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Cyanate Esters:  Universe of 
Applications

Capacitors
Chip housings

Capacitors
Turbine brush seals

Interplanetary 
space

Fusion 
reactors

Radomes

Airframes

space 
probes

Photo credits:  (clockwise from “chip housings” Antonio 
Pedreira, Omegatron (Wikimedia Commons), FAA, US 
Navy (Marvin E. Thompson), US Coast Guard, Gerritse 
(Wikimedia Commons). Background image: NASA. All
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(Wikimedia Commons).  Background image: NASA.  All 
images are public domain or freely distributed.

• Understanding cure kinetics is essential to fabricating items like these …



Tricyanate Ester with Enhanced
Molecular Flexibilityy

GOAL: Explore the effect of a
“flexible core” architecture in
overcoming limitations such as
incomplete cure, brittleness, and
severe drop in Tg under wet
conditions associated with rigid
high-T tricyanate esters

AF/Navy Collaboration:
Monomer synthesized by Dr. Matthew 

high Tg tricyanate esters.

• Trifunctional architecture offers density of

“FlexCy”

y y
Davis at NAWCWD China Lake • Trifunctional architecture offers density of 

cyanate groups and aromatic content 
nearly equal to PT-30 for high dry Tg

• Flexible central branch point enhanced
Publications:

• Flexible central branch point enhanced 
conformational degrees of freedom for 
more readily obtaining full cure

Guenthner, A. J.; Davis, M. C.; Lamison, K.
R.; Yandek, G. R.; Cambrea, L. R.;
Groshens, T. J.; Baldwin, L. R. , and Mabry,
J. M. “Synthesis, Cure Kinetics, and Physical
Properties of a New Tricyanate Ester with “Control” molecule: Primaset® PT 30
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Properties of a New Tricyanate Ester with
Enhanced Molecular Flexibility” Polymer,
submitted (2011).

Control  molecule:  Primaset® PT-30



Types of Comparisons Performed

Molecular Structure
• FlexCy vs. Primaset® PT-30 (Lonza)

Methods of Purification
• Precipitated into ethanol (lower solubility results in higher 

yield but higher level of impurities)
• Precipitated into isopropanol (higher solubility lowers yield 

but is more effective at removing impurities)

Methods of Measurement
• Isothermal kinetics (rates and heat of reaction at one 

t t i lti l i t t

“FlexCy”

temperature; requires multiple experiments to measure 
activation energy)

• Non-isothermal kinetics (simpler, single experiment to 
measure activation energy and heat of reaction)
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measure activation energy and heat of reaction)

“PT-30”



FlexCy and Primaset® PT-30:
TGA Analysisy

FlexCy PT-30

10°C/min10°C/min

• FlexCy shows decreased thermal stability compared to Primaset® PT-30 
• FlexCy thermal stability exceeds dicyanates for char yield and matches dicyanates 

for decomposition temperature.
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• High char yields are a direct result of the high aromatic content in both FlexCy and 
PT-30



FlexCy and Primaset® PT-30:
Dynamic TMA Datay

Dry Samples – PT-30 FlexCy
50°C/min

Wet Samples, Heating – PT-30 FlexCy
50°C/min

Endpoint due to 
Chemical 
Degradation

Effects of  
Bubble 
Formation

PT 30 i i idi hi h Wet Samples Cooling PT 30 FlexCy• PT-30 retains rigidity at higher temperatures 
when dry due to both thermochemical and 
thermomechanical effects.

• After exposure to 85 °C water for 96 hrs

Wet Samples, Cooling  – PT-30 FlexCy
50°C/min

Tg ~ 240 °C

• After exposure to 85 C water for 96 hrs, 
both PT-30 and FlexCy have similar thermo-
mechanical properties, with Tg ~ 240 °C.

• Bubble formation on rapid heating of wet 
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p g
samples is evident in both materials. 



FlexCy and Primaset® PT-30:
Initial DSC Analysisy

10°C/min

• DSC shows both FlexCy and Primaset® PT-30 are of high purity (cure temperature 
exceeds 300 C)

• FlexCy has a slightly higher peak exotherm temperature and narrower exotherm
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• FlexCy has a slightly higher peak exotherm temperature and narrower exotherm 
due to lower impurity levels (not less favorable cure kinetics)



FlexCy and Primaset® PT-30:
Isothermal Cure Kinetics

• Extent curves are calculated by
integrating DSC isothermal heat
flow data using constant baselines

FlexCy
Isothermal 

cure temp (°C)

from post-cure (when available) or
pre-cure isothermal holds.

• Note that extent of cure is based
on measurement of residualon measurement of residual
exotherm by DSC on heating to
350 °C, thus the conversion
numbers are not necessarilyPT 30 absolute.

• Heating and quench rates following
30 minute isothermal periods are
approximately 100°C / min

PT-30
Isothermal 

cure temp (°C)

approximately 100°C / min.
• Note that overall rates of cyanate

ester cure are almost entirely the
result of impurity levels; the
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result of impurity levels; the
temperature dependence is a more
intrinsic feature.



FlexCy and Primaset® PT-30:
Activation Energy for Curegy

FlexCy Kinetic Data

• Kinetics fitted to Kamal model:  d/dt = k1 (1-)n + k2 m (1-)n

• As expected for highly pure systems, k2 (auto-catalytic) >> k1 (catalytic), 
allowing for the simplification |d /dt max = m / (m+n)allowing for the simplification |d/dt-max  m / (m n)

• Activation energy computed based on k2 value obtained by forcing constant m, 
n for all temperatures

• Lower activation energy for FlexCy is robust toward analytical assumptions

DISTRIBUTION A:  Approved for public release; distribution is unlimited. 12

gy y y p
• Measured activation energies are similar to those reported for other cyanate 

esters (e.g. Simon, S. L. ; Gillham, J. K., J. Appl. Polym. Sci. 1993, 47, 461). 



Effect of Purity on Cure Kinetics
of FlexCyy

Precipitated into IPA (higher purity)

Precipitated into EtOH
• Increased impurities lead to more

rapid cure and higher overall rates
of cure.
Th ff t t k l i l t

Precipitated into EtOH

• The effect takes place mainly at
low conversions, indicating the
difference is primarily in the k1
parameter (catalytic) in the Kamal
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p ( y )
model.



Effect of FlexCy Purity on
Activation Energygy

• Activation energy computed based on k2 value obtained by forcing constant m, 
n for all temperatures

• Activation energies appear similar for all FlexCy samples above 230 °C, butActivation energies appear similar for all FlexCy samples above 230 C, but 
appears to drop to ~80 kJ/mol at lower temperatures.

• The lower apparent activation energy at low temperatures may be the result of 
spurious attribution of catalyzed cure (dominant at these low temperatures) to 
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the auto-catalytic route in the Kamal model. 



Non-isothermal Cure Kinetics for 
FlexCy-IPAy

Kissinger’s 
method

Ozawa’s 
method

Ea = 101 ± 8 kJ/mol
Ea = 108 ± 13 kJ/mol

• The activation energies are all 
similar, and agree with the range of 
values (103 – 110 kJ/mol) found by 
f diff t i f th

Friedman’s 
method

four different versions of the 
isothermal method.

• Ozawa’s method showed the 
greatest non-linearity but also theE = 107 ± 4 kJ/mol
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greatest non-linearity but also the 
greatest consistency across 
conversions. 

Ea = 107 ± 4 kJ/mol



FlexCy and Primaset® PT-30:
Non-isothermal Kinetics Compared

Ozawa’s method Friedman’s method

• Ozawa’s method shows higher activation energy for PT-30 across all conversions, 
whereas Friedman’s method shows significant differences only at low conversions 
due to an activation energy for PT-30 that is lower than all other methodsgy

• Data at very low conversions is subject to large errors due to DSC baseline 
uncertainties and a low signal-to-noise ratio; the increase in activation energy at high 
conversions reflects gelation and vitrification
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• In auto-catalytic systems, non-isothermal kinetic measurements are hampered by the 
confounding of thermal activation and increasing catalysis over time, but isothermal 
measurements are not hampered by a large initial transient. 



FlexCy and Primaset® PT-30:
FT-IR Cure Comparison

FlexCy PT-30

• FT-IR spectra are referenced to the phenyl peak at 1500 cm-1

• Peaks near 2250 cm-1 signify uncured cyanate ester groups, those at 1360 cm-1 and 
1550 cm-1 signify cyanurate rings (i.e., properly cured cyanate ester groups)

• FT-IR conversion estimates of 95% (FlexCy) and 80% (PT-30) are only approximate 
due to their dependence on the choice of reference peaks baselines and limits of
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due to their dependence on the choice of reference peaks, baselines, and limits of 
integration, as well as the effects of changes in the solid-state structure during cure.



Measurements of Conversion in 
High-Temperature Thermosetsg

Fully Cured 
Network

1
ffi

cu
lt DSC FT-IR M-TG

D
if

• DSC:  High precision, but both full 
cure and maximum attainable cure 
give the same (lack of) signal

0.5

• FT-IR: Absolute bounds, but low 
quantitative accuracy and precision

• Mechanical Tg (DMA, etc.):  Good 

An example of how Tg values 
can be converted to conversion 
values based on the 
diBenedetto equation (from Xprecision, but samples can cure or 

degrade in-situ

Monomer
0 E

as
y

diBenedetto equation (from X. 
Sheng, M. Akinc, and M. R. 
Kessler, J. Therm. Anal. 
Calorim. 2008, 93, 77-85.) for 
EX-1510 dicyanate ester resin
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EX 1510 dicyanate ester resin, 
for which Tg << T decomp• Multiple techniques, when combined, can 

provide a reasonable estimate of conversion



Conversion Measurements for 
FlexCy and PT-30

Material Cure 
Temp. 
(°C)

Cure 
Time 
(hrs)

Tg via 
OTMA  

CTE 
(°C)

Tg via 
OTMA 

Loss 
Peak 
(°C)

Conver-
sion via 
OTMA 
CTE

Conver-
sion via 
OTMA 

Loss Peak

Conver-
sion via 
FT-IR

Conver-
sion via 

DSC

(°C)

FlexCy-IPA 210 24 310 338 0.91 0.92 0.83 n/a

FlexCy-IPA 250 2 307 >352a 0.90 >0.94 0.82 n/a

FlexCy-IPA 290 0.5 >349a >349a >0.95 >0.94 0.94 <0.98

FlexCy-IPAc 210 / 290 24 / 0.5 302 351 0.89 0.94 n/a n/a

FlexCy-EtOH 210 24 301 317 0.89 0.88 n/a n/a

FlexCy-EtOH 250 2 327 >354a 0.93 >0.94 n/a n/a

FlexCy-EtOH 290 0.5 301 >352a 0.89 >0.94 n/a <0.98

PT-30 210 24 274 309 0.82 0.85 0.80 n/a

PT-30 250 2 309 >355a 0.88 >0.93 0.91 n/a

PT-30 290 0.5 327 >352a 0.91 >0.92 0.80 <0.99

PT-30c 210 / 290 24 / 0.5 314 >389a 0.89 >0.98 n/a n/a

• Under some cure conditions, FlexCy exhibits a higher Tg than PT-30, indicating a 
higher extent of cure was achieved

a.  Run terminated due to sample decomposition prior to measurement of loss peak

DISTRIBUTION A:  Approved for public release; distribution is unlimited. 1919

• Although all samples show >80% conversion, quantitative comparisons are difficult
• Loss modulus is more reliable than CTE for conversion determination via TMA



Conclusions

• The inclusion of a flexible core chemistry in cyanate esters 
confers benefits including lower activation energy, greater 
extent of cure under many cure conditions, and even higher 
maximum use temperatures in environments involving long-
term water and short-term thermo-oxidative exposure

• For auto-catalytic cyanate esters, isothermal methods for 
measuring kinetics appear to offer fewer difficulties, in contrast 
to most non-autocatalytic systems for which non-isothermal o os o au oca a y c sys e s o c o so e a
kinetic measurements are often simpler

• Despite the difficulties, in general non-isothermal kinetic 
methods produced similar activation energy values for themethods produced similar activation energy values for the 
cyanate esters studied

• Conversion tracking is best handled by a combination of 
th d hi i i tit ti ti t
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methods, even so, achieving a precise quantitative estimate 
can be more difficult than expected
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