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LONG-TERM GOALS

We are approaching the end of our second year on this research project. We are working on the
development of an integrated analytical-experimental effort to develop a physics based reduced order
analytical model of the nonlinear fluid-structure interactions in articulated naval platforms.
Environmental effects include forces due to waves, current, and vortex shedding. The symbiosis of
analysis and experiments provides a unique opportunity to advance the state of the art in such
analytical modeling by directly addressing nonlinear coupling effects, and linking individual terms in
the analysis to physical parameters measured in the laboratory. This research is also an excellent
vehicle for training a new generation of workers who are adept at understanding fluid-structure
interaction problems both from analytical dynamics and experimental fluid dynamics perspectives.

OBJECTIVES

Our objectives include the following: (i) to develop a first-principles-based approach to the
development of reduced order differential equations governing the coupled and nonlinear interaction
between shedding vortices and structural response, and (ii) to examine bending and extension in long
and slender beams subject to vortex shedding, buoyancy, and wave loads. The work is coupled in that
there is close collaboration between the structural and fluid mechanicians. Specifically, the reduced
order analytical model that is being developed includes terms that require experimental input.
Guidance and validation are proceeding in tandem.

APPROACH

Our approach entails examining identical model problems both experimentally and analytically. The
structural equations are derived using the methods of analytical mechanics and Newton's second law of
motion. The methods of the variational calculus provide us an excellent framework for these analytical
derivations as well as for experimental input. Implicit in these derivations is a coupling with the
surrounding fluid. Coupling is due to buoyancy effects, added mass, and the relative motion between
structure and fluid. Ongoing experiments are described in the following section.
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WORK COMPLETED

A joint analytical-experimental investigation is in progress to advance the state-of-the-art in reduced
order modeling of fluid-structure interactions. The specific modeling problem is that of a rigid circular
cylinder which is hinged at the base and immersed in a steady flow of water. By allowing the cylinder
to freely move in the cross-stream direction, the nonlinear coupling of structural motion to vortex
induced fluid loading can be investigated and modeled. The analytical dynamic modeling uses an
energy based Hamilton’s Principle approach coupled to an integral fluid kinetic energy transport
equation. High resolution, video-based flowfield measurement techniques are being employed to
directly measure key terms in the governing equations of motion. Experiments to date include two
color Laser Induced Fluorescence (LIF) flow visualization studies of the fluid-structure interaction at
and around lock-in, along with Digital Particle Image Velocimetry (DPIV) measurements which
provide insight into the dynamics of the fluid-structure coupling. In addition, a new high-resolution
video based technique for measuring fluid acceleration, Digital Particle Image Accelerometry (DPIA)
has been developed and implemented in this investigation. A brief overview of key experimental
findings is outlined in the following section. Early work, both experimental and analytical, has been
presented at the 1998 ASME Fluids Engineering Division Meeting and two archival journal papers
(one in the Journal of Fluid Mechanics, and one in the Journal of Sound and Vibration) are currently in
review. Additional papers addressing critical issues in this research will be submitted shortly.

RESULTS

Experiments are being conducted in the large Free Surface Water Tunnel facility at Rutgers. A 152 cm
long circular cylinder, 2.54 cm in diameter is immersed in the test section, which is filled with water to

a 102 cm depth. Schematic drawings of the cylinder and flow facility are shown in Figures 1 and 2,
respectively. The cylinder was constructed from sections of thin walled anodized aluminum tubing. It

is attached to a plate at the bottom of the test section with a stainless steel leaf spring oriented such that
cylinder motions are restricted to the cross-stream plane. The mass ratio of the structure is 1.53 and
the damping ratio is 0.054. The speed of the flow is varied to enable detailed examination of coupling
phenomena at, above, and below the cldsslcin regime.

The focus of ongoing research and concomitant findings to date can best be described in the context of
the frequency and amplitude response plot of the cylinder shown in Figure 3. This plot includes the
results of two independent experiments in which the tunnel speed was varied and the frequency of
vortex shedding along with cylinder amplitude were measured. In this graph, parameters have been
nondimensionalized by cylinder natural frequency, free stream velocity, and cylinder diameter. The
straight solid line passing through the plot is the non-dimensional Strouhal frequency.

Careful examination of Figure 3 permits identification of four regimes in the freely oscillating cylinder
experiment. For YD < 3.8, there is no appreciable cylinder motion in response to the vortex
shedding. This is also true for 7.6 >Df> 8.4. The classitock-in regime, characterized by

shedding of patterns of vortices at the cylinder natural frequency over a range of speeds, is located in
the range, 5.6 < YD < 7.6. The fourth regime, which will be referred taegerselock-in, is located

in the range, 3.8 < YD < 5.6. This regime includes the maximum amplitude response condition and

is characterized by a departure of the frequency response data from the Strouhal frequency.
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Figure 1. Schematic drawing of
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attachment.
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Figure 2. Obligue view drawing of the experimental the
setup including optics, electronics, and water
tunnel test section.
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Figure 3. Frequency and amplitude response curve for the freely vibrating
cylinder experiment. Note the reverse lock-in regime to the left of the
classic lock-in regime.

The distinction between classimd reversdock-in regimes can be made in terms of cause and effect
between fluid flow and cylinder motion. In the reverse lock-in case, the cylinder appears to be driven
by vortex shedding. As the vortex formation length decreases and vortex strength increases, low-
pressure vortex cores begingoll on the cylinder. This effect is most dramatic for the maximum
amplitude response case in which cylinder motion and vortex shedding appear to be in phase at a
frequency ~0.8 times the cylinder natural frequency. In the classic lock-in regime, the cylinder motion
appears to drive the vortex shedding. Individual vortices are far less coherent and often appear
uncoupled to the cylinder. LIF studies and subsequent DPIV measurements indicate the existence of
patterns of vortices, which periodically recur at the cylinder natural frequency.

The concept of a pseudo-pressure gradient has been developed to account for the added vorticity flux
generated by the cylinder motion. In brief, the acceleration of the cylinder can be interpreted as a
pseudapressure gradient, which generates vorticity in the cylinder boundary layer. Detailed analysis is
in progress to correlate this generation mechanism with the observed fluid-structure interactions. Use
of the new DPIA program coupled with a control volume examination of energy transport in the flow
will also be used in direct support of the reduced order analytical model formulation.

IMPACT/APPLICATION

A deeper understanding of fluid-structure interaction can have extensive impact on both military and
civilian technology. Flow-induced vibration is a major component in structural fatigue and failure, and
in noise generation, for example. The dynamics of flow-induced vibration affects the design of
everything from aircraft and skyscrapers to ships. Uncertainties associated with this interaction are
difficult to quantify and require a deeper understanding as structures are required to operate in more
severe environments under stricter constraints. The variational mechanics framework is a very



exciting one, in that it provides us with a high level perspective on the physical processes (solid and
fluid and the interaction) and how to model them.

TRANSITIONS

Scientific findings from this investigation are being disseminated through refereed journal articles as
well as international conference papers. In addition, the Pls have been invited to give seminars on this
research. Direct transitions of this work to the Navy are occurring through ongoing, related
collaborations with the Naval Undersea Warfare Center (NUWC) and the Naval Surface Warfare
Center (NSWC); these are outlined in the following section. There is also an ongoing interaction with
the Naval Research Laboratory (NRL) which may potentially serve as an additional transition
mechanism for this work.

RELATED PROJECTS

There are two ongoing interactions with Navy laboratories that are directly relevant to this program.
The first is a collaboration with NUWC on the dynamics of multiline towed sensor arrays. A flow
visualization study in the wake of a lateral force device was recently completed at Rutgers; discussions
defining further research directions are underway. The second collaboration is with the Structural
Acoustics and Hydroacoustics Branch at NSWC. Fluid-structure interactions are being examined in
the context of flow noise generation.
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