listed here will also play a role. And so the 
prospects of constructing a predictive tool in this fashion that could be used in the development 
of a new propellant rapidly fade. 

Notwithstanding this, we have examined a one-parameter model within the framework of packs 
generated using Rocpack. This parameter is a distance Sd and whether or not two particles 
agglomerate depends on their relative locations as measured against Sd, which is chosen to match 
experimental mean agglomerate sizes. The model predicts the size distribution, essentially log-
normal, and, importantly, the standard deviation. Figure 13 shows such a distribution. Clearly the 
agreement between the measured data and the predictions is good. However, to get such 
agreement we needed to modify the experimental data by accounting (using a well known 
model) for aluminum combustion between the surface and the collection point. In general we 
find that the reported data is often not well defined (pack details important to the theory are not 
provided), and the role that particle burning might play is not discussed. For these, and other 
reasons, our hope that we could define a strategy by which Sd could be determined from pack 
morphology data has not been realized. As we noted in the proposal, this was a high-risk, high-
payoff strategy, well worth examining, but one whose failure is not surprising.  

 

 

 

  

 

Figure 13. Comparison of aluminum particle distribution from experiments 
(circle) and agglomeration model (asterisk). 
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4.5 Morphology effects on the chamber flow 

When a heterogeneous propellant burns there are significant flow perturbations (temperature, 
velocity, etc.) above the surface of the propellant at distances large compared to the extent of 
combustion, and small compared to the scale of perturbations in the chamber. Figure 14 shows 
rare images, one obtained at China Lake and one from F. Maggi’s laboratory in Italy, of such 
perturbations, and Figure 15 shows temperature fluctuations that we have obtained in three-
dimensional simulations (plots of the normal velocity show the same behavior). That these can 
affect the chamber flow is apparent from Figure 16 in which time variations in  head-end 
pressure are shown assuming, for the first panel, that the perturbations can be described by white 
noise (a common assumption in the community), and for the second panel, that the perturbations 
are generated by propellant morphology. Our primary focus during the STTR has been to 
examine the effects on the nozzle flow (see section 4.6), and relevant to this is Figure 17 which 
shows temperature variations at the nozzle inlet of a Bates-15 motor. The latter is a commonly 
used as a test facility in laboratory work. The perturbations shown here are largely ignored by the 
community. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14.Image from China Lake (left) and image courtesy of F. Maggi (right) 
showing the near surface fluctuations above a heterogeneous propellant. 
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Figure 15. Temperature fluctuations obtained in three-dimensional simulations. 

 

Figure 16. Time variations in head-end pressure for perturbations described by white 
noise (left panel) and for perturbations generated by propellant morphology (right panel). 
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Figure 17. Temperature field at the nozzle inlet 
extracted from a full-configuration BATES 15-lb 
motor simulation. Note that the fluctuations along the 
propellant surface result in significant temperature 
fluctuations inside the chamber. 
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4.6 SRM nozzle erosion 

Graphite and carbon/carbon nozzles are often used in solid rocket motors (SRMs) because of 
their ability to retain structural integrity under extreme thermal environments, and the ease with 
which they can be machined to achieve a desired geometry [2].However, when exposed to hot 
oxidizing chemical species such as H2O, OH, CO2, O, and O2, surface erosion can occur. During 
a long burn this can be sufficient to alter the geometry (including the throat area) to an extent 
sufficient to alter the rocket performance. For this reason, there is a need for theoretical and 
numerical studies that can lead to an understanding of the major factors that dictate the erosion 
rate, and can lead to design improvements. Such studies present serious challenges, for not only 
must the chamber flow be well described to determine the proper nozzle inlet conditions, itself a 
challenging problem, but the nozzle flow must be well described, with full resolution of 
boundary layers. 

A simplified schematic is depicted in 
Figure 18 and summarizes the various 
physical and chemical processes 
involved in nozzle erosion/ablation. 
Chemical, mechanical, and thermal 
effects coexist within the 
compressible turbulent boundary 
layer at the nozzle surface, presenting 
a challenge to accurately model the 
momentum and heat transfer to the 
nozzle walls. 

There is a significant literature in the subject, albeit flawed, e.g. [3,4]. Most significantly, in the 
context of our work, it does not require a description of the chamber flow because the nozzle 
inlet conditions are assumed to be steady and uniform, only a rough approximation for turbulent 
flow or for flow generated by the combustion of heterogeneous propellants. 

This assumption, part of current industry practice, extends to the inclusion of aluminum oxide 
particles. Aluminum is commonly used in solid rocket propellants, and oxide particles pass into 
the nozzle, where their impact on erosion can be significant. The distribution of these particles 
across the inlet is not uniform, but is assumed to be; and the particles are not all of the same size, 
but have a size distribution, one that is ignored. We, together with colleagues at the University of 
Illinois, have developed computational tools that allow for the determination of the detailed 
chamber flow, along with a detailed description of the oxide particle distribution both in size and 
location, and so we can use these tools to prescribe nozzle inlet data with a detail heretofore not 
examined [5,6]. 

 

Figure 18: Schematic of various processes in nozzle 
ablation. Courtesy of ATK. 
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What we cannot do is fully calculate the coupled chamber/nozzle flow whilst accounting for the 
nozzle boundary layer, simply because of limitations on computational resources. An obvious 
strategy for dealing with this difficulty is to calculate the chamber flow and the nozzle flow 
separately: to calculate the chamber flow, including data at the nozzle inlet, using a relatively 
coarse mesh; and then to use the inlet data, suitably interpolated in space and time, in a fine-
mesh calculation of the nozzle flow. The chamber flow can be determined from a full rocket 
simulation including the nozzle, but with the boundary layers unresolved. See Figure 19 for 
details. 

There are technical difficulties that arise in the pursuit of this strategy, and our efforts presented 
here are only a partial step towards the ultimate goal. But we have shown that turbulent nozzle 
inlet data can significantly affect the nozzle flow and the erosion rate; and we have successfully 
completed a variation of the strategy when the chamber flow is modeled by a three-dimensional 
cylindrical turbulent flow. In this variation the chamber flow is determined from a chamber-only 
calculation rooted in the assumption that both the mean flow and the turbulent fluctuations 
evolve slowly in the axial direction. 

The fundamental numerical tool that we have at our disposal, always used when the slowly-
varying strategy is not being used (and therefore always used in the nozzle), is Rocstar. Rocstar 

 

Figure 19. Schematic showing two different approaches to coupling the chamber flow field 
to the nozzle. In the first approach a full three-dimensional chamber plus nozzle simulation 
on a relatively coarse grid is performed, and a statistical description of the flow at the nozzle 
inlet is obtained. In the second approach, a multi-scale analysis is performed to approximate 
the turbulent (i.e., unsteady and three-dimensional) flow field at the nozzle inlet. In both 
approaches, statistics are gathered at the nozzle inlet, then a nozzle-only simulation is 
carried out, one that adequately resolves the boundary layer along nozzle wall. 
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is a tightly coupled fluid-structure-thermal multiphysics solver comprising several physics 
modules including Rocburn and Rocflo. Rocburn solves the unsteady heat equation in the solid 
phase in the wall normal direction, allows for gas-solid coupling, and has been modified to 
accommodate nozzle erosion for our STTR work. Full coupling of the flow field, the unsteady 
thermal field in the solid, and the retreating solid surface, is not a characteristic of current 
practice or any published study that we know of. 

The code is fully three-dimensional and this enables us to incorporate three-dimensional 
turbulent flows, and to solve for non-axisymmetric configurations, as, for example, when a thrust 
vector control nozzle is used. We do make some simplifications. One such is the neglect of gas-
phase chemical reactions. Indeed, we account for no gas-phase chemical species, including those 
oxidizers responsible for the erosion. Instead, we use a familiar pyrolysis law in which erosion is 
assumed to be a function of the surface temperature and the local pressure. Nor have we yet had 
time to account for aluminum particles in the gas flow, although we have the tools that would 
make this possible with modest effort.  

4.6.1 Mathematical Formulation 

The three-dimensional equations in the gas phase consist of Favre averaged mass, momentum, 
and energy conservation for a viscous, compressible, ideal gas. A variety of turbulence models, 
including RANS, LES, and DES are available within the computational framework and provide a 
closure model for the Reynolds stresses as well as the other turbulent production terms. Although 
RANS is available, we will not use it since our goal is to investigate unsteady behavior. LES, 
moreover, is computationally expensive for high Reynolds number flows due to the extremely 
fine mesh requirement near wall regions, and so we have made limited use of it in our STTR 
work. Thus our main effort has been the use of a DES (Detached Eddy Simulation) [7]. 

The nozzle surface is an interface between the condensed phase and the gas phase, and certain 
connection conditions are imposed there, in addition to the specification of the regression or 
erosion rate.  

4.6.2 Obtaining Proper Inlet Conditions 

As previously stated, the current industry practice is to use steady and uniform inlet conditions. 
This is a significant shortcoming as the heat transfer at the nozzle wall depends critically on 
upstream conditions. To remedy this we use one of two approaches. The first approach is based 
on a full-scale three-dimensional simulation of the rocket chamber plus nozzle; this does not 
resolve the nozzle boundary layer. The flow field at the nozzle inlet is then captured in space and 
time as the full-scale simulation proceeds. Afterwards, a statistical description of the flow field at 
the nozzle inlet, such as joint pdfs in space and time of velocities and temperature, are transferred 
to the inflow plane of a nozzle-only simulation using a fine enough grid to resolve the boundary 
layer. 
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The second approach uses a multi-scale asymptotic model to capture the chamber flow, but 
otherwise proceeds as in the second approach. Details of the model are given in [8]. 

4.6.3 Importance of Unsteady Inlet Conditions 

To demonstrate  the effect of unsteady inlet conditions on the erosion rate on nozzle surface, 
Figure 20 shows what happens when the injection temperature is perturbed and made periodic in 
time; i.e., we set T = To(1 + 0.14sin(ωt)), where To = 3650 K, and ω = 2000 Hz. The amplitude 
of 14% of the perturbation in the injection temperature is based on the morphology effect shown 
in [9]. The temporal 
evolution of surface 
temperature and the 
erosion rate near the 
throat region are plotted 
in Figure 20. It is 
observed that even 
though the 14% 
variation in the injection 
temperature only leads 
to approximately 1% 
variations in the nozzle 
surface temperature, the 
variation in the erosion 
rate is as large as 15%. 

4.6.4 Importance of Hydrodynamic Instabilities 

 We have also demonstrated that hydrodynamic instabilities effect nozzle erosion. Figure 21 
illustrates unstable chamber flow. Figure 22 shows the consequent fluctuations in temperature at 
the nozzle inlet. And Figure 23 shows the consequent fluctuations in the erosion rate. 

4.6.5 Asymmetric Rockets 

We have also examined asymmetric rockets. Thus Figure 23 shows the instantaneous vorticity 
field inside a gimbaled nozzle with uniform (top left) and turbulent (bottom left) inlet conditions, 
together with the different erosion results. 

4.6.6  Future Work 

Although significant progress was made during the Phase II effort, there are still many additional 
items that are needed before the computational framework can be commercialized and be of use 
by the rocket industry. Recently a new round of SBIR/STTR request-for-proposals (RFP) were 
sent have out by DOD (http://www.dodsbir.net/solicitation/default.htm) and one of them, MDA 
A09-T009, specifically requested a commercial tool that can address erosion of nozzles. Several 

 

Figure 20. Comparison of surface temperature (left) and erosion 
rate (right) using unsteady inlet conditions given by T = To(1 + 
0.14sin(ωt)), where To = 3650 K, and ω = 2000 Hz. 

http://www.dodsbir.net/solicitation/default.htm�
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of the participants of the current Phase II work, namely John Buckmaster and Thomas Jackson, 
have teamed with IllinoisRocstar LLC (http://www.illinoisrocstar.com/) in submitting a new 
proposal based primarily on the completed work under the current Air Force Phase II work. The 
proposal details are “High-Fidelity Multiphysics Simulations of Erosion in Solid Rocket 
Motors”, proposal number MDA-T009-09 #B09B-009-0003. This proposal is accompanied with 
a letter of support/collaboration with Dr. Mark Ewing of ATK. Had it not been for the current 
Phase II effort, we would not have been in the position to submit a proposal to MDA. 

  

 
Figure 20.Vorticity contours of planar two-dimensional motor.  

Figure 22. Surface temperature (left) and erosion rate 
(right) at a point on the nozzle surface near the throat. Also 
plotted as the dashed line is the solution using uniform inlet 
conditions. 

 

Figure 21. Temperature 
evolution after the initial 
transient at nozzle inlet. 

http://www.illinoisrocstar.com/�
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Figure 23. Instantaneous vorticity field in a gimbaled nozzle with 
uniform (top left) and turbulent (bottom left) inlet condition. Top 
right: erosion rates along the top and bottom intersections of the z = 0 
plane using turbulent or uniform inlet conditions. Bottom right: 
evolution of the erosion rate near the throat nozzle using turbulent 
(solid) and uniform (dash) inlet conditions. 
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6. Conferences and Publications 

To ensure the work would be as visible as possible to the rocket community at large, a number of 
conferences were attended and talks given about this work. In addition, several research 
manuscripts were published in archival journals. The conference publications and archival 
journal publications are listed separately below. 

Conference Publications: 

1. K. Matous, F. Maggi, B. Collins, H. Lee and T.L. Jackson,  “Experimental and Numerical 
Modeling of Solid Propellants using  Micro-tomography”, 8th World Congress on 
Computational Mechanics,   Venice, Italy, 2008. 

2. H. Lee, B. Collins and K. Matous, “Experimental and Numerical Modeling of Heterogeneous 
Solid Propellants”, ASME International Mechanical Engineering Congress & Exposition, 
Paper No:   IMECE2008-66482, Boston, MA, 2008. 

3. B. Collins, F. Maggi, K. Matous, T.L. Jackson and J. Buckmaster, “Using Tomography to 
Characterize Heterogeneous Propellants”, 46th AIAA Aerospace Sciences Meeting and 
Exhibit, Paper No: AIAA 2008-941, Reno, NV, 2008. 

4. H. Lee and K. Matous, “Computing bounds on thermo-mechanical  properties of 
heterogeneous material using extended Hashin-Shtrikman variational principles with third-
order statistics”, 10th US  National Congress on Computational Mechanics, Columbus, OH, 
2009. 

5. M. Brandyberry, A. Tudor, H. Lee and K. Matous, “Three-Dimensional Tomographic 
Characterization of Heterogeneous Solid Propellants Using  n-point Probability Functions”, 
10th US National Congress on  Computational Mechanics, Columbus, OH, 2009. 

6. J. Zhang, T.L. Jackson, F. Najjar and J. Buckmaster (2009) “Multi-physics numerical 
simulation of erosion in rocket nozzle”, AIAA Paper No. 2009-833, Jan. 2009, in 47th AIAA 
Aerospace Sciences Meeting and Exhibit, Orlando, FL. 

7. S. Stafford, F. Maggi, T.L. Jackson and J. Buckmaster (2008) “Propellants Packs”, AIAA 
Paper No. 2008-0937, Jan. 2008, in 46th AIAA Aerospace Sciences Meeting and Exhibit, 
Reno, NV. 

8. F. Maggi, T.L. Jackson and J. Buckmaster (2008) “Aluminum Agglomeration Modeling 
Using a Packing Code”, AIAA Paper No. 2008-0940, Jan. 2008, in 46th AIAA Aerospace 
Sciences Meeting and Exhibit, Reno, NV. 

9. K.N. Hossain, T.L. Jackson and J. Buckmaster (2008) “Three-dimensional Numerical 
Simulation of Flames Supported by a Spinning Porous Plug Burner”, AIAA Paper No. 2008-
1047, Jan. 2008, in 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV. 

10. T.L. Jackson. (2009) “Issues related to heterogeneous solid-propellant combustion”, Invited 
paper presented at the 3rd European Conference for Aerospace Sciences (EUCASS), 
Versailles, France. July 6-9, 2009. 

11. J. Zhang, T.L. Jackson, F. Najjar and J. Buckmaster (2009) “Multiphase flow simulations of 
nozzle erosion in SRM with turbulent inlet conditions. AIAA Paper No. 2009-5499, 45th 
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AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2-5 August 2009, 
Denver, Colorado. 

Publications: 

1. H. Lee, M. Brandyberry, A. Tudor, and K. Matous, “Three-dimensional reconstruction of 
statistically optimal unit cells of polydisperse particulate composites from micro-
tomography”, Physical Review E, accepted, The American Physical Society (2009). 

2. H. Lee and K. Matous, T.L. Jackson and J. Buckmaster, “Computing overall elastic constants 
of polydisperse particulate composites by Hashin-Shtrikman variational principle from 
micro-tomographic data”, Composites Science and Technology, in preparation, Elsevier 
(2009). 

3. F. Maggi, S. Stafford, T.L. Jackson and J. Buckmaster (2008) “Nature of packs used in 
propellant modeling”, Physical Review E., Vol. 77, 046107 (17 pages). 

4. J. Zhang and T.L. Jackson (2009) “A high-order incompressible flow solver with WENO”, 
Journal of Computational Physics, Vol. 228, pp. 2426-2442. 

5. Y. Daimon, T.L. Jackson, V. Topalian, J. Freund, J. Buckmaster (2009) “Effect of Propellant 
Morphology on Acoustics in a Planar Rocket Motor”, Theoretical and Computational Fluid 
Dynamics, Vol. 23, pp. 63-77. 

6. K.N. Hossain, T.L. Jackson, J. Buckmaster (2009) “Numerical Simulations of Flame Patterns 
Supported by a Spinning Burner”, Proceedings of the Combustion Institute, Vol. 32, pp. 
1209-1217. 

7. J. Zhang, T.L. Jackson, J. Buckmaster and F. Najjar (2009) “Erosion in Solid-Propellant 
Rocket Motor Nozzles with Unsteady Non-uniform Inlet Conditions”, submitted to Journal 
of Propulsion and Power. 

8. S. Stafford and T.L. Jackson (2009) “Using level sets for creating virtual random packs of 
non-spherical convex shapes”, submitted to Journal of Computational Physics. 
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Appendix 

In this Appendix are attached some relevant publications which gives more details of the work. 
In order of appearance, these are: 

A1. User Manual for Rocpack 
A2. F. Maggi, S. Stafford, T.L. Jackson and J. Buckmaster. Nature of packs used in propellant 

modeling. Physical Review E, 77, 046107 (2008). 
A3. S. Stafford and T.L. Jackson. Using level sets for creating virtual random packs of non-

spherical convex shapes. Submitted to Journal of Computational Science (2009). 
A4. Ju. Zhang, T.L. Jackson, J. Buckmaster and F. Najjar. Erosion in Solid-propellant Rocket 

Motor Nozzles with Unsteady Non-uniform Inlet Conditions. Submitted to Journal of 
Propulsion and Power (2009). 

A5. H. Lee, M. Brandyberry, A. Tudor and K. Matous. Three-dimensional reconstruction of 
statistically optimal unit cells of polydisperse particulate composites from 
microtomography. Accepted, Physical Review E (2009). 

 



User Manual for Rocpack

1 Introduction

Random packs of spheres are used to model heterogeneous and porous ma-
terial morphologies such as concrete, sand, coal, porous explosives, and solid
rocket propellants, to name a few. The most obvious advantage of using
spheres lies in the simplicity of their representation, which facilitates the-
oretical, experimental, and computational efforts in the physical sciences.
Nevertheless, spheres can be a poor approximation to heterogeneous and
porous materials when various other properties are of interest. Bulk mate-
rials properties such as thermal conductivity and elastic properties strongly
depend on the statistical details of the micro-structure, and spheres do not
properly replicate these statistics.

Figure 1: A 10,001 particle pack.

In recent years we have con-
structed closely packed spheres using
the Lubachevsky-Stillinger algorithm to
generate models of heterogeneous solid
propellants. Improvements to the algo-
rithm now allow us to pack non-spherical
convex shapes for modeling heterogene-
ity in complex energetic materials such
as plastic-bonded explosives and pressed
gun propellants. Rocpack is the name
of the resulting packing code. Details of
the packing algorithm can be found in
[1, 2, 3, 4, 5]. An example of a polydisperse pack of spheres is shown in
Figure (1).

2 Capabilities

Rocpack is able to pack a variety of convex shapes (spheriods, cylinder,
gelcap, icosahedron, cube, crystals) in a container. The packing code is
nondimensional so that only the relative sizes of the particles are needed as
inputs. For example, if one wants to generate a pack of 200 mm, 100 mm,

1
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and 50 mm glass beads (spheres), the relative sizes would be 1, 0.5, and 0.25,
respectively. The packing code takes as input either the physical size (then
computes relative sizes) or relative sizes.

Currently the container shape can be a cuboid, cylinder, or an annulus.
For the annulus a web thickness must be given; the web thickness is the
radial thickness of the particles and the hole is therefore 1 - web thickness.
The domain for the cuboid is [−1, +1] × [−1, +1] × [−1, +1].

3 Inputs for GUI

The parameters and their respective ranges for the GUI are given in Table
1. Some examples of packs generated by Rocpack are given in Figure (2).
The full code does not have these restrictions.

Initial Temperature 500 − 5000
Number of Particles 1 − 4
Domain Type Periodic or Fixed
Shape Cuboid, Cylinder, or Annulus
Random Seed Value 1 − 5000
Aspect ratio (height/width) 1 − 5
Annulus web thickness 0.2 − 0.8
Ending Volume Fraction 0.2 − 0.8

Table 1: Parameter values and ranges for GUI.

Some additional notes are as follows:

1. The Initial Temperature is roughly inversely proportional to the growth
rate of a particle, so that the lower the value the faster the growth rate.
Having a value set too low (i.e., to 1) will result in a pack that jams
quickly. Setting the value too high (i.e., to 100,000) will result in a
lattice pack rather than a random pack. The best range is 100 − 1000
for random packs.

2. The web based GUI will only allow the user to input up to 10,000 parti-
cles. Rocpack , however, can handle an arbitrary number of particles.
We have packed as many as 1,000,000 spheres.

2
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3. Rocpack can handle any number of particle types and sizes; however,
the web based GUI only allows for 4 particle types with corresponding
size.

4. To generate different random packs with the same size and size distri-
bution of particles, change the random seeding.

5. The Annulus web thickness flag is only used if the Shape flag has been
set to “Annulus”; otherwise it is ignored. Currently only spheres can
be packed into an annulus.

6. The web-based GUI has a time limit of five minutes. If the packing
fraction is not meet within this time limit, the pack will prematurely
stop. Rocpack in normal mode can run for hours or days.

4 System Requirements

Rocpack is written in c++ and is compiled using g++. There is a Readme
file associated with the files that gives specific instructions on how to compile
the code. There are actually two versions of Rocpack ; one packs only spheres
and the other packs convex shapes. Having two codes is beneficial because the
packing of spheres requires the functional evaluation of an analytic expression
(the distance between two spheres) to find the closest neighbor while the code
for convex shapes requires a root finding procedure, which is much slower
when only spheres are present.

To compile the code for convex shapes, one needs to install a small pack-
age in order to compile. “NumPy” is an extension to the Python pro-
gramming language which is used to calculate various operations in the
convex version of Rocpack . To install NumPy on Red Hat Linux sys-
tems, Fedora, or CentOS, do “yum numpy”. On Debian, its variants and
Ubuntu, do “sudo apt-get install numpy”. To manually install numpy, go
to http://numpy.scipy.org/numpydoc/numpy-3.html and follow the instruc-
tions on the website.

3
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Figure 2: Examples of packs generated by Rocpack .
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Example 1

The first example has 2 spheres with relative sizes of 1 and 0.6, respectively.
The number of particles has been set to 2. There are 100 of the large spheres
and 400 of the smaller spheres. The initial temperature is set to 1000, the
random seed to 13, and the ending packing fraction to 0.7. The Shape flag
has been set to “Cuboid” with aspect ratio of 1. The domain type flag is set
to “Fixed Domain”, which means that the walls are treated as solid walls.
Figure (3) shows a screen shot of the input. The output is shown in Figure
(4). Note that the pack jammed at a packing fraction of 0.591146, which is
below the user requested value of 0.7. Increasing the initial temperature to
5,000 results in a packing fraction of 0.595141. Thus we see that increasing
the initial temperature, which is roughly equivalent to setting a slower growth
rate of the particles, results in a slightly higher packing fraction. If we now set
the domain type to “Periodic Domain” and keeping the initial temperature
at 5,000, the resulting packing fraction now becomes 0.660592.

Figure 3: Input for Example 1.
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Figure 4: Output for Example 1.
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Example 2

The second example has 3 particles, with relative sizes of 1, 0.4, and 0.2 with
particle numbers 100, 1000, and 4000, respectively. The number of particles
has been set to 3. The initial temperature is set to 1000, the random seed
to 13, and the ending packing fraction to 0.7. The Shape flag has been set
to “Cuboid” with aspect ratio of 1. The domain type flag is set to “Fixed
Domain”, which means that the walls are treated as solid walls. Figure (5)
shows a screen shot of the input and the output is shown in Figure (6). Note
that the pack jammed at a packing fraction of 0.531005, which is below the
user requested value of 0.7. In this case the time limit of five minutes was
exceeded and the pack prematurely exited.

Figure 5: Input for Example 2.
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Figure 6: Output for Example 2.
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Example 3

The third example has 3 particles, with relative sizes of 1, 0.8, and 0.7 with
particle numbers of 50 for each shape. The Shape of Particles flag has been set
to “Gelcap”, “Cube”, and “Cylinder”, respectively. The number of particles
has been set to 3. The initial temperature is set to 500, the random seed
to 13, and the ending packing fraction to 0.7. The Shape flag has been set
to “Cuboid” with aspect ratio of 1. The domain type flag is set to “Fixed
Domain”, which means that the walls are treated as solid walls. Figure (7)
shows a screen shot of the input and the output is shown in Figure (8). Note
that the pack jammed at a packing fraction of 0.256684, which is below well
the user requested value of 0.7. In this case the time limit of five minutes
was exceeded and the pack prematurely exited. It takes significantly more
cpu time to generate a pack with convex shapes that to generate a pack of
spheres.

Figure 7: Input for Example 3.
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Figure 8: Output for Example 3.
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Example 4

The fourth example has 4 particles, with Shape of Particles flag set to
“Cube”, “Gelcap”, “Cylinder”, and “Icosahedron”, respectively. Figure (9)
shows a screen shot of the input and the output is shown in Figure (10).

Figure 9: Input for Example 4.
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Figure 10: Output for Example 4.
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Example 5

The fifth example has 3 particles, with Shape of Particles flag set to “Sphere”.
The Shape flag has been set to “Cylinder”. Figure (11) shows a screen shot
of the input and the output is shown in Figure (12).

Figure 11: Input for Example 5.
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Figure 12: Output for Example 5.
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Example 6

The sixth example has 2 spherical particles packed in an annulus. The Shape
flag has been set to “Annulus”. The Annulus web thickness flag has been
set to “0.4”. Figure (13) shows a screen shot of the input and the output is
shown in Figure (14).

Figure 13: Input for Example 6.

15

Buckmaster Research A1-15 FA9550-07-C-0123



Figure 14: Output for Example 6.
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Example 7

The seventh and final example has 2 spherical particles packed in a rectangle
with aspect ratio of 2. The Shape flag has been set to “Cuboid”. Figure (15)
shows a screen shot of the input and the output is shown in Figure (16).

Figure 15: Input for Example 7.
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Figure 16: Output for Example 7.
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In recent years we have constructed closely packed spheres using the Lubachevsky-Stillinger algorithm to
generate morphological models of heterogeneous solid propellants. Improvements to the algorithm now allow
us to create large polydisperse packs on a laptop computer, and to create monodisperse packs with packing
fractions greater than 70% which display significant crystal order. The use of these models in the physical
context motivates efforts to examine in some detail the nature of the packs, including certain statistical
properties. We compare packing fractions for binary packs with long-known experimental data. Also, we
discuss the near-neighbor number and the radial distribution function �RDF� for monodisperse packs and make
comparisons with experimental data. We also briefly discuss the RDF for bidisperse packs. We also consider
bounded monodisperse packs, and pay particular attention to the near-wall structure where we identify signifi-
cant order.

DOI: 10.1103/PhysRevE.77.046107 PACS number�s�: 89.90.�n

I. MODELING OF COMPOSITE PROPELLANTS:
INTRODUCTION

Heterogeneous solid propellants are widely used in the
rocket industry, and are likely to play an important role for as
long as rockets are built. Fundamentally, they consist of oxi-
dizer particles of order 1–100 �m diam embedded in a rub-
bery fuel binder. Various choices are possible, but a common
one is ammonium perchlorate �AP� in hydroxy-terminated-
polybutadiene �HTPB�, and we imply no lack of generality if
we place our discussion in this context. These components
burn in a thin combustion layer, a few hundred microns
thick, in the neighborhood of the propellant surface. It is also
common to add metal particles to the binder, 10 �m or so in
diameter, aluminum being the most common choice. These
burn in the chamber gases at distances well removed from
the surface.

Designers of rockets are concerned with a number of
propellant-related issues, including the burning rate, the ther-
mal and mechanical properties of the propellant, and, for
metallized propellants, the behavior of the metal particles at
the surface, including agglomeration. A study of these in a
virtual engineering framework starts with a model for the
morphology, and the relationship of this model to the physi-
cal reality is an important matter. This paper is concerned
with some aspects of this problem when the model is gener-
ated by the dynamical packing algorithm originating with the
work of Lubachevsky and Stillinger �1�, as discussed in
�2,3�.

The aforementioned references discuss packs of spheres,
and Ref. �3�, in particular, describes strategies for accommo-
dating the wide range of particle sizes that are typical of real
propellants in the generation of packs suitable for combus-
tion simulations. Real AP particles are not spherical, of

course, but a study of packs of spheroids �4� suggests that
nonsphericity is not an issue insofar as burning rates are
concerned, provided the packs are statistically isotropic.

Burning rates for various AP or HTPB packs are calcu-
lated in �5�, and comparisons made there with experimental
data suggest that the effects of morphology on these rates can
be satisfactorily predicted. Because the very smallest AP par-
ticles cannot be resolved numerically, and so must be ho-
mogenized into the binder, the thermal conductivity of the
blend must be calculated and this is discussed in �6�. We
have not had the need to examine the mechanical properties
and behavior of such blends—e.g., effective Young’s modu-
lus, stress augmentation, von Mises stress, etc.—but the ho-
mogenization literature makes it clear that these kinds of
things can depend on the fine statistical details of the packs,
e.g., �7�.

When aluminum is an ingredient of the propellant, ag-
glomeration can be an important issue. Agglomeration oc-
curs when the particles come to the surface, reside there for
a while, and during this residence adhere to other particles.
Agglomerates of an order of 100 �m diam are formed in this
fashion, and are subsequently carried into the chamber with
negative consequences, in addition to the positive energy ad-
dition. It would be of great value if the designer could fine-
tune the propellant morphology to generate an agglomerate
size distribution, which minimizes the negative
consequences.1 No completely predictive strategy has yet
been developed, but there is good evidence that knowledge
of the pack morphology and of the mean agglomerate size
permits the prediction of the size distribution �i.e., the stan-
dard deviation, should the distribution be lognormal�. This
prediction is derived from a proximity model—roughly
speaking, particles that are sufficiently close to each other
within the solid will agglomerate—discussed in Ref. �8�. Use

*limey@uiuc.edu

1Frictional energy losses, accumulation in submerged nozzles,
nozzle impaction, and exhaust signature.
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of this model to explore the effects of morphology requires
the construction of large packs, packs with hundreds of thou-
sands of particles, and these need to be generated in, at most,
a few hours of CPU time. Also, in this as in all combustion
applications, the packing fraction �volume fraction of AP�
must be large.

These remarks should make it clear that there is a need for
the numerical construction of large polydisperse packs that
can be generated quickly and have properties that are close to
those of real packs. This paper discusses the issue. We know
of only one other packing strategy that is used for propellant
modeling, one developed at ATK-Thiokol �9�, and at various
places we examine the results of this work.

II. PACKING ALGORITHM

The algorithm is described in �1� and the application to
propellant packs in �2,3�. For the most part, Stillinger and his
co-workers have only been interested in monodisperse packs,
but the propellant application is primarily concerned with
polydisperse packs, with the largest particles being one or
two orders of magnitude larger than the smallest particles.

The algorithm begins with an infinite computational do-
main defined by the periodic continuation of a cube �or
cuboid� in three-dimensional space. Points are randomly as-
signed to this domain at time t=0 with random velocities.
For t�0 these points grow linearly with time, to generate
spheres. The growth rates vary amongst the spheres and their
distribution defines the final distribution of diameters �of AP
and aluminum particles� in the propellant. The largest par-
ticles have a radius r�t�=at, where t is time, capped at tend.
Typically, tend is not chosen but is defined when the desired
packing fraction is achieved, or when the computation termi-
nates because the pack is “jammed.” We shall call a the
growth rate; smaller particles grow at a slower rate. Overlap-
ping is prevented by including collisions in the algorithm.
Jamming arises when the time between collisions becomes
too small, but we note here and discuss later that, strictly
speaking, within this dynamic framework jamming never oc-
curs as it does in real packs.

Our first version of the algorithm was in no way optimal,
and used a parallel platform message passing interface �MPI�
to generate packs within an acceptable time frame. But re-
cently we have had reason to improve our algorithm so that
it can generate large packs on a laptop in decent time, and
these improvements are described here. We claim no global
superiority of our strategy, only that it is vastly superior to
our old strategy, and enables us to achieve our application
goals.

III. IMPROVED ALGORITHM

The improved algorithm has two major advantages.
�1� It enables us to construct large polydisperse packs on

a laptop computer within an acceptable time frame.
�2� It accurately depicts rigid sphere packing, and both

packing and statistical results compare favorably with ex-
perimental hard sphere packs.

These improvements arise from the use of strategies
adopted �in some cases, for the first time� from the molecular
dynamics �MD� literature.

Modern implementations of rigid sphere packing take ad-
vantage of an event-driven molecular dynamics �EDMD� ap-
proach. In EDMD, particles are advanced between ”events,”
where an event is loosely defined as anything that changes a
particle’s state. The event could be a binary collision, a col-
lision between a particle and a domain boundary, or a trans-
fer of a particle across an internal or external boundary. In-
stead of advancing the particles by a fixed time step as in
time-driven MD �TDMD�, the particles are always advanced
to the next event time. Each EDMD time step therefore re-
quires two tasks.

�1� Find and execute the next predicted event.
�2� Update all event predictions influenced by this event.
These two tasks may be optimized separately. Optimiza-

tion techniques used for the first task usually rely on an ef-
ficient priority queue algorithm. Optimization of the second
task is more difficult and can involve neighbor lists or cell
methods. A typical EDMD method will use a min heap to
find the next event, an upper or lower triangular matrix to
store collision time estimates for binary pairs, and a neighbor
list or cell for each particle to reduce the number of binary
collision prediction calculations. There are many excellent
texts that describe these processes in detail �10,11�. For a
concise description of a modern EDMD implementation us-
ing min heaps and neighbor lists, see Donev et al. �12�.

Our EDMD-based packing method uses a priority queue
for event handling and a hierarchical cell scheme to reduce
the number of binary collision prediction calculations for
polydisperse packs. We use a fully object-oriented imple-
mentation in C++ that provides complete encapsulation of the
sphere, boundary, and cell objects. With our method it is not
necessary to perform the collision validation checks neces-
sary for our older strategy, nor is it necessary to store a
triangular collision time matrix. In practice, our method has
demonstrated O�N� run times �for monodisperse packs� and
O�N� memory requirements over 103�N�106. This makes
it possible to generate the very large polydisperse packs we
need in less than a day using a serial code on a laptop.

Our priority queue implementation uses a binary heap to
process events. Binary heaps are outperformed by Fibonacci
heaps for the find_min function, which has O�ln N� com-
plexity for a binary heap, but O�1� for a Fibonacci heap.
However, processing each collision requires one find_min,
one delete_min, and one insert operation, returning the
overall complexity to O�ln N� for both heap methods. A par-
allel algorithm might further reduce the run-time cost of the
heap operations �13�; unfortunately, the method is based on a
triangular storage matrix for the collision times and thus has
O�N2� memory requirements. A more sophisticated parallel
algorithm using multiple heaps achieves O�N� memory re-
quirements �14� and the additional complexity could be jus-
tified by future requirements for larger packs. However, in
our current applications with N�106 the computation time is
dominated by the binary collision prediction calculation.
Thus, for the foreseeable future a binary heap will be suffi-
cient for our purposes.

We use a hierarchical cell structure to reduce the number
of binary collision prediction calculations that are necessary
when updating the collision times. With the cell method, the
particles’ centroids are contained within cuboid cells whose
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maximum enclosed spheres have larger radii than the con-
tained particles. The cell keeps a list of all contained par-
ticles and a list of its boundaries, which may be internal
�local cell boundaries� or external �domain boundaries�.
When predicting collisions, an optimized cell method can
reduce the prediction computation time per particle to con-
stant time; this is because only collisions between particles in
neighboring cells need be computed. There are additional,
inexpensive calculations to determine when the particle
passes out of the cell into a neighboring cell or when a par-
ticle interacts with a boundary. Both cell transfers and
boundary interactions are treated as events, and thus partici-
pate in the priority queue.

Although hierarchal cell methods have been implemented
in two dimensions �15�, we are not aware of any other analy-
sis or implementation of the three-dimensional case. In our
implementation, the cells are arranged in a three-dimensional
tree structure. When particles outgrow their current cell, they
are transferred up the tree to their cell’s parent. In the transfer
event, the particle is removed from its previous level so that
it is always associated with a unique level. Since the binary
collision calculation is required for a given particle with all
other particles in the neighboring cells, the volume searched
is proportional to rD, where r is the cell radius and D is the
dimensionality. Thus, it is advantageous to have each particle
in the smallest cell that is practical in order to reduce the
volume �and thereby reduce the number of binary pairs�.
Because of this, our implementation does not require the tree
to be an octree. In our implementation, the number of cells at
each level and in each dimension need only be integer mul-
tiples of the level immediately above it. However, in practice
we have found octrees to perform well for very polydisperse
packs, so the remainder of the results and discussion in this
paper pertain to the octree implementation.

Figure 1 is a one-dimensional cartoon of the cell hierar-
chy showing search paths for sphere 1 interacting with
spheres 2 and 3. Shading denotes cells that must be checked
as well as the pathways that are traversed to find these rel-
evant cells: �a� sphere 1 is located in a cell at the bottom of
the tree and must search upwards through parent cells recur-
sively; �b� sphere 1 is located at an intermediate level and
must search upwards and downwards recursively; and �c�
sphere 1 is moving in the direction indicated, and the trajec-
tory calculation is used to recursively rule out subtrees that
are not relevant. Were the trajectory method not used, all of
the cells in �c� would need to be checked. In three dimen-
sions, the number of ruled-out cells typically exceeds the
number of checked cells by a factor of 3.

The computational efficiency of the basic cell hierarchy
scheme breaks down when the particles have very different
radii. This is due to the rD search volume needed by the
larger particles. For example, the smallest particles need only
search their neighboring cells and their parents’ neighboring
cells, recursively all the way up the tree, with computation
time tsmall�Nsmall3

Dh, where Nsmall is the number of small
particles and h is the height of the tree. At worst, tsmall grows
linearly with h, resulting in a very efficient search. By com-
parison, the largest particles must search their subtree along
with all of their neighbors’ subtrees, with tlarge�Nlarge3

D�1
−2Dh� / �1−2D�. The search time is proportional to a geomet-

ric series and is very expensive, even for h=2. The tlarge
could be partially offset in an optimistic scenario where there
is one large particle per cell at the top of the tree. In that
case, we might expect Nlarge /Nsmall�2−D�h−1�, leading to over-
all computational time

toverall � Nsmall3
D�h +

2−D�h−1� − 1

1 − 2D � . �1�

This situation would arise, for example, if a pack was made
by first completely filling the domain �until jammed� with the
largest particles and then packing the smallest particles into
the voids. The second term in parentheses in Eq. �1� would
then be very small, and the run time would be negligibly
affected by the polydispersity. In most relevant packings,
however, we have fewer large particles than large cells. It is
also unlikely that many, if any, of the particles’ final radii
will exactly match their container cells’ radii �perfectly opti-
mized cell sizes� or that any particle size modes will have
radii that are a multiple of 2 times any other particle size
mode �the best case scenario for an octree�. Thus, in more

FIG. 1. A one-dimensional cartoon of the cell hierarchy search
paths �see the text�.
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realistic polydisperse packs the overall run time is dominated
by the calculations for large particles with their smaller
neighbors. Because of this we construct the octrees by first
attempting to fit the final radii of the largest particles as close
as possible. After the largest cells are constructed, they are
subdivided recursively. Subdivision is ended when the next
subdivision would create cells too small to contain the small-
est particles.

We use a large particle trajectory cell selection method to
avoid the geometric series dependence of the overall compu-
tation time. In our method, the subtree cells are treated as
�stationary� spheres themselves, and collision times are com-
puted between the cells and the large particle of interest. The
cell sphere is constructed as the smallest cell-centered sphere
that encloses both the cell and any particle it could possibly
contain. If the large particle will not collide with the cell,
then any particles in the cell are ruled out. The procedure is
recursive through the cell’s offspring, so that the complete
subtree is instantly also ruled out. To further optimize the
calculation, the trajectory of the large particle that is used in
the cell collision calculation is bounded by the current best
estimate of the next collision time for the large particle. This
straightforward trajectory selection process reduced the over-
all computation time by a factor of 4 for the polydisperse
packs in this paper.

The cell scheme has the additional advantage of being
well suited for handling various boundary geometries. We
use three types of boundary conditions: rigid planar, periodic
planar, and cylindrical. Rigid planar boundaries are easily
handled by computing the binary collision between a particle
and its reflection across the plane. For simulating the very
large packs needed for energetic material modeling, we use
periodic boundaries. A periodic cuboid has 26 neighboring
images which must be included in the calculation, which
could increase the computational burden 27-fold. Fortu-
nately, with the cell hierarchy, boundary cells are computed
as if they were inner cells, and the computational time is
negligibly larger than the equivalent rigid planar calculation.

We also implemented a cylindrical boundary that more
accurately reflects the geometry used in many experiments
and real-world packs. The cylinder is bounded at each end by
either rigid planar or periodic planar boundaries. Collisions
with the cylinder are calculated by projecting the sphere onto
a plane perpendicular to the cylinder axis and then comput-
ing the collision time between the two circles. This boundary
is also easy to implement in the cell hierarchy simply by
linking the boundary to the cells at the periphery of the cyl-
inder. Figure 2 shows an example of a polydisperse cylindri-
cal pack; it contains 70 008 particles with a ratio of largest
diameter to smallest of 29.3 and was constructed on a laptop
in 20 h. Note, however, that computational times are strongly
dependent on the stopping criterion, the definition of jam-
ming. Thus Kansai et al. �16� report the construction of a
bidisperse pack of 10 000 particles, size ratio 10, that took
48 h on a 1 GHz Pentium machine, but do not specify the
stopping criterion, and so a comparison with our calculation
is not possible, although we can note that for their code the
scaling with particle number is roughly N2. However, our old
code, similar in most important respects to that used in �16�,
is not suitable in a serial version for the generation of the

packs needed for our combustion simulations, and the im-
provement we have been able to achieve is substantial. Much
of this improvement is due to the use of a cell hierarchy,
rather than neighbor lists.

Note that although in our application we are interested in
large polydisperse packs such as the one shown in Fig. 2,
experimental data with which we can compare the properties
of our numerically generated packs is only available for rela-
tively simple packs, and these comparisons occupy the sig-
nificant part of our discussion. All of the packs generated in
the paper have periodic planar boundary conditions, unless
explicitly specified differently.

IV. COLLISIONS

As we noted earlier, collisions must be accommodated in
order to avoid particle overlap. Moreover, these must be
pointwise-in-time events to fit within the general framework
of the algorithm. Because each particle is growing and there
is an outward surface velocity relative to the centroid, a clas-
sical elastic collision does not guarantee a pointwise event,
and in some cases, depending on the collision speeds and
the growth rates, it is necessary to add extra impulses, gen-
erating increments to the rebound velocities. The original
Lubachevsky-Stillinger algorithm uses the relative velocity

FIG. 2. �Color� A polydisperse cylindrical pack, periodic along
the axis, size distributions from Table I.
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of the particle surfaces when computing impulses, and en-
ergy is added at each collision; our old version uses the cen-
troid velocities with rebound additions for every collision
that depend only on the growth rates, and not on the collision
speeds. Of particular relevance is the ratio of the growth rate
ai �=a for the most rapidly growing particles� to the speed
�v� i�. After many collisions in which the kinetic energy is
enhanced this ratio can become very small so that little
growth occurs between collisions, and jamming cannot be
achieved within a reasonable time frame. Also, it can become
impossible to generate low-density jammed packs. Because
of this, it is necessary to manage the kinetic energy of the

pack and, in some sense, minimize its growth. The qualifi-
cation is necessary because it is only the increase in energy
that arises from changes in speed that is of concern, not from
the changes in mass.

The literature abounds with methods to counter the in-
crease in kinetic energy. The simplest method is to periodi-
cally renormalize the velocities of all particles either by res-
caling �11� or by setting the velocities to zero �this method is
only relevant when the pack is nearly jammed, see, for ex-
ample, �1��. In either case, the renormalization requires re-
starting the priority queue, which is an expensive operation.
Rescaling the velocities has also been shown to violate en-
ergy equipartition �17�, which could be problematic. Another
interesting technique borrowed from molecular dynamics is
the use of stochastic thermostats that place the pack into
contact with an imaginary heat bath. Some of these, such as
the Andersen thermostat �10�, can be implemented as random
collisions with ghost particles, and can thus be integrated
into the EDMD scheme as a single-particle event. However,
the Andersen thermostat in particular has been shown to pol-
lute the transport coefficients �10� and thus can reasonably be
expected to reduce the efficiency of sampling the configura-
tion space during packing. The Lowe-Andersen thermostat
removes this shortcoming by considering particle pairs, and
it appears to be a promising alternative for efficient packing
�18�. Unfortunately, all stochastic thermostats become ineffi-
cient as the collision frequency increases because they re-
quire additional event predictions at each thermostat colli-
sion and also because they require several independent
random numbers. When packing spheres, high quality ran-
dom number generators such as the Mersenne Twister �19�
produce a double precision number in the time it takes two
binary collisions to be calculated. Thus for high growth rates
and the corresponding need for many thermostat collisions,
the additional events and random number generation can
dominate the computation time.

Our approach is to simply minimize the amount of energy
added during each binary collision. When none is needed,
none is used; when it is needed an amount is added sufficient
merely to cause the surfaces to move away from each other
at a minimal speed, say 10−30. The amount of energy added
in this way is monitored by defining and calculating a
pseudotemperature, a substitute for the set of growth-rate or
speed ratios. This pseudotemperature also plays a role in the
specification of the initial velocity distribution at the start of
the calculation, and links the algorithm more closely to a
molecular dynamics framework. In our earlier calculations
the velocity components were randomly sampled from the
interval �−1,1�; here we sample from a Maxwellian �normal�
distribution.

We are only interested in situations when N, the number
of particles in the pack, is large, and it makes the discussion
of our pseudothermodynamics more agreeable if we suppose
that N is an asymptotically large parameter. Then the classi-
cal definition of temperature is related to the mean kinetic
energy of the particles by

3

2
kT =

1

N
�

i

1

2
mi�v� i�2, �2�

where k is Boltzmann’s constant. Each mass is given by

TABLE I. Left columns: coarse and fine AP distributions used in
Fig. 2. Right columns: aluminum distribution.

Number Diameter Number Diameter

2 348.320 2 99.685

3 324.110 6 92.135

4 301.580 12 85.155

6 280.615 23 78.705

8 261.110 39 72.745

11 242.960 61 67.235

13 226.070 92 62.140

16 210.355 134 57.340

18 195.730 186 53.080

21 182.125 252 49.060

22 169.465 329 45.345

23 157.685 418 41.910

24 146.725 516 38.735

23 136.525 619 35.800

22 127.035 723 33.090

20 118.205 823 30.585

18 109.990 912 28.265

15 102.345 985 26.125

13 95.230 1037 24.150

10 88.610 1064 22.320

8 82.450 1065 20.630

6 76.720 1039 19.065

4 71.390 989 17.620

3 66.425 918 16.285

2 61.805 831 15.050

1 57.510 733 13.910

1 52.156 632 12.855

2 24.000 530 11.885

44 30.160

184 26.975

540 24.125

1312 21.575

2792 19.295

5316 17.260

9180 15.435

14464 13.805

20879 12.350
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mi =
4

3
��ri

3 =
4

3
���ait�3, �3�

and it is this t3 dependence that is not relevant to us. And so
we define a pseudotemperature by

T =
1

3N
�

i

ai
3

a
�v� i�2, �4�

nondimensional when the velocities are appropriately de-
fined. Initial values are defined by

v� i,0 =	T0

ai
3 ��1,�2,�3� , �5�

where T0 is the initial temperature, and the �i are sampled
from independent normal distributions.

Thus the system starts out in thermal equilibrium �small
particles travel faster, on average, than large particles� and
would remain so were it not for the inelastic collisions. Note
that the Maxwellian is consistent with Eq. �2�. Note also that
this approach could also be applied to systems of particles
with rotational degrees of freedom to ensure the packing ini-
tially satisfies equipartition of energy.

We use a simple method for determining when a pack has
jammed. During the run, the packing fraction is computed
after each “pass,” where a pass is defined as a set of N
sequential interparticle or solid boundary collisions �particle
transfers and other events are not counted�. It is of course
unlikely that all N particles will participate in collisions in
any given pass; nevertheless, the concept of a pass allows us
to discuss jamming independently of the number of particles
N. We simply stop the pack when the change in the packing
fraction over a pass is less than some specified limit value,
e.g., the jamming criterion after the ith pass is ��i−�i−1� /�i
	
, where 
 is the limit value.

For monodisperse packs, 
 is closely related to the “dis-
tance to jamming” �1−� /�J�, where �J is the jamming den-
sity �see �20� for a detailed discussion of pack properties as
this distance approaches zero�. To see this, we start with the
fact that � is proportional to t3 so that in the last pass,

��/� = 3�t/t 
 
 , �6�

where �t is the length of the pass, and we have linearized,
since � is close to the limit value �J. At the beginning of the
pass, when the particle diameter is d, the gap between each
particle is 
�dJ−d�, so that since � is proportional to d3,

�gap� 
 �d/3��1 − �/�J� = �at/3��1 − �/�J� . �7�

Thus the time interval before a particle collides with its
neighbor is


�at/3c��1 − �/�J� , �8�

where c is the representative surface speed, the sum of the
growth rate a, and a positive translational speed. But in this
interval 
N collisions occur, so that it is the length of the
pass, and comparing Eqs. �6� and �8� we have


 
 �a/c��1 − �/�J� . �9�

Throughout the paper we generate most of the packs us-
ing the improved algorithm, a serial code with temperature-
based initial conditions, what we shall call the T algorithm;
growth rates are normalized with a so that the maximum
growth rate is 1 and the velocity–growth-rate ratio is con-
trolled by T0. But there are a few results obtained using the
old parallel code for which velocity components are sampled
on the interval �−1,1� and the ratio is controlled by a; we
shall call this the a algorithm.

V. MONODISPERSE PACKS

In this section we examine monodisperse packs. There is
a maximum packing fraction for a monodisperse pack of
spheres, well defined for lattice packs, less so for random
packs. Lattice packs are characterized by regular repetitive
structures. Thus �see �21�� we have cubic lattice—53.36%,
orthorhombic—60.46%, double-nested—69.81%, and close-
packed—74.05%, the largest attainable for monomodal
spheres. The last two arrangements are shown in Fig. 3. As
we shall see, the close-packed lattice is relevant to order that
we obtain for high-density packs, and near rigid boundaries.

(b)

(a)

(c)

FIG. 3. Lattice packs. �a� Double Nested, �b� Close Pack �Side
1�, �c� Close Pack �Side 2�
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The very concept of random packs is not well defined,
because all packs, whether generated experimentally or nu-
merically, have some degree of order. Equally, maximum
packing fractions are not well defined. But attempts to create
random packs typically lead to packing fractions in the range
of 59%–64% where values at the low end are characteristic
of what are called loose packs �LRP�, and values at the high
end are characteristic of what are called dense packs �DRP�
�21,22�. �It is a minor syntactical misfortune that dense packs
are not called tight packs.�

The a algorithm is capable of modeling both jammed LRP
and DRP by varying the growth rate; except for extremely
small growth rates, the smaller the growth rate the higher the
packing fraction. Figure 4 shows this for three monomodal
packs of 3000 spheres, the packs differing because of differ-
ent initial conditions. The bar for each choice of a shows the
maximum, minimum, and average fractions. End values are
60.74% for a=100 �an LRP� and 64.78% for a=0.01 �a
DRP�. The ballistic-deposition algorithm used by Webb and
Davis �9� yields a value of 60%. Experimental data obtained
using mechanical shaking can be found in �21� �62.5%� and
�22� �64%�.

Figure 5 shows the packing fractions that can be achieved
with the T algorithm, to be compared to Fig. 4. We are not

aware of any other reports of packing fractions greater than
0.7 obtained using the Lubachevsky-Stillinger algorithm.
The corresponding number of passes before jamming is
achieved are plotted in Fig. 6; 
 is equal to 10−7. High tem-
peratures generate packs of higher density than that of a
double-nested lattice, implying significant order. Later, we
shall see that these ordered packs have many of the statistical
characteristics of a close-packed lattice. That packs gener-
ated using low temperatures have less order than those gen-
erated using high temperatures is clear from Figs. 7 and 8,
the former �packing fraction equal to 0.6283� calculated for
T0=1, the latter �packing fraction equal to 0.7035� for T0
=109. Figure 8 looks very much like a lattice pack with
dislocations, whereas Fig. 7 is far less regular.

VI. BIDISPERSE PACKS

Typical packing fractions for propellants are in the neigh-
borhood of 78%, and so for this purpose monodisperse packs
have little relevance. Here we discuss bidisperse packs, the
simplest of the polydisperse variety, and packs for which
there is experimental data. The fine component can fill some
of the spaces between spheres of the coarse component, and
therefore generate higher packing fractions. Not surprisingly,
the greater the ratio between the size of the coarse compo-
nent and size of the fine component, the greater is the maxi-
mum packing fraction. The maximum is attained at a
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FIG. 4. Final packing fraction as a function of inverse growth
rate �a algorithm�.
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FIG. 5. Packing fraction of a 10 000 particle pack as a function
of the initial temperature T0 �T algorithm�.
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FIG. 6. Number of passes used to generate Fig. 5, 
=10−7.

FIG. 7. A 10 000 particle pack for T0=1, packing fraction
0.6283.
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uniquely defined value of the ratio of the volume fraction of
coarse to that of fine.

The earliest reports of polydisperse packs obtained using
the Lubachevsky-Stillinger algorithm may be found in
�2,3,16�, the latter a discussion of bidisperse packs only.
Here we compare numerical results for bidisperse packs with
experimental data of McGeary �21�.

McGeary created a number of bidisperse packs. The size
of the particles was defined by using meshes, a standard
procedure in the particle sorting business. He used seven-
mesh spheres as a coarse component together with several
finer components, achieving a maximum packing fraction of
approximately 84% for the finest. We compare McGeary’s
data with numerical results for two growth rates, a=0.2, and
a=1 �a algorithm�. We also plot results from �9� generated
using a ballistic-deposition strategy.

VII. COARSE-TO-FINE SIZE RATIO 3.4:1

This models the experiments with seven-mesh and 20-
mesh, and 20 000 spheres were used in the simulations; com-
parisons are shown in Fig. 9. Except at a fine-mode fraction
of 20, the results for a=1 are in excellent agreement with
McGeary’s data. It is difficult to pin down with precision the
location of the maxima, but for a=1 the two largest calcu-
lated packing fractions correspond to the coordinates �30,
0.7049� and �40, 0.7038�; for a=0.2 they are �25, 0.7255�
and �30, 0.7262�. The Webb and Davis results peak early, and
then underpredict.

VIII. COARSE-TO-FINE SIZE RATIO 6.5:1

This models the 7/40 mesh study of McGeary, using
50 000 spheres, and the results are shown in Fig. 10. The
slower growth rate �a=0.2� gives the closest agreement with
experiment, with the largest calculated packing fraction of
78.35% at a fine-mode percentage of 30. When a=1 the
results deviate significantly from the experimental values in
the fine-mode percentage interval �20,40�%; the largest cal-
culated value is 74.84% at a fine-mode percentage of 40%.

IX. COARSE-TO-FINE SIZE RATIO 16.5:1

The largest size ratio is achieved with 7/80 meshes and
the simulations use 80 000 spheres; only results for a=0.2
are shown �Fig. 11�. Agreement with experiment is very
close, with a largest calculated value of 82.01% at a fine
percentage of 25. In all of the cases we discuss here, the
ballistic-deposition algorithm typically yields packing frac-
tions significantly lower than the experimental values. In
such an algorithm there is, of course, no tuning parameter
comparable to a. Whether this matters depends on the appli-
cation. In the modeling of a propellant with a significant
fraction of very fine AP, so fine as to be unresolvable numeri-
cally, a relatively low packing fraction for the resolvable

FIG. 8. A 10 000 particle pack for T0=109, packing fraction
0.7035.
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FIG. 9. Packing fraction vs fine-mode percentage for a 3.4:1
coarse-to-fine size ratio.

0 20 40 60 80 100
60

65

70

75

80

85

Fine Mode (%)

V
o

lu
m

e
F

ra
ct

io
n

(%
)

6.5:1

McGeary
Rocpack, a=0.2
Rocpack, a=1.0
Webb & Davis

FIG. 10. Packing fraction vs fine-mode percentage for a 6.5:1
coarse-to-fine size ratio.
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particles might be all that is needed, with the remaining frac-
tion homogenized into the binder. But in other situations, the
inability to reach experimentally attainable packing fractions
could mean that the strategy is not useful.

It is important to note that the construction of polydis-
perse packs is much more computationally intensive than the
construction of monodisperse packs, and the use of hierar-
chal cells rather than neighbor lists plays a crucial role in
increasing the efficiency of the algorithm so that a serial
platform can be used. All of the old work cited in this section
�2,3,16�, uses neighbor lists, and as a consequence it was
necessary for us to partially parallelize the code �not the
heaps� in order to generate packs for our combustion studies
�5,6�.

X. STATISTICAL ANALYSIS OF PARTICLE PACKINGS

The previous section focused on the packing algorithm
and the products of this algorithm were characterized merely
by the packing fraction and by two related concepts, loose
and dense packings �LRP and DRP�. The algorithm generates
different jammed-state packing fractions according to the
choice of the growth parameter a, or the initial temperature
T0, and variations in the fraction correspond to variations in
the inner structure. Thus experimentalists report that a DRP
can only be achieved with strong shaking or shocking,
whereas this is not necessary for an LRP. The nature of the
inner structure is of intrinsic interest, but also, from the pro-
pellant modeling perspective, it is relevant to the simula-
tions. Certain thermal and mechanical properties of the pack
are likely to depend on it, and bounds and estimates for these
quantities in the homogenization literature often depend on
its statistics. Thus it is relevant to discuss the statistics and,
where possible, compare them with experimental data.

Here and earlier we wrote of “jamming.” From an algo-
rithmic point of view this can refer simply to the state in
which the time between collisions is so small that the calcu-
lation is effectively stalled, but more precise discussions are

possible. Indeed, Donev et al. define the concepts of local
jamming, collective jamming, and strict jamming �23�. Local
jamming occurs when each particle in a subset of the pack is
locally trapped by its neighbors and is unable to translate.
Such particles are necessarily touched by at least d+1 peers
not in the same hemisphere where d is the spatial dimension.
In three dimensions this condition is fulfilled for spheres
with more than three contacts. Particles with fewer contacts
are called rattlers, since they can move.

Donev et al. note that computer-generated packs often do
not satisfy the local jamming criterion. That is certainly true
of packs generated using the Lubachevsky-Stillinger code
and its variations, as a small gap exists between all particles
when the computation ceases. However, given enough com-
puter time, most gaps can be made arbitrarily small, and the
number of contact points between particles can be well de-
fined �20�. For those concerned with the important math-
ematical questions associated with packing, and for whom
packs of modest size are sufficient, this is important. We,
however, are concerned with generating large packs in rea-
sonable times, and are not concerned with sophisticated
mathematical questions, but with whether the pack statistics
match those of experimental packs. In the determination of
experimental morphology �by X-ray tomography, for ex-
ample� there is error, both from measurement uncertainties
and the reconstruction algorithm. Then contact is only de-
fined within the constraint of a tolerance. Thus, to make
comparisons with the numerical results we also use a toler-
ance, and particles are said to be in contact if their closest
surface separation is smaller than some assigned constant.
This is not a new idea; see, for example, Refs. �22,24,25�.

Packing structure as well as particle organization can be
characterized using spatial statistics, something that has been
done for a long time. Most recently, Aste et al. generated a
number of experimental packs of up to 150 000 monomodal
spheres inside a cylindrical container and then analyzed them
using XCT �x-ray computed tomography� to identify the
placement of centers; statistical analyses were then possible
�22�. A number of theoretical studies on ideal or modeled
packs are reported in �26,27,24,20,9�.

Here we discuss pair correlation and coordination number
for monodisperse packs of varying packing fraction; one
would expect that the degree of order is related to the pack-
ing fraction. We also discuss high-density lattices, experi-
mental results, and correlate certain features of the statistics
with certain kinds of order. And we briefly discuss pair cor-
relation for bidisperse packs.

XI. COORDINATION NUMBER

It is known that a single sphere can touch at most 12 equal
spheres �28�, a condition satisfied by a close-packed lattice.
If all spheres in a pack are jammed, each must be in contact
with at least four others. The mean number of contacts is
called the coordination number �or contact number or kissing
number�.

Experimental results of Bernal and Mason for monodis-
perse packs �29� reveal an average number of contacts of 6.4
for a dense packing �packing fraction 62%� and 5.5 for a
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FIG. 11. Packing fraction as a function of fine-mode percentage
for a 16.5:1 coarse-to-fine size ratio.
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loose packing �packing fraction 60%�. Also, a near-neighbor
�or near-contact� number was determined for these packs,
where a near-neighbor to a reference sphere is defined as a
sphere whose center is separated by no more than 1.05 di-
ameters from the center of the reference. These numbers are
8.5 and 7.1. In general, near neighbors can be defined using
1+� instead of 1.05, and it is common, if � �the tolerance� is
small �0.01 for example�, to identify these near-neighbor
numbers with the contact numbers. Clearly the contact num-
ber is a function of �, and if � is smaller than 
 the
Lubachevsky-Stillinger algorithm will generate packs with
zero contact number.

Figure 12 shows variations in the contact number with 1
+��X for three different packs of 35 000 particles, the
packs differing one from the other because of different
choices of a. Similar curves are reported in �30,24�, but here
we include comparisons with experimental data obtained by
Aste and his colleagues. They have studied monodisperse
packs using x-ray tomography �31,22� and have provided us
with their raw data so that we might make comparisons.
Single pack results obtained by us and by Donev et al. �20�
are shown in Fig. 13.

Table II lists the contact number for some experimental
data and for packs that we have generated �the inhouse name

for our code is Rocpack� for various values of �. Of particu-
lar interest is the data of Gotoh as he used a large number of
particles, as needed for results to be statistically significant.

XII. RADIAL DISTRIBUTION FUNCTION (RDF)

The concepts of touching number and rattlers �which we
do not discuss� are nearest-neighbor concepts, but the statis-
tics of particles at greater distances are of importance, and
this brings us to the radial distribution function, also known
as the pair distribution or pair correlation. It is defined as the
probability of finding a particle center at a distance between
r and r+�r from the center of a reference sphere �25�. The
discrete definition is

g�r,�r� =
V

N

n�r,�r�
4�r2�r

, �10�

where N is the number of particles in the pack, V is the pack
volume, and n�r ,�r� is the number of particles in the shell of
inner radius r and thickness �r. This is averaged over all
particles; it asymptotes to 1 as r→
.

It is obvious that some separation distances are more
likely than others. For example, in a monodisperse pack

TABLE II. Average contacts nc of Rocpack and experimental packings �data from �29,30,32��. Whether
the smallest value of X is an appropriate value for the first column data of Bernal and of Mason is not clear
from their reports.

Source Fraction N nc�1.005� nc�1.02� nc�1.05� nc�1.1�

Bernal-LRP 60% 420 5.5 N.A. 7.1 N.A.

Bernal-DRP 62% 476 6.4 N.A. 8.5 N.A.

Mason N.A. 536 4.7 6.8 8.0 8.9

Gotoh 63.6% 7934 N.A. 7.05 8.0 9.0

Rocpack-LRP 59.95% 35000 5.22 6.04 7.00 8.06

Rocpack-Mid 62.55% 35000 6.15 6.81 7.67 8.69

Rocpack-DRP 64.03% 35000 6.62 7.27 8.10 9.09

FIG. 12. Average near-contact number as a function of X�1
+� �35 000 particles� for three packing fractions, compared with
data of Aste et al.

FIG. 13. Average near-contact number as a function of X
�35 000 particles� for a single packing fraction, compared with data
of Aste et al. and results of Donev et al. �20�.
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contact particles will be separated by the diameter d so that
we would expect the RDF to have a sharp peak at X�r /d
=1. The location of other peaks at X=	3 and 2

3
	6 can be

understood by referring to the arrangements drawn in Figs.
14�a� and 14�b�. The peak at 2 corresponds to three spheres
in a row.

XIII. RDF OF MONODISPERSE PACKS

In calculating the RDF for a prescribed pack, it is neces-
sary to make a choice of �r. If too large, the function is
smoothed and peaks are obscured; if too small the noise gen-
erated because only a finite number of particles are used can
also obscure the peaks. And so it is necessary to make some
trial runs to optimize the choice. We do not show the results

of these trials, but we came to the conclusion that �r
=0.005d lies within an optimal band. We make the same
choice for bidisperse packs when d is taken to be the diam-
eter of the smaller spheres.

The growth rate a is an important parameter in the a
algorithm; large values prevent the spheres from distributing
themselves in a tight fashion; small values permit such a
distribution. Similar consequences arise using the T algo-
rithm when T0 and the tolerance are varied. Figure 15 shows
the RDFs for three packs of mass fractions typical of those
that can be generated using the a algorithm. It is noteworthy
that the peak at 	3 apparent at the highest packing fraction is
completely lost at the lowest. It is also noteworthy that for no
pack do we see a peak at �2 /3�	6=1.633. . . �see Fig. 14�b��.
The tetrahedron arrangement is characteristic of the close-
packed lattice and does not appear to arise in low-density
random packs.

A similar exercise using the full power of the T algorithm
yields far more striking results. Figure 16 shows the RDFs
for the two packs of Figs. 7 �T0=1� and 8 �T0=109�. The
many peaks for the high-temperature result �including one at
1.633. . .� reveal the high degree of order in this pack. Later
we shall compare it with the RDF of a close-packed lattice.

FIG. 15. RDF for different, relatively low, packing fractions.

FIG. 16. RDFs for two T-algorithm packs, T0=1 and
T0=109.
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FIG. 17. RDF of double-nested lattice.
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FIG. 14. Possible sphere configurations and the location of cor-
responding peaks in the RDF. �a� Four close spheres, �b� Tetrahe-
dron configuration.
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XIV. RDFs FOR LATTICES

We have noted that the peaks in figures such as 15 arise
because of specific nonrandom structures. Lattices consist
entirely of nonrandom structures, and it is of interest to ex-
amine the peaks that then arise; in principal, all can be ex-
plained by geometry. Since this has been discussed before,
we shall just provide a brief description of double-nested and
close-packed lattices. The former has a packing fraction typi-
cal of packs generated numerically; the latter has a signifi-
cantly higher packing fraction, but has order that is related to
that of high-density numerical packs.

A. Double-nested lattice

The double-nested lattice is shown in Fig. 3�a�, and the
RDF in Fig. 17. The first six peaks, easily identified from the
lattice geometry, are at 1, 	3

2 =1.224. . ., 	5
2 =1.581. . ., 	3

=1.732. . ., 2, and 	15
2 =2.738. . ..

B. Close-packing lattice

The close-packed lattice is shown in Figs. 3�b� and 3�c�,
and the following peaks can easily be identified: 1, 	2
=1.414. . ., 2

3
	6=1.632. . ., 	3=1.732. . ., 2, and 	5=2.236. . ..

Note that the peak at 1.632. . . arises from the tetrahedron
arrangement of Fig. 14�b�.

The RDF is shown in Fig. 18. And in Fig. 19 we show the
values along with the RDF of the T-algorithm pack of Fig. 8.
In view of the packing fraction of the pack �70.35%�, it
might be thought that we should compare its RDF with that
of the double-nested lattice �packing fraction 69.81%�, but
there is little correlation between the two. On the other hand,
there is clearly a strong correlation for the close-packing lat-
tice. Thus, although we are still significantly shy of the close-
packing density �74.05%�, the pack must have a morphology
that has many of the characteristics of the lattice.

XV. COMPARISONS WITH THE MONODISPERSE
DATA OF ASTE et al.

RDFs for packs generated using the Lubachevsky-
Stillinger algorithm have been reported before, e.g., �20�, but
here we compare the calculated results with experimental
data. For it is, we believe, important that the packs used in a
virtual engineering framework have the same statistics as the
real packs. It is possible, of course, that real packs will have
different statistics according to the manner in which they are
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FIG. 18. RDF of close-packing lattice.

FIG. 19. RDF of the pack of Fig. 8, and close-packing
values.

FIG. 20. RDF comparison with experimental data, �a�.

FIG. 21. RDF comparison with experimental data, �b�.
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generated, a matter that we are not in a position to address at
the present time, but Aste and his colleagues at the Australian
National University in Canberra have measured the RDFs for
a number of monodisperse packs using x-ray tomography
�31,22�, and have provided us with their raw data so that we
might make comparisons, and we do that here. Our packs use
35 000 spheres in a periodic cube and are generated using the
T algorithm with packing fractions of 59.95%, 62.55%, and
64.03%; the experimental packing fractions are 59.6%,
62.6%, and 64.0%. The comparisons are shown in Figs.
20–22.

We note the coordinates of the first two peaks lying to
the right of X=1.5, the model coordinates first, the experi-
mental coordinates second: �Pack B: peak 1 �1.735,1.26�,
�1.730,1.22�; peak 2 �1.995,1.71�, �1.980,1.59�
; �Pack D:
peak 1 �1.730,1.50�, �1.720,1.30�; peak 2 �1.995,1.91�,
�1.985,1.55�
; �Pack F: peak 1 �1.730,1.74�, �1.730,1.50�;
peak 2 �1.995,2.07�, �1.985,1.77�
. Note that the model peak
values are always greater than the experimental ones, signifi-
cantly so in some cases. But these differences are consistent
with errors in the experimental measurements. Aste et al.
assume a Gaussian uncertainty in the center distance for two
touching spheres, and estimate that the average standard de-
viation is 0.015 diameters. If we randomly adjust the model
center coordinates accordingly, and recalculate the RDFs, the

model peaks are decreased and more closely match the ex-
perimental values. Similar smoothing would occur if we al-
lowed for a distribution in the sphere diameters.

XVI. RDF OF BIDISPERSE PACKS

For polydisperse structures the counterpart to the RDF
function is the partial pair correlation function (gij�X�), the
number density of particles of type j that are within shells r
to r+�r centered on particles of type i. The function is nor-
malized so that it has the value 1 as r→
, and it defines a
symmetric matrix. In its determination there is a problem if
the size ratio of the particles is large. For example, for a
16.5:1 ratio in a pack of 50 000 spheres there are only 45
large spheres vs 49 500 small spheres. In this case the statis-
tics involving only the coarse component are nonrepresenta-
tive.

A. Pack with size ratio 6.5:1, case A

We consider a pack with 50 000 particles, a 9 to 1 coarse-
to-fine mass ratio �i.e., 90% of the mass comprises coarse
particles�, and a packing fraction of 68.7%. It is close to one
of McGeary’s data points �21�. Figure 23 is a plot of g11
where the index 1 refers to the larger particles. Because, as
we have already noted, there are so few of these, the function
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FIG. 23. g11-6.5:1 Bidisperse packing, case A.
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FIG. 24. g12-6.5:1 Bidisperse packing, case A.
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FIG. 25. g22-6.5:1 Bidisperse packing, case A.

FIG. 22. RDF comparison with experimental data, �c�.
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is noisy, but trends are apparent. They are similar to those of
a monodisperse pack, not a surprising observation. Recall
that d is the diameter of the smaller particles. Figure 24 is a
plot of g12 and reveals structure in the neighborhood of X
=4.5 and 10. And Fig. 25, a plot of g22, reveals order at X
=2 and in the neighborhood of X=7.7.

B. Pack with size ratio 6.5:1, case B

Here we change the mass ratio to 75% coarse, 25% fine,
achieving a 73.1% packing fraction. Now there are so few
coarse particles that it is difficult even to observe trends in
g11, and so we do not show it. Figure 26 displays five well-
defined peaks for X smaller than 8 for g12, and Fig. 27 shows
a number of peaks for g22. Some of these can be understood
within the monodisperse framework, but others are a conse-
quence of the bidisperse morphology. Thus a layer of small
particles in contact with a large one will generate a peak in
g12 at X=3.75, Fig. 28. The closest small particles in a sec-
ond layer beyond the first define a peak at 4.61, Fig. 28, the
furthest at 4.75, Fig. 29, and so one might expect a single
averaged peak between these two limits.

XVII. BOUNDED MONODISPERSE PACKS

In the earlier sections we only considered unbounded pe-
riodic packs, but in applications there are always boundaries,

and it is of interest to examine the effects of rigid boundaries
on the pack morphology. We have examined three different
pack geometries: a bounded cube, a bounded right-circular
cylinder of infinite length, periodic along the axis, and a
finite right-circular cylinder, bounded on all sides, but only
present results for the latter configuration.

In the generation of such packs using the Stillinger algo-
rithm, collisions must be accounted for between the spheres
and the walls, and the code is easily modified to accommo-
date these. Our discussion is concerned only with the results.
That there will be wall effects �a wall layer� is recognized,
for example, in the experimental work of Aste and his col-
leagues �22�; because they are interested in the properties of
unbounded packs, they randomly glue spheres to the walls in
an attempt to eliminate the wall layer. Our purpose here is to
identify the thickness of the wall layer, and some understand-
ing of its morphology. We only consider monodisperse
packs.

There are various ways of characterizing the local pack
structure, and we choose to do it in the following fashion. We
start by defining a sampling volume or bin. Thus for a cube,
for example, a sensible choice would be a sheet of finite
thickness parallel to two of the bounding faces; for a cylinder
it would be either a cylindrical shell coaxial with the cylin-
der, or a finite thickness circular disk perpendicular to the
axis. In each bin of volume V we count the number of sphere

FIG. 28. A possible local configuration for a 6.5:1 bidisperse
pack, �a�.

FIG. 29. A possible local configuration for a 6.5:1 bidisperse
pack, �b�.
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FIG. 26. g12-6.5:1 Bidisperse packing, case B.
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FIG. 27. g22-6.5:1 Bidisperse packing, case B.
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centers located within it, and use this number �N� as a mea-
sure of the number of particles within the bin, defining a
center-number density by

� =
N

V
. �11�

Thus consider a bounded cylinder of height 2, diameter 2/3,
containing 100 000 particles. The packing fraction is
62.57%, the overall number density is 143 239.4, and each
particle has a diameter of 0.0202. Figure 30 shows the axial
variation of center-number density for different choices of
the number of bins. The axial distance is defined by the
center of each bin. Note that for 1000 bins each bin has
thickness 0.002, for 500 bins the thickness is 0.004, and for
100 bins the thickness is 0.02, essentially the particle diam-
eter.

A couple of observations may be made.
�1� If the particle centers were randomly distributed, the

center-number density would be constant. This is approxi-
mately true at a distances greater than 0.1 from each end, but
not within the wall layer which, accordingly, is approxi-
mately 5 particle diameters in thickness.

�2� The large oscillations within the wall layer imply or-
der imposed by the boundary constraint. Indeed, there are
5–6 peaks in the layer, correlating with the particle diameter.
Thus, for example, for a cubic lattice �for which the follow-
ing estimates are easily made� there would be approximately
890 particles in each layer near the end walls, and for a bin
thickness exactly equal to the particle diameter the center-
number density would be constant with a value of approxi-
mately 1.28�105. For a bin of vanishing thickness the
center-number density would be zero except at distances
d /2, 3d /2, 5d /2, . . . from an end wall �d=0.0202 is the par-
ticle diameter� where the values would be approximately
2550 /� where � is the bin thickness, yielding 12.75�105

for the 1000 bin case, 6.38�105 for the 500 bin case.
Figure 31 shows the radial distribution of the center-

number density for 100 bins �shell thickness 0.0033� and 200
bins �shell thickness 0.0017� and, as expected, here also the
wall layer is 5–6 particle diameters thick. The expected

peaks for a local cubic lattice structure are approximately
7.73�105 for 100 bins, and 15.27�105 for 200 bins.

To gain more insight into the structure, we have replotted
Fig. 31 in Fig. 32 using 333 bins �shell thickness 0.0010� and
measuring the distance from the side wall in units of the
particle diameter �scaled shell thickness 0.0496�. Also the
number of sphere centers is plotted, rather than their density.
For a double-nested lattice the peaks would be at
�0.5,1.366,2.232,3.098,3.964
; for a close-packed lattice
they would be at �0.5,1.317,2.133,2.950,3.766
. We shall
compare our peaks with the latter.

Thus the first peak �the 11th bin� is located in the interval
�0.496,0.546�, of which 0.5 is an interior point. The second
peak is at the 28th bin, and the one to its immediate left �the
27th� is located in the interval �1.290,1.339�, which includes
1.317. The third peak is at the 45th bin, and the one to its
immediate left �the 44th� is located in the interval
�2.133,2.182�, which includes 2.133. The fourth peak is at
the 61st bin, and the one to its left is located in the interval
�2.926,2.976�, which includes 2.950. The fifth peak is at the
78th bin, and the one to its left is located in the interval
�3.769,3.819�, which barely excludes 3.766. Thus, as would
be expected for an imperfect lattice, there is a small outward
displacement in the mean particle locations from what one

FIG. 30. Center-number density along the axial direction calcu-
lated for different bin numbers.

FIG. 31. Center-number density along the radial direction.

FIG. 32. Particle distribution vs wall distance �in particle
diameters�.
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would get for a perfect lattice, but the correlation with the
close-packed lattice is very strong.

XVIII. CONCLUSIONS

In this paper we have used a modified version of the
Lubachevsky-Stillinger code to examine sphere packings in a
context relevant to the modeling of rocket-propellant mor-
phology. Various algorithmic refinements enable us to pack
large numbers of spheres, of different sizes, in an efficient
manner. Run times on a laptop computer are sufficiently
modest that, with the addition of a graphic user-interface
�GUI� �presently under development�, the code could be of
value to both the university and the industrial community.
Packs can be generated in periodic cuboids, bounded
cuboids, and in cylinders that are bounded or periodic along
the axis.

The initial conditions include the specification of the ve-
locities of randomly distributed points, and we do this in one
of two ways: for the T algorithm, for which the maximum
growth rate is 1 and the velocity or growth-rate ratio is con-
trolled by a pseudotemperature T0, the initial velocity com-
ponents are proportional to 	T0 and are sampled from a nor-
mal distribution; for the a algorithm, the ratio is controlled
by a and the velocity components are sampled on the interval
�−1,1�. The T algorithm is capable of generating monodis-
perse packs of high density, higher than that of a double-
nested lattice, and these high-density packs display signifi-
cant order.

For bidisperse packs, using the a algorithm, we have com-
pared the variations in packing fraction with the fine-mode
percentage with experimental data of McGeary. For the
larger coarse-to-fine size ratios �6.5 and 16.5� excellent
agreement is achieved with the choice a=0.2. For the smaller
size ratio �3.5� the choice a=1 yields better results, with the
smaller a leading to significant overprediction. Apparently,

mechanical shaking is not particularly effective as a packing
tool when the size ratio is small.

A study of the radial distribution function for monodis-
perse packs reveals sharp peaks corresponding to local order.
Only a modest number of such peaks are generated using the
a algorithm, or for modest values of T0 using the T algo-
rithm, but when T0 is large a large number of peaks can be
generated. When the latter are compared with the peaks de-
fined by a lattice pack, a strong correlation is achieved with
the close-packed lattice. For modest packing fractions �small
number of peaks� there exist experimental measurements of
the radial distribution function, and we obtain excellent
agreement with this data. For bidisperse packs for which the
corresponding statistical metric is the partial pair correlation
function, certain peaks can be correlated with certain ex-
pected arrangements of large and small particles.

For bounded packs �rigid boundaries� it is intuitively clear
that the presence of the boundary introduces local order. In-
deed, there is a boundary-layer effect, and for monomodal
packs the layer thickness is approximately 5 particle diam-
eters. If we examine the pdf of the sphere-center distribution
there are 5+ peaks in the neighborhood of a boundary that
correlate approximately with integer multiples of the sphere
diameter. When examined more closely, the peaks correlate
closely with those that would be expected for a close-packed
lattice.
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Using level sets for creating virtual random

packs of non-spherical convex shapes
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Abstract

Random packs of spheres have been used to model heterogeneous
and porous material morphologies during simulations of physical pro-
cesses such as burning of coal char, convective burning in porous ex-
plosives, and regression of solid rocket propellant. Sphere packs have
also been used to predict thermo-mechanical properties, permeabil-
ity, packing density, and dissolution characteristics of various materi-
als. In this work, we have extended the Lubachevsky-Stillinger (LS)
sphere packing algorithm to create polydisperse packs of non-spherical
shapes for modeling heterogeneity in complex energetic materials such
as HMX and pressed gun propellants. In the method, we represent
the various particle shapes using level sets. The LS framework re-
quires estimates of inter-particle collision times, and we predict these
times by numerically solving a minimization problem. We have ob-
tained results for dense random packs of various convex shapes such as
cylinders, spherocylinders, and polyhedra, and we show results with
these various particles packed together in a single pack to high packing
fraction.

∗Theoretical & Applied Mechanics, University of Illinois at Urbana-Champaign
†Center for Simulation of Advanced Rockets at the University of Illinois at Urbana-

Champaign
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1 Introduction

Heterogeneous solid energetic materials are widely used in the aerospace and
defense industries in rockets, explosives, and diverse pyrotechnic devices.
The microstructure of these composites are often composed of particles of
a crystalline oxidizer, such as ammonium perchlorate (AP) embedded in a
polymer such as hydroxl-terminated polybutadiene (HTPB) or polybutadiene
acrylonitrile (PBAN). The polymers serve both as a binding agent and a
fuel. Metal flake or powder, usually aluminum, may be added to increase
the energetic content of the composite. Other composites may substitute
crystals of an energetic material such as HMX for the oxidizer. Particle sizes
for the composites range from a few µm for oxidizer particles in the “dirty
binder” to 10s of µm for the metal flakes to 100s of µm for the largest oxidizer
crystals. In explosives, the solids are loaded to mass fractions beyond 0.90,
corresponding to volume fractions of 0.6-0.8. To achieve these high solids
loadings, the materials are often compressed before the binder cures during
manufacture. This results in particle breakage [1]. The final particle shapes
are more polyhedral than spherical, but high aspect ratios seem to be rare
[2]. Under conditions supporting deflagration, these composites burn with
a reaction zone a few 100 µm thick. In certain scenarios, the deflagration
can transition to a detonation [3]. Shown in Fig. 1 is a slice through an
HMX-based explosive, illustrating the microstructure of a typical explosive.
The HMX crystals range from a few µm to several hundred µm in size and
are embedded in a rubbery binder

Porous energetic materials are also common in the aerospace and defense
industries, where the porosity is present either by choice, as in the case of
rocket igniters, or by nature, as in the case of aging fractured explosives.
These materials often also have heterogeneous microstructure, having been
manufactured using the composites mentioned above. The grains in igniters
and gun propellants are often characterized by a particular shape, such as
perforated rods, spherocylinders, or prismatic stars, into which they have
been pressed or cast. These grains are poured loosely or packed tightly into
rigid containers such as gun shells. The size of propellant grains varies widely,
from several 100s of µm to 10s of mm. Solids loading ranges from 50 to 70
% by volume (the remainder is void space). The grains are often coated
with deterrents that reduce the initial burn rate and enhance propellant
performance [4] [5] [6] [7]. Fractured energetic materials have significantly
different properties than gun and igniter propellants, but they share some
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common porous material characteristics. The fractures develop over time as
the explosive ages, increasing the porosity to the point that the overall device
becomes unstable and unsafe. Because fractured explosive began life as solid
composites, they typically exhibit much lower porosity than igniters and gun
propellants, with volume fractions ranging from 0.7 to 1.0 [8]. In either case,
these porous materials have macroscopic burn characteristics quite different
than the solid composites [9].

Designers of devices using these materials are concerned with various
properties of the materials as they relate to safety and engineering issues.
These include thermo-mechanical properties such as Young’s modulus, me-
chanical stability and thermal conductivity, as well as burn rate and metal ag-
glomeration characteristics, among others. These bulk properties are strongly
dependent on the morphology of the materials, and it is thus necessary to
have a proper model for the morphology. Packs of disks and spheres have
been extensively used for this purpose with much success. In particular the
dependence of the burn rate on the morphology of composite AP/HTPB has
been studied extensively using packs of spheres [10] [11]. At least for burn
rate studies, spheres appear to be a reasonable approximation to the shape
of the particles, and a study of spheroids showed little dependence of burn
rate on sphericity [12]. Likewise, much success has also been reported in alu-
minum agglomeration model development with packs of polydisperse spheres
[13].

Nevertheless, spheres can be poor approximations to heterogeneous and
porous materials when various other properties are of interest. Bulk mate-
rial properties such as thermal conductivity [14] and elastic properties [15]
strongly depend on the statistical details of the microstructure, and spheres
do not properly replicate these statistics. Efforts to design a statistically
optimal periodic unit cell as a model of the microstructure of a composite
energetic material also depend on better approximations of the shape of the
particulates [16].

Porous flow is another area where spheres may perform poorly as models
of morphology. Understanding the fluid flow in porous energetic materials
is crucial when designing explosive devices to ensure their proper operation
and long term safety [6]. Fluid flow phenomena strongly affect burn rates in
porous materials and may play a strong role in the detonation to deflagra-
tion transition (DDT) in energetic materials. DDT is an important topic for
the safety and reliability of the nuclear stockpile [8]. As with the thermo-
mechanical properties, fluid flow through porous energetic materials is also
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strongly dependent on the shape of the particle. For example, the well-
known Ergun correlation for pressure drop through a packed bed is accurate
for monodisperse spheres under many conditions and even works well for
monodisperse packs of some non-spherical particles when the particle shape
is adequately accounted for [17]. However, when used where the particles
have large polydispersity or are moderately non-spherical, the Ergun rela-
tion fares poorly [18]. Other empirical correlations for the drag coefficient
and permeability of a porous medium also work well for spheres, but fail
for more complex structures. In one particularly relevant experiment, em-
pirical relations for predicting the permeabilities of packed beds of spheres
were found to over-predict the measured permeability of the non-spherical
explosive CP by factors of 5-50 [19].

The latter two classes of problems demand a more accurate representation
of the particle structure than can be provided by spheres. Thus, the major
focus of this research was to devise a method for generating packs of arbitrary
particle shapes with high packing fractions and large particle size ratios.

This article is organized as follows. First, in Section 2, we briefly describe
Rocpack, our existing code for packing large numbers of polydisperse spheres.
We provide further motivation for extending Rocpack to handle non-spherical
shapes, and survey similar methods that have been presented in the litera-
ture. In Section 3, the new method for generating packs of arbitrary shapes
is presented. The method builds upon the LS algorithm, introducing a flex-
ible shape representation without changing the original LS framework. A
few representative packs of various kinds of shapes are demonstrated, includ-
ing some packs that resemble some real propellants, in 4. Comparisons are
made to the equivalent packs of spheres and some higher-order statistics are
shown. Finally, we summarize our conclusions and suggest further research
in Section 5.

2 Background for the method

Packings of disks (in 2D) and spheres are the workhorses of the materials
science community and have been used for many decades to study physical
processes such as liquid flow, crystallizations, hardening, melting, granular
flow, gasification, and propellant combustion, among many others [20] [21]
[22] [23] [24] [25]. The most obvious advantage of these shapes lies in the
simplicity of their representation, which facilitates theoretical, experimental,
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and computational efforts in materials science.
As noted above, energetic materials tend to have low porosity, and so a

key requirement of any sphere packing algorithm used in this context is the
capability of generating packs with high packing fractions. In addition, one
more constraint applies for our particular focus: the algorithm must handle
polydispersity in an efficient manner. For propellant burn rate studies, the
resolution of the numerical simulation of the combustion is a limiting factor,
and for these computations packs of only up to a few 100 particles are suffi-
cient. However, the packs will often contain large amounts of polydispersity,
and the ratio of the size of the largest particle to the size of the smallest
particle can (and often does) exceed 50:1. For concurrent packing methods,
this can greatly increase the time required to generate a pack.

In light of these critical constraints, we adapted the Lubachevsky-Stillinger
(LS) packing algorithm for spheres and have used it in our code Rocpack to
successfully model energetic materials for almost a decade [11]. The LS algo-
rithm begins by placing N spheres with zero initial radii (points) at random
locations inside the domain of interest. The spheres are given random veloc-
ities vi sampled from a Maxwell-Boltzmann distribution at temperature Θ0

and are allowed to grow at a specified growth rate gi. The particles undergo
classical (super-)elastic collision dynamics as they grow to fill the space in
the domain. The algorithm stops when either a specified density is reached
or when a specified jamming criterion is met.

Modern implementations of rigid sphere packing take advantage of an
event-driven molecular dynamics (EDMD) approach. In EDMD, particles are
advanced between ”events,” where an event is loosely defined as anything that
changes a particle’s state. The event could be a binary collision, a collision
between a particle and a domain boundary, or a transfer of a particle across
an internal or external boundary. Instead of advancing the particles by a fixed
time step as in time-driven MD (TDMD), the particles are always advanced
to the next event time.

As an improvement to the LS algorithm, we use a hierarchical cell struc-
ture to drastically reduce the computation time when the particle set is very
polydisperse. Cell schemes in general are well-known in the MD community,
and a dynamic hierarchical cell variant has been implemented in two dimen-
sions by Wackenhut et al. [26]. However, we are not aware of any other
implementation of a fully three dimensional multi-level cell method. The hi-
erarchical cell scheme allows Rocpack to quickly create packs of hundreds of
thousands of spheres with size ratios of up to 100:1 on a laptop in a matter
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of hours. Details of the algorithm are presented in Refs. [27] and [28] along
with validation of the sphere packs and statistical analyses of the results.

The focus of the current article is a recent extension to Rocpack : a new
packing method for arbitrary convex shapes that can achieve high packing
fractions without introducing artificial ordering. The method can, in princi-
ple, be applied to pack any set of shapes at any size ratio, provided one can
first calculate the signed minimum distance field for each shape. Because the
new method is still based on the LS algorithm, it leverages two important
properties of the LS method: (1) capability for very high packing fractions,
and (2) excellent statistical properties [27].

In the discussion that follows, we will compare various methods for repre-
senting the arbitrary shapes in a pack, including other methods for packing
arbitrary shapes that are discussed in the literature. Note that any of the
methods discussed below could be adapted for use within the LS framework.
To reiterate, the major desirable properties of the overall method when used
to model energetic materials are the following: (1)it should be able to gener-
ate packs with high packing fractions ρ > 0.6, (2) it should efficiently handle
large differences in particle sizes (polydispersity), (3) it should reasonably re-
produce the randomness present in real materials, and (4) it should be able
to produce packs of N > 100 in a reasonable amount of time.

For the representations of the shapes themselves, we also have specific re-
quirements, some which parallel the requirements listed above for the overall
method. Our interest is primarily in packs that resemble real rocket propel-
lant and explosive microstructures. These microstructures often consist of
many different shapes and many different sizes bound together in a single
composite. Some of the shapes may resemble polyhedra; others may be ap-
proximated by cylinders, etc.; and all of these must be packed together in
the same pack. Thus, we would like to be able to specify the particle size
distribution, the particle shape distribution, and the porosity so that we have
the opportunity to accurately model these details of real microstructures.

Two other requirements for the shape representation stem from the use
of the LS algorithm. First, the shape representation must be consistent or
nearly consistent under any arbitrary affine transformation: that is, when we
compute the distance to the shape from any point, the computation must
yield results that are independent of orientation and translation to within a
small tolerance. If there is too much error in the distance estimates, then
the LS algorithm may fail. Thus, the shape representation need not be an
exact, closed-form analytical relation. Numerical methods are also accept-
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able if they can maintain a small enough error in the distance estimate.
This tolerance is difficult to determine a priori but easy to determine in the
implementation of the method.

The second requirement that is due to the use of the LS algorithm is
that the distance computation between any two particles must be a fairly
efficient process. The LS algorithm is a concurrent algorithm, and as such,
is not exceedingly fast. We will show in Section 3 that the LS framework
will require numerically finding the root of the distance function between two
shapes as they move in time. This root solve is already rather expensive, and
adding the additional burden of a numerical distance estimate will increase
CPU time. This is, however, the route we choose.

Thus, our requirements for a shape representation can be summarized.
(1) The representation must be sufficiently generic to handle various shapes
such as spheres, cylinders, and polyhedra. (2) Multiple shapes must be pos-
sible within a single pack. (3) We must be able to specify the shapes. (4)
The representation must be consistent under affine transformations. (5) The
representation must be reasonably efficient. Of course we may choose to
trade efficiency to satisfy the other requirements.

There have been very few attempts to create packs of non-spherical shapes
reported in the literature. Of the methods that have been published, there
are three main classes of methods for representing the 3D shapes: methods for
shapes that have convenient analytical representations, voxel based methods,
and Voronoi methods. The first class of methods is very useful in cases where
the desired particle shapes have clean analytical representations and there
exists a tractable method for computing the distance between the shapes
(either analytically or numerically). Examples of the use of such methods in-
clude packing ellipsoids to high density [29], packing super-ellipses (rounded
rectangles) in 2D [30], and packing ellipses and spheroids at various orienta-
tions as a model of rocket propellant [12]. These examples are all based on
the LS algorithm and thus achieve high packing fraction and can be expected
to yield good statistics. A commercial software application, MacroPac [31],
uses a “blackberry” model – agglomerations of spheres – to model virtually
any shapes in any combination in a single pack. MacroPac is a sequential
method and is thus most useful for low packing fractions where the ordering
and arrangement of the particles are not crucial in the end result.

Analytical shapes can have major advantages. The first and most obvious
advantage is computational efficiency if a closed form solution exists for de-
termining the distance between the two analytical shapes. This is of course
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true for sphere-sphere interactions, but is unfortunately not true for even
moderately more complex shapes. For example, determining the distance
between two cylinders at arbitrary orientation in 3D is extremely difficult
because of the need to determine the distance between the 4 circles at the
ends of any two cylinders. In such situations, the analytical shape might still
be used, along with a numerical minimization or root solver for determining
the distance between the shapes. However, as we will discuss further, this
can greatly increase computation time.

Another advantage for analytical shapes is that it is possible to repre-
sent them exactly. The ability to calculate exact distance to a surface eases
the root finding process for determining the distance between two shapes
by reducing the overall amount of error in the process. This is especially
important for the LS algorithm, which has tolerance issues when the colli-
sion prediction is not exact. If the overall error in the process is too large,
them the particles might overlap slightly, causing the LS heap to get stuck.
Having an exact calculation for the location of a particle surface reduces the
likelihood of occurrence of this phenomena.

Even if an analytical representation is not available for a particular shape
of interest, an analytical method might still be possible using constructive
solid geometry (CSG). With CSG, complex solid shapes are constructed from
boolean operations on simple analytical shapes such as spheres, cylinders,
and polyhedra. CSG is available in many commercial solid modeling and
visualization applications.

If CSG is considered as a viable solution for creating more complex (but
still analytical) shapes, then the major drawback of using analytical shapes
is an overall lack of flexibility to accommodate new shapes. For each pair of
shapes, one must be able to predict collisions, which in turn requires calculat-
ing the distance between the two shapes. When the two shapes are spheres
or polygons, this is not difficult. However, adding a new shape requires
adding new code to compute the distance between the new shape and all
existing shapes. Thus, the development cost of adding a new shape becomes
prohibitive as the number of shapes increases.

The second drawback of using analytical shapes was mentioned above
briefly. There is no guarantee that an analytical solution can be found for
the distance between two shapes that have simple, closed form descriptions
of their surface locations. For example, computing the distance between two
circles in 3D is a notoriously difficult problem [32]. Thus, for some shapes, it
may be more simple to compute the distance numerically – even though the
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shapes may be very simple. However, if a numerical method is used for the
distance calculation, the first disadvantage discussed above still remains, and
is in fact made more important because of the limited scope of the numerical
method. Also, the computation time can be increased drastically because
each collision prediction requires multiple distance computations, which each
in turn compute many function evaluations (more on this later).

Still, a CSG method that restricts itself to a particular simple shape or
set of shapes, such as MacroPac’s blackberry model, can be very useful for
many physical problems. A method similar to MacroPac based on CSG using
only voxels (a voxel is the analog of a pixel in 3D) was presented in [33] and
commercialized as DigiPac. Although DigiPac is a sequential method, it
has evolved to include DEM-like forces and has been able to achieve fairly
high packing fractions with small numbers of particles (N ≤ 175). DigiPac
has been successfully validated with experiments (using only the packing
fractions ρ) with various particle shapes [34]. In the propellant and energetic
materials context, the disadvantages of the method used by DigiPac are
that it cannot achieve high enough packing fractions and the shapes are
not resolved below the voxel resolution (they are not smooth). The former
shortcoming is crucial for our problems; the latter is only important when
fine detail is needed on both small and large particles.

Another widely-utilized approach to creating packs of non-spherical shapes
is based on the Voronoi tessellation. The Voronoi method begins with a
tessellation about random points and then shrinks the resultant polyhedra
to achieve a particular packing fraction. This approach has been used in
the combustion and energetic materials community [35] [18] for the com-
pelling reason that it can be used to create packs with any packing fraction
0 ≤ ρ ≤ 1. The method also yields very realistic-looking particle shapes.
Among the methods discussed here, the Voronoi-based packing codes are
the only ones able to reach the high packing factions that suit our needs.
Unfortunately, the method is not without shortcomings.

First, it is difficult to alter the shape of the resulting polyhedra. In par-
ticular, it is impossible to alter the aspect ratios of the particles without
affecting the packing fraction. For packs with low packing fractions, this
might not be a problem, since there is likely to be ample space to change the
aspect ratios while keeping the particles from overlapping. At high packing
fractions, however, there is unlikely to be enough space to significantly alter
the aspect ratio. A second, but similar problem exists when there is large
polydispersity. Unless the particles can be significantly shrunk, all of the
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largest particles will be roughly spherical due to the properties of the tessel-
lation itself. Since the shape of the largest particles in a microstructure is of
utmost importance, this is a major drawback.

Another problem with Voronoi methods is that although the resulting
polyhedra are truly random, their orientations are completely non-random
with respect to their neighbors’ orientations. In 2D, the faces are seen to
fit together like puzzle pieces or the spots of a giraffe, indicating a lack of
randomness. Depending on the details of the algorithm, it is also likely that
the closest distance between any two neighboring particles is a constant.
However, at this point, we cannot explicitly quantify the effect of this lack
of randomness would have on computed physical properties.

In light of the fact that none of the available methods meet the require-
ments detailed above, we propose a new method based entirely on level sets.
Level set methods (isosurfaces) have some major advantages. First, it is pos-
sible to represent any shape for which one can calculate the signed minimum
distance field. Also, because the underlying data structure is always a scalar
field (an isosurface), it is possible to mix different shapes with no changes
to the method. In addition, subgrid resolution enables precise surface map-
pings with small amounts of discrete data, limited only by the order of the
interpolation method. A simplifying property is that the method to calculate
the distance between the shapes can be independent of the shapes. Lastly,
isosurface scaling (necessary for concurrent packing) is of course trivial if the
signed minimum distance is used to represent the shape. Despite these ad-
vantages, we are not aware of any other use or proposed use of level sets or
other type of isosurface in the context of computer generated random packs.

However, level sets have been used in other discrete element modeling
contexts. For example, a few of the properties of level sets were exploited in
a stacking algorithm by Guendelman, et. al, where a level set was coupled
with a triangulated mesh to produce fast inside/outside checks and normal
vector computations. This method could possibly be adapted to work within
the LS algorithm, but the authors chose not to do so for two reasons. First,
the method requires both a triangulation and a level set field for each object.
For smooth objects, triangulation reduces the accuracy of the surface repre-
sentation, and this is unnecessary if the level set can be used alone. Second,
the method uses the triangulation vertices as sample points for evaluating
the level set field. This is very similar to a direct search method. Although
direct search methods may be acceptable for stacking, they are prohibitively
expensive within the LS packing framework due to the tolerance require-
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ments of the latter method. Thus, we developed an algorithm that relies on
level sets as the sole representation of the particle’s surfaces and that also
computes inter-particle distances in constant time (independent of the mesh
resolution). Of course no method is without its challenges, and these will
also be discussed below.

3 Algorithm

Because this algorithm will be used in the context of the LS framework for
packing, we can view the shape representation as an unspecified function or
a “black box.” We put into the function a pair of particles and the function
returns a prediction for the time of the particles’ next collision (or∞ if they
will not collide in their current trajectories). Additionally, if the two particles
are actually the next pair to collide, the LS algorithm will also require the
location of the contact and a vector normal to the surface at the point of
contact so that the proper changes in trajectory can be applied after the
collision is processed.

For two particles i and j the black box functions can be approximately de-
scribed by the pseudocode of Algorithm 7.1. The function Predict-Collision

takes as arguments the two particles i and j and returns the predicted time
of the next collision between the particles. The member function Update

simply applies a time step update to a particular particle to calculate its
position, velocity, orientation, and angular momentum after the time step
∆t. Predict-Collision functions as a root solve, searching for the first
time after t = 0 that the distance d falls below zero. Note that much of the
detail is hidden in the important function call to Compute-Distance(a, b),
which returns the instantaneous signed minimum distance between the two
particle copies a and b.

The procedure described above is obviously simplified somewhat, but
it illustrates the basic computational task: we must integrate the particle
positions in time, checking for overlap after each small time step ∆t. The rest
of the LS framework does not know or care how this is done – a prediction
of the next collision time is all that is necessary. This property makes it
relatively easy to incorporate any shape representation into the LS framework
as long as one can implement a suitable Predict-Collision function for
the representation. In the next section, we delve further into the details of
the root solver.
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One of the most desirable characteristics of the level set representation is
that we can easily (in principle) compute a “distance” function that is piece-
wise smooth and monotonically decreasing at the instant that the shapes
begin to overlap. This has important ramifications when attempting to
zero in on an impending collision. According to the skeleton definition of
Predict-Collision(i, j) above, we need only a boolean check on dij > 0.
We have presupposed that dij is available and is also well-behaved as the
particles begin to overlap. In fact, we do not need to have a distance func-
tion at all; any metric that indicates when particles have overlapped can (in
principle) be used to find the exact instant that the particles touch. Other
methods for finding the collision point between arbitrary shapes include sim-
ply checking for voxel overlap[33] or scaling the particle sizes smoothly until
overlap is detected by some other method [29]. Of these methods, the for-
mer is simply a boolean check and the latter generates a smoothly varying
function that changes sign at the moment of overlap. However, a boolean
check is a poor method for finding a root, with a convergence rate of O(∆t)
(note that the method in Ref. [33] does not use the LS algorithm, and thus
never needs to find a root). A smooth function is much more suitable for
pinpointing the precise location of an impending collision, but the method
used in [29] is not generally available for arbitrary shapes. Fortunately, as
we will show below, we can directly compute the signed minimum distance
function dij(t) for two level set shapes i and j, and furthermore, this function
is well-behaved at the zero crossing.

Assuming we can compute the instantaneous distance dij(t) between two
shapes represented by level sets, we must then find the next root of dij(t)
numerically. Because we intend for this method to be used with arbitrary
shapes, there will be no analytical method for finding the root. We can,
however, gain some insight into how the shape of dij(t) might look by de-
composing the shape’s motion into that of its maximum enclosed sphere
(with radius ri) and its non-spherical motion. The distance between the two
maximum enclosed spheres d12,sphere(t) looks something like a parabola

d12,sphere =
√

‖vij‖2t2 + 2vij · xijt + ‖xij‖2 − (rij + gijt) (1)

where vij = vj − vi, rij = ri + rj and gij = gi + gj . This function is nearly
parabolic near the point of collision and becomes linear as t→ ±∞. Super-
imposed on this distance will be the periodic oscillations of the rotational
degrees of freedom of the two non-spherical shapes. Thus, in general, dij(t)
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will be highly nonlinear and oscillating near the next collision dij(t)→ 0+.
Shown in Fig. 2 is the computed dij(t) for two gelcaps (spherocylinders).

To make this figure, the two gelcaps were given random velocities, angular
velocities, orientations, and positions and were allowed to pass through each
other. The overall shape resembles Eq. 1, but there are oscillations due to the
changing orientations of the particles. Note that in general, these oscillations
do not have a regular period and that they can cause rather sharp peaks to
be present in the distance function dij(t).

To find this root, we resort to an ODE-like curve fit and attempt to find
the next t for which dij(t) < ǫ, where ǫ is some small tolerance below which
we are not concerned with overlap. Donev, et. al have implemented a method
using Hermite polynomials for ellipsoids [29]. For arbitrary shapes, d′(t) is
not generally available, and so we choose a piecewise quadratic fit. An error
estimate is made at each step and the size of the interval is adapted if the
following criterion is not met:

∫ t+∆t

t

d∗

ij(θ)dθ > −ǫ (2)

where d∗

ij is the piecewise polynomial fit to dij. At each interval, the fitted
quadratic function is checked for a bracketed positive root. If one is found,
the interval is further refined using Brent’s method [36]. Thus, although
small collisions may be missed due to finite ǫ, any scheduled collision will be
predicted to high precision. As previously explained, this precision is critical
to the success of the Lubachevsky-Stillinger algorithm.

We now show more detail of the black box in Algorithm 7.2, where we
have deferred the shape copying and Update(t) member functions into the
function Compute-Distance(i, j, t) so that the function of the root solve
is clear. Next, we explain our algorithm for the Compute-Distance(i, j, t)
function, which exposes the details of our shape representation.

3.1 Level set shapes

A level set (or isosurface) has some nice properties that make it useful for
our purpose. The shape’s surface Γ(x, t) (in 3D) is represented implicitly by
the zero level set of an auxiliary field φ(x, t)

Γ(x, t) = {x | φ(x, t) = 0} (3)
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where the t dependence is included because our shapes translate, rotate, and
grow in time. Our task is simplified if φ is the signed minimum distance to
Γ

φ(x, t) = α miny{ ‖x− y‖ | φ(y, t) = 0 } (4)

where we take the sign α = 1 for points x that lie outside the shape and
α = −1 for points that lie inside the shape. Then we have ‖∇φ‖ ≡ 1, and
∇φ is a normal vector perpendicular to the surface Γ.

The shapes will in general be undergoing affine transformations in three
dimensions and will also be growing according to the Lubachevsky-Stillinger
algorithm. For a general affine transformation, we have

x = σ(t)A(t)x0 + b(t) (5)

where A(t) is a rotation tensor, b(t) is a translation vector, σ(t) is the scaling
factor, and x0 is the position in the reference frame at t = 0. Our shapes
will be bounded by their minimum enclosing spheres, so we scale the level
set so that σ(t) = R(t), where R(t) is the radius of the enclosing sphere.
Unfortunately, the signed minimum distance fields are nonlinear and so there
is no linear operator that can be applied to map φ(x0, t = 0) → φ(x, t).
Instead, the transformation must be applied pointwise,

φ(x, t) = σ(t) φ (σ(t)A(t)x0 + b(t), t = 0) (6)

which is very expensive.
With the Lubachevsky-Stillinger packing algorithm, we only deal with

two shapes at a time, and as discussed in the previous section the kernel of
the algorithm requires predicting the time of the next collision between those
two shapes via Predict-Collision(i, j, tmax). The level set representation
must provide a means to compute the instantaneous distance between two
shapes at any time by the function Compute-Distance(i, j, t). We begin
by transforming both shapes back to a reference configuration, computing
the inverse of Eq. [5] for each shape. Then, we combine the shapes by taking
their intersection. The intersection of the two level sets is just the maximum
of the two fields φ1 and φ2

φij(x, t) = max{φi(x, t), φj(x, t)} (7)

and the resulting field φij(x, t) is also a signed minimum distance field if the
shapes are overlapping. Whether or not the shapes overlap, the intersection
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provides useful information because we can use it to calculate the signed
minimum distance between the two shapes. To accomplish this, we compute
the minimum of their intersection

dij(t) = 2 minx φij(x, t) (8)

where a negative dij indicates that the shapes are overlapping. Thus, as
shown in Algorithm 7.3 Compute-Distance(i, j, t) is rather simple. Again,
we have deferred most of the work to the function Get-Minimum(i, j, x0),
which attempts to locate the minimum of the intersected fields. Having found
the minimum, we can use Eq. 8 to compute the signed minimum distance.

We now discuss the process of locating the minimum of the intersected
level set field φij(x, t), which is a difficult task. Multivariate, nonlinear min-
imization is in general a hard problem for smooth functions, but it becomes
almost impossible for functions that have strong discontinuities in the gradi-
ent [37]. Level sets and their intersections are functions of the latter type, and
for intersections in particular, there are guaranteed to be surfaces of gradient
discontinuity where the gradient – and thus the direction of steepest descent
– changes abruptly. This effect is caused by the min functions in Eqs. [4] and
[8] and is present whether or not the shapes are smooth. Furthermore, for an
intersection, the minimum will always lie on one of these surfaces where the
gradient does not exist. An additional complicating factor is that the fields
are always locally linear in the direction of ∇φ. Thus, even if we travel down-
hill in the direction of steepest descent, we can never gain more information
about where the minimum will be located until we pass a location where
∇φ actually changes. Locally, the fields have no characteristic length scale.
Because of the linearity of the fields and discontinuous gradients, quadratic
methods such as Newton-Raphson or BFGS and conjugate gradient methods
will fail in this degenerate case.

An example of the two dimensional intersected level set field φij(x, t) for
two different convex shapes is shown in Fig. 3. Outlines of the two shapes are
shown in black. The color field and the white contour lines show the values
of the intersected field φij(x, t). The signed minimum distance field has a
smoothing effect far from the surfaces of the shapes, but this feature is of
limited value in this context. Because of the max function in Eq. 7, note that
the left side of the figure contains contours (and field values) for the polygon,
while the right side of the figure contains the contours for the gelcap on the
left side. These contours meet at the ravine passing vertically through the
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field. The global minimum lies in this ravine, inside the innermost contour,
and the gradient does not exist at the minimum.

In this situation, it would seem that there are two options: 1) try a robust
direct search method, or 2) design a new method. We have already achieved
partial success with the former option, having applied the Nelder-Mead sim-
plex method [38] as well as the Hooke and Jeeves direct search [39]. Of the
two, the simplex method fared better and was able to find the general location
of the global minimum quite reliably. The Hooke and Jeeves search tended
to require many more function evaluations than Nelder-Mead to achieve the
same level of tolerance. However, the Lubachevsky-Stillinger algorithm is not
very tolerant of even very small errors in the collision prediction times, and
neither method was able to consistently provide good estimates with relative
tolerances below 10−3. The poor performance for both methods occurs when
the minimizer gets stuck on a surface of gradient discontinuity. It is easier to
visualize the problem in 2D, where a height field indicates the value of the
objective function. In 2D, the surfaces where the gradient is undefined be-
come ravines where the slope changes abruptly. Both the Nelder-Mead and
the Hooke-Jeeves methods move quickly downhill into the nearest ravine.
Near the bottom of the ravine, they shrink their respective search templates
rapidly to convergence, but are unable to make forward progress in the di-
rection of the ravine. They are thus often unable to find the location of the
true minimum.

Therefore, a major focus of this research was concerned with the second
option: design of a new minimization method. In spite of the pitfalls dis-
cussed above, the signed minimum distance fields do have features amenable
to minimization. One of these properties is the aforementioned linearity of
the fields. If we perform a line search in the −∇φ direction, then we are
guaranteed to travel downhill at a slope of unity until a discontinuity (in the
gradient) is reached. In the remainder of this discussion, we will call these
discontinuities “ravines” for brevity and because it is easier to visualize the
process in 2D. At a ravine, the best search direction is the one that travels
in the direction of the ravine. The location and direction of the ravine are
both easily estimated by linearizing the field on either side of the ravine. We
linearize the field separately at two locations xa and xb that straddle the
ravine, dropping the time dependence for clarity

φa(x) = φ(xa) +∇φ(xa) · (x− xa) (9)

φb(x) = φ(xb) +∇φ(xb) · (x− xb) (10)
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The linearized ravine is a line in 2D (or a plane in 3D). To find an appropriate
location to begin a search, we project a line in the downhill direction at xa,

x(t) = xa + t(xb − xa) (11)

and find its intersection with the ravine. With some algebra, we find

t =
φ(xb)− φ(xa) + nb · (xb − xa)

(nb − na) · (xb − xa)
(12)

where the ni = −∇φi(xi) are the downhill normals. The estimate of the
direction of steepest descent along the ravine is then

nab =
na + nb

2‖na + nb‖
(13)

Note that although the intersected field is linear with unity slope along the
gradient direction, it is not in general linear in the direction of the ravine
nab. Also, with respect to the magnitude of the gradient, we know only that
‖∇φij‖ ≤ 1 along the ravine.

We devised a method that uses these properties to find the true global
minimum to high precision. Given a starting location x0, the method first
moves downhill in the direction of steepest descent −φij(x)/‖φij(x)‖. When
the minimizer encounters a ravine, the direction of the ravine is first esti-
mated using Eq. 13, and then a line search is performed along that direction.
The process then repeats.

One of the requirements for using this process (and a drawback to the
overall level set shape representation) is that the shapes must be convex.
The reason for this requirement is illustrated in Fig. 4, where we show the
intersected level set field φij(x) for two shapes that have concavities. The
outlines of these shapes are shown in black, and the values of φij(x) are
again shown in color with white contour lines. The white contour lines show
the existence of multiple minima in φij(x) for these shapes. The method we
have proposed could easily get stuck in a local minima and miss the global
minimum, and so we require all of the shapes to be convex (but not strictly
convex).

Simplified pseudocode for the minimization process is shown in Algorithm
7.4. The Move-Downhill-Into-Ravine(x, n) procedure begins at loca-
tion x and moves in the downhill direction n until the function evaluations
φij(x) no longer decrease as expected. This signals the location of a ravine.
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In the special case of signed minimum distance fields, the ravine may be
found numerically by comparing the expected decrease in the field to the
actual decrease in the field. Since signed minimum distance fields have a
slope of unity in the search direction, the expected decrease is equal to the
step size. The criterion for crossing a ravine is then

(φij(x + ∆x, t)− φij(x, t))− ‖∆x‖ > ǫ (14)

where ∆x is the step and ǫ is some small tolerance. In practice, we have
found ǫ = 0.05 to work well. Larger values are also possible since it is not
be necessary to identify and search along ravines where the slope has only
moderately changed.

Upon finding a ravine, the function will attempt to bracket the location
of the ravine. Move-Downhill-Into-Ravine is adaptive. If a particular
step is successful, the step size is generally increased; likewise if the step is
unsuccessful, the step size is decreased. However, we have found that there
is a loss of efficiency if the function tries to find the location of the ravine to
high precision. It is better to limit the step size adaptivity to say, 3 decreases,
and then to move on to the line search rather than to attempt many function
evaluations in this phase.

Line-Search-For-Min(x, q) begins at location x and performs a line
search in the ravine direction q. Brent’s minimization method (a variation of
the Golden Search) [36] is used to converge upon the location of the minimum
along the line y = x + tq. Brent’s method requires a bracketed minimum,
so before using the method, our algorithm attempts to quickly bracket the
minimum by moving along the line with an adaptively increasing step size.

Acceleration is performed in the function Accelerate-In-Direction(x−
xaccel). Acceleration can be very useful in speeding up convergence to the
minimum, especially in the (rather common) event that the intersected level
set field φij(x) has moderate curvature. If the curvature is significant, the
downhill and line searches will tend to zig-zag towards the global mini-
mum when it would of course be more efficient to move in an approximately
straight line toward the goal. Accelerate-In-Direction thus projects a
line search along the direction of a recent rolling average of the overall search
progress, for example x − x0, again performing an adaptive bracketing and
successive Brent search.

As with almost all minimization methods, the method presented here
greatly benefits from having a good initial guess for the location of the min-
imum. Since we already know that the bounding spheres of the pair of
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shapes are overlapping, a good initial guess can be quickly found by locating
the center of the overlap region of the bounding spheres.

An example run of the minimization routine is shown in Fig. 5, where
the search has been restricted to two dimensions for ease of visualization.
Also note that for illustrative purposes, the initial guess is not as described
above. Outlines of two gelcaps (spherocylinders) are shown in black, while
the field values and contours of φij(x) are again shown as color and white
lines, respectively. The path of Get-Minimum(i, j, x) is shown in red. The
initial guess was below the lower bound for y in the figure, so the path of
the minimizer begins at the bottom of the figure. (We would normally start
with an educated guess for the initial guess.) The function then moves in
the downhill direction until it finds the first ravine. Then, it moves in the
direction of the ravine, rapidly approaching the true point of contact. The
inset presents a zoomed-in look at the action of the minimizer as the global
minimum is approached, where the successive downhill-linesearch process can
be seen.

The overall minimization method has been successful when used within
the LS framework. The global minimum can typically by found with fewer
than 100 function evaluations to a tolerance ‖x − xold‖ < 10−6. That is
not to say that the minimization routine is optimal; it is not. In particular,
although Brent’s method can be second order, the linearization of the level
set fields by Eqs. 9 and 10 causes the overall method to be at best first order.
Nevertheless, as we will now show, the method does indeed work.

4 Results

4.1 Examples of packs

As mentioned previously, the method presented above can in principle be
used to pack any convex shape for which one can compute the initial signed
minimum distance field φ(x). Fortunately, these fields are also easy to calcu-
late for many types of shapes including polyhedra, spherocylinders, cylinders,
and of course spheres. We have computed the fields for these shapes and have
successfully packed variants of each type.

Note that the method presented here is independent of the algorithm used
to compute the signed distance fields. These fields may be computed on-the-
fly for simple analytical shapes such as spheres and cylinders, or the signed
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distances may be pre-computed for more complex shapes and then stored as
a mesh (a 3D array) in memory. The mesh method must be coupled with
some sort of 3D interpolation technique so that the interpolated values vary
smoothly between mesh nodes. We have applied both analytical and mesh
representations of the shapes presented in this work. For the meshes, we used
trilinear, tri-quadratic, and tri-cubic polynomial interpolation. In all cases,
the method was found to work independently of the mesh resolution so long
as the interpolated field values were continuous (but the shapes and packing
fractions necessarily depend on the ability to resolve the original shape).
Higher order interpolations are of course computationally expensive, but this
was alleviated somewhat by pre-computing and storing the final polynomial
coefficients at each location on the mesh. However, the relatively simple
shapes presented in this work all have straightforward analytical solutions
for the signed distance field, and these analytical methods were favored for
their speed.

Shown in Fig. 6 is a pack of 1000 gelcaps (spherocylinders) with aspect
ratio 2:1 (L/D) in a periodic cube configuration. The gelcaps were started
with a scaled temperature Θ0 = 103 (see Ref. [27], [40], or [28] for a discussion
of packing temperature). Gelcaps are smooth and the intersected level sets
are relatively well-behaved, so it is easy for the minimization routine to locate
the minimum. Therefore, these represent an almost optimal scenario for the
method (spheres would be optimal, but uninteresting), and if only gelcaps
are present the code is only about 10 times slower than the LS algorithm
for spheres. Interestingly, the gelcaps pack to a higher packing fraction than
spheres under the same conditions, ρ = 0.70 for gelcaps versus ρ = 0.63 for
spheres [27]. We can estimate an upper limit for the volume fraction of a pack
of spherocylinders based on geometry considerations. If we assume that the
gelcaps align themselves as an ordered stack of infinitely long cylinders, then
a cross section will reveal a pack of disks that have the maximum theoretical
area fraction of 0.906. The gelcaps occupy a volume ratio of 5/6 of their
bounding cylinders, so the maximum packing fraction would be 0.906×5/6 =
0.755, which is higher than the maximum volume fraction of ordered spheres
(0.7405). Recently, a similar property was observed with packs of ellipsoids
(M&M candies), where MRI experiments revealed that the ellipsoids pack
up to ρ = 0.739, depending on the aspect ratio [41].

Gelcaps are interesting in their own right, but are not very similar to
more the common propellants and energetic materials. Shown in Fig. 7 is
a set of 500 right circular cylinders with aspect ratio 2:1, again packed with

20

Buckmaster Research A3-20 FA9550-07-C-0123



Θ0 = 103. This type of particle shape is similar to the 7-perforation grains
used in modern cannon propellants [9], and the hope is that such a pack
might be one day used to investigate convective burning in a packed gun
propellant. Note that the edges of the cylinder are slightly rounded. The
rounding is not strictly necessary but was found to increase the efficiency of
the minimization drastically. Even a small amount of rounding can decrease
the number of function evaluations by ten-fold, so most of the sharp edges
of the particle shapes in this work have been slightly rounded.

A pack of 500 metabidiminished icosahedrons in a cubic container is
shown in Fig. 8. This shape was chosen because unlike regular polyhedra,
it resembles the irregular particle shapes seen in some energetic materials.
Shown in Fig. 9 is a pack with icosahedra, gelcaps, and spheres, illustrating
the method’s capability of packing any combination of shapes at any size ra-
tio. There were no code changes needed to handle the shapes together in the
same pack. We are unaware of any other methods by which polyhedra may
be packed alongside non-polyhedral shapes of any kind, including spheres.
This is an important capability when modeling energetic materials such as
PBX-9501 that consist of large, polyhedral shape particles along with many
smaller, spherical or cylindrical particles embedded in a rubberized binder
(see Fig. 1 for a cutaway photo of the PBX-9501 microstructure).

Relevant to the same problem are the “HMX crystals” shown in Fig. 11.
This model shape is currently being used in packs that resemble crystalline
energetic materials and was modeled after the large HMX crystals that are
being grown at the Los Alamos National Laboratory, shown in Fig. 10 [42].
The model crystal was constructed by beginning with a hexagonal prism and
moving some of the vertices to emulate the structure of the real crystalline
shapes. A virtual pack using the crystal model is shown in Fig. 12. The
periodic pack consists of small cubes, small and large icosahedrons, and small
and large HMX model polyhedra at a packing fraction of ρ = 0.710. An
identical pack of spheres with the same size ratios, number of particles, and
scaled temperature reached a packing fraction ρ = 0.709.

4.2 Statistics

For more detailed quantification of the properties of these packs, we turn
to multi-point probability distributions. We show here only a few statistics
with the simple justification that we cannot discuss the results with respect
to experimental results. XCT scans of various particle packs are generally
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not available, and although packs of spheres generated by Rocpack have been
validated against published experimental data [27], the same is not possible
here.

If the microstructures of interest are ergodic, isotropic, and homogeneous,
we can use simplified one-, two-, and three-point probability functions to de-
scribe the microstructure. A complete discussion of these probability func-
tions, their basis, and the reduction to their simple forms when the above
requirements are met is beyond the scope of this work (see [43] for a more
detailed discussion). We describe the functions only briefly here for com-
pleteness.

For the purposes of our brief description, we will assume that the ma-
terials of interest have only two phases, are ergodic, are isotropic, and are
homogeneous. If we sample the microstructure (our packed bed of spheres or
other shapes) at random locations xq, we can compute the one-, two-, and
three-point probability functions Si, Sij, and Sijk. Si(xq) is the probability
that xq lies in the ith phase, Sij(xq, xr) is the probability that xq lies in the
ith phase while xr simultaneously lies in the jth phase, and Sijk(xq, xr, xs)
is defined similarly for three points. Fortunately, when the material meets
the requirements listed above, these probability functions can be simplified
significantly to

Si(xq) = ρi (15)

Sij(xq, xr) = Sij(‖xr − xq‖) (16)

Sijk(xq, xr, xs) = Sijk(‖xr − xq‖, ‖xr − xs‖) (17)

Note that we can take the limits of these functions for both small and large
‖xr − xs‖ to obtain bulk properties

Sij(0) = δijρi (no sum) (18)

Sij(∞) = ρiρj (19)

with similar consistency checks available for Sijk (see Ref. [44] for general
random two-phase media). In the following discussion, we use the subscript
0 to denote sample locations inside the matrix material (or voids) and the
subscript 1 to denote sample locations inside the particles. For example,
S110(xq, xr, xs) is the probability of simultaneously finding a point xq inside
a particle, xr inside a particle, and xs inside the matrix.

We first consider the results of the gelcap pack of Fig. 6. Recall that
this pack jammed at a packing fraction of ρ = 0.70, which is 10% higher
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than the jamming density of spheres under similar conditions. The second
order statistics Sij are compared to Sij for an equivalent pack of spheres in
Fig. 13. The dashed lines correspond to the gelcap pack while the solid
lines correspond to Sij of a pack of spheres that was packed under the same
conditions. The characteristic lengths for the two particle shapes are an
overall length of 0.162 for the gelcaps and a radius 0.106 for the spheres.
The gelcaps have an aspect ratio of 2:1, so their radii are 0.081. The final
packing fraction differences can be clearly seen in the figure because they are
equal to the intercept of the S11 functions. Note also that the first peaks for
the gelcaps are moved closer to ‖xj −xi‖ = 0 than the peaks of the spheres.
This is an expected result, indicating the presence of touching neighbors at
closer distances than in the sphere pack and is due to the fact that the gelcap
has a smaller radius than a sphere of equivalent volume.

The second order statistical metrics Sij for the pack of Fig. 12 are shown
in Fig. 14 along with the difference relative to Sij for a very similar pack
of spheres. The pack of spheres contains the same number of particles and
the same size ratios as the crystal pack. However, although the spheres are
jammed at ρ = 0.71, the crystal pack is not jammed at that density. Also,
because spheres have a larger volume to length ratio, the longest dimension
of the largest polyhedra is greater than the diameter of the large spheres: ≈
0.79 for the polyhedra versus ≈ 0.57 for the spheres. Nevertheless, the Sij

functions for the two packs are very similar (within 1 %).
The statistical differences in the two packs are more apparent in the higher

order statistical functions. The three-point probability function S011 for the
same pack is shown in Fig. 15. The distances between the three randomly
thrown points xi, xj , and xk are indicated on the axes by r1 = ‖xj−xi‖ and
r2 = ‖xk − xi‖. θ = 0◦ is the angle between the two vectors xj − xi and
xk − xi. The large probability along the diagonal (red is high probability)
is expected because when r1 = r2, S011(r1, r2, θ) = S01(r). There is a small,
but noticeable difference in the width of the central band; it is wider for
spheres. But even with this third-order statistic, the packs seem similar.
More differences can be seen in Figs. 16, where θ = 72◦ and 17, where
θ = 180◦, and the contours are moderately different. Despite what seem
to be small differences in the packs, there are successful ways to compute,
for example, statistically optimal unit cells based on small, but quantifiable
differences in these probability functions [43].
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5 Conclusions

In this article we have introduced a new method for the creation of vir-
tual packs of arbitrary shapes of particles. The method uses a level set (or
isosurface) representation of the shape, which has the advantages of being
able to accommodate almost any shape or any combination of shapes in the
same framework. We are unaware of any other use of level sets or other
type of isosurface in the packing literature. The level set representation also
allows us to efficiently predict the next collision between any two particles
because we can compute a smooth, and well-behaved distance function dij(t)
for the signed minimum distance between two particles. We also showed why
standard minimization algorithms cannot be used with this method and sub-
sequently introduced a new minimization procedure that takes advantage of
the specific properties of intersected level sets.

We demonstrated several packs with various shapes that were created
using the new method. Some of the shapes of interest to us are gelcaps,
cylinders, and irregular polyhedra. We demonstrated the capability of pack-
ing these shapes together, in the same container, with no change to the
method. In particular, we demonstrated packs that visually resemble HMX
crystals and that also have similar packing fractions. We also found that gel-
caps, much like ellipsoids, jam at significantly higher packing fractions than
spheres.

To reiterate, the primary advantages of this method are that it can pack
any combination of convex shapes together and that – thanks to the LS
framework – high packing fractions can be achieved. We are unaware of any
other available commercial or research tools that have this capability.

Unfortunately, we were unable to validate the results of the packing al-
gorithm by comparing to real materials – except by visual comparisons. The
only way to truly quantify how closely our virtual packs resemble the in-
tended microstructures would be to compare them to microstructure data
from real materials. For example, second and third order statistics could be
computed for tomography experiments from XCT or MRI and quantitatively
compared to statistics from our packs. At this time, XCT data is difficult
to obtain, but XCT experiments at the Center for Simulation of Advanced
Rockets (CSAR) at the University of Illinois are being conducted in conjunc-
tion with the Beckman Institute with the goal of quantifying the statistics of
both real and simulated energetic materials. Current experiments are focused
on gathering information about the packing characteristics of bidisperse glass
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spheres.
It is of course most helpful to have information on the real materials of in-

terest, and so later experiments are planned for conducting scans of industrial
propellant formulations. These experiments should be carefully designed so
that their usefulness is maximized with respect to validation of the packing
algorithm. It would be tempting to attempt the largest scan possible so that
a fully-representative density plot can be demonstrated. However, to be use-
ful for validation of the packing algorithm, many XCT scans of a single type
of material should be obtained so that the variation between samples can
be quantified. Also, since the level of polydispersity in real materials is very
large, a single scan that attempts to capture many large particles is inappro-
priate because it will not resolve the details of the small particles. Rather,
it would be better to capture many smaller samples that may include only
a few of the largest particles (as in Fig. 1) so that smaller particles can be
adequately resolved by the XCT equipment. Ergodicity can then be con-
firmed by comparing the high order statistics of these real samples with the
same metrics from virtual packs. This method is also more appropriate for
obtaining many small scans that can be directly compared to the statistically
optimal unit cell construction algorithms [16].

However, even lacking explicit validation, many computational studies
of interest in this field can be carried out without fully understanding how
accurately the virtual packs reflect reality. For example, numerical combus-
tion studies have indicated that packs of spheroids produce approximately
the same burn rates as packs of spheres in AP/HTPB composite propellants
[12]. The same null hypothesis may be true for other phenomena, and such
studies could be used to give us further confidence in results obtained with
packs of spheres. Furthermore, the development of methods that characterize
or estimate the thermal and mechanical properties of real materials can carry
on independently of whether or not experimental data sets exist because we
can now create virtual packs to test these methods. For example, theories
for obtaining bounds on heterogeneous solid material properties such as bulk
moduli can be developed by testing done on virtual packs [14], now including
packs of non-spherical shapes.

Also, even though bulk burn rate is apparently independent of the particle
shape, it is still unclear whether or not this is true for other properties such
as the acoustics in the rocket grain. Further studies can answer this question.
Furthermore, since the method presented in this work uses level sets, there
is a unique ability to smoothly morph any given shape into an equivalent
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spherical shape. Using this method, we can not only answer the question
of whether the particle shapes influence a given property, but we can also
predict at what point the sphericity becomes an important factor. Using this
technique, we plan to re-visit the problem of burning spheroidal AP particles
in HTPB binder [12], but instead use more realistic shapes such as polyhedra
for the burn computations. Since the shapes of some materials are obviously
more spherical than other shapes, this type of study is applicable to other
areas as well.

One such area is in prediction of pressure rise times in confined packs of
loose propellant particles. These predictions are useful when designing solid
rocket igniters and gun cartridges [6] [7]. Numerical tools for simulating burn
rates in porous materials are not yet widely available (see Ref. [45] for an
example where the propellant has simulated cracks), but it is now possible
to begin looking at porous burning of packs of realistic shapes of particles
like those of Fig. 7.

Yet another direction for future research is the broad area of pack char-
acterization. Packs of spheres have been well-characterized in terms of con-
vergence of the first and second order statistics (volume fraction and g(r),
respectively) with respect to packing algorithm variables such as initial scaled
temperature Θ0, number of particles N , and the distance to jamming δ [27]
[28]. These convergence properties are also of interest for packs of arbi-
trary shapes, but have only been studied for simple shapes such as ellipsoids.
Future work with packs created using the algorithms presented here could
quantify these properties for packs of monodisperse and polydisperse polyhe-
dra, spherocylinders, etc. present either individually or together in the same
pack.

This is by no means an exhaustive list of possible topics for future re-
search. Indeed, our discussion has been almost entirely limited to materials
that are used as propellants or energetic materials. Many more opportunities
for porous or heterogeneous modeling exist in chemical engineering, materi-
als science, and medicine. It is our hope that the tool presented here will
enable researchers to tackle the sorts of computational problems that have
been previously impractical because of the difficulty in modeling the complex
morphology.
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7 Algorithms

Algorithm 7.1 A “black box” that predicts the time for the next collision
between particles i and j.

Predict-Collision(i, j)

� Operate on copies of i and j.
a← i
b← j
t← 0
repeat

t← t + ∆t
a.Update(t)
b.Update(t)
dij ← Compute-Distance(a, b)

until dij > 0
return t
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Algorithm 7.2 Details of the collision prediction scheme of our implemen-
tation. A piecewise quadratic fit is first formed by advancing copies of the
particles forward in time. If a zero-crossing is located, Brent’s method is
used to refine the estimate for the root.

Predict-Collision(i, j, tmax)

t0 ← 0
d0 ← Compute-Distance(i, j, t0)
repeat

t1 ← t0 + ∆t/2
t2 ← t0 + ∆t
d1 ← Compute-Distance(i, j, t1)
d2 ← Compute-Distance(i, j, t2)
Form piecewise quadratic fit d∗

ij on interval [t0, t2]

error←
∫ t+∆t

t
d∗

ij(θ)dθ > −ǫ
if error > target/2

then ∆t← ∆t/2
elseif error < 2target

then ∆t← 2∆t
t0 ← t2
d0 ← d2

� Check for bracketed root.
if d2 < 0

then return Brent-Find-Root(i, j, t0, t2)
until t2 > tmax

return ∞

29

Buckmaster Research A3-29 FA9550-07-C-0123



Algorithm 7.3 Procedure for computing the instantaneous distance between
two partices i and j. Copies of the particles are updated to the desired time
t by moving them without collisions along their current trajectories. Then,
the Get-Minimum(i, j, x0) is used to find the distance.

Compute-Distance(i, j, t)

� Operate on copies of the shapes
a← i
b← j
a.Update(t)
b.Update(t)
� Form initial guess for location of minimum.
x0 ← (a.x + b.x)/2
dij = 2 ·Get-Minimum(i, j, x0)
return dij
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Algorithm 7.4 Procedure for locating the minimum of the intersection of
two level set fields that represent two convex objects. The procedure first
attempts to locate a surface where the gradient is undefined (a ravine) and
then performs a line minimization constrained to that surface.

Get-Minimum(i, j, x)

f ← φij(x)
n← −φij(x)/‖φij(x)‖
count← 0
xaccel ← x

repeat

xold ← x

Move-Downhill-Into-Ravine(x, n)
q ← Get-Ravine-Direction(x)
f ← Line-Search-For-Min(x, q)
count← count + 1
if count > accelCount

then Accelerate-In-Direction(x− xaccel)
count← 0
xaccel ← x

until ‖x− xold‖ < tolerance
return f
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8 Figures

Figure 1: A polarized light micrograph of a plastic bonded explosive (PBX)
based on the energetic material HMX. The size scale is 50 µm. (Photo
courtesy of C. Skidmore at LANL [42].)
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Figure 2: Distance between two gelcaps (spherocylinders) as a function of
time. The distance function dij(t) resembles a quadratic function with super-
imposed oscillations. The quadratic-like portion (which is actually quartic)
is due to the relative movement of the centroids, while the oscillations are
due to the rotations as the non-spherical shapes tumble through space.
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Figure 3: Intersection field φij(x, t) of the signed minimum distance fields
of two convex shapes. The outlines of the 2D shapes (the zero contours
of φi(x, t)) are shown in black. The color field and white contours show the
intersected field. When the shapes are both convex, a single, global minimum
exists. However, note the complexity of the intersected field, particularly the
presence of multiple ravines where the gradient jumps. The global minimum
can be seen to lie in one of these ravines. In 3D, the ravines correspond to
surfaces where the gradient does not exist.
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Figure 4: Intersection field φij(x, t) of the signed minimum distance fields
of two non-convex shapes. If the shapes are not convex, the intersected
field can contain multiple local minima, which reduces the chances that the
minimization routine will converge to the correct global minimum.
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Figure 5: Progress of the minimum search algorithm in 2D. The outlines of
the two gelcaps (spherocylinders) are shown in black. The color field and
white contour lines show the intersected field φij(x, t). Shown in red is the
path of the minimizer. The inset shows the minimizer’s path near the global
min, zoomed in and expanded in the x-direction to show more detail.
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Figure 6: A pack of 1000 gelcaps (spherocylinders) in a periodic cube, packed
with Θ0 = 103. Interestingly, the gelcaps pack to a final packing fraction ρ
= 0.70. A pack of spheres under identical conditions jams at only ρ = 0.63
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Figure 7: A pack of 500 right circular cylinders rendered as 7-perforation gun
propellant grains in a cubic container. The packing fraction of the cylinders
is ρ = 0.485 (not accounting for the void fraction of the perforations).
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Figure 8: A pack of 500 metabidiminished icosahedrons in a cubic container
with packing fraction ρ = 0.626. Complex polyhedra such as these are desir-
able for modeling random packs of crystalline particles.
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Figure 9: A pack of spheres, gelcaps (spherocylinders), and metabidiminished
icosahedrons, illustrating the capability of packing any kinds of convex shapes
in any combination. All of these shapes use the same algorithm in the code;
their only differences in the code are in their respective level set field values.
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Figure 10: Large HMX crystals grown at Los Alamos National Lab. These
are single crystals photographed on a 1 cm grid. (Photo courtesy of D. Hooks
at LANL [42].)
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Figure 11: A model of an HMX crystal used in the packing. The shape was
modeled from the photos of the large HMX crystals grown at Los Alamos
National Lab [42]
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Figure 12: A virtual model of a periodic pack of crystalline HMX. The pack
has 200 each of icosahedrons, cubes, and “HMX crystals” of relative size 1
with 10 more icosahedrons and 20 more HMX crystals of relative size 3. The
pack reached a packing fraction ρ = 0.71 with Θ0 = 103. Only particles
whose centroids lie in the periodic domain (shown by the bounding box) are
pictured.

43

Buckmaster Research A3-43 FA9550-07-C-0123



S11

S01

S00

‖xj − xi‖

S
ij

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

Figure 13: Second order statistics Sij for the gelcap pack of Fig. 6, shown
in dashed lines. The solid lines correspond to Sij of a pack of spheres that
was jammed under the same conditions. The gelcap length is 0.162 (aspect
ratio 2:1) and the sphere radius is 0.106. S11 for the gelcaps begins at a
higher probability than the spheres because of the higher packing fraction
(0.70 for gelcaps versus 0.63 for spheres). Note also that the first peaks
for the gelcaps are moved closer to ‖xj − xi‖ = 0 than the peaks of the
spheres, indicating that the gelcap is in contact with closer neighbors. This
is the expected result, since the gelcap has a smaller radius than a sphere of
equivalent volume.
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Figure 14: (top) Second order statistics Sij for the HMX model pack of
Fig. 12. (bottom) Difference of the statistics relative to Sij of a pack of
spheres that was jammed under the same conditions. Note that although
the spheres are jammed at ρ = 0.71, the crystal pack is not jammed. The
longest dimension of the largest polyhedra is ≈ 0.79; the diameter of the
largest spheres is ≈ 0.57.
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Figure 15: (top) Three-point probability function S011 at θ = 0◦ for the pack
in Fig. 12. (bottom) The difference of S011 relative to an equivalent pack of
spheres (S011,poly − S011,sphere). Here, r1 = ‖xj − xi‖, r2 = ‖xk − xi‖, and θ
is the angle between the two vectors xj − xi and xk − xi. Red corresponds
to high probability, while blue corresponds to low probability.
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Figure 16: (top) Three-point probability function S011 at θ = 72◦ for the
pack in Fig. 12. (bottom) The difference of S011 relative to an equivalent
pack of spheres (S011,poly − S011,sphere).
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Figure 17: (top) Three-point probability function S011 at θ = 180◦ for the
pack in Fig. 12. (bottom) The difference of S011 relative to an equivalent
pack of spheres (S011,poly − S011,sphere).
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Abstract

A computational framework is developed to investigate nozzle erosion in solid-propellant

rocket motors (SRMs). Highly resolved simulations are performed to understand the effects

caused by turbulent inlet conditions, as well as nozzle vectoring, on nozzle erosion. The thermal

boundary layer is captured along the nozzle walls to compute the heat flux and erosion rates. To

optimize the computational resources, the nozzle configuration is studied by itself and appropri-

ate inflow conditions are imposed. Two complementary formulations to apply these conditions

are described: the first is based on extracting the flow field from the full motor configuration;

while the second invokes a multiscale asymptotic analysis of turbulent flows inside a rocket mo-

tor. Results suggest that specifying turbulent, rather than uniform, inlet conditions can have a

significant effect on nozzle erosion.

1 Introduction

Carbon-Carbon/Graphite nozzles are often used in solid rocket motors (SRMs) because of their

ability to retain their structural integrity under extreme thermal environments, and the ease with

which they can be machined to achieve a desired geometry. However, when exposed to hot oxidizing

chemical species such as H2O,OH,CO2, O, and O2, surface erosion can occur. During a long burn

1Corresponding author. Visiting Scholar; juzhang@illinois.edu. Member AIAA
2Senior Research Scientist; tlj@illinois.edu. Associate Fellow, AIAA.
3Code Physicist; najjar2@llnl.gov. Senior Member AIAA
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this can be sufficient to alter the geometry (including the throat area) to an extent sufficient to

alter the rocket performance. For this reason, there is a need for theoretical and numerical studies

that can lead to an understanding of the major factors that dictate the erosion rate, and can lead

to design improvements. Such studies present serious challenges, for not only must the chamber

flow be well described to determine the nozzle inlet conditions, itself a challenging problem, but

the nozzle flow must be well described, with full resolution of the boundary layers.

Early work goes back to the 1960s [1, 2], and accounts for the diffusive fluxes of oxidizing species

to the nozzle surface. Later more comprehensive studies include work by Kuo and Keswani [3],

further developed some 20 years later by Acharya and Kuo [4]; and recent work by Thakre and

Yang [5]. Not surprisingly, the last two studies are rich, and justify meaningful validation tests.

But also, not surprisingly, they can be improved upon. Most significantly in the context of our

work, they do not require a description of the chamber flow because the nozzle inlet conditions

are assumed to be steady and uniform, only a rough approximation for turbulent flow or for flow

generated by the combustion of heterogeneous propellants.

This assumption is part of current industry practice, and extends to the inclusion of aluminum

oxide particles. Aluminum is commonly used in solid rocket propellants, and oxide particles pass

into the nozzle, where their impact on erosion can be significant. The distribution of these particles

across the inlet is not uniform, but is assumed to be so; and the particles are not all of the same size,

but have a size distribution, one that is ignored. We, together with colleagues at the University

of Illinois, have developed computational tools that allow for the determination of the detailed

chamber flow, along with a detailed description of the oxide particle distribution both in size and

location, and so we can use these tools to prescribe nozzle inlet data with a detail heretofore not

examined [6, 7].

What we can not do is fully calculate the coupled chamber/nozzle flow whilst accounting for

the nozzle boundary layer, simply because of limitations on computational resources. (Amongst

other limitations we do not use an adaptive timestep strategy although the problem is one for

which the temporal resolution required is high). An obvious strategy for dealing with this difficulty
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is to calculate the chamber flow and the nozzle flow separately: to calculate the chamber flow,

including data at the nozzle inlet, using a relatively coarse mesh; and then to use the inlet data,

suitably interpolated in space and time, in a fine-mesh calculation of the nozzle flow. The chamber

flow would actually be determined from a full rocket simulation including the nozzle, but with the

boundary layers unresolved.

There are technical difficulties that arise in the pursuit of this strategy, and the work presented

here is only a partial step towards the ultimate goal. But we shall present evidence that non-

uniform and unsteady nozzle inlet data can significantly affect the nozzle flow and the erosion rate;

and we shall successfully complete a variation of the strategy when the chamber flow is modeled by

a turbulent flow. In this variation the chamber flow is determined from a chamber-only calculation

rooted in the assumption that both the mean flow and the turbulent fluctuations evolve slowly in

the axial direction. In later work we shall carry out the complete strategy for a three-dimensional

turbulent flow, with inlet boundary conditions for the nozzle flow generated from pdf descriptions

of the coarse-mesh results. (Examples of turbulent inlet conditions for a jet flow can be found

in [8]). In doing this we shall be able to accommodate complex chamber features including grain

shapes such as stars and finoculs, inhibitors, slots, and submerged regions. We anticipate that this

will generate results with better fidelity than those generated using current industry practice, and

will provide important insights into thermal management questions of importance to the Air Force

and to rocket builders.

A simplified schematic, depicted in Figure 1, summarizes the various physical and chemical

processes involved in nozzle erosion/ablation. Chemical, mechanical, and thermal effects coexist

within the compressible turbulent boundary layer at the nozzle surface, presenting a challenge to

accurately model the momentum and heat transfer to the nozzle walls.

The fundamental numerical tool that we have at our disposal, always used when the slowly-

varying strategy is not being used (and therefore always used in the nozzle), is Rocstar, a code

developed at the Center for Simulation of Advanced Rockets (CSAR) as part of the DOE funded

ASC centers [6, 9]. Rocstar is a tightly coupled fluid-structure-thermal multiphysics solver. It

4
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Figure 1: Schematic of various processes in nozzle ablation. Courtesy of ATK.

consists of several physics modules including Rocburn [10] and Rocflo [11]. Rocburn solves the

unsteady heat equation in the solid phase in the wall normal direction, allows for gas-solid coupling,

and has been modified to accommodate nozzle erosion. Full coupling of the flow field, the unsteady

thermal field in the solid, and the retreating solid surface is not a characteristic of current practice

or any published study that we know of.

The code is fully three-dimensional and this enables us to incorporate three-dimensional turbu-

lent flows, and to solve for non-axisymmetric configurations, as, for example, when a thrust vector

control nozzle is used.

We do make some simplifications. One such is the neglect of gas-phase chemical reactions, and

we note that only insignificant effects are reported in [5]. Indeed, we account for no gas-phase

chemical species, including those oxidizers responsible for the erosion. Instead, we use a familiar

pyrolysis law in which erosion is assumed to be a function of the surface temperature and the local

pressure. Nor do we account, in this preliminary study, for aluminum particles in the gas flow,

an important matter to be investigated in the future. Coarse-mesh full rocket simulations with

aluminum particles are reported in [7, 12].

The structure of the paper is as follows. Section 2 gives the mathematical formulation. In
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particular, the governing equations for the gas flow in the nozzle and for heat conduction in the

nozzle walls are given, along with a methodology for gas-solid phase coupling. Section 3 discusses

the numerical strategies for computing the erosion of the nozzle. Included is a discussion about how

to prescribe the nozzle inlet conditions, one of the important aspects of this work. One method

is based on a multiscale model, and this is presented here. Section 4 presents several verification

tests. Section 5 presents results for the BATES motor, including a case with a vectorized nozzle,

and Section 6 gives concluding remarks.

2 Mathematical Formulation

2.1 Gas-Phase

The three-dimensional equations in the gas-phase consist of Favre averaged mass, momentum and

energy conservation for a viscous, compressible, ideal gas and are written as

∂tρ + ∂j(ρũj) = 0, (1)

∂t(ρũi) + ∂j(ρũiũj) + ∂ip − ∂j σ̃ij = −∂j(ρτij), (2)

∂t(ρ ˜E) + ∂j((ρ ˜E + p)ũj) − ∂j(σ̃ij ũi − q̃j) = −α1 − α2 − α3 + α4, (3)

where Reynolds averaging is denoted by an overbar and Favre averaging is denoted by a tilde. σ̃ij

and q̃j are respectively the viscous stress terms and heat flux terms, expressed in terms of averaged

variables. ˜E is the specific total energy,

˜E = ˜h −
p

ρ
+

ũj ũj

2
. (4)

And ρτij is the Reynolds stress,

ρτij = ρu′′

i u
′′

j . (5)
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where (·)′′ terms are perturbations from the Favre mean. The turbulence terms in (3) are given by

α1 = ũi∂j(ρτij), (6)

α2 = ∂j(p′u
′′

j )/(γ − 1), (7)

α3 = p′∂ju′′

j , (8)

α4 = σij∂ju
′′

i . (9)

where (·)′ terms are perturbations from the Reynolds mean.

A variety of turbulence models, including RANS, LES and DES, are available in the computa-

tional framework and provide a closure model for the Reynolds stresses as well as the {αi} [13, 14].

LES, however, is computationally expensive for high Reynolds number flows due to the extremely

fine mesh requirement near wall regions. Thus, in the results shown in this paper, the DES (De-

tached Eddy Simulation) model is used [13]. DES is a simple modification of Spalart-Allmaras

(SA) turbulent model and switches from RANS(SA) to LES-like away from solid surfaces. This

saves computational cost by increasing the resolution in the wall-normal direction whilst keeping

the resolution in other directions relatively coarse. It is especially suitable for resolving the nozzle

boundary layer.

2.2 Solid-Phase

In the solid-phase the nozzle material (both graphite and carbon-carbon) is usually modeled as a

homogeneous material. Then a one-dimensional heat conduction equation is solved in the direction

normal to the nozzle surface, a strategy justified when the thickness of the thermal layer is much

smaller than the nozzle radius. For example, for a nominal erosion rate of 0.02 cm/s and a thermal

diffusivity of 0.02 cm2/s, the thermal layer has a thickness of ∼ 1 cm whereas a typical nozzle

radius is ∼ 1m. Note, however, that for carbon-carbon nozzles the material is inhomogeneous as

woven strands of carbon are embedded in resin so that the material is locally anisotropic [15]; a

more realistic model would take that into account. Such complexities, along with ingredients such

7
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as thermal expansion, are beyond the scope of this preliminary study.

In a frame attached to the nozzle surface, heat conduction is governed by the one-dimensional

equation

cc

(

ρc

∂Tc

∂t
+ M

∂Tc

∂n

)

=
∂

∂n

(

λc

∂Tc

∂n

)

, (10)

subject to the following boundary conditions:

∂Tc

∂n

∣

∣

∣

∣

surface

= g, (11)

∂Tc

∂n

∣

∣

∣

∣

(n→−∞)

= 0. (12)

Here, Tc is the solid-phase temperature, λc the thermal conductivity, ρc the density, cc is the specific

heat, M = ρcṙc the mass flux with ṙc the erosion rate, and n is the distance along the wall normal.

The term g is related to conditions in the gas phase, discussed in the next subsection. A variation

on this formulation, one used by Acharya & Kuo [4] and Thakre & Yang [5], assumes that the

normal distance can be well approximated by the radial distance. This is clearly reasonable if the

slope of the nozzle wall is small, but that is often not the case. The question is examined in the

Appendix in the context of the BATES motor, a commonly used test bed.

2.3 Gas-Solid Phase Coupling

The nozzle surface is an interface between the condensed phase and the gas phase, and certain

connection conditions are imposed there, in addition to the specification of the regression or erosion

rate. Thus the tangential velocities are equal, as are the normal mass fluxes in a frame tied to the

surface:

ũt = 0, (13)

ρg(ũn − ṙc) = ρcṙc. (14)

8
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Energy conservation has the form

[c]M ˜Ts = λg~n · ~∇˜Tg − λc~n · ~∇Tc + M Qs, (15)

where [·] ≡ (·)g − (·)c, and Qs is the surface heat release. The temperature is continuous, [T ] = 0.

In all of these formulae the subscript g refers to a gas-phase quantity whilst the subscript c refers

to a condensed-phase quantity. Also, ~n is the surface normal pointing into the gas. The value of

Qs is chosen to be 100 kcal/kg in the current work.

The connection conditions are essentially identical to that of [5]. Even so, we knowingly neglect

terms related to turbulent fluctuations. For example, equation (14) would assume the following

form,

ρg(ũn − ṙc) + ρ′gu
′′

n = ρcṙc, (16)

if terms related to turbulent fluctuations are accounted for. The same applies to equation (15),

and terms like [c]M ′T ′′

s and λ′′

g~n · ~∇T ′′

g (if temperature dependent transport properties are assumed

like in [5]) are neglected. To keep these terms would require closure modeling, and at the moment

we do not know how to model these terms nor do we have the tools to perform a direct numerical

simulation to develop appropriate subgrid models for the terms.

The erosion rate is determined from a pyrolysis law,

ṙc = Acp
βexp

(

−Ec

Ru
˜Ts

)

, (17)

where Ac is an empirical pre-exponential constant to be calibrated, Ec is the activation energy in

the condensed-phase, Ru is the universal gas constant, and ˜Ts is the surface temperature. Represen-

tative values are β = 0.5 and Ec/Ru = 34, 625 K [16]. The empirical parameter Ac is chosen such

that a desired erosion rate is reached under certain operating conditions, and can be determined

from experiments or more detailed numerical simulations. For example, for a measured erosion

rate of 0.05 cm/s at a surface temperature of 2750 K and a chamber pressure of 10 atm, Ac is

4646 cm/s-atm0.5. We comment here that the particular form of the pyrolysis law, equation (17),

9
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neglects temperature fluctuations in the exponential term, and assumes them to be small compared

to the mean.

At steady state, equation (10) can be integrated, and the solution substituted into equation

(11) to give

∂Tc

∂n

∣

∣

∣

∣

surface

= go = (ṙc/αc)( ˜Ts − T−∞), (18)

where go represents the steady-state value, ṙc is given by equation (17), and αc is the thermal

diffusivity in the solid-phase. Substituting this equation into the energy balance equation (15), we

obtain

λg

∂ ˜T

∂n

∣

∣

∣

∣

∣

g

= λcgo − M Qs + [c]M ˜Ts ≈ λcgo − M Qs = λc(ṙc/αc)( ˜Ts − T−∞) − M Qs. (19)

Here, we neglect the difference in the specific heats for convenience. This equation relates the surface

temperature to the gas-phase surface heat flux at steady state. The equations in the gas-phase are

now closed with the boundary conditions defined by equations (13), (14), and (19).

We use the steady state description in our calculations, and also neglect geometry changes due

to surface regression. Rocflo can routinely accommodate both effects, if necessary.

3 Numerical Strategies

3.1 Rocflo

The gas-phase equations (1-3), subject to the boundary conditions (13), (14), and (19), are solved

using Rocflo [11] with Detached Eddy Simulation (DES) for the turbulence model [13]. The equa-

tions are discretized in time using an explicit four-step Runge-Kutta method. A second-order finite

volume central scheme is used for spatial discretization. Specifically, the scheme is based on cell-

centered control volumes for the convective terms. The code provides provision for added second-

and fourth-order artificial dissipation for enhanced stability, but artificial dissipation is not used in

the present simulations when using DES. Convective fluxes through the control volume faces are

10

Buckmaster Research A4-10 FA9550-07-C-0123



approximated using the average of variables.

The viscous terms are discretized in a similar fashion, making use of an auxiliary control volume

shifted by a half grid cell in each computational direction. The auxiliary control volumes are used

for the first derivatives and the primary ones (grid cells) for the second derivatives.

We use Rocflo for all of the nozzle calculations, and for some full-rocket simulations. It will be

used in the future for coarse-mesh full-rocket turbulent simulations as part of the proposed two-step

strategy.

3.2 Multiscale Formulation of Rocket Chamber Flows

The use of Rocflo in the two-step strategy is computationally intensive, and so we sought an easier

strategy first, in order to verify our belief that turbulent fluctuations at the nozzle inlet plane need

to be accounted for in the study of nozzle erosion. The strategy we have chosen for this purpose

uses a multiscale asymptotic analysis to construct a description of the turbulence in a high aspect

ratio chamber, and the outflow from this calculation can be used as nozzle inlet plane data. It

has been formulated and used by Spalart for turbulent boundary layers [17] and by Venugopal

et al [18] (and references therein) for planar SRM computations. Within the SRM context, it

determines the flow dynamics at any plane with streamwise location x/h = 1/ǫ where ǫ is a small

parameter, x is the distance from the head-end, and h is the half-width (radius) of the chamber

for a planar (cylindrical) geometry. Asymptotic analysis valid in the limit of vanishing ǫ (which,

as in all asymptotic analyses, we hope is accurate for small but finite values of physical interest),

removes the overall axial gradients and generates a problem with periodic boundary conditions at

the upstream and downstream ends in which the gradient effects appear as source terms in the

evolution equations [18]. ǫ is a geometric parameter, but it is also the ratio of mass injection

rate to the mean flow rate [18] at the location x/h. As noted above, the strategy was used by

Venugopal et al. [18] for plane rocket chambers. It was recently applied to combustion simulations

in two dimensions [19]. Here we use a formulation for incompressible (low Mach number) flow,

restrictions of limited physical value but ones that enable us to easily examine whether or not
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chamber fluctuations need to be accounted for in the evaluation of nozzle erosion.

The nondimensional conservation equations to be solved in vector, non-conservative form in the

low Mach number limit are

Dρ

Dt
+ ρ∇ · V = Sρ, (20)

ρ
DV

Dt
+ ∇p −

1

Re
∇ · τij = Sv, (21)

and

ρ
DT

Dt
−

γ

PrRe
∇2T + (γ − 1)∇ · V = Se, (22)

with the equation of state

1 = ρT. (23)

Here, Re = Vinjh/ν is the Reynolds number based on the injection velocity, Vinj , and the chamber

half-width (radius), h, for a planar (cylindrical) geometry. The source terms on the RHS arise as

part of the multiscale analysis [18], and all spatial operators take either their planar or cylindrical

(axisymmetric or three-dimensional) form.

These equations are solved using the high-order incompressible scheme described in [20]. Thus,

the convective terms are discretized using the 5th-order weighted essentially non-oscillatory (WENO)

scheme of [21], making it possible to resolve difficult applications with strong shear or turbulence.

And the fractional-step scheme of [22] together with the optimized two-step alternating 4-6 low-

dissipation and low-dispersion Runge-Kutta (LDDRK) scheme of [23] is used to improve temporal

accuracy. The solver accurately captures the Proudman–Culick analytical solution for the steady

flow in a slender chamber [24, 25].

The numerical behavior at r = 0 in both axisymmetric and three-dimensional cylindrical ge-

ometries need to be regularized so as to avoid the singularity. For velocity components at r = 0,

an averaging over the first grid points away from r = 0 over 2π in the rθ-plane is carried out. To

this end, ux is simply averaged from ux on those grid points. The other velocity components, ur
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and uθ, are first transformed into Cartesian geometry as uy and uz, i.e., for the jth grid point in θ,

uy,j = ur,j sin(θ) + uθ,j cos(θ), (24)

uz,j = ur,j cos(θ) − uθ,j sin(θ), (25)

and averaged in Cartesian geometry,

uy|r=0 =
1

nθ

nθ
∑

j=1

(ur,j sin(θ) + uθ,j cos(θ)), (26)

uz|r=0 =
1

nθ

nθ
∑

j=1

(ur,j cos(θ) − uθ,j sin(θ)). (27)

This transform is necessary because these grid points can be seen as close neighbors in both y-

and z-directions but not in the θ-direction. The unique velocity vector obtained in this way can is

transformed back into the cylindrical geometry as necessary.

The numerical scheme of [20] requires that the pressure update be solved for using a Poisson

equation. To avoid the singularity at r = 0, instead of solving

∇2p =
{1

r

∂

∂r

(

r
∂

∂r

)

+
1

r2

∂2

∂θ2
+

∂2

∂x2

}

p = RHS, (28)

we solve

r2∇2p =
{

r
∂

∂r

(

r
∂

∂r

)

+
∂2

∂θ2
+ r2 ∂2

∂x2

}

p = r2RHS. (29)

von Neumann conditions are imposed at the boundaries.

We show some results for the three-dimensional cylindrical geometry; a more detailed presen-

tation will be presented elsewhere [26]. The normal injected velocity is set to one; i.e., Vinj = 1.

Figure 2a shows a grid resolution study for the ux rms velocity component for grids of 323, 643,

and 1283. Note the relatively small differences between the two finest grids. Similar convergence

is observed for the other rms velocity components and are not shown here. Profiles of all the rms

velocities are shown in Figure 2b for the 1283 grid. It is observed that the rms of the axial velocity
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has the largest magnitude, while the remaining two have similar magnitudes with the radial rms

velocity being the smallest. It is also interesting to note that near the axis, the rms of the radial and

the circumferential components are almost identical asymptotically, showing some “degeneracy” as

may be expected due to the singularity there. The circumferential vorticity ωθ field is shown in

Figure 3 where it is seen that there are small scale structures indicating a turbulent flow.
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Figure 2: (a) Convergence of ux velocity component and (b) profiles of rms velocities in a three-
dimensional cylindrical multiscale simulation with Re of 1000 and ǫ of 0.04.
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Figure 3: Circumferential vorticity ωθ field in a three-dimensional cylindrical multiscale simulation
with Re of 1000 and ǫ of 0.04. The mesh in the plane is 128 × 128.

3.3 Patching Solutions in the Mean Flow Direction

Our two-step strategy requires the extraction of data from a coarse-mesh full length simulation

at some midplane, which is then used as upstream data for a fine-mesh simulation downstream of

the midplane. In particular, the full-configuration simulation is first integrated in time until initial

transients disappear. The simulation is then further integrated in time while the flow variables

such as density, velocity, etc. for the inlet conditions in the subsequent fine-mesh simulation

downstream of the midplane are extracted during the course of the simulation at the midplane.

The same applies to the extraction from the multiscale simulation, except that the extraction is

only done for the velocity components since the multiscale formulation is currently restricted to the

incompressible equations. The extraction is done uniformly in both space and time for convenience

in the interpolation during the subsequent fine-mesh simulation. During the subsequent fine-mesh

simulation downstream of the midplane, the data previously collected can be easily read in and

linearly interpolated in both space and time. For example, the interpolation in time uses the linear

relation

u(t) =
(ut1 − ut0)

(t1 − t0)
(t − t0) + ut0 (30)

to update the velocity u(t) at one particular location on the inlet plane, where t0 and t1 are

two adjacent extraction times. These values are then used to derive the stagnation quantities in

the characteristic inflow boundary conditions implemented in Rocflo [11] that imposes stagnation

pressure, stagnation temperature, and the direction of the velocity vector at the midplane.
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4 Verification

In this section we describe calculations that provide some verification of the numerical schemes.

We have already noted that the multiscale solver captures the Proudman–Culick solution, and will

here describe some tests of Rocflo together with an evaluation of appropriate inlet data to be used

when, as in our two-step strategy, flow calculations are divided into an upstream calculation and a

downstream calculation.

4.1 The Compressible Laminar Boundary Layer

In examining nozzle erosion, the wall boundary layer must be properly captured. One key ingredient

in the nozzle erosion simulation, namely a boundary condition that imposes normal heat flux along

the nozzle boundaries, was missing in Rocflo and is implemented and verified here. As a sample

problem we consider flow over a flat plate with a Mach number of 0.5, compute the temperature

profile at a Reynolds number of 5000, and compare this profile with existing theoretical results

through the Illingworth transformation [27]. The length of the computational domain is 2.5 m

and the height is 2.0 m. A flat plate is placed at the bottom boundary from 0 to 2.0 m and a

“buffer” region upstream of the plate. The number of grid points is 120 in x and 64 in y, and

the grid is stretched in both x- and y-directions. The smallest cell size in y inside the boundary

layer is 0.5 mm at y = 0 and stretched to ∼75 mm at the top boundary while the smallest cell

size in x is also 0.5 mm at the leading edge of the plate x = 0 and stretched to ∼75 mm at both

the upstream and downstream boundaries. The flat plate is treated as a no-slip wall with heat

transfer, specified by ∂T
∂y

= Te

√

Ue

2νx
g′, where Te = 288 K, Ue = 170 m/s, ν = 0.04 m/s2, and g′

is a constant to be specified. A similarity solution using the Illingworth transformation exists for

these boundary conditions for any constant value of g′. Here, we choose g′ to be 0.01. A far-field

boundary condition is imposed at the upstream and top boundaries of the domain, and an outflow

boundary condition is imposed at the downstream boundary. The bottom boundary upstream of

the plate is treated as a symmetry plane. The comparison is shown in Figure 4.
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Figure 4: Profiles of temperature (normalized by the freestream temperature) at x = 0.5 m for a
laminar boundary layer over a flat plate with heat transfer at Mach number of 0.5.

4.2 Flow in the Thakre and Yang nozzle

Thakre and Yang designed a nozzle for use in both experiment and numerical simulations [5]. They

showed that the center-line flow is accurately predicted by an isentropic flow analysis. In particular,

the analytical solution is given by

A

A∗
=

1

M

[ 2

γ + 1

(

1 +
γ − 1

2
M2

)]
γ+1

2(γ−1) , (31)

T

T ∗
=

2

γ + 1

(

1 +
γ − 1

2
M2

)

, (32)

and the isentropic relations are used to find the relations between flow variables and the cross-section

area, A, along the nozzle. Here we consider the case with a stagnation pressure of 6.9 MPa and a

stagnation temperature of 3000 K at the inlet shown in Figures 3-5 of [5]. The specific heat ratio

is 1.2, and the specific heat at constant pressure is 1719 J/kg-K. The latter is a species-averaged

value.

Comparisons between the isentropic relations and the simulations are shown in Figure 5. The

nozzle has an extended throat region, and this is responsible for the small step in each of the

analytical solutions. It should be noted that the flow is not expected to be fully isentropic especially
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near the wall due to friction. For example, the temperature along the surface, shown in Figure 6,

is different from the isentropic solution.

4.3 Solution Patching

The patching procedure described in Section 3.3 applies to all of the verification tests in this

subsection, where we will address the verification of this procedure for both steady and unsteady

flows.

4.3.1 Laminar Steady Flows

Consider first a plane chamber, nozzle free, of length 0.581 m and height 0.02 m. There is uniform

steady injection at the top surface, imposed symmetry at the centerline, and slip (no boundary

layer) at the head end. The Proudman-Culick asymptotic solution is relevant. A 100 × 50 mesh is

used, and from a full-length simulation flow variables such as the pressure and velocity are extracted

at the half-way plane, x = 0.29 m. This data is then used as inflow data for the second simulation,

from the half-way plane to the exit plane. To verify the interpolation scheme from a coarse mesh to

a fine mesh as described above, a mesh of 100×100 is used in the simulation from the half-way plane

to the exit plane. Note that, in both cases, the meshes are stretched in the wall-normal direction to

exercise a non-trivial spatial interpolation. Also, since the flow is steady, no interpolation in time

is necessary. Agreement between the first and second simulations in the latter domain is good as

seen in the comparison illustrated by Figure 7.

4.3.2 Laminar Unsteady Flows

A second test uses the AFRPL (Air Force Rocket Propulsion Laboratory) BATES (Ballistic Test

and Evaluation Systems) motor, specifically the 70-lb BATES (hereafter referred to as BATES70),

described by Geisler and coworkers, [30, 28, 29]. A schematic is shown in Figure 8. We shall consider

both the planar and axisymmetric geometries. Geometry details and other relevant parameters can

be found in [7]. In the absence of imposed perturbations of significant amplitude, the flow in both
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Figure 5: From top to bottom: profiles of static temperature, pressure, and Mach number (all
shown as dash) and 1-D isentropic (solid) solutions along the nozzle center line. Note that the
“step” in the analytical profile is due to the extended throat.
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Figure 6: Profiles of static temperature (dash) and 1-D isentropic (solid) along the nozzle surface.

geometries is laminar.

Since our focus is the effect of turbulent inlet condition on nozzle erosion, which is obviously

unsteady, the next verification test for the solution patching procedure is, therefore, for an unsteady

flow. In this test a two-dimensional plane version of the BATES70 motor is used with an injection

mass flux, ṁ, that is periodic in time,

ṁ = ṁo(1 + 0.1 sin(ωt)), (33)

where ṁo = 25.7 kg/m2-s and ω = 2000 Hz. The full-configuration simulation is first integrated

in time until the initial transients disappear. The simulation is then further integrated in time

while the flow variables such as density, velocity, etc., at the nozzle inlet plane are extracted for the

subsequent nozzle-only simulation. The extraction is done for 40 uniform sampling points in the y-

direction at every 10 µs and lasts for 20 ms. The extracted data is then used as the inlet conditions

for the subsequent nozzle-only simulation. To this end, the data is linearly interpolated in both

space and time, as neither the sampling points in space nor that in time coincides with the grid

points at the inlet or time step in the nozzle-only simulation. Figure 9 shows the comparison of the

density of both the full-configuration (solid) and the nozzle-only (dash with symbols) simulations
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Figure 7: Pressure (top) and u-velocity (bottom) field in a full- and half-configuration (enclosed
in bold edges, from x = 0.29 to 0.581 m). The solution in the full-configuration is plotted by
solid lines while that of the half-configuration by dashed lines. The inflow boundary condition at
x = 0.29 m in the half-configuration run is provided by the steady state solution obtained from the
full-configuration run.
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Figure 8: Schematic of BATES Configuration.

at locations indicated in Figure 10. Only two representative probes are shown in Figure 9 but good

agreements are obtained at all the locations, especially downstream in the diverging section. The

small differences between the two solutions observed for locations P2 is attributed to the effect of

inflow boundary condition.

The above test problem is for an inviscid flow and the boundary layer along the nozzle surface

is unresolved, as it was targeted for short turnaround time to verify the patching procedure within

the nozzle region but outside the boundary layers. Here, we further verify the patching approach

by a problem that involves viscous flow and resolves the boundary layer. The geometry setup is

the same as before. A resolution of ∼ 0.02 mm in the wall-normal direction is achieved by putting

36 uniform grid points within boundary layer of thickness 0.85 mm. Our focus in this test is the

solution within the boundary layer. Figure 11 shows a comparison of the density evolution of the

full-configuration (solid) and the nozzle-only (dash) simulations. Note that the two solutions agree

reasonably well. Only two representative probes at x = 0.59 and 0.75 m are shown but we have also

examined probes at a few other streamwise locations and similar agreements are obtained. It is also

worthwhile to note that the inviscid solution described above with the boundary layer unresolved

seems to capture the resolved solution here reasonably well away from the surface. This justifies our

use of the coarse-resolution simulation to extract the inlet data for fine-mesh nozzle-only simulation.
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Figure 9: Comparison of density evolution of both full-configuration (solid) and nozzle-only (sym-
bols) BATES70 simulations at quasi-steady state for two representative locations. These probe
locations are shown in Figure 10. Other probes show similar agreements. Maximum error among
the six probes is at probe 2 and is 0.17%.

Figure 10: Positions of the stations for the histories shown in Figure 9. P1–P6: (0.59,0),
(0.65,0.068), (0.65,0), (0.75,0), (0.75,0.012) and (0.85,0) m.
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Figure 11: Comparison of density evolution of the full-configuration (solid) and nozzle-only (sym-
bols) BATES70 simulations at quasi-steady state for two representative locations. The boundary
layer along the nozzle surface is resolved and both stations are 0.1 mm from the surface and within
the boundary layer. The probes in the top and bottom panels are located at x = 0.59 and 0.75 m,
respectively.
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For the axisymmetric motor configuration we compare the pressure fields between the full-

configuration and the nozzle-only configuration; see Figure 12. No interpolation is used in this

particular case since the flow is steady. Excellent agreement is obtained, as expected.

Figure 12: Pressure field in the nozzle of an axisymmetric BATES70 for the full-configuration (top)
and the nozzle-only (bottom) simulations. The inlet conditions for the nozzle-only calculation is
based on the steady state flow field extracted from the full-configuration calculation.

5 BATES Nozzle Simulations

In this section we describe a number of flow simulations using the BATES70 nozzle, for different

inlet conditions. In one simulation we generate strong three-dimensional effects by tilting the nozzle.

25

Buckmaster Research A4-25 FA9550-07-C-0123



5.1 Grid Issues

We start by examining possible numerical effects in a planar version of BATES, using uniform inlet

conditions. We are particularly concerned with the sensitivity to parameters such as grid size and

cell aspect ratio. Four sets of grids with 12, 24, 36 and 48 points in the wall-normal direction inside

a wall layer 0.85 mm thick are considered. An example of the flow field generated for the 36 point

grid, together with a close-up of the mesh near the surface, are shown in Figure 13. In Figure 14

the temperature and heat flux profiles are plotted at an axial location of x = 0.692 m for the four

different grids. And in Figure 15, erosion rates for the different resolutions are shown. The results

converge at a first order rate near the surface, and the rate resumes the expected second order of

the central scheme in the interior. As a result, the erosion rate at the surface also converges at

first-order.

Since the mesh near the nozzle surface is highly stretched as seen in Figure 13, an additional

numerical effect to examine is that of the aspect ratio of the computational cells. This is done for

the 36 point case by refining the grid resolution in the x-direction in the neighborhood of the throat

(0.68 ≤ x ≤ 0.8 m). Three sets of grids with aspect ratios of 30, 15 and 7.5 are studied, with the

7.5 aspect ratio being the finest. The temperature and heat flux in the gas phase along the wall

normal direction at x = 0.692 m are extracted and shown in Figure 16. The results are seen to be

essentially insensitive to the aspect ratio.

We also examine the various grids for the axially symmetric BATES70 nozzle. Results are shown

in Figures 17 and 18. In these calculations the empirical and physical parameters are calibrated to

a throat erosion rate of ∼ 0.3 mm/s for a metalized propellant with 15% aluminum in a BATES

motor [31].

5.2 Unsteady Effects

We next examine the effect of imposing unsteady inlet conditions on the erosion rate along the

nozzle surface. The test here is again a planar two-dimensional version of the BATES70 motor.

The boundary layer along the nozzle surface is resolved with the same grid as in the two-dimensional
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Figure 13: Temperature field of a planar BATES70 nozzle with uniform inlet condition (Po = 20
MPa, To = 3650 K) and 36 grid points in the wall layer of 0.85 mm thick along the surface. The
bottom panel shows the close-up view in the boundary layer at the wall. The mesh used is also
plotted.
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Figure 14: Profiles of temperature (top) and heat flux (bottom) at x = 0.692 m along the wall-
normal direction for the case shown in Figure 13.
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Figure 15: Grid convergence for the nozzle shown in Figure 13. The number refers to the number
of grid points in the wall-normal direction inside a 0.85 mm layer along the nozzle surface.

36 grid case shown in Figure 13. The injection temperature is perturbed and periodic in time,

T = To(1 + 0.14 sin(ωt)), (34)

where To = 3650 K and ω = 2000 Hz. The amplitude of 14% of the perturbation in the injection

temperature is based on morphology effects as discussed in [32]. A full motor is used for simplicity

and is adequate to demonstrate the effect of unsteadiness in the inlet condition on nozzle erosion.

The temporal evolution of the surface temperature and the erosion rate at x = 0.65 m are plotted

in Figure 19. It is observed that even though the 14% variation in the injection temperature only

leads to ∼ 1% variations in the nozzle surface temperature, the variation in the erosion rate is

as large as ∼ 15%. Note that this amplification effect is ultimately due to the large activation

temperature of the surface reaction (equation 17). One obtains

dṙc

ṙc

=
−Ec

Ru
˜Ts

d ˜Ts

˜Ts

, (35)

by differentiating equation (17). We comment that the time-averaged erosion rate does not seem

to differ much between the perturbed and the unperturbed cases. However, this does not hold
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Figure 16: Profiles of temperature (top) and heat flux (bottom) at x = 0.692 m along the wall-
normal direction for three different aspect ratios of computational cells in the boundary layer. Note
that the grid shown in Figure 13 corresponds to aspect ratio of 30.
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Figure 17: Erosion rate along the BATES70 nozzle surface at different resolutions. The number of
grid points refers to that inside a 0.5 mm nominally boundary layer along the nozzle surface. Note
that the inlet condition is uniform. Here, Po = 6.5 MPa, To = 3650 K.

when hydrodynamic instabilities or when turbulence effects are present, as we shall see in the next

subsection.

5.3 Hydrodynamic Instability Effects

Encouraged by the unsteadiness effect shown in the previous subsection, we investigate the effect

of hydrodynamic instabilities on the erosion of a nozzle surface. Again, a planar two-dimensional

version of the BATES70 motor is used. However, the chamber of the motor is extended to have

a length of 4.5 m in order to excite self-sustained hydrodynamic instabilities. A 10% white noise

is added to the injection rate for this purpose. Figure 20 illustrates the excited hydrodynamic

instability via instantaneous vorticity contours during the statistically steady state. The instability

manifests itself as parietal vortex shedding [33, 34, 35, 36]. The data at the nozzle inlet is col-

lected during the statistically steady state for the solution patching for the subsequent nozzle-only

simulation. An example of the data collected is shown in Figure 21 for the temporal evolution

of temperature. Non-trivial temporal behavior is indeed seen as a result of the hydrodynamic

instability. The nozzle-only configuration is next simulated with data previously collected from

t = 0.16− 0.18 s. The boundary layer along the nozzle surface is again resolved with the same grid
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Figure 18: Profiles of temperature (top) and heat flux (bottom) at x = 0.692 m along the wall-
normal direction for the three resolutions for the BATES70 nozzle.
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0.65 m of BATES70 nozzle using perturbed (solid) and unperturbed (dashed) temperature injection
conditions along the propellant surface.
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as in the two-dimensional 36-grid case shown in Figure 13. The solution is compared with that by

applying uniform inlet condition in Figure 22. The temporal variation in the erosion rate is ∼ 10%.

Also, the erosion rate value using the uniform inlet solution is different from the time-averaged value

using non-uniform inlet conditions by ∼ 5%. This simulation shows the importance of accounting

for the unsteady behavior of the flow upstream of the nozzle for calculating the nozzle erosion rate

when using nozzle-only simulations.

Figure 20: Vorticity contours of modified planar two-dimensional BATES. The length of the chamber
is extended to 4.5 m instead of the original 0.5 m. In addition, 10% random white noise is added
to the injection rate. The boundary layer along the nozzle is unresolved.
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Figure 21: Temperature evolution after initial transient at the nozzle inlet at (0.589, 0.05) m of the
modified BATES shown in Figure 20.

5.4 Three-dimensional (non-axisymmetric) effects

Three-dimensional effects arise in the nozzle region as the result of either nonuniform inlet conditions

or a non-trivial geometry that leads to three-dimensional flows even when the nozzle geometry itself

is axisymmetric. Thus for the Onera-86 rocket [13] the flow at the nozzle inlet is turbulent. It is
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Figure 22: Surface temperature (top) and erosion rate (bottom) evolutions along the nozzle surface
of the modified BATES motor near the throat at x =0.7 m from a nozzle-only simulation with
resolved boundary layers. Also plotted by dash line is the solution using uniform inlet conditions,
where the stagnation temperature is set to the injection temperature of 3650 K and the stagnation
pressure is based on the time averaged (isobaric) value at the inlet from the turbulent simulation.
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worth noting that significant temperature fluctuations can also arise merely because a heterogeneous

propellant is used [32]. Thus Figure 23 shows the temperature field at the nozzle inlet generated by

a full-configuration (chamber and nozzle) BATES15 simulation; the flow is assumed to be laminar

and future work will examine the effect of turbulence. And the multiscale rocket simulation results

shown in Figure 3 reveal turbulence sufficiently far downstream.

y, m

z,
m

-0.04 -0.02 0 0.02 0.04

-0.04

-0.02

0

0.02

0.04

2760 2800 2840 2880 2920 2960 30T, K

Figure 23: Temperature field at the nozzle inlet extracted from a full-configuration BATES15
simulation [37].

Our eventual goal is to demonstrate that three-dimensional behavior in the chamber region

can have an effect on nozzle erosion, and must be taken into account for meaningful erosion pre-

dictions. One way to do this is to extract the flow field at the inlet plane in a full-configuration

three-dimensional turbulent simulation and then use that data in a fine-resolution nozzle-only

simulation, as discussed in Section 5.3 for the two-dimensional planar geometry. An alternative

approach, as we have already noted, is to calculate the inlet conditions using the multiscale strat-

egy. For example, the data obtained in the multiscale rocket simulation discussed in Section 3.2

can be used as the turbulent inlet condition for a three-dimensional BATES70 nozzle simulation.

The three-dimensional cylindrical multiscale simulation discussed in Section 3.2 is used here, and

proper reference scales based on the physical parameters of the BATES motor are used to obtain

dimensional values. In particular, the time histories of the velocity components are collected at the
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middle plane with an uniform time interval between each frame or sample. The patching method

discussed in Section 3.3 and verified in Section 4 is then used in the subsequent Rocflo nozzle-only

simulation. In this test, the velocity and temperature are directly imposed at the inflow boundary.

The velocity is from the three-dimensional cylindrical multiscale simulation as described above.

The evolution of the extracted u-velocity at one particular location on the nozzle inlet plane is

shown in Figure 24 to demonstrate the nontrivial temporal behavior. The temperature is simply

perturbed and periodic in time,

T = To(1 + 0.1 sin(2πft)), (36)

where To = 3650 K and f = 2000 Hz. We specify the temperature independent of the velocity

because, at the moment, we are solving the incompressible multiscale equations. In the future

we plan on developing a high-order numerical code to solve the compressible equations. In this

case the velocities and temperature fields will be dependent, and will be described as joint pdfs

along the nozzle inlet plane. In addition to imposing unsteady inlet conditions, we also examine

three-dimensional effects induced by a non-trivial geometry by considering a “gimbaled” or thrust

vector control nozzle. The configuration is generated by rotating the axisymmetric BATES nozzle

25o about the z-axis whilst retaining a small portion of the unrotated chamber. This generates a

three-dimensional flow-field even when the inlet data is uniform. For the turbulent simulations,

DES discussed earlier is used.

The z-vorticity field is plotted in Figure 25 to demonstrate the combined effect of a three-

dimensional geometry with turbulent inlet conditions on nozzle erosion. The erosion rates along

the top and bottom intersections of the z = 0 plane and the nozzle surface are shown in Figure 26.

Significant differences between the top and bottom intersections and between the turbulent and

uniform inlet conditions are seen. For instance, the erosion rate near the throat for the turbulent

inlet condition is ∼ 10% higher than that of the uniform inlet condition. Also, the erosion rate

is nearly two times higher near the inlet region due to the enhanced heat transfer caused by the

turbulence injected along the inlet plane. Finally, the unsteadiness of the erosion rate due to the
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Figure 24: Evolution of the u-velocity at one location in the nozzle inlet plane, extracted from the
three-dimensional cylindrical multiscale simulation.

turbulent inlet conditions is demonstrated in Figure 27.

6 Concluding Remarks

A computational framework is presented to investigate nozzle erosion in solid-propellant rocket

motors. Currently, a numerical simulation of the full motor geometry, while resolving the boundary

layer in the nozzle region, is computationally prohibitive. To optimize the computational resources,

the nozzle configuration is studied by itself and appropriate inlet conditions must be imposed.

Current industry practice is to apply uniform and steady inlet conditions. Here, we propose two

complementary formulations to apply proper inlet conditions: the first is based on extracting the

flow field from a coarse-resolution (i.e., fine enough to model the turbulence in the bulk geometry,

but not resolve the nozzle boundary layer) from the full motor configuration, and the second

invokes a multiscale asymptotic analysis of turbulent flows inside a rocket. A patching procedure is

described which takes data from either a full-configuration simulation or from a simulation using the

multiscale equations and imposes that data at the inlet plane for a resolved nozzle-only simulation.

The patching procedure, which uses interpolation in space and time, is then verified by a number

of test problems.
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Figure 25: Instantaneous z-vorticity fields in the “gimbaled” BATES nozzle with uniform (top)
and turbulent (bottom) inlet conditions. For the uniform (top) inlet conditions, Po = 6.5 MPa,
To = 3650 K. For the turbulent (bottom) inlet conditions, the inlet temperature is given by equa-
tion (36), the velocities from the multiscale simulation, and pressure is determined from outgoing
characteristics and oscillates around 6.5 MPa.
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Figure 26: Erosion rates along the top and bottom intersections of the z = 0 plane and the nozzle
surface for simulations using either turbulent or uniform inlet conditions. The s-axis is the distance
from the respective leading edge of the intersections along the nozzle.
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Highly resolved simulations are performed in a BATES 70lb motor to understand the effects

caused by non-uniform and unsteady inlet conditions. In planar two-dimensional geometry, the

temporal variation in the erosion rate is shown to be as large as ∼ 15% with a 14% variation in the

injection temperature. When hydrodynamic instabilities are present in a slender rocket (large L/D),

the value of the erosion rate using uniform inlet conditions are different from the time-averaged

value using non-uniform and unsteady inlet conditions by ∼ 5%. Finally, three-dimensional effects

is demonstrated in the context of non-axisymmetric geometry for a “gimbaled” or thrust vector

control nozzle. All of the results presented here suggest that specifying turbulent, rather than

uniform, inlet conditions can have a significant effect on nozzle erosion.

Future work will include such effects as non-equilibrium chemistry, particles, and more advanced

modeling of the nozzle material, to investigate nozzle erosion.

Appendix: Effect of Radial direction being Different

from the Surface Normal Direction

Note that equation (10) is different from the heat transfer governing equation in both Acharya and

Kuo [4] and Thakre and Yang [5]. In their case, the heat transfer is assumed to be dominant in

the radial direction (which is not necessarily the surface normal direction) and the equation that

is solved in the r-direction is given by

ρc

∂hc

∂t
+

ρc

r

∂(rhcṙc)

∂r
=

1

r

∂

∂r

(

λcr
∂Tc

∂r

)

. (37)

This potentially could have an impact on the boundary conditions imposed. In the planar version

of BATES, for example, the heat flux at the boundary should have components in both x- and

y-directions that are decomposed from the heat flux in the predominant wall-normal direction as

can be seen to be the case in Figure 13. The difference between the heat flux in the wall normal

and y-direction along the nozzle surface is plotted in Figure 28.

Similarly, the gas velocity at the gas-solid interface should have velocity components in both x-
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Figure 28: Heat flux in the wall-normal (solid) and y-direction (dash) along the BATES nozzle
surface for the case shown in Figure 13.

and r-directions that are decomposed from the normal velocity. To illustrate the effect of neglecting

the difference between the radial and surface normal direction, let us consider a two-dimensional

planar geometry and a straight nozzle surface curve that has an inward surface normal vector

of (cos(θ), sin(θ)) pointing downward. Instead of being −un, uy should actually be unsin(θ) and

instead of being zero, ux should actually be uncos(θ). In case of the converging section of BATES70,

θ is ∼3/4π and the magnitude of uy could be overestimated by about 40%, and ux is equal to uy

instead of zero.
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Abstract

In this paper, we present a systematic approach for characterization and reconstruction of

statistically optimal representative unit cells of polydisperse particulate composites. Microto-

mography is used to gather rich three-dimensional data of a packed glass beads system. First-,

second- and third-order probability functions are used to characterize the morphology of the

material, and the parallel augmented simulated annealing algorithm is employed for reconstruc-

tion of the statistically equivalent medium. Both the fully resolved probability spectrum and

the geometrically exact particle shapes are considered in this study, rendering the optimization

problem multidimensional with a highly complex objective function. A ten-phase particulate

composite composed of packed glass beads in a cylindrical specimen is investigated, and a unit

cell is reconstructed on massively parallel computers. Further, rigorous error analysis of the

statistical descriptors (probability functions) is presented and a detailed comparison between

∗Manuscript accepted for publication in Physical Review E
†Corresponding author, kmatous@nd.edu.
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statistics of the voxel-derived pack and the representative cell is made.

Key words: random heterogeneous particulate composite, representative unit cell, microtomog-

raphy, probability functions, parallel augmented simulated annealing algorithm.

1 Introduction

Computational methods based on particulate packs are commonly used in variety of scien-

tific disciplines. For example, particulate packs have been used in modeling of heterogeneous

materials, such as solid propellants [23, 31], granular media [1], protein folding [25] and low-

temperature phases of matter such as liquids, crystals and glasses [9]. Moreover, packing prob-

lems are common in information theory [39] and many different branches of pure mathemat-

ics [13]. A study of these systems in a computational framework usually starts with a model

of the morphology, such as a packing algorithm. Therefore, a packing algorithm to guide these

models has been in the forefront of mathematical and scientific investigations for many decades,

and this fascination led to development of several packing codes that are capable of producing

high-quality polydisperse heterogeneous packs [22, 28, 19].

(a) (b) (c)

Figure 1: (Color online) Typical members of the micro-CT based ensemble. a) Heterogeneous pro-

pellant. b) Glass beads system. c) Table sugar.

Recently, new developments in three-dimensional imaging using microtomography (micro-

CT) have also ushered in the rapid expansion of statistical modeling techniques that investigate

the morphology and the microstructure characterization of widely used material systems, such

as propellants [17, 11], glass beads [4], paper [15], and engineered cementitious composites [8],

just to name a few. An example of the complicated microstructures obtained from the micro-CT

can be seen in Figure 1.

The subsequent statistical characterization is usually performed, for both computationally

2
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and/or tomographically obtained packs, in order to understand the internal structure of these

systems. The need for such understanding and importance of the higher-order statistics start

with early work of Bernal [6] who investigated the geometrical structure of liquids using the

radial distribution function. Significance of statistical description galvanized several research

communities in condensed matter physics and far beyond, with applications in non-Gaussian

noise as a tool to study disordered materials [46], and application of Minkowski functionals

in analysis of background cosmic radiation [37], just to name a few. Moreover, the analysis

of higher-order statistics, in the guise of the analysis of x-ray speckle, is increasingly gaining

attention among condensed matter physicists [47].

Unfortunately, both computationally and/or tomographically derived packs are often too

large to be uniformly resolved in practical numerical simulations of combustion phenomena [23],

nonlinear viscoelastic response of a binder [2] or damage evolution along the particle-matrix in-

terface [30]. Therefore, many researchers have devoted their attention to finding a statistically

optimal unit cell. Povirk [35] proposed a method for determining periodic microstructures in

two-dimensions that are statistically similar to more complex, random, two-phase microstruc-

tures by using a certain statistical descriptor function. Yeong and Torquato [48, 49] proposed a

method for the reconstruction of random media based on two-point probability functions using

Simulated Annealing (SA) and two-dimensional material slices. Bochenek and Pyrz [7] also

used the Simulated Annealing procedure in conjunction with a pair correlation function and a

stress interaction parameter to reconstruct a unit cell in three-dimensions. However, the simple

pair correlation function used in their work did not represent the disparate particle modes, and

thus, the probability spectrum optimized in [7] was restricted. Zeman and Šejnoha [50] have

examined three considerably different material systems: a fiber composite, a woven composite

and a masonry, to demonstrate the reconstruction using two-point probability functions and

the lineal path function, yet again, only two-dimensional images of microstructures have been

employed.

Recently, Jiao et al. [20, 21] have reconstructed a three-dimensional realization of Fontaineb-

leau sandstone and a boron-carbide/aluminum composite from two-dimensional tomographic

images using second-order statistics and a “lattice-point” algorithm. In their work, a lattice

or a voxel based reconstruction is used for a two-phase medium in conjunction with a basis

function approximation of the correlation functions for a faster probability function evaluation.

Fullwood et al. [16] have also used a voxel-based phase-recovery algorithm for reconstruction

of three-dimensional polycrystals. Their method is based on a fast discrete Fourier transform,

and thus, its parallelization is cumbersome and the domain analyzed in the paper is relatively

small, as pointed out later. Although relatively simple, the pixel/voxel based representation of

microstructure simplifies the geometrical considerations, since any geometrical object, such as a

sphere, a rhombus, etc., is approximated by a cluster of voxels, and thus, the resolution is highly
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pixel/voxel dependent. Moreover, for many physical phenomena, such as a particle decohesion,

the voxel based representation is inappropriate due to the step-like interface representation.

Similar to our approach described hereafter is the work of Seidler et al. [38]. In their paper,

granules are first mapped to spheres, as in our work, and several statistical measures, such as

cylindrical density, radial distribution function and bond orientational correlation function are

computed. However, only limited micro-CT data of an almost ideally monodisperse system

(glass spheres with d = 63μm and >95% having polydispersivity of ±4μm) was used in their

work with only 2, 000 granules in the system, and only 359 granules used for statistics evaluation.

In our work, we scan 19, 892 polydisperse particles and statistically characterize 19, 123 of them.

We also show that a statistically optimal, and thus, the smallest possible unit cell consists of

1, 082 spheres. Therefore, it is unlikely that 359 inclusions can be used for detailed morphology

characterization, even though the monodisperse system likely requires fewer particles in the

cell compared to our polydisperse one. Moreover, the selected statistical descriptors in [38] are

limited to spherical geometries, whereas our concept based on n-order probability functions is

general and easily applicable to general non-spherical shapes, such as crystals.

Different from the sampling based methods described above is the analysis based on Minkowski

functionals [3, 32]. In three dimensions the functionals are related to the familiar measures of

volume fraction, surface area, integral mean curvature and Euler characteristic, such as connec-

tivity of pores. The heterogeneous material is represented by a Boolean model, where overlap-

ping grains of various shape and sizes are used to reconstruct a material morphology. Although

mathematically elegant, Minkowski functionals are better suited for two-phase porous media,

such as soils or sedimentary rocks, due to the overlapping nature of the algorithm, and this

elegance would be lost if a constraint on the particle inter-penetration were to be introduced.

Another approach introduced by Sundararaghavan and Zabaras [41] employs support vec-

tor machines for three-dimensional reconstruction of microstructures using limited statistical

information available from planar images. Quintanilla and Max Jones used convex quadratic

programming to model random media with Gaussian random fields [36].

In this work, we reconstruct a fully three-dimensional polydisperse medium, such as a het-

erogeneous solid propellant (Figure 1(a)), from three-dimensional tomographic data. We make

no assumptions about the probability functions and discretize them numerically with high de-

tail. The full probability spectrum, not just a single function, and the geometrically exact shape

of particles, not just a voxel simplification, are used in our approach, yielding a multidimen-

sional optimization problem with a highly complex objective function. Therefore, we perform

the reconstruction on massively parallel computers. The present paper is an extension on our

earlier work [24, 12], where two-dimensional periodic cells of trimodal fibrous composites and

three-dimensional trimodal particulate composites were reconstructed, emphasizing the discrete

nature of the entire probability spectrum and the proper geometrical particle shape represen-
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tation. Here, we advance this methodology to the reconstruction of polydisperse particulate

systems from rich three-dimensional tomographic data. Moreover, we compute the third-order

probability functions, comment on their basic features and compare their characteristics for the

tomographic data and our statistically equivalent cells. (Analysis of higher-order statistics was

often omitted in the papers mentioned above.) Our codes, Stat3D and Recon3D, compute the

statistics and reconstruct a representative unit cell (RUC) in parallel using Message Passing

Interface (MPI), allowing for large domains to be efficiently evaluated (∼ 66 million voxels),

higher statistical moments to be computed accurately and the optimal computational domains

to be generated quickly. Their parallel linear scalability has been shown in [12].

The remainder of the paper is organized as follows. In section 2, we discuss the sample

preparation, the tomographic imaging and the image processing. For clarity of presentation,

Section 3 describes the basic concepts of the probability functions, and details the morphology

of the glass beads system to mimic a complex heterogeneous solid propellant (Figure 1(a)). In

Section 4, we comment on the reconstruction procedure and compare the statistically repre-

sentative unit cell and its statistics to the original tomographically observed medium with the

statistical functions described in Section 3. Finally, some conclusions are drawn in Section 5.

2 Sample preparation, micro-CT scanning and image

processing

We prepare a sample pack of spherical glass beads with average diameter of 44μm in a 2.052

mm diameter scanning tube with one end blocked with epoxy (Figure 2). The glass beads were

manufactured by Crystal Mark Inc. and 98% of the beads by weight are of diameters between

35μm and 58μm. In order to prepare as uniform sample as possible, the beads were filtered

in two steps. First, to remove hollow particles, the beads were submerged in a water bath and

stirred. The hollow beads floating on the water surface were removed and the remaining ones

were completely dried. Second, the non-spherical particles were removed by rolling them down

on an inclined plane and removing beads that would not roll. After this preparation, we poured

the filtered beads slowly into the tilted tube where a piece of thread was placed in the middle of

the container before pouring. The thread was pulled out slowly. A similar method to randomize

a pack by pulling a stick out was previously used by Aste et al. [4]. The tube was tapped on

the side, the bottom and the top. The beads were slightly compressed from above during the

tapping procedure.

The final sample is scanned by an Xradia micro-CT machine. The resulting resolution for this

scan is 2.818μm per voxel. The three-dimensional image reconstruction is shown in Figure 2(b).

The 64-bit Quantification Pack for Amira 5.2 is used to gather the information specific to

5
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(a) (b)

Figure 2: (Color online) a) Plastic tube used in scanning experiments. b) Polydisperse glass beads

system.

each particle, i.e., the position of the particle center and the individual particle volume. To

characterize this random medium, we first acquire a block (1445.372× 1287.892× 789.106μm3)

from the core of the 3D scanned image in Figure 2. This represents 513×457×280 = 65, 643, 680

voxels, which is 29.89 times higher resolution to that used in Fullwood et al. [16], where only

130× 130 × 130 = 2, 197, 000 voxels were analyzed.

The particles in contact are identified and separated through the separation procedure in

Amira. This leads to a small volume removal. In the present case, the packing fraction from

the original voxel pack is 0.574 before the separation and 0.553 after the separation, and thus

we have 2.1% loss of the packing volume due to the separation. It is known that the packing

fraction for a stable conglomeration of polydisperse spheres ranges from 0.55 to 0.64, and even

up to 0.74 in the crystalline state [34]. Considering the role of the inter-particle forces like

friction [14, 18], the packing fraction of our pack is well ranged. In Figure 3(b), most of the

particles are now clearly separated from each other. At the final stage of the process 19, 892

particles are identified in the region of observation.

Despite the physical filtering to remove extra small or hollow particles, we observe debris

of very small sizes forming a peak around 4μm diameter in Figure 3(a). However, the volume

fraction of these particles is very small and can be neglected. Here we remove the beads

with diameters less than 7μm. The remaining particles are separated into nine discrete bins as

depicted in Figure 3(a). Next, a pack based on the sizes and the locations of the individual beads

is generated and used to obtain the statistical properties of the actual material. In generating
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Figure 3: a) Probability density function and a new binning of the particle sizes. Nine discrete bins

are used to capture the original distribution. Note the debris for d < 7 μm. b) Two-dimensional slice

through the voxel pack. Particle separation is done in Amira.

the pack, we replace all the beads with spheres, which causes 0.05% overall particle overlap.

The overlap is calculated as Vo/Vp × 100, where Vo is the volume of overlap between particles

and Vp is the total volume of the particles. The final pack has 19, 123 spherical particles. We

note that the tomographic pack after the image processing is called the ‘voxel pack’ and the

pack generated based on the voxel data by replacing the inclusions with spheres is called the

‘pack’ hereafter.

3 Statistical morphology of composites

It is generally accepted that the effective properties of a heterogeneous material do not depend

only on the properties of each phase, but also on the interactions between the material phases.

In a statistical sense, both the volume fraction of each phase and various correlation functions

between the phases are fundamental in determining the material properties [44, 45]. In this sec-

tion, we discuss one-, two- and three-point probability functions to characterize the morphology

of a heterogeneous medium [5, 45].
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3.1 Probability functions

To describe the probability functions, we consider a phase indicator function at a position x in

a sample α of an ensemble space E :

χr(x;α) =

⎧

⎨

⎩

1 if x in phase r,

0 otherwise.
(1)

The ensemble average is given by

χr(x) =

∫

E

χr(x;α)p(α)dα, (2)

where p(α) is a probability density function. The n-point probability function, Sr1r2···rn(x1,x2, · · ·

· · · ,xn), is defined as

Srs···q(x1,x2, · · · ,xn) = χr(x1)χs(x2) · · ·χrq(xn), (3)

and it represents the probability of finding phases r, s, · · · , q at points x1,x2, · · · ,xn, simulta-

neously.

The probability functions for a heterogeneous material are spatially complex in general. If

the material satisfies ergodicity, statistical homogeneity and isotropy, the ensemble average can

be replaced by the volume average and the probability functions are translation and direction

invariant [5]. With these three simplifications, the one-point probability function is reduced to

the volume fraction, and the higher-order probability functions depend on the distance only:

Sr(x) = cr,

Srs(x,x′) = Srs(|x− x′|),

Srsq(x,x′,x′′) = Srsq(|x− x′|, |x− x′′|), (4)

where cr is the volume fraction of the phase r. We also observe the limit cases of the two- and

three-point probability functions which can be expressed as

Srs(x,x′) →

⎧

⎨

⎩

crδrs if |x− x′| → 0,

crcs if |x− x′| → ∞,
(5)

Srsq(x,x′,x′′) →

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

crδrsδrq if |x− x′|, |x− x′′| → 0,

Srq(x,x′′) if |x− x′| → 0,

crcscq if|x− x′|, |x− x′′| → ∞,

(6)

where δrs is the Kronecker delta.
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3.2 Morphology of a pack

To obtain the statistical properties of the pack that is based on the voxel pack as discussed

in Section 2, we discretize the probability space. The probability functions are numerically

sampled through a Monte Carlo-like method. A spherical sampling template depicted in Figure 4

is used. This template is especially advantageous for isotropic cases as pointed out in [40].

Figure 4: Three-dimensional sampling template with 5 radial points and 20 circumferential points,

for illustration.

The probability functions described in Section 3.1 are computed by our parallel code, Stat3D ,

allowing for a large domain to be efficiently evaluated [12]. For the present pack, we sample the

one- and two-point probability functions by throwing a sampling template with 1, 000 radial

points and 20 circumferential points 500, 000 times. These sampling parameters have been

selected after a convergence study to assure the spatial convergence.

The one-point probabilities (volume fractions) of the pack are shown in Figure 5(b). The

nine bins are based on those of the probability density function plotted in Figure 3(a) and each

bin is assigned a different mode number (1− 9). For the total volume to be conserved, one has
∑N

1 ci = 1, where N represents the total number of phases. In our case, N = 10 including the

matrix (m) (voids in the prepared pack). We evaluate cm = 0.46 numerically for our particulate

medium, which is different from 1 −
∑Np

1 ci by 0.2% where Np is the number of the particle

modes (Np = N − 1). However, considering the image resolution (2.818μm voxel) and the error

due to the separation procedure (2.1% in the total packing fraction), the volume conservation

error is well controlled.

Figure 6(a) shows the two-point probability function, Smm, zoomed at the core in the four-

dimensional space. The colored sphere shows the probability of finding the phase m (matrix),

when its center lies in the matrix as well. We find that the two-point probability functions

of the pack satisfy isotropy with the standard deviation, σSrs, remaining less than 1% of the

9
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Figure 5: (Color online) a) Polydisperse pack obtained from the voxel pack by replacing voxel-based

inclusions with spheres. Each color of particle in the pack belongs to a different mode according to

pdf shown in Figure 3(a). b) The corresponding one-point probabilities (volume fractions).
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Figure 6: (Color online) a) Full two-point probability function Smm. Observe the sphericity of Smm

with the value at the origin converging to the volume fraction and value at infinity converging to

c2
m. b) The corresponding standard deviation of isotropy, σSrs

, for selected second-order probability

functions. Although the standard deviation is small over the whole x-range, observe the increase of

σSrs
due to the wall effect.

magnitude of the actual probability function, shown in Figure 6(b). The exponential behavior of

the deviation at the large radii can be attributed to the wall effect, which produces a significantly

different packing structure near the boundary of the container as pointed out in [43, 28]. Based
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on the observation of isotropy, we can average the two-point probability functions over all the

possible orientations since it is direction-invariant. Statistical homogeneity and ergodicity of the

particulate composites under consideration have been verified in [10]. In Figure 7, the isotropic
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Figure 7: (Color online) a) Isotropic two-point probability functions Srs computed by radial averaging

of complete probability functions in Figure 6(a). Only selected Srs functions are shown for clarity.

Note that probability functions are plotted for radius ≤ 400 μm to make their behavior close to the

origin more visible. However, full probability functions are computed for radius 723 μm (one half of

the longest edge of the pack in Figure 5(a)). Detailed structure of Srs governed by spatial interactions

of particles and their corresponding diameters can be seen. b) Gradients of Srs. The gradients of the

two-point probability functions show where the functions reach the asymptotic values. This distance

provides a characteristic material length scale of the second-order, and we use it to construct the size

of the RUC.

two-point probability functions and their gradients are shown. We note that the isotropic two-

point probability functions saturate when the radius is greater than 200μm, which provides a

characteristic material length scale, i.e., the optimal size of an unit cell: twice the radius, or

400μm. Note that there are one-hundred two-point probability functions in our computations,

since we have ten different phases (the nine particle modes and the matrix). Figure 7 shows

only five selected second-order probability functions. However, the trends are the same for the

other second-order probability functions.

To validate the probability functions evaluated on the pack, we use the limit cases of the

second-order probability functions in Equation (5), i.e., the two-point probability functions are

examined for convergence to one-point probability functions in the limit cases, and for numerical

error due to sampling. In order to quantify the physical errors for the pack, we define two error
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functions for two-point probabilities:

εSrs(0,0) = |Srs(0, 0) − crδrs|, (7)

εSrs(0,∞) = |Srs(0,∞) − crcs|. (8)

In our analysis, we have maximum errors 0.001 and 0.004 over the one-hundred two-point

probability functions, measured by expressions (7) and (8), respectively. Given that εSrs(0,0)

and εSrs(0,∞) range in [0, 1], these errors are negligible. The numerical error is calculated by

εSsr |Srs
=

||Srs − Ssr||LD
2

ΣN
r=1Σ

N
s=1||Srs||LD

2
/N2

, (9)

where || · ||LD
2

is the discrete L2 norm and N represents the number of phases. Since Srs and

Ssr are symmetric, εSsr |Srs
represents a relative numerical error. For the current pack, the

maximum value of the error based on Equation (9) is 0.035 and the mean is 0.006. This error

criterion provides confidence in the spatial convergence of our analysis.

For many physical processes, the higher-order statistics play an important role in capturing

the interactions between particles, such as a case where a small particle lies between two big

particles. For example, such a scenario helps to promote interfacial debonding. Therefore,

we also investigate three-point probability functions. As expected, the three-point probability

functions tend to be more sensitive to the geometrical properties of a pack than the two-

point probability functions. We recall that the three-point probability functions depend on two

vectors in general. Thus, the function Srsq(x−x′,x−x′′) is defined in a seven-dimensional space,

considering two vectors in three-dimension and the function value itself. Since the numerical

evaluation of the full three-point probability function is computationally expensive, we use a

semi-isotropic assumption in terms of the orientation of a plane determined by the two randomly

generated vectors. This assumption reduces the space dimensionality from seven to four, since

Srsq(x − x′,x − x′′) becomes Srsq(|x− x′| , |x− x′′| , θ), where θ is the angle between the two

vectors x−x′ and x−x′′. We again use the sampling template, shown in Figure 4, and average

on planes generated by discrete rays (semi-isotropy). Note that for the perfectly statistically

isotropic material, the three-point probability functions are angle independent, except when

they degenerate to the lower-order probability functions:

Srsq →

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Srsδrq on r1 − axis

Srqδrs on r2 − axis

Srsδsq on r1 = r2,

(10)

where r1 = |x− x′| and r2 = |x− x′′|.

There are one thousand different three-point probability functions for a ten-phase medium.

However, due to the symmetries, Srs = Ssr and Srsq = Srqs, etc., several functions can be

12
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(a) (b) (c)

Figure 8: Alignments of three points in phases r, s and q. a) θ = 0◦. b) θ = 72◦. c) θ = 180◦.

omitted. In this work, we do not investigate all third-order probabilities, and rather focus on

the generic findings that are typical for the third-order statistics. Thus, we present symmetric

and unsymmetric types of the three-point probability functions. To compute the third-order

statistics of the pack, we use 50, 000 throws of a template with 1, 000 radial and 20 circumferen-

tial points. Sampling accuracy is again determined by the limit cases in Equation (10). Figure 8

shows the different arrangements of the three randomly generated points in phases r, s and q

for Srsq at the three different angles, 0 ◦, 72 ◦ and 180 ◦, for instance. For a symmetric case, S355

is selected to represent the Srss-type of three-point probability functions. Figure 9 shows S355

at the three angles mentioned above. Since s and q are the same in this case, S355 comes to

zero on both r1- and r2-axes, while it degenerates to S35 for r1 ≡ r2 (Equation (10)). Figure 10

shows an unsymmetric three-point probability function S775 which goes to zero on r1-axis and

r1 ≡ r2 while it converges to S75 on r2-axis. In Figure 9 and Figure 10, the widths of the three

characteristic bands at θ = 0◦ depend on the sizes of the particles in the bins r, s and q of Srsq.

Even though the present pack is almost isotropic based on the two-point probability functions,

the three-point probability still captures some anisotropic aspects of the pack, showing some

dependency on angles. We will return to elaborate on the anisotropy and on the degeneracy of

the third-order statistics in section 4.2.

4 Reconstruction of a representative unit cell

In this section, we proceed to construct the representative unit cell (RUC) that retains the

statistical characteristics of the pack shown in Figure 5(a). The two main steps in the recon-

struction are to find the length scale of the RUC and to optimally locate the particles with a

minimum (or no) particle overlap. Finally, the statistical results of the cell are compared with
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With this initial guess on the length scale of the cell, we minimize two objective functions

which reflect the differences of the one- and two-point probability functions between the pack

and the cell. For 0 ≤ h ≤ h0, the first objective function is defined as

F1(h) =

√

√

√

√

Np
∑

i=1

(cp
i − cc

i )
2

=

√

√

√

√

Np
∑

i=1

(

cp
i −

4πr3
i ni

3h3

)2

, (11)

where cp
i , c

c
i , ri and ni are the volume fraction of the pack, the volume fraction of the cell, the

particle radius and the total number of particles in phase i, respectively. By finding the local

minimum of the first objective function, we can determine the optimal length scale (hc) of the

cell as

dF1(h)

dh
= 0 ⇒ hc =

(

4π
∑Np

i=1 n2
i r

6
i

3
∑Np

i=1 ciNir
3
i

)1/3

. (12)

To construct the second objective function, we first consider a functional which represents

the difference of the two-point probability functions between the pack and the cell,

F2(xn) =

N
∑

r=1

N
∑

s=1

‖Sp
rs − Sc

rs‖LD
2

, (13)

where xn is the position vector of all particle centers xi. To avoid the overlap between particles,

we impose a constraint on Equation (13):
√

(xi − xj)2 ≥ ri + rj , ∀i = 1, . . . , n− 1, ∀j = i + 1, . . . , n, (14)

where n is the total number of particles in the cell (n =
∑Np

i=1 ni), and ri and rj are the radii of

i-th and j-th particles, respectively. The number of particles in the cell is calculated based on

the ratio of the volume of the pack and that of the cell from the initial guess. Note that only a

whole particle, not its fraction, can be added into a particular particle mode in the cell.

The raw objective function and the constraint can be combined to construct an overall

objective function or a fitness function, F , that yields

F =

∑N
r=1

∑N
s=1 ‖S

p
rs − Sc

rs‖LD
2

max
P0

∑N
r=1

∑N
s=1 ‖S

p
rs − Sc

rs‖LD
2

+ p. (15)

The denominator in the first term of Equation (15) represents the value of the objective function

F2 of the worst sample pack in the initial population P0 and p is a penalty function in the range

[0, 1] that is used to enforce the constraint (14). We also use the mass-spring dynamic mutation

operator to eliminate the overlap as discussed in [12]. This fitness function is multi-modal with

multiple local minima. To minimize this function, we use the augmented simulated annealing

technique, a stochastic optimization method based on the principle of evolution, such as genetic

algorithms (GA) combined with simulated annealing (SA), introduced in [33]. The genetic

algorithm is briefly described in Algorithm 1.
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1 g = 0

2 generate and evaluate population Pg of size Ni

3 while (not termination-condition) {

4 select m individuals to Mg from Pg (apply sampling mechanism)

5 alter Mg (apply genetic operators)

6 create and evaluate Pg+1 fromMg (insert m new individuals into Pg+1)

7 g = g + 1

8 }

Algorithm 1: Principle of genetic algorithm.

For our optimization problem, the population Pg in the Algorithm 1 becomes a family of possible

cell configurations with particles of fixed diameters, that are distributed according to the re-

binned pdf (Figure 3), placed inside the cell. The unknowns are positions of the particle centers

xi (see Eq. (13)) in the Algorithm 1. These methods were previously implemented into our

code, Recon3D, that reconstructs the unit cell in parallel, preserving the end-to-end parallelism

and allowing for the optimal computational domain to be generated quickly [12]. See [12, 24]

for more details on the optimization process.

4.2 Comparison of statistical properties between pack and cell

To establish the robustness of the proposed reconstruction method, we run Recon3D on 2048

CPUs and reconstruct five different statistically optimal cells. We note now that periodic con-

ditions are enforced on the cell boundary, i.e., all particles intersected by the bounding box have

periodic replicas (two if a particle is on a face, four if a particles in on an edge and eight if a

particle sits in a corner). Periodic boundary conditions are extensively used in computational

studies due to their simplicity, reasonable physical relevance and deep mathematical founda-

tion [26]. Thus, a non-periodic voxel medium is mapped to a statistically equivalent periodic

RUC. All the runs consist of a population of Ni = 512 individuals and there are m = 16 in-

dividuals in the mating pool, M (pool where genetic operators are applied, see Algorithm 1).

During the initialization of the genetic algorithm, one-half of the individuals in the population

is generated randomly, i.e., all particles with fixed diameters are placed in the cell of dimen-

sions hc without overlap considerations. The other half is generated using ballistic deposition,

i.e., a randomly deposited particle is checked for overlap and this process is repeated until all

particles are placed successfully, allowing only a certain degree of overlap. Each reconstruction
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F2 before GA F2 after GA

Pack # Min Mean Max Min Mean Max # Iteration Overlap

Run 1 4.035 7.253 10.963 0.520 0.606 0.839 578 0.000 %

Run 2 4.202 7.600 11.348 0.581 0.774 1.163 942 0.001 %

Run 3 3.993 7.537 11.179 0.590 0.773 1.253 807 0.002 %

Run 4 3.989 7.335 10.801 0.587 0.652 0.793 1452 0.000 %

Run 5 4.075 7.420 11.128 0.535 0.574 0.699 1726 0.000 %

Table 1: Comparison of the raw fitness F2 in Equation (13) before and after performing the genetic

algorithm for the five reconstructed cells. The number of GA iterations for convergence and the

overall particle overlap are also shown.

simulation is stopped when the maximum number of iterations (10, 000) is reached or when the

best individual set is not improved for 300 generations. In Table 1, we compare the raw fitness

F2 before and after running the genetic algorithm. As one can see, a large improvement in

the fitness after optimization has been obtained. The fitness after the genetic algorithm was

improved by 91% on average. The final number of iterations needed for convergence and the

overall particle overlap are also shown.

(a) (b)

Figure 11: (Color online) a) The pack contains 19, 123 particles in 1445.372×1287.892×789.106 μm3.

b) The reconstructed cell is composed of 1, 082 particles in 399.632× 399.632× 399.632 μm3.

Figure 11 shows the comparison of the dimensions of the pack and one particular RUC. The

pack includes 19, 123 particles in 1445.372 × 1287.892 × 789.106μm3 as mentioned previously,

while the unit cell has 1, 082 particles in 399.632 × 399.632 × 399.632μm3 . These numbers

highlight the substantial reduction of the computational space.

We now assess the quality of the reconstruction for both the first- and the second-order
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Figure 12: a) Volume fractions of each bin for the voxel pack, the pack and the cell. The voxel

pack values are computed directly from voxels, whereas the pack and cell values are computed by

statistical sampling. b) Relative error in volume fraction for each bin as given by Eq. (16). Errors in

volume fractions between the voxel pack and the pack, which are the consequence of mapping voxel

based inclusions to spheres, are smaller than those between the voxel pack and the cell, since the cell

is geometrically smallest possible object for a given finite number of whole particles.

probability functions. First, we average the one-point probability functions over the five cells.

The averaged one-point probabilities of the five cells are compared with those of the voxel

pack and the pack in Figure 12(a). The maximum standard deviation for the sampled volume

fractions is less than 0.003 (bin 9) and is not displayed. The corresponding relative error (εq
i )

of the volume fraction in the ith-bin between the voxel pack and the pack and/or the cell is

calculated by

εq
i (%) =

|cv
i − cq

i |
∑npm

i=1 cv
i

× 100, (16)

where cv
i is the i-th bin’s volume fraction of the voxel pack and q is either p (pack) or c (cell).

As seen in Figure 12(b), the error is less than 0.8% for both the pack and the cell.

Next, we focus on the second-order statistics. One of the error measures is provided directly

by the objective function F2 itself (Equation (13)). Note that we optimized the full probability

spectrum composed of one-hundred second-order probability functions for this example. The

comparison of the isotropic two-point probability functions between the pack and the cell is

presented in Figure 13. The error bars in Figure 13 represent the standard deviations of the

two-point probability functions computed on the five cells. Note that the error bars contain

both the numerical (sampling) and the physical (statistics of five cells) error components. To

assess the relative error, the difference of the two-point probability functions between the pack
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Figure 13: (Color online) Comparison of the averaged two-point probability functions between the

pack (dotted lines) and the cell (solid lines). Average values are computed from five optimization

runs as given in Table 1. Note the very small error bars. Only selected probability functions are

plotted.

and the cell is calculated by

E(%) =

∑N
r=1

∑N
s=1 ‖S

p
rs − Sc

rs‖LD
2

∑N
r=1

∑N
s=1

(

‖Sp
rs‖LD

2
+ ‖Sc

rs‖LD
2

)

/2
× 100, (17)

where Sc
rs is the averaged isotropic two-point probability function over the five cells. In the

present case we have excellent agreement with only 0.0387% error. Assuming the uniform

distribution of the error for all one hundred second-order probability functions, the error measure

(13) yields a very small inaccuracy of ∼ 0.006 between Sp
rs of the pack and Sc

rs of the cell over

the length of ∼ 200 microns. This is a remarkable resolution for the full second-oder probability

spectrum, manifested by almost coincident lines in Figure 13, and this would hold for all the

other second-order probability functions as well.

Even though the unit cell is reconstructed based on the one- and two-point probability

functions, we also investigate the three-point probability functions. The three-point probability

function of the cell, Sc
rsq, is compared with that of the pack, Sp

rsq, by calculating the difference,

|Sp
355 − Sc

355| for (r, s, q) = (3, 5, 5), (7, 7, 5) corresponding to Figure 9 and Figure 10. Figure 14

and Figure 15 show the differences at the three different angles 0 ◦, 72 ◦, 180 ◦ depicted in Figure 8

for these two cases, respectively. The difference of the three-point probability between the pack

and the cell is noticeable in comparison to the good agreement of the lower-order probability

functions, which indicates that optimization of the three-point probability functions would be

desirable.
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Figure 16: Comparison between the two-point probability function S35 (solid line) and the degen-

erated S355 (dashed line) on r1 = r2 ray at θ = 0◦. a) Comparison computed for the pack. b)

Comparison computed for the cell. Note that S35 is computed to be statistically isotropic, whereas

S335 is not. Thus, for the pack (a) we observe an anisotropy in the third-order, whereas the RUC (b)

is fairly isotropic.
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Figure 17: Comparison between the two-point probability function S75 (solid line) and the degener-

ated S775 (dashed line) on r2-axis at θ = 0◦. a) Comparison computed for the pack. b) Comparison

computed for the cell. Note that S75 is computed to be statistically isotropic, whereas S775 is not.

Thus, for the pack (a) we observe an anisotropy in the third-order, whereas the RUC (b) is fairly

isotropic.

S355 and r1 = 0 for S775.
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The two- and the three-point probability results produced for the pack do not come to

agreement, whereas those for the cell do. This discrepancy can be attributed to the periodicity

imposed on the cell boundary and lack thereof in the case of the pack, but also to the strict

enforcement of the statistical isotropy, given by Equation (13), in the cell reconstruction, which

is not enforced for the pack statistics. To investigate this discrepancy further, let us recall that

we compute Srsq by assuming the semi-isotropic assumption leaving θ as an extra variable to

account for anisotropy, while Srs is averaged over all possible orientations in the cell reconstruc-

tion. Figures 16(a) and 17(a) indicate that the pack is anisotropic (see also Figures 9 and 10) in

third-order statistics, since the degenerate cases are not recovered for the numerically converged

solution. On the other hand, the degenerate cases for the cell, Figures 16(b) and 17(b), are

well established. This finding suggests that the cell structure is less ordered than that of the

pack, which has some third-order directional variance (anisotropy) (see also Figures 9 and 10).

The reasons for more randomness in the cell morphology as contrasted to the pack one, are

our objective function, Equation (13), that strictly enforces the statistical isotropy (directional

invariance), and the periodic boundary conditions that mimic an infinite medium as opposed to

a closed pack with wall effects. Note that the characteristic material length scale, hc, established

in this work is of the second-order only, and that the third-order bound would possibly require

a larger window of observation.

5 Conclusions

The paper describes a reconstruction procedure for statistically optimal representative unit cells

from rich three-dimensional tomographic data. The particulate composite under investigation

consists of glass beads packed in a cylindrical container. High resolution microtomography is

employed to gather the material data, and the image recognition software Amira is used for

data processing. The first-, second- and third-order probability functions are used to character-

ize a polydisperse particulate medium. Error measures are established to assess the quality of

the statistical characterization. A fully represented probability spectrum is optimized without

distortion of the particle shape and with a constraint on the particle overlap, furnishing the re-

sulting minimization problem highly complex with several local minima. Therefore, the parallel

augmented simulated annealing technique is employed to solve the optimization problem on

massively parallel computers. Presented results show good repeatability of the reconstruction

procedure. Excellent agreement is obtained for statistics of the voxel based pack and statistics

of the reconstructed unit cell.

Investigation of the higher order probability functions reveals disagreement in the third-order

probabilities between the pack and the cell, even though the first- and second-order functions are

well optimized. Thus, potential extension of this work is in expansion of the fitness function for
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the third-order statistics. Also, optimization of polydisperse composites with different inclusion

shapes, such as ellipsoids, rhombi, etc., is of interest.

It is important to note that the reconstructed unit cells are only representative from a geo-

metrical statistics point of view and that the representativity of the unit cell must also account

for the physical processes of interest, such as mechanical or transport properties. However, the

construction of a geometrically equivalent representative unit cell is an important first step in

describing behavior of complex heterogeneous materials, and both computational and experi-

mental evidence suggests that a statistical approach adopted in this work accounts for the most

important interactions [27, 42]. Moreover, advances in parallel computing are making fully re-

solved simulations of complex physical phenomena, such as combustion [29], on cells presented

in this work a reality.
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program. K. Matouš and H. Lee would like to also acknowledge the support from Buckmaster

Research - DoD STTR program, AFOSR: Dr. J. Buckmaster (Buckmaster Research) and Dr.

A. Nachman (AFOSR) program managers. Moreover, the authors thank Michael Campbell for

running the reconstruction code on Red Storm computer located at Sandia National Laborato-

ries, NM, and to Sergei Poliakov for running the statistics code on the Turing cluster. Finally,

the authors gratefully acknowledge the use of the Turing cluster maintained and operated by

the Computational Science and Engineering Program at the University of Illinois.

References

[1] J.E. Andrade and X. Tu. Multiscale framework for behavior prediction in granular media.

Mechanics of Materials, 41(6):652–669, 2009.
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[50] J. Zeman and M. Šejnoha. From random microstructures to representative volume elements.

Modelling Simul. Mater. Sci. Eng., 15:S325–S335, 2007.

27

Buckmaster Research A5-27 FA9550-07-C-0123


	FA9550-07-C-0123 298
	FA9550-07-C-0123
	FinalReport_BR_102709
	1. Introduction: Solid propellants and their combustion
	1.1 The Solicitation
	1.2 Background

	2. Phase II Technical Objectives
	3. Meeting the Technical Objectives
	4. More Details
	4.1 Packing
	4.2 Material Properties
	4.3 Kinetics Fitting
	4.4 Agglomeration
	4.5 Morphology effects on the chamber flow
	4.6 SRM nozzle erosion
	4.6.1 Mathematical Formulation
	4.6.2 Obtaining Proper Inlet Conditions
	4.6.3 Importance of Unsteady Inlet Conditions
	4.6.4 Importance of Hydrodynamic Instabilities
	4.6.5 Asymmetric Rockets

	4.6.6  Future Work

	6. Conferences and Publications
	Appendix

	A1_BR_102709
	A2_BR_102709
	A3_BR_102709
	A4_BR_102709
	A5_BR_102709


	1_REPORT_DATE_DDMMYYYY: 03-11-2009
	2_REPORT_TYPE: FINAL TECHNICAL REPORT
	3_DATES_COVERED_From__To: 15-09-2007 to 14-09-2009
	4_TITLE_AND_SUBTITLE: Development of commercially useable codes to simulate aluminized propellant combustion and related issues
	5a_CONTRACT_NUMBER: FA9550-07-C-0123
	5b_GRANT_NUMBER: 
	5c_PROGRAM_ELEMENT_NUMBER: 
	5d_PROJECT_NUMBER: 
	5e_TASK_NUMBER: 
	5f_WORK_UNIT_NUMBER: 
	6_AUTHORS: John Buckmaster
	7_PERFORMING_ORGANIZATION: Buckmaster Research
2014 Boudreau Dr
Urbana, IL 61801
	8_PERFORMING_ORGANIZATION: 2009NOV03
	9_SPONSORINGMONITORING_AG: AFOSR/NM (Dr. Arje Nachman)
875 N Randolph St
Suite 325, Room 3112
Arlington VA 22203
	10_SPONSORMONITORS_ACRONY: 
	1_1_SPONSORMONITORS_REPOR: AFRL-OSR-VA-TR-2012-0597
	12_DISTRIBUTIONAVAILABILI: Approved for public release; distribution unlimited
	13_SUPPLEMENTARY_NOTES: 
	14ABSTRACT: We have modified and developed a large number of codes relevant to the task including: a packing code to generate propellant morphology models; a homogenization code to predict homogenized properties of a heterogeneous propellant; a combustion code that predicts fluctuations in the hot gases coming off the propellant surface; and fluids codes that describe the rocket chamber flow, the rocket nozzle flow, aluminum transport, and nozzle erosion. The packing code is marketable; the homogenization code will be available as an addendum to the packing code in a few months; a fluids code that simulates the chamber flow using approximations valid for slender chambers is marketable, albeit without a user manual at this time; and further development of a nozzle code that accounts for nonuniform inlet conditions (at the nozzle inlet) is under further development under a recently awarded SBIR contract.
	15_SUBJECT_TERMS: STTR Report; solid propellants, rockets, packing, homogenization, chamber flow, aluminum, nozzle erosion
	a_REPORT: U
	bABSTRACT: U
	c_THIS_PAGE: U
	17_limitation_of_abstract: UU
	number_of_pages: 27
	19a_NAME_OF_RESPONSIBLE_P: John Buckmaster
	19b_TELEPHONE_NUMBER_Incl: 217-621-9786
	Reset: 


