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AFIT/GCA/ENC/11-01 
Abstract 

 

 Government contractors report earned value (EV) information to government 

agencies in monthly Contract Performance Reports (CPR).  Though major differences 

may exist in the data between subsequent CPRs, we know of no government effort to 

detect these occurrences.  The identification of major changes may locate and isolate 

problems and thus prevent million and billion dollar cost and schedule overruns.  In this 

study, we develop an approach to identify changes in the Cost Performance Index (CPI) 

and the Schedule Performance Index (SPI) that may indicate problems with contract 

performance.  We find the detection algorithm indentifies changes in the CPI and the SPI 

that correspond to large future changes in the Estimate at Complete (EAC).  The ability to 

detect unusual changes provides decision-makers with warnings for potential problems 

for acquisition contracts.    
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USING EARNED VALUE DATA TO DETECT POTENTIAL PROBLEMS  

IN ACQUISITION CONTRACTS 

 

1: Introduction 

 

 

 

Strains on the discretionary budget force military services to monitor cost and 

schedule performance for materiel acquisition closely.  However, the deterioration of 

skills and personnel in the defense acquisition workforce decreased the Department of 

Defense’s (DoD) ability to provide adequate financial discipline (Morin, 2010).  While 

DoD is presently addressing the reconstitution of the defense acquisition workforce 

(Morin, 2010), current acquisition analysts continue to manage an increasing workload.  

These analysts require new approaches to improve financial discipline in defense 

acquisition. 

Several methods exist that may improve acquisition analysts’ ability to monitor 

cost and schedule performance.  Specifically, analysts may develop more accurate 

Estimate at Complete (EAC) models and scrutinize changes in cost and schedule 

performance indices (Christensen, Antolini, & McKinney, 1995).  Improvements in these 

methods continue research on the results of poor cost and schedule performance, not the 

identification of symptoms one requires for real-time correction.  If analysts can identify 

potential and actual problems instead of their symptoms, program managers can monitor 

high-risk activities diligently to prevent poor cost and schedule performance.  
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Our Contribution 

This research provides program analysts and DoD leadership with an approach for 

identifying problems within acquisition contracts in real-time.  At a high-level, we 

discard the typical approach to acquisition research by treating earned value data as a 

general data time series, not as program performance measures with definite 

interpretations.  Specifically, we test the ability of a forecasting algorithm to detect 

statistically significant changes in acquisition contracts’ Cost Performance Index (CPI) 

and Schedule Performance Index (SPI).  Successful models will identify contract areas 

which are at risk of or face ongoing cost overruns and schedule delays.  Although 

program managers can use this information to aid analysis, this approach is not a 

substitute for in-depth understandings of their programs.              

 Particularly, we center our research on the following questions: 

1. Can we detect changes in acquisition contracts with a detection algorithm given at 

least the first three months CPI and SPI data? 

2. If we can detect changes, how long does a change exist before we identify it?  

In the next chapter, we discuss change detection research, time series forecasting, 

and analysis of earned value data.  Chapter III reviews our methodology in-detail.  

Particularly, we discuss earned value data, Autoregressive/Integrated/Moving Average 

(ARIMA) models, and the change detection algorithm.  Chapter IV presents the detection 

results and relationships between changes in the CPI and with SPI with major changes in 

the Estimate at Complete (EAC).  For different algorithm sensitivities, we detect between 

10% and 60% of major changes in the EAC that occur in the same month as the 
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detection.  Additionally, we find 20% to 50% of detections correspond to major changes 

in the EAC in future months.  Finally, Chapter V summarizes the significant findings of 

the research, discusses implications to DoD policies, and suggests areas of future 

research.  
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II. Literature Review 

 

 

 

Researchers apply change detection to identify when system characteristics 

change.  The wide applicability of the technique makes change detection less an 

academic field than a methodology many fields use for analysis.  Signal processing 

(Borodkin & Mottl', 1976) (Cohen, 1987), time series analysis (Box, Jenkins, & Reinsel, 

1994)(Dasgupta & Forrest, 1996), automatic control (Willsky, 1976), and industrial 

quality control (Shewhart, 1931) (Woodward & Goldsmith, 1964) (Duncan, 1986) are 

some fields that apply change detection techniques.  However, increases in information 

availability and advances in computer processing power provide new opportunities for 

change detection research (Cios & Moore, 2002) (Venkatesh, 2007).                              

Change detection techniques hinge on the definition of system change.  A 

single definition does not exist because researchers interpret change differently 

within and across fields.  In spite of the various interpretations of change, 

typically definitions of change detection focus on time-dependency.  Specifically, 

abruptness, not necessarily magnitude, characterizes system change. (Basseville 

& Nikiforov, 1993).   

The design of a change detection system is an important element of the technique.  

Different detection capabilities require detection system designers to balance the general 

and the specific applicability of a model.  To achieve this balance, system designers 

accept tradeoffs between certain detection performance characteristics.   
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Frequently, change detection researchers devise and appraise models with the following 

intuitive performance indices: 

1. Mean delay for detection 

2. Mean time between false alarms 

3. Probability of non-detection 

4. Probability of false alarms 

5. Accuracy of change time and change magnitude estimates (Basseville & 
Nikiforov, 1993) 

 

 Another consideration in change detection is the type of problem a system 

attempts to solve.  An online approach focuses on real-time solutions because the model 

treats information serially.  Consequently, the online approach can identify non-optimal 

solutions because the approach does not use an entire input data stream and thus searches 

for local optimality (Borodin & El-Yaniv, 1998) (Gustafsson, 2000).  Often researchers 

who use online change detection algorithms use performance criteria based on the mean 

delay for detection and the mean time between false alarms (Basseville & Nikiforov, 

1993).  These performance criteria adjust the detection capability of the algorithm toward 

instantaneous, though sometimes incorrect, identification of change. 

Alternatively, offline models offer retrospective analysis of changes in system 

characteristics.  This approach requires complete input data streams to search for globally 

optimal solutions (Gustafsson, 2000).  Researchers further divide offline detection into 

the evaluation of change-no change hypotheses tests and the estimation of change time.  

Change-no change hypotheses tests attempt to maximize the probability of correct change 

detection with a certain probability of incorrect change detection.  Change time 

estimation determines the maximum probability the actual change time occurs within a 

definite confidence interval (Basseville & Nikiforov, 1993).  
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Time Series Analysis 

 

 Time series analysis offers an approach to both online and offline change 

detection (Makridakis, Wheelwright, & Hyndman, 1998).  Equally important, time series 

analysis addresses dependency often found in observations at distinct intervals of a time 

series.  The combination of these analysis capabilities allows researchers to study 

common time-dependent problems with the technique.  Specifically, researchers address 

four practical problems with time series analysis:   

1. Forecast future values using past and current observations   

2. Monitor the effect dynamic inputs have on an output  

3. Examine how disturbances to input variables effect the behavior of a time series   

4. Adjust input variables to compensate for output deviations (Box, Jenkins, & 
Reinsel, 1994)  

 

Forecasting 

 Quantitative forecasting allows researchers to predict future outcomes 

probabilistically (Makridakis, Wheelwright, & Hyndman, 1998).  Implicitly, the value of 

quantitative forecasting depends on the satisfaction of the assumptions that sufficient lead 

time exists and known, conditional factors affect the outcome of a final event.  

Forecasting provides little benefit if lead time or planning does not impact the final 

outcome or the factors that do affect the final outcome are unknown.  Explicitly, 

quantitative forecasting requires 1) quantifiable information about past events and 2) the 

expectation at least some earlier patterns will repeat in the future.  
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Numerous methods of forecasting exist, ranging from the makeshift to the 

mathematically formal.  However, all forecasting models follow the general model of 

Equation 2.1.  

 ��������	�
 � ������
 
 ����� (2.1) 

 

The essential responsibility of any forecaster is to separate the pattern from the error.  

The successful separation of the two components provides a forecaster with the 

appropriate pattern to characterize the time series (Makridakis, Wheelwright, & 

Hyndman, 1998).  

 Regression sides with formal mathematical forecasting and is one of the most 

common forecasting techniques.  Regression relies on input or explanatory variables to 

model changes in the outcome or response variable.  An important subset of regression is 

autoregression.  With autoregression, one substitutes explanatory variables �� with earlier 

values of the forecast variable ����.  Equations 2.2 and 2.3 are general form equations for 

regression and autoregression models, respectively:   

 � � �� 
 ���� 
 ���� 
 � ���� 
 �  (2.2) 

 �� � �� 
 ������ 
 ������ 
 � ������ 
 �� (2.3) 

 

where 	 denotes a particular explanatory variable, � denotes time, � reflects time lag, �� is 

a weighting coefficient, and � is the forecast error.  When a time series exhibits 

relationships between observations of specific intervals, autoregression may be an 

appropriate technique because it incorporates the relationships and predictive capabilities 

of prior observations for a present forecast.     
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Autoregressive/Integrated/Moving Average (ARIMA)  

 

 The Autoregressive/Integrated/Moving Average (ARIMA) model is a common 

forecasting technique which incorporates the autoregressive model with the moving 

average model and a differencing mechanism.  The technique gained prominence during 

the 1970s when George Box and Gwilym Jenkins published their seminal work Time 

Series Analysis: Forecasting and Control.  In their book, Box and Jenkins described the 

theoretical framework for univariate time series ARIMA models.  

     Assumptions.       

 In theory, ARIMA models are the most general class of stationary forecasting 

models.  Despite the broad uses of ARIMA, proper application of this class of models 

requires strict adherence to the assumptions of ARIMA modeling.  Namely, a time series 

must 1) be stationary in the mean, 2) be stationary in variance, and 3) have a distribution 

of forecast residuals that is approximately normal with a mean of zero and standard error 

of 
�

√�, where n is the number of observations (Makridakis, Wheelwright, & Hyndman, 

1998).   

 The assumption of a stationary mean and variance in a time series has important 

implications.  The principle concern of stationary time series is that one cannot forecast 

the characteristics of a non-stationary time series well.  For example, if a time series 

increases over time, the mean and the variance will increase with the number of 

observations.  As a result, forecasts will always underestimate the mean and the variance.  

Additionally, because the mean and the variance of a non-stationary time series are 

uncertain, one may infer little about correlations with other variables (Nau, 2005).  
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 To be stationary in the mean, the time series shows no evidence of a change in the 

mean through time.  Similarly, no meaningful changes in the variance over time indicate 

the variance is stationary-- homoskedasticity.   Though violations of these assumptions 

often are clear visually, the Dickey-Fuller and Augmented Dickey-Fuller unit root tests 

are robust methods of verification (Makridakis, Wheelwright, & Hyndman, 1998).   

 Forecasters address violations of the stationary assumptions with difference (or 

de-trend) and transformation routines.  If successful, the forecaster may find a time series 

is stationary in an alternative view of the data.  Typically, an analyst uses difference 

calculations to adjusts upward or downward trends in the mean of the time series.  With a 

difference or de-trend calculation, the analyst subtracts the previous observation from the 

current observation to find the difference:  

 

 ∆� � �� � ���� (2.4) 

 
where � is the observation and � is the time of the observation.  Likewise, forecasters use 

mathematical transformations to address violations of the stationary variance assumption.  

The type of transformation depends on the specific time series, which include common 

transformations such as natural logarithms and exponential functions.     

 Figure 2.1 shows an example of a time series with a non-stationary mean-- 

specifically an uptrend.  Figure 2.2 illustrates the effect of a first order non-seasonal 

difference on the data in Figure 2.1.  As a result, the mean is approximately stationary 

with deviations that tend to revert to the mean.  Additionally, the variance of the time 

series in both Figures 2.1 and 2.2 appears stationary, with no clear indication of a 

potential to change over time.  One can verify these results with unit root tests.          
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Figure 2.1: Upward Trend Plot (Nau, 2005) 

 

Figure 2.2: First Non-Seasonal Difference (Nau, 2005) 

 

 The assumption that the normal distribution approximates the distribution of the 

forecast residuals is a diagnostic test to ensure the forecast errors truly are random.  If this 

assumption is not met, perhaps the model omits meaningful patterns.  Forecasters test 

normality of the residual distribution with traditional normality and portmanteau tests.  

One traditional test of normality is the Shapiro-Wilk goodness of fit test.  The Shapiro-



11 

 

Wilk method tests the null hypothesis that a sample ��, ��, … , �� comes from a 

population with a normal distribution.  Equation 2.5 lists the test statistic for the Shapiro-

Wilk test:  

 
" � #∑ %�����&� '�

∑ #�� � �('���&�
)  

(2.5) 

 
where %� is a constant, �( is the sample mean, and �� is an ith order statistic (Shapiro & 

Wilk, 1965).  Portmanteau test compare the residuals of the autocorrelation function 

(ACF) and the partial autocorrelation function (PACF ) to the normal distribution to 

ensure the distribution of the residuals is approximately normal. Box and Piece and Ljung 

and Box developed two common portmanteau tests (Box & Pierce, 1970) (Ljung & Box, 

1978).  Equations 2.6 and 2.7 list the Box-Pierce and Ljung-Box portmanteau tests, 

respectively:  

 * � 
 + �,�
-

,&�
 

(2.6) 

 *. � 
#
 
 2' + #
 � 0'���,�
-

,&�
 

(2.7) 

 
where 
 is the number of observations in the time series, 1 is the number of lag periods 

the analysts consider, and �, is the correlation value for observation 0.  Both portmanteau 

tests compare * and *. to the chi-square distribution to determine if the plot of the 

residuals is statistically different from "white noise". 
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      General Non-Seasonal ARIMA Model. 

 Forecasters describe the non-seasonal ARIMA model as an ARIMA(p, d, q), 

where: 

• p is the number of autoregressive terms, 

• d is the number of non-seasonal differences, and 

• q is the number of lagged forecast errors (Nau, 2005). 
 
Specifically, autoregressive terms are the lags of a differenced time series; moving 

average terms are the lags are the lags of forecast errors; and an integrated version of a 

stationary series is a time series that is differenced to be made stationary (Nau, 2005).     

 For illustration, two basic ARIMA models are the ARIMA(1,0,0) and 

ARIMA(0,0,1).  Equations 2.8 and 2.9 show the mathematical forms of these models: 

 

 ARIMA(1,0,0): �� � 2 
 3����� 
 �� (2.8) 

 ARIMA(0,0,1): �� � 2 
 �� � 4�����  (2.9) 

 
where 2 is a constant, 3 is an autoregressive term, 4 is a moving average term, and � is 

the error term.  However, the ARIMA(1,0,0) and ARIMA(0,0,1) are equivalently AR(1) 

and MA(1) models, respectively, as autoregressive and moving average models are 

subsets of ARIMA.  
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     General Seasonal ARIMA Model. 

 Some time series exhibit seasonal properties in addition to non-seasonal ARIMA 

characteristics.  An extension of the non-seasonal ARIMA model accounts for seasonal 

aspects of time series.  The notation for seasonal models is ARIMA(p, d, q)(P, D, Q)s.  

Similarly, for an ARIMA(p, d, q)(P, D, Q)s   

• P is the number of seasonal autoregressive terms, 

• D is the number of non-seasonal differences, and 

• Q is the number of lagged forecast errors (Nau, 2005). 
 

The seasonal aspects of time series appear in the ACF and the PACF.  To determine 

seasonality, forecasters examine statistically significant lags in ACFs and PACFs 

(Makridakis, Wheelwright, & Hyndman, 1998).       

Box-Jenkins Approach 

 Box and Jenkins describe a basic, three-phase approach to the development of an 

ARIMA model.  The first phase of the Box-Jenkins approach is Identification.  During 

Identification, forecasters prepare the data and select the model.  The extent of data 

preparation depends on the characteristics of the time series that may or may not violate 

the stationary assumptions of the ARIMA model.    

 Autocorrelation functions (ACF), partial autocorrelation functions (PACF), and 

data characteristics influence model selection.  Autocorrelation functions inform 

forecasters of the relationships between observations with distinct times of separation.  A 

statistically significant autocorrelation at a specific lag indicates a potential time-

dependency of a current observation on the observation at the time difference.  

 Similarly, partial autocorrelation functions measure the relationships between 

explanatory variables with various times of separation.  The value of PACFs is that they 
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show transitive relationships.  Particularly, if observations �� and ���� have a significant 

correlation, ���� and ���� also have a significant correlation because the time difference 

is the same. �� and ���� will have a correlation through the common relationships to ����.  

Partial autocorrelation measures the correlation of �� and ���� with the removal of the 

intermediate ���1 observation (Makridakis, Wheelwright, & Hyndman, 1998).  

 The second phase of the Box-Jenkins approach is Estimation and Testing.  

Estimation involves determination of parameters and model rank criteria for potential 

models.  Forecasters use model rank criteria to evaluate collections of parametric models 

with different numbers of variables.  Akaike's Information Criterion (AIC) and Schwarz's 

Bayesian Criterion (SBC) are standard model rank criteria.  Both criteria rank models 

using  a tradeoff between model accuracy and model complexity.  All else equal, the 

criteria favor parsimonious or terse models.  We list the equations for AIC and SBC, 

respectively, in Equations 2.10 and 2.11:  

  

 567 � ���8�	0��	1��9 
 20 (2.10) 

 :;7 � �2��8�	0��	1��9 
 0�
#
'  (2.11) 

 
where 0 is the number of parameters (Akaike, 1974) (Schwarz, 1978).  Testing, 

particularly diagnostics, determines if the chosen model meets the third assumption for an 

ARIMA model: the forecast errors are uncorrelated "white noise".   

 The final phase of the Box-Jenkins approach to ARIMA model development is 

Application.  Simply, the intrinsic value of the ARIMA model lies in the performance of 

the model in-practice.  Figure 2.3 summarizes the phases and elements of the Box-

Jenkins approach to ARIMA model development. 



 

Figure 2.3: Box-Jenk

(Makridakis, Wheelwright, & Hyndman, 1998)
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trends, forecasting by Estimate at Complete (EAC) function, and Over 

Phase 3: 

Application

Forecasting
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Target Baseline (OTB) analysis.  One particularly useful metric is the percent complete 

versus percent spend chart, which shows the cost and schedule performance expectation.  

Figure 2.4 illustrates what constitutes a "normal" percent complete-percent spent chart.  

Deviations from the normal percent complete-percent spent line may indicate cost 

problems for an acquisition program.  Similarly, Figure 2.5 shows a normal percent 

complete vs. percent scheduled chart.  Deviations from the normal percent complete-

percent scheduled chart may indicate problems for an acquisition program.    

 

Figure 2.4: "Normal" Percent Complete vs. Percent Spent Chart  

(Headquarters Air Force Materiel Command, Financial Management, 1994) 
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Figure 2.5: "Normal" Percent Complete vs. Percent Scheduled Chart  

(Headquarters Air Force Materiel Command, Financial Management, 1994) 

 

 This chapter outlined change detection techniques, specifically the general class 

of ARIMA forecasting models.  We discussed the assumptions and tests for ARIMA that 

ensure the accurate characterization of the data.  Finally, we overviewed the percent 

complete-percent spent and percent complete-percent scheduled charts to illustrate what 

normal cost and schedule performance for an acquisition contract looks like.  In the next 

two chapters, we apply ARIMA techniques to model earned value data.  We use the 

model to develop an algorithm that detects changes from the normal value of 1 for the 

CPI and the SPI.   
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III. Methodology 

 
 
 
 
 
 This analysis studies online change detection of earned value (EV) data to identify 

and isolate potential problems in acquisition contracts.  In this chapter, we discuss our 

approach to this change detection analysis.  We begin with a description of the data 

source, our contract selection criteria, and the limitations of the data source.  Next, we 

discuss the EV measures we select from the data source, our categorization process, and 

the normalization procedure for these measures.  Finally, we 1) explain why and how we 

forecast EV data with ARIMA models, 2) describe our approach for detecting changes in 

the EV time series, and 3) compare change times to deviations in the percent complete vs. 

percent spent chart.         

Data Source 

 The Defense Cost and Resource Center (DCARC) hosts a major collection of 

detailed EV data for Department of Defense (DoD) acquisition contracts.  These data 

include monthly Contract Performance Reports (CPR), contract history files, and other 

EV and programmatic data submissions directly from program offices.  For this analysis, 

we use EV history files available in DCARC.  

     Contract Selection Criteria. 

 We use contract history files because they contain panel data for fundamental 

earned value metrics.  Specifically, contract history files include data for Actual Cost of 

Work Performed (ACWP), Budgeted Cost of Work Performed (BCWP), Budgeted Cost 

of Work Scheduled (BCWS), analytical derivatives of ACWP, BCWP, and BCWS (e.g. 
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Cost Variance (CV) and Schedule Variance (SV)), Estimate at Complete (EAC), Budget 

at Complete (BAC), Management Reserve (MR), categorical information, and report 

dates for each Work Breakdown Structure (WBS) element at all levels.  Additionally, 

because DoD and the American National Standards Institute (ANSI) maintain specific 

requirements and instructions for these measures, we assume the data provide a 

framework for reliable measurement (OUSD(AT&L)ARA/AM(SO), 2005) 

(NDIA/PMSC, 2009).  

 We limit our analysis database to history files for Research, Development, Test, 

and Evaluation (RDT&E) contracts in DCARC.  We select RDT&E contracts because 

typically they are large budget contracts with high cost and schedule uncertainty and risk.  

Alternatively, production contracts normally have less uncertainty and risk that may 

artificially eliminate the changes we wish to detect.    

 In an internal query of DCARC, we identify 813 files which meet our database 

specifications.  Of the 813 contracts we identify in our information query, we locate only 

787 files in the database.  The different file types of the search results (e.g. .pdf and .trn) 

reduce the number of files we can access from 787 to 165 because we cannot extract all 

data automatically (i.e. without a major manual data entry effort).  Finally, of the 165 

files we can access, we find 32 unique contract history files for RDT&E contracts.  We 

eliminate one history file due to data inconsistencies (Table 3.1).  In Table 3.2 and Table 

3.3 we list the number of contracts in the research database by Military Handbook Type 

and military service, respectively.   
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We do not impose a contract start date or end date constraint on the research 

database due to the small number of history files we gather from DCARC; however, the 

start date for all but one contract is after 1 January 2000 (Table 3.4). 

Table 3.1:  Database Size Reductions 

Database Size Reductions Number of Files 

Search Results 813 

Files Available  787 

Accessible Files 165 

Unique History Files 32 

History Files in Research Database 31 

 

Table 3.2: Number of Contracts by Military Handbook Type 

Military Handbook Type Number of Contracts 

Aircraft 8 

Electronic/Automated Software 13 

Missile 3 

Ship 1 

Space 3 

Surface Vehicles 2 

System of Systems 1 

Total 31 

 
Table 3.3: Number of Contracts by Military Service 

Military Service Number of Contracts 

Air Force 11 

Army 7 

Navy 12 

Department of Defense 1 

Total 31 

  
Table 3.4: Number of Contracts by Contract Start Date 

Contract Start Date Number of Contracts 

1 Jan 1995-31 Dec 1999 1 

1 Jan 2000-31 Dec 2004 11 

1 Jan 2005-31 Dec 2009 19 

Total 31 
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     Limitations of Data Source. 

In reality, we use a data source with an unintentional filter for this analysis.  The 

data source is the collection of acquisition contract history files; the filter is DCARC.  

The result of the collection-filter process is a smaller pool of contract history files. 

 Acquisition contract history files offer some benefits, but pose many obstacles to 

analysis.  The principle benefit of contract history files is that they provide time series 

data at multiple levels of the contract WBS.  The obstacles are three-fold.  First, a 

contract history file is effectively a concatenation of sequential monthly CPRs.  Often 

monthly CPRs contain inaccuracies which program offices work with the contractor to 

correct.  CPR re-submissions to DCARC are evidence of this issue.  However, in some 

instances systematic errors persist in the contract history files we collect.  We attempt to 

resolve these data issues with the appropriate monthly CPRs or the applicable CPR 

resubmissions.         

 Second, a contract history file does not always contain the full time series.  One 

reason for partial time series is many program offices update their contract history files 

on an annual basis.  Thus, a researcher who collects history files between updates may 

not acquire the additions to the time series since the last release.  In Appendix E, we 

show the percentage of the total contract that each of the contracts in the research 

database covers.  We calculate percent coverage by comparing the contract start date and 

contract end date to the available months of data in the contract history files.          

 Third, the flexibility in electronic submission formats permitted by the CPR-

governing Data Item Description (DID) creates data accessibility issues for cross-

program analysis that individual program offices may not face 
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(OUSD(AT&L)ARA/AM(SO), 2005).  Specifically, our data processing and 

management resources cannot process all file types that contractors submit.  Individual 

program offices likely do not have this issue because they have a direct relationship with 

the contractor and can specify an electronic format both can handle easily. 

 The main limitation DCARC imposes on our research database is the file size that 

program offices can upload to the database.   Although we do not encounter this problem 

directly, indirectly file sizes that are too large to submit are unavailable in DCARC and 

thus impact the number of contract history files we collect.  As a result, DCARC 

inadvertently filters available contract history files.    

 Another limitation of DCARC is the number of months of data available for each 

contract.  Generally, the length of the time series in a contract history is shorter than the 

time from contract start date to present.  Thus, some of the contract history files we use 

have fewer months than the contract’s actual number of months to-date.      

Earned Value Data 

 We construct our research database with entries for ACWP, BCWP, and BCWS 

with respect to report date for each contract history file.  We sort these using WBS level 

as the criterion.   

     Categorization. 

 For the WBS level criteria, we sort the data by level 1 and sum the values within 

the level.  These sums are cumulative values for ACWP, BCWP, and BCWS.  We limit 

the sort criteria to WBS level 1, but conceivably can use level 2 and 3 also.  Data for 

WBS levels greater than 3 are problematic because fewer contracts report at each lower 
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level and thus reduces the sample size increasingly.  Different sample sizes create data 

comparison issues between acquisition contracts. 

 We compute monthly ACWP, BCWP, and BCWS values and monthly and 

cumulative analytic earned value measures for the level 1 data.  The analytic EV 

measures we calculate are: 

• Cost Variance (CV$) 

• Normalized Cost Variance (NCV) 

• Percent Cost Variance (%CV) 

• Schedule Variance (SV$) 

• Schedule Variance (SVMonths) 

• Normalized Schedule Variance (NSV) 

• Percent Schedule Variance (%SV) 

• Cost Performance Index (CPI) 

• Schedule Performance Index (SPI) 

• To-Complete Index (TCPI). 
 
The equations we use to calculate the analytic EV measures are shown in Appendix A.  

     Data Normalization. 

 Differences in the size (e.g. Budget at Complete (BAC)), contract length, and 

inflation can complicate comparisons among contracts.  We address how we deal with 

these issues of contract comparability.   

 First, the importance of a change in ACWP, BCWP, or BCWS is relative to the 

size of the contract.  Although a change may be large in amount, the relative change may 

be small compared to the size of the overall contract.  However, calculations for CPI and 

SPI control for contract size because changes in ACWP, BCWP, and BCWS are relative 

to one another.   

 Next, the length of a contract may influence how abruptly a change appears over 

an entire contract.  Traditionally, EV analysts use a percent complete calculation to 
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manage this concern.  In this analysis, we focus on monthly changes, not changes 

throughout entire contracts.  Therefore, contract length does not affect our analysis.    

 Finally, the effect of inflation creates disparities in the value of money across 

time.  We use 2010 as a base year (BY10$) to standardize costs in time.  We gather the 

conversion rates from the 2010 release of Deputy Assistant Secretary of the Air Force for 

Cost and Economics (SAF/FMC) inflation tables (SAF/FMC, 2010). 

Forecasting Earned Value Data with ARIMA Models 

 ARIMA forecasting offers a logical approach to online change detection in earned 

value data.  We theorize patterns in cumulative ACWP, cumulative BCWP, and 

cumulative BCWS time series are distinguishable from data noise.  We can model these 

patterns to determine how we can best show real-time changes in the CPI and the SPI.  

Although we lack a large amount of data for any single program, our database has enough 

observations to confirm trends for several programs.  Lastly, we expect historic cost and 

schedule performances to continue in the future.   

 We analyze our time series in JMP® version 9.  The time series capability in 

JMP® includes ARIMA models which we use to forecast EV data.  The parameter test 

statistics and rank criteria we obtain from JMP® help us appraise each acquisition 

contract model in our research database.  We record consistent time series characteristics 

to consider during model selection.  

 Largely, we conduct our analysis using the Box-Jenkins approach.  We begin with 

plots of the time series for each acquisition contract.  We plot each time series to examine 

if the means and variances are stationary for the ACWP, BCWP, and BCWS time series.  
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We find the means of the time series are non-stationary and require differencing.  The 

variances of the time series are stationary and thus do not require transformation.  

 JMP® plots of the differenced time series (Figure 3.1), autocorrelation functions 

(ACF) (Figure 3.2, left), and partial autocorrelation functions (PACF) (Figure 3.2, right) 

allow visual verification that the differenced time series are stationary.  The data used to 

plot Figure 3.1 and Figure 3.2 is an example of a differenced time series from the 

research database.  Figure 3.1 indicates the mean and the variance are stationary because 

the data are distributed about a constant mean without a growing or decaying variance.  

Despite the potential pattern shown by the recurrence of dips at regular intervals, no 

hypothesis test indicates a significant change in the mean, likely because the number of 

observations reduces the power of the test.  Additionally, the ACF and PACF plots in 

Figure 3.2 show the mean is stationary because the values reduce to zero quickly.     

 The Augmented Dickey-Fuller test (ADF) illustrates mathematically the time 

series are stationary.  Specifically, to reject the null hypothesis at some level of 

confidence, the ADF must be a negative value, with greater negativity reflecting a higher 

level of confidence.  The ADF values in Figure 3.1 for zero mean, single mean, and trend 

confirm the time series are stationary because the values are all negative.       
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Figure 3.1: First Non-Seasonal Difference 

 

 

Figure 3.2: Plots of ACF and PACF 

 

 The ACF and PACF plots also reveal potential autoregressive (AR) models, 

moving average (MA) models, or seasonality.  Bars that exceed the boundary lines in the 

ACF or PACF indicate statistically significant lags.  In Figures 3.1 and 3.2, we find 

alternative representations of a statistically significant lag of 1.  This lag of one period 

implies an observation one period earlier in the time series influences the current 
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observation.  As a result, AR(1) and MA(1) models may be appropriate. However, we 

observe no statistically significant lags at seasonal intervals.  

 We observe upward trends and lag 1 characteristics in the ACWP, BCWP, and 

BCWS time series for all contracts, but we do not observe seasonal patterns.  Therefore, 

we confine our model selection to non-seasonal ARIMA models that account for these 

characteristics. We use the ARIMA model group function in JMP® to test models that 

meet the inclusive range of specifications for p, d, and q in Table 3.5.  We identify eight 

potential models for the combination of these p, d, and q ranges.  Table 3.6 lists these 

eight models.   

Table 3.5: Bounds ARIMA Model Characteristics 

ARIMA Minimum Maximum 

p 0 1 

d 0 1 

q 0 1 

 

Table 3.6:  Potential ARIMA Models 

Number ARIMA Model 

1 ARIMA(0,0,0) 

2 ARIMA(1,1,1) 

3 AR(1) 

4 ARI(1,1) 

5 ARMA(1,1) 

6 I(1) 

7 IMA(1,1) 

8 MA(1) 

 

 The ARIMA model group function ranks models by the Akaike Information 

Criterion (AIC) and Schwarz Bayesian Criterion (SBC).  The smaller the AIC and SBC 

values, the better rank the model earns (Akaike, 1974) (Schwarz, 1978).  The rank 
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structure provided the ARIMA model group function was consistent between AIC and 

SBC measures.  We find a reliable division in the potential models group with the R2 

values for the models.  This division is important because R2 measures the extent that the 

terms in the model explain the variation of the forecast.  The few terms in all potential 

models alleviates concerns of overfitting the time series and, thus, the benefit of using 

adjusted R-square as a measure of model performance instead of R-square.   

 The division in potential models separates ARIMA models ARI(1,1), IMA(1,1), 

I(1), and ARIMA(1,1,1) from AR(1), MA(1), ARIMA(0,0,0), and ARMA(1,1).  Table 

3.7 lists the number of contracts in which each model occurred in the top four ranks 

according to the AIC and SBC measures.  Because the first four models listed appear in 

the top four model ranks for nearly every program, we choose to examine these models 

further.  We note two contracts have time series models that are not present in any other 

contract’s top four ranks.  The models that appear in these contracts’ top four ranks are 

ARIMA(0,0,0) and AR(1).  We believe they occur in the top four ranks because the two 

contracts have small numbers of observations.   

Table 3.7: Number of Top Four Occurrences by AIC and SBC 

ARIMA Model Contracts 

 ACWP BCWP BCWS 

ARI(1,1) 31 31 31 

IMA(1,1) 30 30 30 

I(1) 30 30 30 

ARIMA(1,1,1) 30 30 30 

ARIMA(0,0,0) 2 2 2 

AR(1) 1 1 1 

MA(1) 0 0 0 

ARMA(1,1) 0 0 0 
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 We validate the appropriateness of the high-occurrence model group [ARI(1,1), 

IMA(1,1), I(1), and ARIMA(1,1,1)] with tests of statistical significance for the terms in 

each model.  Table 3.8 lists the number of contracts in which all parameters for a given 

model are statistically significant (α = 0.05).  We find three out of four models in the 

high-occurrence group have one or more variables that are not statistically significant for 

approximately half of the contracts in the research database.  Again, we find the same 

two contracts that have uncommon ARIMA models reduce the number of statistically 

significant models.    

Table 3.8: Contracts with Statistically Significant Parameters (α = 0.05) 

ARIMA Model Contracts 

 ACWP BCWP BCWS 

I(1) 28 27 27 

IMA(1,1) 16 11 9 

ARI(1) 13 11 11 

ARIMA(1,1,1) 10 9 10 

 

 The I(1) model performs well against the model rank criteria and passes the tests 

of statistical significance for nearly all contracts.  For this reason, we discard the other 

models and test the normality of residuals for the I(1) model only.   

 We use the Shapiro-Wilk and Ljung-Box methods to test the normality of the 

residual distributions.  With the Shapiro-Wilk test, we standardize all residual values so 

we can compare the cumulative ACWP, cumulative BCWP, and cumulative BCWS time 

series to the normal distribution for all programs simultaneously.  Table 3.9 reports the 

results of the Shapiro-Wilk normality test for the cumulative ACWP, cumulative BCWP, 

and cumulative BCWS time series.  We reject the null hypothesis that the normal 

distribution approximates the distributions of the residuals for all time series (α = 0.05).  
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Although visually, we find the residuals are clustered closely around zero (see Appendix 

B for the distributions of the standardized residuals).  We identify two residuals are 

outliers because they are further than three standard deviations from the mean.  These 

outliers are approximately 6.5 and -4.0 standard deviations away from the mean.    

We locate these outliers in our research database to examine why our time series 

model performs poorly on their prediction.  Although the two outliers occur in different 

contracts, we find a common characteristic in the months that immediately precede the 

months of the outliers.  Specifically, the months that precede both outliers have 

increasingly narrow forecast confidence intervals because sequential values for the 

cumulative ACWP, cumulative BCWP, and cumulative BCWS show precise monthly 

ACWP, BCWP, and BCWS performance rates.  As a result, the forecast confidence 

interval narrows with each new month’s data and thus even minor deviations from the 

monthly rates appear major.  

Table 3.9: Shapiro-Wilk test of residuals (α = 0.05) 

Time Series Fail to Reject Reject 

ACWP  X 

BCWP  X 

BCWS  X 

 

 For our second test of residual normality, we compare the Ljung-Box Q-value at 

lag 1 to critical values of the chi-square distribution.  We use one lag period because this 

is the longest lag we consider in model selection. We evaluate the Q statistic with 

different degrees of freedom because the contracts span different numbers of months.  

Table 3.10 lists the results of Ljung-Box portmanteau test residuals (α = 0.05).  We fail to 
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reject the null hypothesis that the time series are normally distributed for 29 of 31 

contracts.  We reject the null hypothesis for the two previously-noted unusual time series.   

Table 3.10: Ljung-Box Portmanteau Test of Residuals (α = 0.05) 

Result Contracts 

 ACWP BCWP BCWS 

Fail to Reject 29 29 29 

Reject 2 2 2 

 

 Of the two tests for residual normality, the Shapiro-Wilk test is more 

mathematically robust because the Ljung-Box method sometimes fails to reject models 

that fit the normal distribution to the time series residuals poorly (Makridakis, 

Wheelwright, & Hyndman, 1998).  As a result, we do not achieve the theoretical result of 

normally distributed residuals for the cumulative ACWP, cumulative BCWP, and 

cumulative BCWS time series.   

 However, theoretical data is often much different than actual data.  Due to this 

difference, we attempt to characterize the clustered nature of the residuals more 

generally.  Specifically, we determine if the true mean of the residuals falls within a 

certain confidence interval.  If the residuals fall within a specific confidence interval, we 

can describe the statistical boundaries of the residuals for any distribution.   

 Chebychev's Theorem specifies the percentage of observations that fall within a 

confidence interval 2 < 0= regardless of the distribution, where µ is the mean, σ is the 

standard deviation, k is the number of standard deviations such that 0 > 1. 

(Newbold, Carlson, & Thorne, 2010).  The Theorem states for any population the percent 

of observations that fall within the confidence interval is at least 
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 100 A1 � B1 0�C DE%. 
(3.1) 

 
Although Chebychev's Theorem offers a practical method to guarantee a confidence 

interval for any population, the main limitation of the Theorem is the level of confidence 

for many populations is greater than result from Equation 3.1 (Newbold, Carlson, & 

Thorne, 2010).   

 We apply Chebychev's Theorem to the distributions of residuals for the ACWP, 

BCWP, and BCWS time series.  By using the Theorem, we tradeoff more precise 

confidence levels for a theoretical minimum confidence level.  We exclude the two 

statistical outliers from our calculations of the mean and the standard deviation for each 

time series (see Appendix C).  Additionally, because we use plus or minus three standard 

deviations from the mean, according to Equation 3.1, the true value of the mean lies in 

the confidence interval in least 88.9% of all analyses.  We list the confidence intervals for 

the distributions of residuals in Figure 3.11.  The Lower Confidence Limit (LCL) and 

Upper Confidence Limit (UCL) are the boundaries of the interval.  With exception of the 

two statistical outliers, we find no residuals outside these intervals for the population.   

Table 3.11: Confidence Intervals for Standardized Residuals (CL = 88.9%)  

Time Series µ σ k LCL UCL 

ACWP -0.002351 0.958000 <3 -2.876351 2.871649 

BCWP -0.002421 0.957468 <3 -2.874825 2.869983 

BCWS -0.002343 0.957896 <3 -2.876031 2.871375 

 

 The characterization of the ACWP, BCWP, and BCWS time series with 

confidence intervals supports the modeling of the CPI and the SPI time series because 

ACWP, BCWP, and BCWS are inputs to the CPI and SPI.  We use an ARIMA(0,0,0) or 
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“white noise” model for the CPI and the SPI.  An ARIMA(0,0,0) is an appropriate model 

because we expect contracts with normal cost and schedule performances to have CPIs 

and SPIs equal to 1 and the normal distribution to characterize the error terms.  We do not 

need to stationarize the mean or the variance because both are stable in the time series.  

Additionally, there is no requirement to test the statistical significance of the parameters 

because an ARIMA(0,0,0) only includes the error term.   

We evaluate the normality of the residuals with the Shapiro-Wilk test to ensure 

the normal distribution models the error terms of the CPI and the SPI.  Even though the 

means of the distributions of the residuals are approximately centered on zero and 

residual observations decrease away from the mean, the residuals fail to meet the 

assumption of normality (see Appendix D).  However, because the distribution of the 

standardized residuals is robust against deviations from normality provided the 

distribution is relatively symmetric, we assume normality for both time series.   

Change Detection 

 
We use statistical differences to monitor real-time changes in the monthly Cost 

Performance Index (CPI) and Schedule Performance Index (SPI) observations.  We 

theorize changes in the CPI and the SPI may indicate contract problems because these 

measures are the slopes of the percent complete vs. percent spent and percent complete 

vs. percent scheduled plots, respectively.  We define a difference as a CPI or a SPI value 

statistically different from 1.    
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We use the Chebychev confidence interval in Equation 3.2 to specify the 

uncertainty boundaries for our forecast.   

 

 �( � 0� F 1 F �( 
 0� (3.2) 

where �( is the sample mean, � is the sample standard deviation, and 0 is the number of 

sample standard deviations (Newbold, Carlson, & Thorne, 2010).  We use the sample 

mean and sample standard deviation because we “acquire” the observations we evaluate 

serially.  We test the sensitivity of the algorithm for a series of standard deviations to 

tradeoff false detections (Type I errors) with missed detections (Type II errors); 

specifically, we test standard deviations from 0.5 to 3.0.   

For example, when a standard deviation of 0.5 is used for the confidence interval 

the algorithm favors false detections in lieu of missed detections.  The propensity towards 

false detections is because the probability density function (PDF) for one standard 

deviation of a normal distribution captures 38.2% of the distribution.  Therefore, given 

observations data up to GH�, the probability a forecast GH�I1 is determined to be statistically 

different from the sample mean is 61.8% (α = 0.618).  Plainly, about three-fifths of 

observations will “detected” as statistically significant changes.      

 For an accurate estimate of the standard deviation, we do not begin change 

detection until the fourth observation.  That is, the first observation for which we attempt 

to detect a change in each time series is the fourth month's observation.  Theoretically, we 

can detect change with one and two observations used to calculate the standard deviation. 

Practically, however, we choose three prior observations to estimate the time series 

standard deviation with the expectation of a narrower confidence interval.   
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 We compare months that indicate changes in the CPI or the SPI with months of 

major changes in contractor EACs.  We theorize months that indicate change in our 

detection algorithm will lead or correspond to major changes in the contractor EAC.  A 

change in the contractor EAC is a significant event because the company under contract 

acknowledges formally it likely cannot complete the work required at or within the dollar 

value of the current EAC.   

We define major changes in the EAC as: 

1. %∆EAC ≥ 10%  
2. 10% > %∆EAC ≥ 5% 
3. -10% < %∆EAC ≤ -5%   
4. %∆EAC ≤ -10% 

 
We choose these categories to characterize major EAC changes because changes within 

5% occur frequently and therefore likely represent normal data noise.  Changes of at least 

5% appear much less frequently and thus we theorize are indicative of major performance 

changes.  

In this chapter we overviewed the data we used in this analysis and the limitations 

of the data.  We explained how we modeled and tested the ACWP, BCWP, and BCWS 

time series.  Finally, we discussed how we detect changes in the CPI and the SPI.  In the 

next chapter, we review the results of the change detection analysis.  
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IV. Results and Discussion 

 

 

 
 
 
 In this chapter, we review the results of our change detection algorithm.  We 

discuss the changes we detected and the characteristics of these changes.  We explore in 

detail the time relationships of change detections and major changes in the Estimate at 

Complete (EAC).   

Overall, we found 99 months had major percentage changes in the EAC out of 

1094 potential months.  Logically, the number of changes detected in the CPI and SPI 

increased with greater algorithm sensitivity.  For perspective, the most sensitive 

algorithm we tested (0.5 standard deviations) identified 550 and 549 changes in the CPI 

and SPI, respectively.  This algorithm sensitivity detected changes in approximately half 

of the 1094 observations in the research database and about five times the number of 

major EAC changes that occurred during the same month as the detections.  The least 

sensitive algorithm (3.0 standard deviations) detected statistical changes in the CPI and 

SPI for 89 and 75 observations, respectively.  Therefore, the least sensitive algorithm we 

tested detected changes in less than 10% of observations and less than 80% of the number 

of major EAC changes that occurred during the same month as the detections. 

We observed a noticeable increase (approximately 30%) in detections of major 

EAC changes between the 0.5 and 1.0 standard deviation sensitivities (Figure 4.1).  We 

contend the increase in detections was sensible because the probability density function 

(PDF) for a normal distribution at 0.5 standard deviations rejects the null hypothesis for 

30% more observations than for 1.0 standard deviation.  In other words, the algorithm 
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with 0.5 standard deviations will detect changes in about 2/3 of observations where the 

algorithm with 1.0 standard deviation will detect changes in about 1/3.  We did not test 

algorithm sensitivities greater than 0.5 standard deviations and thus cannot inform the 

reader of the performance of algorithms more sensitive than the 0.5 standard deviation 

sensitivity.  However, we expect algorithms more sensitive than 0.5 standard deviations 

will detect yet greater percentages of major EAC changes. 

 

Figure 4.1: Detections and Major EAC Changes During Same Month 

By algorithm sensitivity, Figure 4.2 illustrates the percentage of false detections 

of major EAC changes that during the same month as the detections.  We calculated these 

percentages as the number of detections for non-major EAC changes relative to the total 

number of detections.  In Figure 4.2, negative percentages reflect algorithm sensitivities 

that had smaller numbers of detections than major EAC changes in the same observation 

period.  We find the greater the sensitivity of the algorithm, the greater the percentage of 

missed detections.     
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Figure 4.2: False Detections and Major EAC Changes During Same Month 
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Figure 4.3: Mean Detection Percentage of Future Month Major EAC Changes 

 
 

Figure 4.4: False Detection Percentage of Future Month Major EAC Changes 
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Frequency 

 Figures 4.5 and 4.6 show the percentages of changes detected in the CPI and the 

SPI for different standard deviations.  For both CPI and SPI, observations exceeded the 

Lower Confidence Limit (LCL) more frequently than the Upper Confidence Limit 

(UCL): 83% and 84%, respectively.  The higher percentage of LCL detections does not 

imply the algorithm is more sensitive to worsening cost and schedule performances.  

Rather, the algorithm does detect worsening cost and schedule performances, and in the 

database a higher ratio of worsening than improving performance was detected.    

Current Month Detections 

 Figures 4.7 and 4.8 illustrate the percentages of major current month EAC 

changes detected by the algorithm.  Intuitively, for increasing sensitivity—fewer standard 

deviations—the algorithm detects higher percentages of changes in the EAC for the 

current month.  Likewise, for decreasing detection sensitivity, the algorithm does not 

detect higher percentages of changes in EAC.    
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Figure 4.5: Percentage of CPI Detections 

 
 

Figure 4.6: Percentage of SPI Detections 
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Figure 4.7: Percent age of Current Month CPI Detections 

 
 

Figure 4.8: Percentage of Current Month SPI Detections 
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Early Detections 

 The algorithm identified informational early detection relationships between CPI 

or SPI detections and all groups of major EAC changes.  Changes in the CPI and SPI 

corresponded to major changes in the EAC as early as twelve months before the EAC 

change.  The percentage of detections grew as the time difference between the CPI or SPI 

detection decreased from the EAC change.  Similarly, the number of non-detections 

decreased as time between detection and EAC change decreased (Figures 4.9 and 4.10).   

Although upward and downward trends are evident in Figures 4.9 and 4.10, clearly there 

are deviations from these overall trends which cause the trends to be jagged or unsmooth.  

We attribute these deviations to the small sample size.       

Detection Relationships 

 The algorithm identified 185 occurrences of simultaneous CPI and SPI changes 

during the same month as a major change in the EAC.  Of the 185 occurrences, 13 

corresponded to major changes in the EAC (93% false detection rate).  All major changes 

in the EAC were detected (0% missed detection rate).  Table 4.1 lists the numbers and 

percentages of detections by group of major EAC change.  We see 54% of the contracts 

experience at least 10% increases in EACs when there were simultaneous detections.   

 
Table 4.1: Simultaneous CPI and SPI Detections During Same Month 

 Same Month Detections 

% Change in EAC # Detections % Detections 

EAC ≥ 10 7 54% 

10 > EAC ≥ 5 3 23% 

-10 < EAC ≤ -5 2 15% 

EAC ≤ -10 1 8% 

Total 13 100% 
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 We examined the relationship between sequential detections for the CPI and SPI 

and a subsequent major change in the EAC.  Specifically, we analyzed whether a 

detection in the CPI or the SPI was followed by a detection in the opposite index (CPI or 

SPI) during the next twelve months.  If a sequential detection was identified, we looked 

for a major change in the EAC during the twelve months after the second detection; we 

found no such occurrences.   

 

Figure 4.9: Early Detection of Changes in EAC Using CPI 
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Figure 4.10: Early Detection of Changes in EAC Using SPI 
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found changes in the CPI and the SPI correspond to changes in the EAC during the same 

month and future months.  The percentage of detections that correspond to major EAC 

changes increases as the length of time between the two decreases.  We observed the 

detection of changes in the CPI and the SPI simultaneously corresponded to major 

increases in the EAC in 77% of occurrences.  We did not see any relationship between 

delayed detections of the CPI or the SPI.  In the final chapter, we summarize our results, 

discuss policy implications, and offer suggestions for further research. 
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V. Conclusions 

 

 

 

 

 

 In this chapter, we remind ourselves of the questions we sought to answer: 

1. Can we detect changes in acquisition contracts with a detection algorithm? 

2. If we can detect changes, how long does a problem exist before we identify it?  

Review of Results 

 
Our analysis of earned value data reveals we can detect changes in acquisition 

contract performance.   We developed an algorithm based on an updating confidence 

interval to detect these changes.  We found the change detection algorithm identifies 

worsening more often than improving cost and schedule performances.  This result 

reflects the observations from prior contracts and not the design of the algorithm.  

 We find the detections lead major changes in the Estimate at Complete (EAC) by 

as much as twelve months.  The percentage of detections for major EAC changes 

increases as the time between detection and EAC decreases. 

 Lastly, approximately 77% of simultaneous changes detected for the CPI and SPI 

corresponded to large EAC increases.  Sequential CPI-SPI detections did not yield any 

major future EAC changes.    

 One noteworthy issue we encountered during this analysis was what actually 

constitutes a problem in contract performance.  We used EAC as a problem confirmation 

measure, but EAC as a problem indicator presented difficulty.  The difficulty was EACs 

may increase because contracts run over cost or because the contract took on a larger 
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scope and requirements.  We differentiated between overrun increases from scope 

increases by categorizing EAC growth percentages given detection or no detection.  If the 

algorithm did not detect a change in the CPI or SPI and a large percentage increase in 

EAC occurred, we assumed the increase in EAC was scope-related.     

Policy Implications 

 

 The ability to detect problems in acquisition contracts offers DoD leadership a 

method to monitor cost and schedule performance in real-time.  The benefit of real-time 

analysis in defense acquisition is two-fold.  First, the identification of contracts which 

transform suddenly—and significantly-- from good or normal performance to bad 

performance offers a great capability to program managers and DoD leadership.  With 

real-time problem information, these leaders can identify, isolate, and potentially avoid 

major cost and schedule overruns.  In the future, major cost and schedule overruns may 

pose serious concerns for acquisition contracts due to the likelihood of greater fiscal 

scrutiny.      

 Second, automated real-time analysis helps solve a principal concern of many 

acquisition leaders.  Specifically, automated analysis alleviates some of the strains caused 

by low personnel levels in the acquisition workforce.  To be clear, this does not remove 

the responsibility of potential users to understand the limitations of this algorithm and 

method.  The algorithm and method provide a way to gain insight into an acquisition 

contract in addition to or in absence of other information and acquisition professionals.    
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Follow-On Research 
 
 We applied grounded mathematical techniques to a new area of research and data.  

We used the information available readily in WBS level 1 to reduce collection time.  As 

DCARC or other databases are populated with more contracts that have lower WBS 

levels, the algorithm and general methodology proposed in this study may find results 

with more accurate detections and detection lead times.  Specifically, two lower level 

WBS elements common to seemingly all RDT&E contracts are variations of “Design” 

and “Test”.  We began analysis on these WBS elements in our research database, but 

time constrained our ability to conduct a full analysis.  Intuitively, changes in Design and 

Test affect the overall progress of the program significantly.     

 Another area of future research follows directly from the results of this analysis.  

The sensitivity of the detection algorithm should be tied to the tradeoff between 1) the 

savings from successful detection and overrun mitigation and 2) the cost of potential 

detection protocol.  That is, if a change is detected, what procedures are used to 

investigate the detection, and at what cost? 
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Appendix A: Descriptions and Equations of Earned Value (EV) Metrics 

 

EVM Measure Description 

Actual Cost of Work 
Performed (ACWP) 

Cost of work accomplished 

Budgeted Cost of Work 
Performed (BCWP) 

Value of work accomplished  

Budgeted Cost of Work 
Scheduled (BCWS) 

Value of work planned 

Budget At Completion (BAC) Total budget for entire 
contract 

Estimate At Completion 
(EAC) 

Estimate of total cost for 
entire contract 

Performance Measurement 
Baseline (PMB) 

Contract time-phased budget 
plan 

Latest Revised Estimate 
(LRE) 

An EAC 
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Descriptive EVM 
Measures 

Equation Interpretation 

Cost Variance 
(CV$) 

7J$ � ;7"L � 57"L Difference between value 
and cost of work 

accomplished 

Normalized Cost 
Variance (NCV) M7J � 7J$

;57 
Cost Variance relative to 

contract size 

Percent Cost 
Variance (CV%) 7J% � 7J$

;7"L . 100 
Shows over and under 

budget 

Schedule Variance 
(SV$) 

:J$ � ;7"L � ;7": Difference between value 
of work accomplished and 

value scheduled 

Schedule Variance 
(SVMonths) :JO�
�1� � :J$

;7": 
Provides a time value for 
work finished ahead and 

behind schedule 

Normalized 
Schedule Variance 

(NSV) 

M:J � :J$
;57 

Schedule Variance relative 
to contract size 

Percent Schedule 
Variance (SV%) :J% � :J$

;7": . 100 
Shows ahead and behind 

schedule 

Variance At 
Completion (VAC) 

J57 � ;57 � P57 Difference between cost 
budgeted and cost 

estimated 

Cost Performance 
Index (CPI) 

7L6 � ;7"L
57"L 

Compares the budget to the 
amount of money spent  

Schedule 
Performance Index 

(SPI) 

:L6 � ;7"L
;7": 

Compares actual value to 
the value plan   

Schedule Cost 
Index (SCI) 

:76 � 7L6 . :L6  

Composite Index 
(CMI) 

7O6 � Q7L6 
 �:L6  

To Complete 
Performance Index 

(TCPIEAC) 

R7L6 � #;57 � ;7"LSTU'
#P57 � 57"LSTU' 

Measures cost efficiency 
requirement to complete 

on-budget 

Percent Complete 
(BAC) 

%Complete � A;7"LSTU
;57 E . 100 

 

Compares work plan to 
program budget 

Percent Complete 
(Months) 

%Complete
� A O�
�1� ]��^ :���� _���

R���� O�
�1� �] 7�
���%�E
. 100 

 

Compares the amount of 
time spent for a contract to 

the total amount of time  
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Appendix B: Distributions of Standardized Residuals ACWP, BCWP, and BCWS 
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Appendix C:  Distribution of Standardized Residuals Excluding Statistical Outliers 
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Appendix D: Distribution of Standardized Residuals CPI and SPI 
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Appendix E: Data Coverage 

 

 [adapted from (Rosado, 2011)] 
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Appendix F: Change Detection Results 
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Months Before # CPI Leads SPI # SPI Leads CPI

1 174 161

2 158 149

3 147 140

4 125 130

5 118 121

6 106 111

7 97 116

8 93 110

9 87 107

10 87 106

11 82 104

12 83 92
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