Heterotopic Ossification Following Combat-Related Trauma

By MAJ Benjamin K. Potter, MD, LCDR Jonathan A. Forsberg, MD, Thomas A. Davis, PhD, CPT Korboi N. Evans, MD, MAJ Jason S. Hawksworth, MD, Doug Tadaki, PhD, Trevor S. Brown, PhD, Nicole J. Crane, PhD, MAJ Travis C. Burns, MD, CPT Frederick P. O'Brien, MD, and CDR Eric A. Elster, MD

Introduction

The term heterotopic ossification refers to the aberrant formation of mature, lamellar bone in nonosseous tissue. Translated from its Greek (heteros and topos) and Latin (ossificatio) etymologic origins, heterotopic ossification can be literally defined as "bone formation in other location." The first written account of heterotopic ossification describes the treatment of symptomatic lesions. Al-Zahrawi (more commonly known in Western cultures as Albucasis), widely considered the father of surgery, wrote in the year 1000 C.E., "This callus often occurs after the healing of a fracture...and sometimes is limitation of the natural function of the limb...if the callus is stony hard and its removal is urgent, incise the place and cut away the superfluous prominence, or pare it away with a scraper until it is gone; and dress the wound until it heals." Currently, orthopaedic surgeons faced with treating mature, refractory, symptomatic heterotopic ossification are left with few options other than operative excision. Although it is remarkable that the treatment of heterotopic ossification has scarcely changed in the last millennium, it is generally accepted that prophylaxis against heterotopic ossification is far preferable than the later treatment of symptomatic lesions. As such, the focus of scientific effort in recent years has been directed toward prophylaxis, not treatment.

The formation of heterotopic ossification has been observed following total hip arthroplasty, acetabular and elbow fracture surgery, electrocution and burn injuries, and traumatic brain injury or spinal cord injury. Following most traumatic injuries in the civilian population, the formation of heterotopic ossification is relatively rare in the absence of head injury. Even following traumatic brain injury or spinal cord injury, heterotopic ossification develops in only 20% and 11% of patients, respectively. Rates of heterotopic ossification formation exceed 50% only in the setting of femoral shaft fractures with concomitant head injury, although reported rates following acetabular and elbow fractures vary substantially. Numerous combat-related injury and amputation studies from the latter half of the twentieth century make no specific mention of heterotopic ossification, suggesting that it was not a common occurrence in prior conflicts. However, military medical texts from the U.S. Civil War and World War I make specific mention of heterotopic ossification as a common problem following amputation, as described by Huntington: "...the stumps became conical sooner or later; short stumps sometimes remained well-rounded, long stumps rarely; but when they remained full it was often due to osteophytes, which in time became troublesome."

Thus, since the birth of both surgery and modern warfare, heterotopic ossification has been recognized as a nameless condition that occurs following trauma. Indeed, in the current conflicts in Iraq and Afghanistan, heterotopic ossification has proven to be a frequent occurrence and a common clinical problem. The goals of the present manuscript are to summarize recent findings and the current state of science with regard to combat-related heterotopic ossification as well as to present the preliminary findings of ongoing studies and future directions.

Source of Funding

The aforementioned studies were supported, in part, by research grants from USAMRAA OTRP W81XWH-07-1-0222, the Office of Naval Research and U.S. Navy BUMED Advanced Medical Development 6.4/5 Program 604771N.0933.001.A0604.

Epidemiology of and Risk Factors for Combat-Related Heterotopic Ossification

The trend in modern warfare has shifted toward a higher percentage of extremity injuries. This, coupled with the...
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204. Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td></td>
<td>00-00-2010 to 00-00-2010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterotopic Ossification Following Combat-Related Trauma</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same as Report (SAR)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
<th>19. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Std Z39-18
introduction of improved body armor, the judicious use of tourniquets, and the availability of forward-deployed surgical units, has given rise to highly survivable yet paradoxically devastating extremity injury patterns. As a result, the current prevalence of heterotopic ossification has been found to be higher than expected in the combat-wounded patient population. We were the first to report this increased prevalence of heterotopic ossification in a cohort of 330 patients with 373 combat-related amputations, which is an important subset of combat casualties. The study evaluated whether the mechanism of injury (blast or nonblast) correlated with either the presence or severity of heterotopic ossification. Surgery-related variables, such as the level of amputation (either within or proximal to the zone of injury), the number of irrigation and debridement procedures, the time from injury to definitive wound closure, and the prevalence of early wound complications following definitive closure, were also evaluated. The study found clinically detectable heterotopic ossification in 63% of residual limbs and, with the use of univariate analysis, identified the following important risk factors for the eventual development of heterotopic ossification: blast mechanism of injury (p < 0.05), and amputations performed in the zone of injury (p < 0.05). The latter risk factor also correlates with the severity of lesions, with use of the newly described Walter Reed Classification of heterotopic ossification (Figs. 1-A, 1-B, and 1-C). Interestingly, only twenty-five limbs (6.7%) required surgical excision of symptomatic lesions and a variety of prophylactic measures against secondary recurrence were used, including a single fraction of radiation therapy (700 cGy), indomethacin, cyclooxygenase (COX)-2 inhibitors, and other nonsteroidal anti-inflammatory drugs. Importantly, despite the various means of secondary prophylaxis used, the rate of symptomatic recurrence in this subgroup was low at 0%. We also defined the prevalence of heterotopic ossification in a separate cohort of patients with combat-related extremity trauma requiring orthopaedic intervention. Two hundred and forty-three patients requiring amputation, external fixation, or debridement procedures were evaluated. This cohort study compared 157 patients who developed heterotopic ossification (the study group) to eighty-six patients who did not (the control group). This design enabled us to estimate the prevalence of heterotopic ossification not only in amputees (66% of lower-extremity amputees and 30% of upper-extremity amputees), but also in patients undergoing limb salvage (60.1%). The findings from the former study corroborated our earlier findings. The data from the later study suggested that combat-related injuries, in general, are associated with a higher-than-expected prevalence of heterotopic ossification, when compared with civilian data.

This study also identified several important risk factors for the development of heterotopic ossification in this patient population. Traumatic brain injury was associated with both the presence (p = 0.006) and the severity (p = 0.003) of heterotopic ossification on univariate but not multivariate analysis. Regression analysis revealed that the Injury Severity Score (as a continuous variable) and an Injury Severity Score of ≥16 (p = 0.02, odds ratio = 2.2) were significant predictors, as was multiple limb trauma requiring orthopaedic intervention (p = 0.002, odds ratio = 3.9). The most striking observation, however, was that the presence of an amputation was, itself, independently associated with the development of heterotopic ossification (p = 0.048, odds ratio = 2.9).

The association between heterotopic bone growth and the number and method of surgical debridement procedures, including the use of negative-pressure wound therapy, is controversial. We have observed, on univariate analysis, that patients who subsequently developed heterotopic ossification have undergone more debridement procedures (p < 0.001) and thus have been exposed to a longer duration of negative-pressure wound therapy (p < 0.001). Nevertheless, these results should be interpreted with caution because the increases in both the number of debridement procedures and the duration of negative-pressure wound therapy are likely more indicative of the severity of injury than they are causal. This is supported by the nonsignificant relationship between the formation of ectopic bone and these wound-care modalities as revealed by multivariate analysis. Although local factors may play a supporting role, current data suggest that the development of heterotopic ossification in this patient population is largely due to systemic factors.

Barriers to Primary Prophylaxis

Given the high prevalence of combat-related heterotopic ossification in our war-wounded patients, a primary prophylaxis regimen including radiation therapy, conventional nonsteroidal anti-inflammatory drugs, and/or etidronate (an older, nonselective bisphosphonate and the only medication currently approved by the U.S. Food and Drug Administration for the treatment or prevention of heterotopic ossification) would be extremely appealing. Local radiation therapy, generally administered within twenty-four hours preoperatively to forty-eight hours postoperatively in patients at risk for heterotopic ossification, and nonsteroidal anti-inflammatory drugs have well-documented efficacy in the prevention of primary heterotopic ossification. Recent meta-analyses and reviews have suggested that radiation therapy may be slightly more effective than nonsteroidal anti-inflammatory drugs for this purpose, although most of this difference is thought to be related to patient noncompliance with medication. Unfortunately, the vast majority of severely injured combatants have multiple medical contraindications to prophylaxis against heterotopic ossification that make the interventions listed above difficult to accomplish. Commonly encountered relative and absolute contraindications to prophylaxis against heterotopic ossification include severe systemic polytrauma, open and contaminated wounds, concomitant traumatic brain injury and/or long bone fractures or spinal column injuries requiring operative stabilization and fusion, and the need for serial surgical procedures. Additionally, substantial potential for impaired renal function, bleeding, and stress gastritis have precluded widespread use of nonsteroidal anti-inflammatory drugs to date. Logistical limitations at remote, far-forward medical facilities in the theater of war are additional hurdles, particularly for the timely administration of radiation therapy.
Etidronate can be administered later in the period after injury, but there can be problems with late mineralization or formation of heterotopic ossification after the cessation of medication. Thus, the efficacy of etidronate has recently been called into question by, among others, a recent Cochrane Database review. Etidronate is also a relatively nonselective osteoclast inhibitor, potentially owing its limited efficacy to osteoblast inhibition, and may inhibit fracture-healing and spinal fusion. Corticosteroids, colchicine, retinoid agonists, coumarin derivatives, and calcitonin have all been studied for their value with regard to prophylaxis against heterotopic ossification; however, the data on human usage is either limited or absent and these drugs share many of the same medical concerns and contraindications as nonsteroidal anti-inflammatory drugs. Thus, no
practicable primary prophylactic regimen for combat-related heterotopic ossification has been identified, although a trial of the COX-2 inhibitor celecoxib is in development, as discussed below.

Clinical Sequelae of Combat-Related Heterotopic Ossification
Fortunately, some patients with combat-related heterotopic ossification remain entirely asymptomatic and no specific treatment is indicated. In many others, lesions are transiently painful or bothersome and symptoms subside as adjacent joint motion improves, residual limb “toughening” occurs, and the combat-related heterotopic ossification transitions from its more inflammatory formative phase into a more quiescent maturation phase. Many patients, however, develop symptoms directly attributable to their combat-related heterotopic ossification that persist indefinitely. These symptoms may be localized pain, including, but not limited to, residual limb pain and prosthesis fitting difficulties; ulceration, particularly when the combat-related heterotopic ossification develops beneath an overlying skin graft (Figs. 2-A and 2-B); overt joint ankylosis; secondary arthrofibrosis due to osseous impingement (Figs. 3-A and 3-B); muscle entrapment (Fig. 4); or neurovascular entrapment (Figs. 5-A and 5-B). The treatment of symptomatic combat-related heterotopic ossification is individualized to the patient and the symptoms associated with their combat-related heterotopic ossification.

Management of Symptomatic Combat-Related Heterotopic Ossification
In the absence of overt ulceration causing concomitant deep infection or overt joint ankylosis, the initial management of symptomatic combat-related heterotopic ossification is nonoperative. This generally includes a period of rest, physical therapy, and gentle stretching and splinting to treat secondary contractions. Taking pressure off of symptomatic areas by positioning, pads or prosthetic socket adjustments, and optimizing pain control and medication regimens are also important. Other potentially contributing causes of pain should be investigated and treated appropriately including infection, fracture nonunion, internal derangement of adjacent joints, symptomatic neuromata, phantom pain, and complex regional pain syndrome. When nonoperative measures fail, concurrent procedures in addition to “simple” heterotopic ossification excision are often indicated and appropriate including amputation revision, neuroma excision, quadricepsplasty, contracture release, and/or skin graft excision. The most common indications for excision of combat-related heterotopic ossification in our military patients is pain that is caused by wearing a prosthesis and that has proven to be refractory to multiple socket adjustments, and arthrofibrosis in patients for whom limb salvage will be attempted.

Abundant recent evidence suggests that a prolonged waiting period of twelve to twenty-four months for heterotopic ossification “maturation” prior to excision is not necessary in the post-extremity trauma setting, particularly in the absence of traumatic injury to the brain or spinal cord. Instead, a waiting period of six months after injury appears to be adequate to permit sufficient bone maturation to ensure the presence of a gross cortical rind to facilitate marginal excision and to permit a diligent trial of nonoperative treatments. Patients with recalcitrant ulcerations or severe secondary joint contractures may become operative candidates as early as three to four months after injury.

Operative Planning and Three-Dimensional Modeling
The operative approach to combat-related heterotopic ossification must account for the local anatomy, the location and severity of the heterotopic ossification, and the patient’s prior wounds and incisions. We advocate a direct approach utilizing, when feasible, existing incisions, followed by marginal excision of the symptomatic lesion(s). The entirety of the heterotopic ossification need not be removed when the patient’s symptoms are focal, particularly when access to the entire lesion would be difficult and the combat-related heterotopic ossification has a mature cortical shell. Wide excision to prevent recurrence would not be feasible in most patients because of the magnitude of tissue sacrifice that would be required. We have noted infrequent recurrences following excision about the elbow, but no symptomatic recurrences in residual limbs or about the thigh in more than 100 patients (unpublished data). This surgical approach has been coupled with the judicious use of secondary prophylaxis with nonsteroidal anti-inflammatory drugs. The decision was made to incorporate the use of secondary prophylaxis into our treatment protocol because of the high rate of wound complications in our initial series of amputees who were treated with radiation, which is used along with nonsteroidal anti-inflammatory drugs in patients with the most severe conditions. However, the prognosis for concomitant excision and quadricepsplasty of the thigh for treatment of combat-related heterotopic ossification is guarded as a result of anecdotally high rates of wound complications, recurrent arthrofibrosis, extensor mechanism compromise, or preexisting arthrosis due to prior fractures, prolonged immobilization, or ankylosis.

Computed tomography-based three-dimensional modeling is very useful in the evaluation and treatment of symptomatic combat-related heterotopic ossification (Figs. 6-A and 6-B). Clinically, it is useful for allowing patients, therapists, and prosthetists to anatomically localize symptomatic areas and take efforts to avoid irritation through the use of activity modification, prosthetic socket relief, or model-assisted stereolithographic socket design. For the patient with symptomatic combat-related heterotopic ossification, resin models are useful for both preoperative planning and intraoperative referencing. The formation of combat-related heterotopic ossification distorts normal anatomy, placing critical neurovascular structures and muscle groups at risk for inadvertent injury. In some instances, major nerves and vessels may pass directly through and be incarcerated in the combat-related heterotopic ossification. The physical resin models serve as intraoperative anatomical guides that are based on heterotopic ossification topography. This is particularly helpful for patients in whom the condition is severe or for patients in whom excision of the focal, symptomatic combat-related
heterotopic ossification is attempted in an effort to avoid complete takedown of the myodesis and revision of the amputation stump.

Biochemical Signature of Heterotopic Ossification

It is generally accepted that systemic inflammation is associated with the development of heterotopic ossification. Evans et al. examined the systemic and local wound inflammatory response in twenty-four patients with high-energy, penetrating extremity wounds. In preparation for the development of a prognostic clinical decision model, the goal of this pilot study was to identify whether a particular cytokine and chemokine profile could be identified in those at risk of developing heterotopic ossification. Serum and wound effluent samples were collected prior to each of these procedures in a manner previously described. Twenty-two cytokines and chemokines (including interleukin [IL]-1 through 8, 10, 12, 13, and 15; interferon [IFN]-γ; eotaxin; tumor necrosis factor [TNF]-α; monocyte chemoattractant protein [MCP]-1; granulocyte colony stimulating factor [GCSF]; macrophage inflammatory protein
Heterotopic Ossification Following Combat-Related Trauma

Fig. 3-A and 3-B Anteroposterior radiograph (Fig. 3-A) and sagittal computed tomography reconstruction (Fig. 3-B) of a transfemoral amputation with limited hip flexion due to direct impingement of severe heterotopic ossification against the anterior pelvic brim and acetabulum.

[Fig. 3-A]

[MIP]-1α; the protein regulated on activation, normal T expressed and secreted [RANTES]; and IFN-γ-inducible protein-10] were quantified. After a minimum follow-up of two months, subjects were then stratified according to a two-author (K.N.E. and J.A.F.) blinded review of radiographs into a study group and a control group, on the basis of the presence or absence of heterotopic ossification within the wounded extremity.

Serum analysis demonstrated a profound systemic inflammatory response in the study group. Of the twenty-two serum cytokines and chemokines analyzed, only three (IL-6, IL-10, and human MCP-1 [also known as chemokine (C-C motif) ligand 2, or CCL-2]) differed significantly between the two groups (unpublished data). Specifically, IL-6 remained elevated at all time points, as did MCP-1. Both are inflammatory agents and recruit monocytes and macrophages to the site(s) of injury, indicating sustained inflammation throughout the debridement process. MCP-1, however, is also involved in bone remodeling and may be an early indicator of this process. Interestingly, concentrations of IL-10, an anti-inflammatory cytokine that is important in inhibiting the production of pro-inflammatory cytokines, became significantly more concentrated in the study group approximately two weeks after injury, as compared that in the control group. The late up-regulation of this anti-inflammatory mediator also signifies the presence of persistent systemic inflammation and supports our previous observation [62] that the systemic inflammatory response in this patient population has aberrant regulation.

An analysis of the local wound effluent during the serial debridement process produced similar findings. Wounds that developed heterotopic ossification expressed significantly higher concentrations of MIP-1α and lower concentrations of IFN-γ-inducible protein-10 in the study group as compared with controls. Although both are considered pro-inflammatory, their prolonged, discordant expression, without a demonstrable compensatory anti-inflammatory component, also appears dysregulated. The change in the regulation of the inflammatory response that was observed systemically also seems to persist within the local wound environment. As such, the association between these biomarkers and heterotopic ossification may not simply be related to the difference in concentration between the two groups, but rather, the relationship between pro-inflammatory and anti-inflammatory mediators as well as their relative time-dependent concentrations as measured throughout the debridement process.

Progenitor Cell Research

The cellular and biochemical etiology and pathophysiology of heterotopic ossification remain unclear. A postulate theory is that heterotopic ossification results from the presence of osteoprogenitors that pathologically are induced by an imbalance of local and/or systemic factors in soft tissue following traumatic injury. It is thought that a systemic increase in the
Cells reside within most adult connective tissues and muscle-derived mesenchymal progenitor cells have been shown to be inherently plastic, enabling them to differentiate along multiple lineages; they promote wound-healing and regeneration of surrounding tissues by migrating to the site of injury, promoting repair and regeneration of damaged tissue, modulating immune and inflammatory responses, stimulating the proliferation and differentiation of resident progenitor cells, and secreting other trophic factors that are important in wound-healing and tissue remodeling. Several recent reports describe the isolation and characterization of extensively passaged mesenchymal cell-like progenitor cells (MPCs) isolated from tissue collected following surgical debridement of traumatic orthopaedic extremity wounds. Yet, the effects of acute and often prolonged aberrant inflammation on muscle-derived mesenchymal cells are unclear.

We speculate that the initiation of heterotopic ossification involves a complex interplay of signaling molecules secreted from the injured tissue. Proliferation and recruitment of local and/or circulating progenitor cells and the aberrant commitment, growth, and differentiation of these cells into bone occur early in the process of wound-healing and repair. In a series of preliminary studies, we have found that wound effluent collected strictly from patients with heterotopic ossification at times of early wound debridement is highly osteogenic, which accelerates the directed in vitro osteogenic differentiation of multipotent bone-derived mesenchymal stem cells in culture (Fig. 7).

Currently, little is known about the precursor cell to heterotopic ossification or the environment that permits formation of heterotopic ossification. Understanding the signaling pathways and the involvement of MPC differentiation is essential for the development of early diagnostic and prognostic tests and the development of novel prophylactic therapies. We have developed a unique cell-isolation process and in vitro culture system to easily quantify functionally assayable multipotent muscle-derived progenitor cells at the clonal level. The multipotent differentiation capacity of individual clonal cell-derived colonies can be easily assessed by their ability to undergo osteogenic, chondrogenic, and adipogenic differentiation when incubated with specific differentiation induction media. Using this system, we tested the hypothesis that endogenous muscle-derived progenitor cells following severe blunt trauma are greater in number and have a stronger osteogenic potential in patients in whom wound-healing is associated with the formation of combat-related heterotopic ossification than in patients whose wounds heal uneventfully. We prospectively collected wound muscle biopsies during debridements of ten active-duty service members who sustained high-energy penetrating injuries of an extremity during combat operations. Ectopic bone formation was determined by follow-up radiographic assessment at various intervals during the recovery period and was compared with culture results. We also collected hamstring muscle as control tissue from five healthy
patients undergoing elective anterior cruciate ligament reconstruction with hamstring autograft. We found that the number of adherent colony-forming progenitor cells that could be isolated per gram of tissue from wartime wounds was profoundly increased (range, thirty-twofold to fiftyfold) compared with the number in the uninjured muscle tissue of the control group (Fig. 8). Quantification of progenitor cells with osteogenic potential showed that the measured 2.3-fold increase in osteogenic progenitors in tissue from patients with combat-related heterotopic ossification compared with that in tissue from patients with noncombat-related heterotopic ossification was significant \((p < 0.007) \). Therefore, these findings suggest that wounds that present with a higher prevalence of resident assayable osteoprogenitors in the tissue, presumably supported through local and/or systemic reactions, correlate with the eventual formation of ectopic bone in traumatized tissue.

Raman Spectroscopy

Raman spectroscopy is a scattering technique that can be used to gain information about the structure and composition of molecules from their vibrational transitions. A Raman spectrum can be thought of as a chemical "fingerprint" and is thought of as a complementary technique to the more widely known infrared spectroscopic techniques. The vibra-
HETEROTOPIC OSSIFICATION FOLLOWING COMBAT-RELATED TRAUMA

Fig. 6-A and 6-B Digital three-dimensional computed tomography reconstruction (Fig. 6-A) and photograph of the corresponding life-size three-dimensional resin model (Fig. 6-B) of both residual limbs and the pelvis of a blast-injured bilateral transfemoral amputee with severe heterotopic ossification of both residual limbs. The model was a useful reference intraoperatively during the staged surgical procedures to excise the heterotopic ossification and revise the amputation, as it provided a "roadmap" of the surface topography of the ectopic bone.

tional (and rotational) bands in a Raman spectrum are specific to the chemical bonds and particular structure of the molecule(s) being investigated. In addition, the band area of a Raman vibrational band is proportional to the amount of analyte present. Thus, Raman spectroscopy can identify the components that are present and quantify the amount of each component.

Over the past fifteen years, Raman spectroscopy has become an attractive technology for probing biomedical samples for several reasons. First, Raman spectroscopy can be applied to both organic and inorganic components (i.e., protein and mineral). Second, Raman spectroscopy can be applied non-invasively. Recent in vivo Raman spectroscopic studies include incorporation of a Raman probe into an endoscope for examination of the esophagus and stomach, detection of cervical dysplasia, diagnosis of nonmelanoma skin cancer, characterization of psoriatic skin, observation of human-swine coronary xenografts after transplantation, measurement of macular carotenoids in the eye, and transcutaneous monitoring of bone. Third, most biological samples contain water, and unlike infrared spectroscopy, the Raman spectra of biological samples do not suffer from spectral interference of water vibrational bands. Fourth, Raman spectroscopy is a scattering technique, requiring very little, if any, sample preparation. Finally, the technological advances during the past fifteen years, such as holographic notch filters, small-form diode lasers, and thermoelectrically cooled charge-coupled device detectors, have enabled the production of less expensive, compact, and portable Raman spectroscopic systems.

While Raman spectroscopy has been used extensively to study the process of biomineralization, it has not been previously used to provide insight into the pathologic process of heterotopic ossification. We have collected Raman spectra of uninjured muscle, injured muscle, and combat-injured tissue with pre-heterotopic ossification (defined as palpably firm or "woody" tissue without roentgenographic evidence
of heterotopic ossification) found within high-energy penetrating wounds (Fig. 9). When comparing uninjured to injured muscle, there is an apparent decrease in the 1340 and 1320 cm⁻¹ vibrational bands in the injured muscle as well as an increase in the 1266 cm⁻¹ vibrational band. This suggests collagen-specific alterations within the tissue, as a result of traumatic injury. In one case, a patient exhibited combat-injured muscle with pre-heterotopic ossification during a debridement procedure. On Raman spectroscopic examination, it was clear that the tissue was indeed mineralized, even in “soft” tissue areas. Mineral vibrational bands at 1070, 960, and 591 cm⁻¹, typical of a carbonated apatite, were prominent in the spectrum. These vibrational bands are attributed to the phosphate and carbonate stretching modes of bone. Thus, Raman spectroscopy can potentially be utilized to identify areas of tissue affected by early combat-related heterotopic ossification as well as areas of tissue that may be predisposed to the formation of combat-related heterotopic ossification.

Small Animal Model

A critical hurdle in our investigation of the etiology, treatment, and prevention of combat-related heterotopic ossification is the absence of a reliable and reproducible small animal model in which to further characterize the formation of combat-related heterotopic ossification, potentially identifying new therapeutic targets, and to test new therapeutic interventions. Currently, several small animal models exist. These models include the forcible passive manipulation of the hindlimbs of paralyzed rabbits; implantation of Matrigel (basement membrane/collagen-IV matrix; BD Biosciences, Bedford, Massachusetts) impregnated with recombinant human bone morphogenetic protein (rhBMP)-2 or BMP-4 in genetically predisposed mice; implantation of genetically engineered, BMP-2-producing human or murine fibroblasts into immunocompromised mice; and crush injury of the quadriceps augmented with syngeneic bone-marrow stem cells in inbred rats. Our current understanding of heterotopic ossification suggests that these models have important limitations that may make them unsuitable proxies for combat-related heterotopic ossification. Specifically, these models all lack the systemic injury (e.g., blast injury and/or traumatic brain injury) components commonly seen in injured military personnel with combat-related heterotopic ossification. Additionally, no induced wound with associated bacterial contamination and resulting bioburden, as is the
rule rather than the exception for combat injuries, is associated with these models. Moreover, there is a lack of general agreement within the current literature as to whether all inciting events lead to heterotopic ossification via the same cellular mechanisms and even whether all heterotopic ossification occurs via enchondral ossification. Finally, these models are non-physiologic in that they artificially induce bone growth in the soft tissues of small animals through augmentation or manipulation of cellular signals, genetic predispositions, and/or cell presence. Previously described small-animal models therefore produce ectopic bone growth that may have little, if any, relationship to the clinical heterotopic ossification that is seen in human patients in general or in combat-injured patients in particular.

We have conceived of a physiologic rodent model that we hope will fill this research gap. Our model incorporates blast exposure, soft-tissue crush injury, and bacterial contamination, augmented with one of several additional systemic insults to invoke additional systemic inflammation. The fracture component will be omitted to limit rodent mortality as well as avoid confounding results due to exuberant fracture callus, if it were to occur. It is our hope that this model will reliably produce heterotopic ossification through mechanisms similar to that seen in our combat-wounded patients and that it will allow further characterization of this pathologic process. Once validated, this model may permit future identification of novel therapeutic targets as well as testing of various described and original therapeutic modalities.

Prospective Randomized Trial of Primary Prophylaxis in Combat-Injured Patients

As noted, due to medical contraindications and logistical constraints, no practicable primary prophylaxis regimen has yet been developed, tested, or widely utilized in wounded servicemen despite the exceedingly high rate of heterotopic ossification in this population. Recently, COX-2 inhibitors such as celecoxib have been shown to be safe and efficacious for the prevention of heterotopic ossification following hip and acetabular surgery and may be useful in our patient population. COX-2 inhibitors are currently used in this institution as part of a comprehensive pain-management regimen and are thought to decrease the patient’s opioid requirement. Concerns about COX-2 inhibitors in an orthopaedic population stem from the blunting of “helpful” inflammation necessary for enchondral ossification in early fracture-healing. Nevertheless, several studies evaluating COX-2 inhibitors found
Heterotopic Ossification Following Combat-Related Trauma

Muscle-derived colony-forming units (CFUs)
Osteogenic progenitor cells

Fig. 8
Graphical depiction of the number of muscle-derived colony-forming units and osteogenic progenitor cells cultured from muscle tissue of normal (control) patients, combat-injured patients who did not develop heterotopic ossification (Injured-nonHO), and combat-injured patients who developed heterotopic ossification (Injured-HO). Even with these preliminary results (n = 5 patients per group) a significant (*) increase in the number of osteogenic progenitor cells is evident in patients who developed heterotopic ossification as compared with patients in the other two groups. (Error bars indicate 95% confidence interval.)

In order to address the safety and efficacy of COX-2 inhibition in combat-related heterotopic ossification, a prospective randomized trial of celecoxib, started within five days after injury for a two-week treatment period (200 mg by mouth twice a day), will begin enrolling patients this year. The study will enroll as many as 100 patients (fifty in the treatment arm and fifty in the control arm), and is powered to detect a 30% relative decrease in the rate of formation of combat-related heterotopic ossification (e.g., a decrease from 60% to 40%). Primary study end points are the overall prevalence and severity of combat-related heterotopic ossification in study patients. This decrease in combat-related prevalence of heterotopic ossification is well below that anticipated on the basis of a putative 56% to 67% reduction in heterotopic ossification rates with use of nonsteroidal anti-inflammatory drugs in other populations. Testing for this lower rate of reduction appears reasonable because the actual effect of nonsteroidal anti-inflammatory drugs may differ in patients with combat-related heterotopic ossification, because treatment cannot practicably be initiated at the point and time of injury, and because testing would serve to ensure adequate power of the trial. Secondary end points include fracture nonunion, time to fracture union, rate of impaired wound-healing, medical and drug-related complications (e.g., gastrointestinal problems and renal dysfunction), and patient pain ratings and opioid requirements.

The concern that celecoxib may delay fracture-healing is an important one. Nevertheless, its effect may be tempered by the timing of fracture fixation in a high-energy penetrating injury of an extremity. In most cases, fracture fixation is not performed until ten to fourteen days after injury, which is the time it takes to debride and prepare the wound for closure or flap coverage. Prophylaxis against heterotopic ossification is started as soon after injury as possible and continued for fourteen days. Ideally, celecoxib dosing for the purpose of prophylaxis against heterotopic ossification will be complete prior to definitive fracture fixation. Goodman and colleagues demonstrated that COX-2 inhibitors, if given within the first fourteen days following fracture, did not result in appreciable impairment of fracture-healing. There is also no evidence to suggest that celecoxib significantly affects fracture-healing in our combat-wounded patient population. Nevertheless, "nonunion" and "time to union" will be reported as secondary outcomes in this study. Of note, short-term use of celecoxib in patients without fractures, including amputees, has not been associated with any negative effects.
Heterotopic Ossification Following Combat-Related Trauma

Raman Shiltlag (MD)

Fig. 9

Raman spectra of (A) uninjured muscle (control tissue), (B) combat-injured muscle, and (C) combat-injured muscle with pre-heterotopic ossification. The gray bands highlight spectral changes in the amide-II envelope (1340-1240 cm⁻¹) and the appearance of mineral vibrational bands at 1070, 960, and 591 cm⁻¹.

Conclusions and Future Directions

Combat-related heterotopic ossification is exceptionally common and is often a harbinger of a complex and difficult clinical course. Operative excision of symptomatic combat-related heterotopic ossification lesions is generally successful and associated with low rates of recurrence but can be technically demanding and fraught with complications, particularly about the knee when concurrent quadricepsplasty is required. We have identified numerous clinical factors and biological markers that are predictive of eventual formation of combat-related heterotopic ossification. Through ongoing and future research efforts by our consortium, we hope to further elucidate the biochemical and cellular basis for the formation of combat-related heterotopic ossification, further define the relative roles of local and systemic inflammation, continue to develop new means of early diagnosis and prognostication, and test and validate both conventional and novel practicable primary prophylactic treatment modalities. It is our hope that, through a combination of new diagnostic and therapeutic interventions, we can affect both the incidence and clinical management of combat-related heterotopic ossification.

Maj Benjamin K. Potter, MD
LCDR Jonathan A. Forsberg, MD
CPT Korboi N. Evans, MD
MAJ Jason S. Hawksworth, MD
CPT Frederick P. O'Brien, MD
Walter Reed National Military Medical Center,
6900 Georgia Avenue N.W., Bldg 2, Clinic 5A, Washington, DC 20307.
E-mail address for B.K. Potter: kyle.potter@us.army.mil

Thomas A. Davis, PhD
Doug Tadaki, PhD
Trevor S. Brown, PhD
Nicole J. Crane, PhD
CDR Eric A. Elster, MD
Naval Medical Research Center,
501 Robert Grant Avenue, Silver Spring, MD 20910

MAJ Travis C. Burns, MD
San Antonio Military Medical Center,
3851 Roger Brooke Drive, Fort Sam Houston, Texas 78234

References

82. O'Brien FP, Anan K, Potter BK, Tadaki D, Forsberg JA, Elster EA, Davis TA. Heterotopic ossification formation in complex orthopedic combat wounds: quantification and characterization of mesenchymal stem/progenitor cell activity in traumatized muscle. Read at the Robert A Phillips Resident Research Competition; 2010 Apr 16; Bethesda, MD.

synthesis and the formation of heterotopic bone in a
versus ibuprofen in the prevention of heterotopic ossification,

Lane JM, Helfet DL. The

MK, Davis AR. Hypoxic adipocytes pattern

injury and spinal cord injury. J Am Acad

Xue

Rapuano BE, Boursiquot R, Tomin E, Macdonald DE, Maddula

Cipriano

Oz, Genovese

