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Technical Report

Executive Summary

For geometric based object recognition problems the current best approach is

to use a “Point to Surface”, or more generically speaking a “Point to Complex

Model”, matching algorithm which we have developed over the last five years of

this program. This approach is very general addressing many recognition prob-

lems beyond simple target recognition problems with their standard CAD model

representation. A CAD model representation of an object is a special instance

of a complex model representation. A complex is a mathematical structure

composed of simplices. A point is a 0-simplex, a line a 1-simplex, a triangle a

2-simplex, a tetrahedron a 3-simplex, and so forth.

In most, if not all, target recognition problems the Complex Model approach

provides a representation of the object as a composite (or gluing together) of

many separate parts (generally surfaces or lines). This model is then to be

matched against given image data. By using barycentric coordinates to repre-

sent points on each simplex the point to point matching problem can be avoided

(or at least greatly alleviated). This correspondence problem has plagued the

recognition community for too long because we have viewed it strictly as a dis-

crete combinatorial problem. By embedding the discrete combinatorial problem

into the reals this issue is more effectively solved.

This research actually goes beyond the specific representation of the object.

To understand this note that there are really three components of any matching

problem that can and should be considered separately:

1. the object and image representation,

2. the generic optimization model involving the representations, and

3. the algorithm employed to solve the model.
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The recognition of this decomposition of the problem should not be under-

estimated as parts are interchangeable. To emphasize this aspect we have ad-

dressed the solution of the Rubiks Cube problem. For the Rubiks Cube problem

the object and image use a simple (non Complex Model) representation in terms

of corners, edges, and orientations. The specifics can be found in the DASP 2009

and SPIE 2009 papers. But in both problems, target recognition and Rubiks

Cube, the generic optimization model and algorithm used to solve the model

arei identical. It is essentially a Least Squares Model using the Frobenious norm

which is equivalent to “maximal correspondence” problem. This optimization

model is a multilinear programming problem with a multilinear objective func-

tion and decoupled linear constraints. Because of its special structure it can be

solved relatively efficiently (compared with past methods).

The biggest shortcoming of our research, and the current state of the art

in recognition, is that we have not been able to develop a convex optimization

model and as such there is the pitfall that the optimization algorithm can re-

turn a local minimum rather than a global minimum. For target recognition

problems this shortcoming does not have the same impact as the more general

problem like Rubiks Cube because further data can be employed to improve

the probability of obtaining a global match. (Man made objects tend to have

further structure which can be exploited for improving the probability of correct

recognition.) We feel strongly that any further progress into recognition must

address this local/global issue by a paradigm shift - moving away from a least

squares based model (or any of its equivalent representations such as the maxi-

mal correspondence model). Any nonconvex optimization model will be plagued

by this issue; there is no algorithm that can quarantee a global minimum for

such models. Here we note that some authors claim to have made significant

progress on this global optimization. In our review of the literature nothing

could be further from the truth. Methods that rely on a branch and bound pro-

cedure (or box and bound, octree’s etc.) all rely on the model being matching

n points to n points where the translation component can be easily eliminated.

Then by using Lipshitz Theory can use discretization of the unknown rotations
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and put bounds on how much the objective function can change in a small box.

This effectively eliminates the rotations variables (by discretizing over them and

searching over all possibilities). At this point the only unknown is the assign-

ment correspondence variables so the model is a simple linear programming

problem which has a global minimum (though the argument of the minimum

need not be unique). This whole approach collapses when one is trying to match

n points with m points (or m points to n surfaces). The translation variables

cannot be removed and the problem is 4-linear which does not have a unique

local minimum (hence global minimum).

An understanding of the theory underlying the model suggest a relationship

to fundamental ideas of quantum mechanics - for example the idea of a super-

position of possibilities which the model employs. We note that this is really

just an interpretation with respect to the variables which can be interpretted as

probabilities1. However this analogy should not be disregarded; Shroedingers

equation, which is a model for the position of a particle, has many solutions

depending upon the spectrum of the operator (for the specific problem model).

These many solutions (or orbits when considering an electrons position) can

be analogized with the many local minimum of a recognition problem. The

most probable solution corresponds to a minimuml energy state which would

be a “global solution”. Any such paradigm shift based upon this analogy would

replace the least squares optimization model by an expression modeling the

problem - such as an equation rather than an objective function. An opti-

mization algorithm would then not be relevant to the solution but rather other
1This relates to the reason for the development of the Category of Probabilistic Mappings

by William Lawvere back in the 1960’s. He recognized that the deterministic world (based

upon aristetelian logic) was a special case of a more general logic. Fifty years later Lawvere

is still working on this problem and attempting to axiomatize physics based upon categories

more general than the category of sets. In particular, a topos can replace the traditional sets

upon which so much of traditional mathematics and science is based. A main interest of his

is mechanics and his 1963 seminar paper on Probabilistic Mappings references the issues of

interest which relate to recognition. Indeed to talks directly about the recognition problem in

terms of probabilistic mappings which lead to our development and understanding.
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(numerical) methods would come to the forefront. To date our very limited

attempts at such an approach using stochastic matrices rather than permuta-

tion (deterministic) matrices have failed because of lack of knowledge on how

to choose an appropriate basis. This novel approach is reported on since it

generalizes our current method and in our opinion holds the best probability of

future progress. Furthermore it allows for the replacement of the optimization

model by an equation.2

Outline

We break the report down into applications and theory. For someone wanting

to know how to use these ideas knowledge of the theory is not necessary; only

the representation and modeling aspects are important. On the other hand, the

theory provides both the motivation, underpinnings, and directions for future

research (or at least indicates what avenues have already been explored).

Our main application is to recognition of targets - those objects which can

be represented by a complex. There are many offshoots and add ons which can

be exploited for this specific type of problem. For example one can generalize

the model by using an Image Point Spread Model which allows for uncertainty

in the image data, or one can weight the image points representing the fact that

we may have confidence in some points more than others. There are many such

generalizations to the core problem and we enumerate them with their models.

There are two approaches to addressing the theory. The motivational ap-

proach - how we can to this methodology based upon basic ideas from cate-

gory theory which view deterministic mappings as a left adjunct of probabilistic

mappings and allows for further sheaf theoretic description, or the “simplified”
2We recognize that an equation can be viewed as a particular instance of an optimization

model where the error (objective function) assumes a value of zero. However there is often a

change of emphasis on the technique used to solve an equation rather than an optimization

problem.
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approach which distills the problem down to a basic least squares problem. We

address both of these approaches. The sheaf theoretic approach also describes

the Beck-Chevalley Theorem applied to measures which is a nice application.

0.1 3D-3D Ladar

The 3D-3D registration problem (also known as 3D-3D alignment) is a funda-

mental problem in computer vision. In this problem two sets of 3D points are

given and the task is to optimally align these two sets of points by determining a

group transformation (an affine, euclidean, projective or other transformations

depending upon the camera model) so as to minimize the mean squared error

between the two sets of points. The two sets can be of different sizes, say of sizes

m and n with m < n in which case the subproblem of selecting m points from

the set of n points needs to be determined before the alignment itself can be

determined. Because this problem involves two sets of points it is also referred

to as point to point matching.

Point to surface matching generalizes point to point matching and permits

the correspondence between each point composing a point cloud of image data

with a point on a surface of a CAD model (or other idealized model). The com-

binatorial problem of matching m points to n points now becomes matching

each of the m points in the point cloud to a correspondence point on one of

the n surfaces. By introducing assignment (correspondence) parameters that

associate with each image point i the “probability” of matching with surface

component j, the discrete matching problem can be embedded into the contin-

uous domain and the combinatorial explosion that occurs with matching can be

significantly alleviated from the computational perspective. Indeed, for a fixed

group transformation this matching problem is a linear programming problem

for point to point matching and a quadratic programming problem for point

to surface matching. Conversely, for known correspondences (point to point or

point to surface) the problem is a pure pose estimation problem. For this reason

the registration problem is also called the simultaneous pose and correspondence
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problem.

The challenge in solving this problem is to determine the global optimal

solution. Even for the point to point matching problem this is not an easy

task. The most popular methods for solving this problem are based upon an

alternating minimization procedure between solving the pose problem and the

correspondence problem. These methods are all local methods as no global

optimum is guaranteed. The method based upon Lipschitz optimization3 has

limited use since it is restricted to matching n points to n points.

The approach discussed here is based upon the discretization of the transfor-

mation parameters as well so that the problem becomes a multilinear program-

ming problem in the correspondence and pose (transformation group) param-

eters. The theoretical basis of this model begins with abstracting the general

recognition problem as one of a least squares problem.

0.1.1 Least Squares Model

Define a Least Squares Error Recognition Problem as one which can be modeled

as the determination involving the Frobenius norm minimization of the error

between an Object O, an image I, and a transformation group G which acts on

the image,

min
g∈G
||O − gI||2F . (1)

This model involves the determination of the argument of the minimum

(argmin) of the minimuml objective function value which most closely matches

the object with the transformed image. The objective function is a G-invariant

(pseudo) metric measuring the “distance” between the object and the trans-

formed image. Many recognition problems can be formulated in this fashion,

and a linear representation of the object, image, and transformation group are

applicable. Such is the case for 3D Euclidean recognition problems where the

object and image can be given a matrix representation where the columns (or

3The 3D Registration Problem Revisited, Hongdong Li and Richard Hartley, ICCV 2007.

7



rows) of the matrices correspond to ordered image points and points on the

object are given by barycentric coordinates on the surface components.

Using assignment variables allows one to consider unordered collections of

points. To each image point indexed by i there corresponds an object point

indexed by j. So we associate a variable pi,j which assumes the value 1 provided

that image point i corresponds to the object point j and pi,j = 0 otherwise.

Consider the 2D point to point matching problem. Here the optimization model

for matching unordered points {ui}i to object points {xj}j is

min
R∈SO(2),T∈<2,pi,j

∑
i

∑
j pi,j ||(Rui + T )− xj ||2

subject to∑
j pi,j = 1 ∀i

pi,j ≥ 0 ∀i, j

(2)

By the introduction of barycentric coordinates associated with the object

points {xj} this problem can be extended to matching image points to lines,

surfaces, or any convex hull of a collection of points by the optimization model

min
R∈SO(2),T∈<2,pi,j ,αi,j,k

∑
i

∑
j pi,j ||(Rui + T )−

∑
k αi,j,kx

k
j ||2

subject to∑
j pi,j = 1 ∀i

pi,j ≥ 0 ∀i, j∑
k αi,j,k = 1 ∀i, j

αi,j,k ≥ 0 ∀i, j, k

(3)

where the αi,j,k are the barycentric coordinate associated with the assign-

ment of image point ui to surface j which has vertices {x1
j , . . . , x

Nvj
j } where Nvj

is the number of vertices characterizing the convex hull defining surface j.

The challenge with this model, as with all current models that we are aware

of4, is that because the model is not a convex optimization problem (convex
4If one restricts the problem to matching m points to m points then the problem is signifi-

cantly simpler because the translation variables can be removed from the problem. The paper

[?] uses Lipschitz global optimization theory to address matching m points to m points.
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objective function with convex constraints) the algorithmic solution to this

problem cannot guarantee a global minimum. The ability to obtain a global

minimum can be significantly improved by taking a “probabilistic perspective”

of the problem and exploiting additional information (or extracting informa-

tion from the given data). Towards this end we discretize the rotation and

translation parameters.

0.1.2 Discretization of the Transformation Group Parameters.

In the model (1) suppose G is a finite discrete transformation group which can be

written as a composition of subgroupoids,5 G = G1 . . .GL. If k` = |G`|, then for

each `, fix a labelling {g`1, g`2 . . . , g`k`} of G`. Let J = {1, . . . , k1}×· · ·×{1, . . . , kL}

be an index set so that any j ∈ J corresponds to an element gj = g1
j1
· · · gLjL in

G.6 The set of all possible values the objective function ||O − gI||2F can assume

is

{ej
.= ||O − gjI||2F }j∈J . (4)

Associate with each error term ej a weight pj
.= p1

j1
· · · p2

j2
pLjL and consider the

weighted sum of all these error components∑
j∈J

pjej. (5)

Since the index j specifies the components of the element gj = g1
j1
· · · gLjL asso-

ciated with the error ej there is a bijective correspondence between the compo-

nents g`j` and p`j` . Restrict the variables p`j` to satisfy
∑k`
i=1 p

`
i = 1 and p`i ≥ 0 for

all components ` and all element indices i. For each G`, the set {g`1, g`2 . . . , g`k`}

is a finite sample space and each vector (p`1, p
`
2, . . . , p

`
k`

) associated with that

component can be interpreted as a distribution on the (global) `th component

of an optimal transformation ĝj minimizing the expression (5). Thus for G a

5A subgroupoid in this setting means a subset of G which contains the identity of G and

inverses for each element, but the binary operation of G is restricted to pairs whose product

is in the subset (the operation inherits associativity, of course, when defined).
6The decomposition of elements g ∈ G need not be unique. One can have j, i ∈ J with

gj = gi and j 6= i.
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discrete group, (1) is equivalent to the optimization model

min
p`i

∑
j∈J

pjej

subject to
k∑̀
i

p`i = 1 (for all `) and p`i ≥ 0 (for all ` and all i)

(6)

By the form of the objective function a global minimum can always be

obtained corresponding to a dirac probability measure at each component - i.e.

if ej0 is minimuml over all j ∈ J , then setting the components of its coefficient to

one and all the others to zero yields a global minimum.7 Such a determination

of variables will satisfy the constraints and is a dirac measure.

For 3D recognition problems the Euclidean group can be decomposed into

six linear transformation groups involving the rotation and translation groups,

{Tx, Ty, Tz, Rx, Ry, Rz}. By discretizing each group, an approximation to the

least squares problem (1) model in the form of (6) can be obtained.

0.1.3 The Discretized Least Squares Model with Assignment Corre-

spondence

The 2D point to surface model with discretized transformation group parameters

can be written as

min
pRα ,p

x
β ,p

y
γ ,p

a
i,j ,αi,j,k

∑
i

∑
j

∑
α

∑
β

∑
γ

pi,jp
R
αp

x
βp
y
γ ||(Rαui + Tβ,γ)−

∑
k αi,j,kx

k
j ||2

subject to∑
j p

a
i,j = 1 ∀i

∑
j p

R
α = 1

∑
β p

x
β = 1

∑
γ p

y
γ = 1

pai,j ≥ 0 ∀i, j pRα ≥ 0 ∀α pxβ ≥ 0 ∀β pyγ ≥ 0 ∀γ∑
k αi,j,k = 1 ∀i, j

αi,j,k ≥ 0∀i, j, k
(7)

where {Rα}α and {Tβ,γ}β,γ =

 xβ

yγ


β,γ

are both a set of constant values.

7The minimum objective function value may not have a unique argmin.
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The computational effort associated with this model is greatly simplified

by expanding the L2 norm in terms of the inner product, ||x||2 = 〈x, x〉, and

bringing the summation terms inside wherever possible. By exploiting the fact

that the variables satisfy
∑
α p

R
α = 1, etc., and centering the image data the

above objective function simplifies to

Ni∑
i=1

〈ui, ui〉 − 2
Ni∑
i=1

〈(
∑
α

pRαRα)ui,
∑
j

∑
k

pai,jαi,j,kx
k
j 〉

−2〈


∑
β p

x
βxβ∑

γ p
y
γyγ

 ,

Ni∑
i=1

∑
j

∑
k

pai,jαi,j,kx
k
j 〉+Ni

∑
pxβ

∑
pyγ

pxβp
y
γ(x2

β + y2
γ)

+
Ni∑
i=1

∑
j

pai,j〈
∑
k αi,j,kx

k
j ,
∑
k′ αi,j,k′x

k′

j 〉

(8)

The computation of the barycentric coordinates is where all the computation

time is required. As the distributions for each image point ui converge, pai,j → δ

so the distribution has components with value 0, the computations become

simple. Furthermore the decoupled constraints makes the computation for the

projection of the gradients onto the nullspace very efficient for an optimization

algorithm. The extension of this model to 3D matching is straightforward. Some

typical 3D results are shown in section 0.1.6.

0.1.4 The Maximal Correspondence Model

Going back to the notation of model (1) and it’s discretization in section 0.1.1

consider the notation 〈A,B〉F
.= Tr(ABT ). By using the normalization con-

straints on the set of variables {p`i}i, and exploiting the bilinearity of the oper-

ator 〈·, ·〉F the objective function can be written as

1
2
||O||2F +

1
2
||I||2F −

∑
j∈J

pj〈O, gjI〉F

= constant− 〈O,
∑
j∈J

pjgjI〉F .
(9)
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Defining the superposition of transformations as P ` =
∑
i=1

p`ig
`
i , dropping the

constant term, and using min−z = max z yields the model

max
p`i

〈O,
L∏
`=1

P `I〉2F (10)

subject to the same linear constraints in ((6)). This model is called the Max-

imal Correspondence Model and is the basis of the Map Seeking Algorithm8.

In their models they also discretize space rather than using barycentric coordi-

nates.9 Hence the minimuml error and maximal correspondence formulations

are equivalent.

0.1.5 An Optimization Algorithm for the MultiLinear Model

Using the notation of section 0.1.1 let p = ⊕L`=1p
` be the direct sum of the

L probability distributions p` = (p`1, . . . , p
`
k`

). For the 2D matching problem

above, one may have p1 = {px1 , . . . , pxNx}, the distribution associated with the

optimal x-translation. Starting with an initial uniform distribution for each p`,

the decoupled constraints permit the updating of the probability distributions

associated with each unknown parameter in parallel which, depending upon

the number of processors used, is considerably more efficient than a sequential

procedure. Using projected gradients the search direction can be computed as

d = ⊕L`=1d
` and each component of the direct sum ⊕L`=1p

` can be simultane-

ously updated via a step p` = p`+αd`. A line search procedure can be used to

calculate a step length α or, upon normalization of the search directions d` in

each subspace, a constant step length α at each iteration can be employed. Our

experience suggest the constant step length is just as effective as a line search

procedure and computationally more efficient.
8David Arathorn. Map Seeking Circuits in Visual Cognition: A Computational Mecha-

nism for Biological and Machine Vision. Stanford Press, 2002.
9S.R. Harker, C.R. Vogel, T. Gedeon. Analysis of constrained optimization variants of

the Map Seeking Circuit Algorithm, Journal of Mathematical Imaging and Vision, 29 (2007),

pp.49-62.
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The alternative choice to a parallel implementation is a sequential proce-

dure updating each distribution in turn, and using the updated distributions

p` and the corresponding updated superposition P ` =
∑
i=1

p`ig
`
i to compute the

projected gradients of the next distribution p`+1. By exploiting adjoints

〈O, PL · · ·P ` · · ·P 1I〉 = 〈(P `)T · · · (PL)TO, P `−1 · · ·P 1I〉 (11)

the updating procedure can be made efficient in the maximal correspondense

model (15).

0.1.6 Results

Using the model developed above and projected gradients, figure 1 shows how

each image point corresponds bijectively to a single point on the CAD model

using this type of model.

Figure 1: Correspondence between image points and correspondence points on

the CAD model.

Given a whole database of objects one can sequentially apply the algorithm

to each prototype (generic representative of a class of objects) and obtain results

such as in figure 2 where the distances between the various objects in the

database can be ordered. An alternative is to add another variable probability

distribution which optimizes over all the objects simultaneously, {pobκ }.

13



Figure 2: Metric distances between a point cloud of data and several objects.

More results are shown in the following pages where the complexity of the

models is detailed in the CAD models shown. It is computationally critical

to the solution algorithm that the CAD model consist of as few surfaces as

possible. The existing CAD model generators are incredibly inefficient in this

regard; they generate models consisting of triangles so a simple square is always

represented by two surfaces rather than a single surface with 4 vertices. We have

constructed a “glue model” which attempts to glue such surfaces together based

upon a common edge and the surface normals being identical. Unfortunately

many of the CAD model generators generate models such that the two surfaces

which should have identical surface normals do not. We have attempted to

correct this but it is not always possible (algorithmically) since the data can

sometimes vary significantly.
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Figure 3: Some CAD models employed for testing (models 1 and 2).
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Figure 4: CAD Model 3 and 4.
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Figure 5: CAD Model 5.

The image data for Test 1, generated synthetically, is shown in Figure 6

while the results of employing this test data are shown in Figure 7. Here the

image data is such that the objects can be clearly distinguished (separated).

For some of the image data that follows this is not the case.

Figure 6: Image Data for Test 1.

The image data for Test 2 is shown in Figure 8 (These results are better

viewed in Mathematica where the images can be rotated, scaled, etc.)
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Figure 7: Results with image data set 1.

Figure 8: Image data for Test 2.
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Figure 9: Results with image data set 2.

Figure 10: Results with image data set 3.

With image data set 3 there are not enough points on critical components

to distinquish between the first 3 models and the results give the wrong target.

We can constrast this with data set 1 where the viewpoint was more favorable

to be able to separate the models and give the correct result.
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Figure 11: Results on data from bmp (correct target) with image data set 3.

Figure 12: Results with image data set 4.

Matching points to surfaces can be modified by extracting planes of image

points in the point cloud data. Then by using generalized principle component

analysis, discussed in section 0.1.7, one can match the extracted surfaces to the

CAD model surfaces. If one also can obtain a good estimate of where the ground

plane is then the correspondence variables can be initialized accordingly and an

initial “total ignorance” distribution of a uniform distribution is not necessary.

Even better estimates can be obtained by taking into account the size of the

various surfaces so that if surface 1 is twice as large as surface 2 then for an

arbitrary image point one would expect a higher probability that the image point
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came from the second surface. This probabilistic interpretation (perspective) of

the problem provides guidance in how to initialize all the unknown variables.

0.1.7 Generalized PCA

The technique of generalized principal component analysis allows one to extract

hyperplanes from point clouds. Each one of these hyperplanes has a surface

normal so that if one can estimate the ground plane then the surface normals of

the extracted hyperplanes can be compared against the surface normals of the

surfaces of the CAD model to come up with prior probabilities for the assignment

correspondence probabilities. In Figure 13 a point cloud consisting of two

clusters of points, each corresponding to a distinct hyperplane, are shown. We

can associate a (normalize) surface normal, defined up to a sign, with each one of

these hyperplanes. Call these surface normals sorange and sblue. Given a single

surface with a known (normalized) surface normal sobjectPart the correspondence

between the given surface can be determined. A simple expression is given

by the absolute value of the inner product between the hyperplane normals

and the surfaces normals, |〈sorange, sobjectPart〉| and |〈sblue, sobjectPart|〉 and the

resulting associated probabilities based upon this are shown in Figure 14.

0.1.8 Image Point Spread Model

In the Image Point Spread Model the lack of knowledge of the precise location

of each image point can be incorporated directly into the optimization model of

the problem. This weighted least squares optimization model is
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P!Orange,Blue"!.8

P!Red,Blue"!.2

Figure 13: A point cloud consisting of two distinct hyperplanes.

min
pim,wi,αimk,R,T,Ti

NI∑
i=1

NS∑
m=1

pim||R(wiui) + (T + ∆Ti)−
∑NV (m)
k=1 αimk x

k
m||2F

subject to

|∆Ti| ≤ δi
(12)

where NI is the number of image points, NS is the number of “surfaces” in the

CAD Model, NV (m) is the number of vertices of the mth surface of the CAD

model, and δ is a parameter expressing our uncertainty in the knowledge of the

image points. While this parameter can vary for each individual image point

our present implementation just assumes a constant value over all image points.

Note that this model is ideal for a parallel implementation with respect to

optimization over the individual point spreads ∆Ti since they are all decoupled

constraints.

We have added this point spread capability to our working algorithm which

coded up in Mathematica. We have applied this to our test model shown in
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Figure 14: Computing prior probabilities based upon the surface normals of the

extracted hyperplanes.

Figure 15.

Figure 16 shows the results which are exactly what we expected from this

model - it decreases the weighted least squares error as the slack δi is increased.

The x-axis in this figure represents the value δi and the y-axis shows the RMS

error for this value.

The RMS error does not go to zero because of the discretization involved in

the given model. By refining the discretization it is possible to get the error to

converge to zero.

One must have relatively small errors in the signal else everything starts to

look the same, i.e., any image could have been produced by any object. Here is

the same image data applied to a decoy.
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Weighted Image Points

Correspondence Points

dHImage,TankL=1.14797

Figure 15: Standard Test Case

æææ

æ

æ

æ

æ æ

0.1 0.2 0.3 0.4 0.5
max Delta

0.2

0.4

0.6

0.8

1.0

RMS Error

Figure 16: Image Point Spread Results

0.2 2D-3D

In the 2D-3D matching problem we only have 2 dimensional information avail-

able about the object in question. In this case the 3D-3D model can be modified

so that the third unknown coordinate is treated as an unknown parameter which

can be optimized over. To implement such an approach it is necessary to extract

lines in the 2D data, say by a canny edge detection algorithm, and to match

that up against a wire frame model of the object.

An initial manual registration of the edge detected image data to the wire

frame model is employed. We start with the 2D image (so the 3rd coordinate z
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Weighted Image Points

Correspondence Points

dHImage,CarL=3.71438

Figure 17: Car Decoy Matching Correspondence - δ = 0
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Figure 18: Image Point Spread Results for Tank and the Car Decoy

is some constant for all points). Figure 19 shows the arbitrary initial placement.

Figure 20 shows a manual registration obtained by translating the image

and rotating the wire frame model.

This initial registration need not be ”exact” just close so as to avoid issues

of global optimality concern. By this initial registration the code can handle
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Translate Image x Units 0.

Translate Image y Units 0.

Translate Image z Units 0.

Rotate CAD Model Q Degrees about x-Axis 0.

Rotate CAD Model F Degrees about y-Axis 0.

Rotate CAD Model Y Degrees about z-Axis 0.
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Figure 19: Here is the image and wire frame object - need an initial manual

registration.
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Figure 20: An initial alignment.

relatively large CAD models because the initial probabilities can be set accord-

ingly.

The optimization model for this problem is

min
R∈SO(3),I,T∈<2,pi,j ,αi,j,k

∑
i

∑
j pi,j ||(Iui + T )− π

∑
k R(αi,j,kxkj )||2

subject to∑
j pi,j = 1 ∀i

pi,j ≥ 0 ∀i, j∑
k αi,j,k = 1 ∀i, j

αi,j,k ≥ 0 ∀i, j, k

(13)

where π is the projection mapping onto 2D (wolog, say the first two coordi-

nates). Now the object, rather than the image, is rotated and the transforma-

tion of the image involves an inversion I to account for parallax - this of course
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depends upon the model - which occurs with most cameras.

This initial registration gives me a good starting point for the optimization

problem - that being to find the optimal general linear projective10 transfor-

mation of the image data and optimal 3D rotation of the wire frame model to

minimize the total error. The result is shown in Figure 3 which gives the image

data (blue pts) and corresponding points (red points) on the wire frame model

-

Correspondence Points

dHImage,CAD ModelL=1.8287
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Figure 21: Here is after the optimization routine improves the initial registration

(alignment).

By using finer discretizations I can obtain more accurate results - as ex-

pected. This refinement problem will need some analysis.

This result allows me to then properly place the damaged image data onto

the 3D CAD model

The optimization routine then calculates the corresponding points on the

3D CAD model. Here’s the optimal correspondence

10The scale is limited to a small range about 1 so the metric still exist (is nonzero).
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Figure 22: Here is the registration of the damaged data points onto the 3D CAD

Model.

Correspondence Points

dHImage,CAD ModelL=0.661055
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Figure 23: Here is the correspondence between the damaged data points and

correspondence points on the 3D CAD Model.

These red correspondence points “are the solution”. Note that the blue

image points don’t lie exactly on the surface - this is because the ”z” coordinate

is unknown. A good initial alignment is desirable to get the image points to

lie as close as possible to the surface but is not required. Indeed for a curved

surface some of the image points will necessarily lie off of the surface. You can

see this in the above image on the front curved surface. The picture below

illustrates this.

’
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Correspondence Points

dHImage,CAD ModelL=0.661055
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Figure 24: Another view of the correspondence between the damaged data

points and correspondence points on the 3D CAD Model.

0.3 Rubiks Cube

Rubik’s Cube can be represented by specifying a state of the cube by specify-

ing the location of 20 cubes and the orientation of those cubes. This can be

accomplished with a (0, 1)-matrix representation. For Rubik’s Cube the trans-

formation group is the set of all possible permutations of the cube which is

a discrete group. This transformation group G itself can be decomposed into

‘layers’ and the rotations about each of the six faces, g = P lf,t ◦ . . . ◦ P 2
f,t ◦ P 1

f,t.

Let Gl be the group of permutations on the cube, for each layer l of rotations,

yielding the model

min
plf,t

1
2

L∏
l=1

6∑
f=1

3∑
t=0

plf,t||O − PLf,tP
L−1
f,t · · ·P 1

f,t I||2

subject to
6∑

f=1

3∑
t=0

plf,t = 1 for all layers l

plf,t ≥ 0 for all faces f , layers l, and turns t

(14)

where L is the number of layers of rotations. Upon further simplification the

objective function can be written as min
plf,t

1
2

L∏
l=1

6∑
f=1

3∑
t=0

plf,t||O −
L∏

m=1

Pmf,t I||2.11

11For computational purposes this is not the most efficient model since for t = 0 turns about

each face, P l
f,t is the identity map. A single identity map suffices for each layer yielding 19
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Using the fact ||x||22 = 〈x, x〉 and the normalization constraint on the set of

variables {plf,t}f,t, upon expansion of the squared objective function and drop-

ping constant terms in the expression to be minimized we obtain the maximal

correspondence model with objective function

max
plf,t

L∏
l=1

6∑
f=1

3∑
t=0

plf,t〈O,
L∏

m=1

Pmf,tI〉 (15)

subject to the same linear constraints as above. Hence, as stated above for the

general least squares formulation, the minimuml error and maximal correspon-

dence formulations are equivalent Our algorithmic results for Rubiks Cube are

identical to those presented in Analysis of Constrained Variants of the Map-

Seeking Algorithm12. For comparative purposes it should be noted that in that

paper they define a ‘layer’ to consist of at most a single 90 degree counter

clock wise (ccw) rotation about any face (yielding 7 possible mappings at each

layer) whereas we define a layer to be any rotation about any of the faces (19

possible mappings) and the term “multilinear model” will refer to either form.

This multilinear model should not to be implemented directly as it is written.

The bilinearity of the inner product allows the summation terms to be brought

inside the brackets and permits the formation of the “superposition of transfor-

mations” at layer l by P l =
∑
f,t

plf,tP
l
f,t to yield the formulation with objective

function

max
plf,t

〈O,
L∏

m=1

Pm I〉 (16)

which greatly reduces the computational effort required to solve the problem.

The formulation of recognition problems directly using this model is what the

Map-Seeking Algorithm is based upon. By using a weighted listing, with real

coefficients restricted to [0, 1], of all possible combinations embeds the problem

unique possible mappings for each layer considered rather than the 24 = 6 × 4 possibilities

in the given model. We have chosen the above model as it provides an elegant and simple

formulation for exposition.
12Harker,S., Vogel C., Gedeon T., Journal of Mathematical Imaging and Vision. Volume

29 Issue 1, pp 49-62.
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into the real domain for computational advantage and allows for the probabilis-

tic interpretation13 which allows for further exploitation14. At a foundational

level this model is the multilinear least squares error formulation (14). In the

3D recognition problem the superposition of transformations involves both su-

perpositions of rotations and superpositions of translations. The exploitation

of the bilinearity changes the complexity of the problem from multiplicative to

additive.

0.3.1 The MultiLinear Model Optimization Updating Step

The decoupled linear constraints associated with the model allows one to up-

date the probabilities associated with each layer in parallel which is considerably

more efficient than a sequential procedure. Using a projected gradient technique

to calculate a search direction dl at each layer the 19 probabilities associated

with the 19 distinct rotational mappings of the cube at each layer can be simul-

taneously updated via a step pl = pl + αdl. One can either use a line search

procedure to calculate the step length α or, upon normalization of the search

direction d, use a constant step length α at each iteration. Our experience sug-

gest the constant step length is computationally just as efficient as a line search

procedure.

The alternative choice to a parallel implementation is a sequential procedure

updating each layer in turn, and using the updated probabilities at layer l, P l in

the calculation of the projected gradients at layer l + 1. By exploiting adjoints

〈O, PL · · ·P l · · ·P 1I〉 = 〈(P l)T · · · (PL)TO, P l−1 · · ·P 1I〉 (17)

the updating procedure at layer l can be made efficient.

Here is a sequence of distributions showing the convergence to dirac measures

for a 6-layer problem. In the software this information is animated. The first

image of the sequence shows a uniform distribution for all 6 layers. As the
13Note that a solution can always be found at a dirac probability measure.
14These additional exploitations based upon the probabilistic interpretation will be dis-

cussed in a future paper
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optimization algorithm proceeds all the distributions approach a dirac measure

fairly uniformly since they are all being updated simultaneously. (That code

was run in parallel.)

0.3.2 Rubiks Cube Results

The parallel and sequential implementation using projected gradients for the

search direction produced the same success rate in the determination of the

global minimum. This is worthy of note since the two procedures actually

approach the solution along a potentially different trajectory.

These results are shown in the bottom graph of Figure 1 as a function of a

varying number of layers. For an n layer problem we generated a random initial

mixup of the cube consisting of n random rotations of the cube. Each random

rotation was one of the 3 distinct nontrivial rotations about a given (random)

face.

Figure 25: Success rate of the algorithm for the two methods involving search

directions of simple permutations and the other using conjugates for the search

directions.
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0.3.3 Conjugates and Local minimum

In analyzing those problems where the optimization algorithm failed to find the

global minimum we found a striking number of those cases occurred when the

initial mixup of the cube involved a conjugation. This phenomena is illustrated

in Figures 29 which shows the green face rotated 3 times counterclockwise (270

degrees) followed by a rotation of the white face by two turns, and finally a

rotation of the green face by 1 counterclockwise rotation.

Figure 26: The cube on the left shows an initial conjugation of the Green and

White faces. The cube on the right shows the local minimum obtained by using

elemenatary rotations.

Such a rotation can be denoted by ghg−1 with g being the group element

“rotate the green face 3 times”. The inverse of this element, g−1, is “rotate

the green face once” since four rotations about any face gives back the identity

map (no rotation at all). Associated with these conjugations are local minimum

which have a very large basin of attraction so unless one starts very close to the

global optima one gets trapped in a local minina using projected gradients as a

search direction. This phenomena extends to any size problem. If a conjugation

occurs anywhere within the initial mixup of the cube, say the transformation

applied to the cube is g1h1h2h3g
−1
1 (= ghg−1) then a local minimum will exist

with a large basin of attraction. The noncommutativity of the transformation
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group causes difficulty as using projected gradient will simply yield the solution

of h−1 rather than gh−1g−1. To the optimization algorithm the composite

transformation ghg−1 ≈ gg−1h = h. An analogy in 1D would be a function as

shown in Figure 3 where a gradient based algorithm will inevitably tend to the

local minimum.
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Figure 27: A function with a local minimum having a large basin of attraction.

One can improve the performance of the algorithm by directly employing

conjugations in the model itself. In the objective function (29) the terms P l

are superpositions of rotations about the six faces of the cube. This objective

function can be altered by letting each superposition P l be a superposition of

conjugations. This change in the model simply says one can obtain a solution

using conjugations, which includes all the simple rotations since for g and h being

rotations on opposite face ghg−1 = h, and is such that a projected gradients

algorithm applied to it can avoid more local minimum than the simple model.

Because the number of possible permutations is increased from 19 distinct

possibilities to 235 distinct possibilities one may expect the solution to be de-

termined by searching over a larger space to yield a better result. Using conju-

gations as search directions this is true. However there are many other choices,

such as choosing commutators ghg−1h−1 which when used in conjunction with
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conjugations yield 485 distinct permutations, and using this larger set yields

poorer results than when using only conjugations. Simply enlarging the num-

ber of possible permutations does not guarantee the algorithm will find a better

solution15

0.3.4 Conjugate Search Results

Using the above multilinear model generating random initial images, based on

200 random samples and an initial uniform distribution, we obtained the follow-

ing success rates for varying number of layers as displayed in the top graph of

Figure 1. In Figure 4 the computation times show how the computation times

increase roughly linearly with respect to the number of layers. The computa-

tional times are included to show relative computation times - the code has not

optimized for speed.

Figure 28: A function with a local minimum having a large basin of attraction.

15In the extreme case one can take the superposition to be a linear combination of every

discrete possibility so that only one layer is required. In this case the problem reduces to

a linear programming problem which is convex so the global optima can always be deter-

mined. However this is not computationally feasible since the number of such permutations

is exceedingly large.
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0.4 DC Programming Model

One of the challenges in attempting to solve any object recognition problem us-

ing optimization resides in the difficulty of determining a global optimum to the

model one employs for modeling the problem. If the algorithm used to solve the

optimization model determines a local minimum such a formulation is useless.

Since there is no optimization algorithm which guarantees a global minimum

for all models it is desirable to choose the optimization model such that it is

a convex model (a convex objective function with convex constraints) whereby

it is possible to guarantee a global minimum since for a convex optimization

model any local minimum is unique and hence a global minimum16.

In recent years there has been an increasing awareness that convex and

quasi-convex optimization models can play an important rule in recognition

problems. To our knowledge the general recognition problem, which does not

assume a known correspondence or knowledge of the transformation mapping,

has not been addressed with convexity (global optimality issues) in mind. The

Map Seeking Circuit (MSC) algorithm of Arathorn17 has achieved some success

in addressing the global optimality problem and uses the concept of superposi-

tion to obtain a computationally feasible model for recognition problems. This

concept follows directly from the discretization of the problem which gives a

multilinear programming problem and the bilinearity of the inner product used

for the objective function. Our modeling procedure does not require discretiza-

tion of space, addressing the correspondence problem as an assignment problem,

and uses a minimum error model followed by a transformation of variables. We

show the relationship between the maximal correspondence model18 employed

by MSC and the minimum error model. In our models the unknown variables

can be interpreted as probabilities which allows for additional techniques to be
16The uniqueness is in terms of the objective function value; the argument of the minimum

is not necessarily unique.
17Map Seeking Circuits in Visual Cognition: A Computational Mechanism for Biological

and Machine Vision. Stanford Press, 2002.
18The maximal correspondence formulation is a multilinear programming problem which is

non convex.
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brought to bear on the problem.

When a convex optimization model is not available a good alternative is to

construct the model using a difference of convex (DC) functions.

Towards this end we formulate shape based object recognition problems us-

ing an optimization model with a DC objective function and convex constraints.

Such a procedure provides a theoretical foundation for further research.

This paper is organized into two sections. In Section 1 basic modeling of

shape based recognition problems is addressed using discretization of the Eu-

clidean transformation variables. This modeling yields a multilinear program-

ming problem which can be transformed into a DC optimization problem using

the exponential transformation of variables.

Section 2 consist of applications including Rubik’s Cube, point-to-point

matching problems, and the generalization to point to surface matching. These

applications illustrate the implementation of the modeling procedure and high-

light computational considerations and aspects. The modeling of the feature

correspondence problem as an assignment problem19 is implemented and ex-

plained on a point to point matching problem.

0.4.1 Discretizing a Model

Any continuous optimization problem can be discretized over the variables to

obtain a “probabilistic model”.

Consider the two variable problem

min
x,y

f(x, y) (18)

where f is any continuous function in both arguments.

Discretizing the variable x into Nx possible values {x1, x2, . . . , xNx} and the

variable y into Ny values {y1, y2, . . . , yNy} problem (18) can be approximated

as
19The assignment problem is well known in the Linear Programming community and can

be found in most book on linear programming.
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min
pxi ,pyj

Nx∑
i=1

Ny∑
j=1

pxipyjf(xi, yj)

subject to
Nx∑
i=1

pxi = 1

Ny∑
j=1

pyj = 1

pxi ≥ 0 for i = 1, . . . , Nx

pyj ≥ 0 for j = 1, . . . , Ny

(19)

where the vectors Px = {px1 , px2 , . . . , pxNx } and Py = {py1 , py2 , . . . , pyNy }

can be interpretted as probability distributions. The global solution to problem

(19) will occur at dirac probability measures Px = δî and

Py = δĵ where f achieves a minimuml value at the values xî and yĵ among all

the discretized values. This formulation is simply a crude method for looking at

all possible (discretized) values and choosing the minimum value. This idea can

be applied to any unconstrained or decoupled constrained optimization problem.

It turns an n−variable problem into an n− linear programming problem which

is linear in each probability P·. The formulation (19) is not computationally

feasible for a problem with a large number of probabilities and/or discretizations

unless the objective function f has the property of bilinearity possessed by inner

products. In such a case the summation terms can be brought inside the inner

products thereby reducing the computational complexity from multiplicative in

the number of variables, NxNy, to additive, Nx +Ny.

In modeling rigid body motion the minimum norm error squared model

defined by the Euclidean-invariant function

d(Ob, Im) = min
R,T

||Ob− (R(Im) + T )||2 (20)

where R is a an orthogonal rotation and T is a translation, is an appropriate

model and determines a pseudo metric distance between an object and an image.

Discretizing this problem (2D for illustrative purposes)
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d(Ob, Im) = min
pRj ,pxk ,pyl

NR∑
j=1

Nx∑
k=1

Ny∑
l=1

pRjpxkpyl ||Ob− (Rj(Im) + Tk,l)||2

= min
pRj ,pxk ,pyl

〈Ob,Ob〉 − 2〈Ob,
∑NR
j=1 pRjRj(Im) +

∑Nx
k=1

∑Ny
l=1 pxkpylTk,l〉+

2〈
∑NR
j=1 pRjRj(Im),

∑Nx
k=1

∑Ny
l=1 pxkpylTk,l〉+

∑Nx
k=1

∑Ny
l=1 pxkpyl〈Tk,l, Tk,l〉+ 〈Im, Im〉

(21)

where Rj , xk, and yl are the discretized rotation and translation values. This

can be further simplified since Tl,k = {xk, yl}.

0.5 The DC Programming Formulation

The multilinear programming model formulation of the problem as illustrated

in (19) is still inherently difficult to solve. The higher the multilinearity the

more difficult the problem is to solve using traditional algorithms. However this

multilinear programming problem, which is nonconvex, can be transformed into

a difference of convex functions as follows:

Note that the equality constraint in the multilinear model,
Nx∑
i=1

pxi = 1, is

equivalent to ||Px||1 = 1 since each pxi ≥ 0. (Any lp norm, p ≥ 1 can be used in

the model.) This is a normalization condition which is neccessary to avoid the

trivial solution Px = Py = 0.

This condition on the variables p· can be achieved by scaling each such

variable by its’ norm so the multilinear model above is equivalent to

min
pxi ,pyj

Nx∑
i=1

Ny∑
j=1

pxi
||Px||1

pyj
||Py||1 f(xi, yj)

subject to

pxi ≥ 0 for i = 1, . . . , Nx

pyj ≥ 0 for j = 1, . . . , Ny

(22)

which eliminates the equality constraints. Factoring out the norms since they

are independent of the summation indices and taking the natural logarithm, ln,

of the objective function gives
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min
pxi ,pyj

ln(
Nx∑
i=1

Ny∑
j=1

pxipyjf(xi, yj))− ln(||Px||1)− ln(||Py||1)

subject to

pxi ≥ 0 for i = 1, . . . , Nx

pyj ≥ 0 for j = 1, . . . , Ny

(23)

For each probability component variable pi define

qi = ln(pi) (24)

where ln[0] ≡ −∞. Thus eqi = pi which transforms the multilinear pro-

gramming problem (22) to

the equivalent problem

min
qxiqyj

ln(
Nx∑
i=1

Ny∑
j=1

eqxi+qyj f(xi, yj))− ln(
Nx∑
i=1

eqxi )− ln(
Ny∑
j=1

eqyj )

subject to

qxi ≤ 0 for i = 1, . . . , Nx

qyj ≤ 0 for j = 1, . . . , Ny

(25)

Assuming the function f(xi, yj) ≥ 0, for all indices i and j, the objective

function is a difference of convex functions. This critical property is satisfied in

our object recognition applications because the objective function is an invariant

metric defined by a norm || · ||2 ≥ 0.

In this model the objective function is a difference of two convex function,

since
Nx∑
i=1

eq
x
i is a convex function and the ln operator preserves convexity, and

the nonpositive constraints qxi ≤ 0 are convex.

An optimization problem where the objective function and constraints are

a difference of convex functions is referred to as a DC (difference of convex

functions) programming problem.

The strategy in DC programming algorithms for such a problem is to solve a

sequence of convex optimization problems where for each problem one replaces
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the nonconvex terms, in this case the terms ln[
∑Nx
i=1 e

qxi ] and ln[
∑Ny
i=j e

qyj ],

by their affine approximation which is the first two terms in the Taylor series

expansion of the function evaluated at the previous iterate. The constant term in

the expansion can be dropped since any constant term in the objective function

does not change the argument of the minimum. Thus for a general DC objective

function

z(x) = f(x)− g(x) (26)

one uses the objective functions

z(xk) = f(xk)−∇x(g)|xk−1xk (27)

where xk−1 is an optimal solution to the previous problem in the sequence.

For the first iterate k = 1 any feasible point suffices for x0. This is the strategy

in the primal-dual subgradient method proposed by Tao and An20. The dual

variables of the qi variables in this method for the above problem are precisely

the probability components, eqiPN
i=1 e

qi
. Such an algorithm applied to shape based

recognition problems would use pruning (eliminating variables) along the way

for computational efficiency.

1 Theory

1.1 Moving Beyond Deterministic Mappings

In the previous technical report we discussed the “Least Squares Recognition

Problem” and its’ application to the Rubiks cube problem. The “Least Squares

Recognition Problem” essentially is the model involving the Frobenious norm

minimization of the error between an Object O and an image I, and a trans-

formation group G,
20Pham Dinh Tao, Le Thi Hoai An. D.C. Optimization Algorithms for Solving the Trust

Region Subproblem. SIAM Journal of Optimization, V.18, (1998) pp 476-505.
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min
g∈G
||O − gI||2F (28)

Essentially all our recognition problems can be abstractly viewed via this

model. The process of discretization allows the problem to be stated equivalently

as

max
plf,t

〈O,
L∏

m=1

Pm I〉 (29)

where for layer l, P l =
∑
f,t

plf,tP
l
f,t is a superposition a components. (See the

previous report for the details here, i.e., f=”face”, t=”turns”, etc.)

This model led to the results

Figure 29: Success rate of the algorithm for the two methods involving search

directions of simple permutations and the other using conjugates for the search

directions.

which are less than spectacular in terms of finding the global minimum.

While using conjugates of rotations in the superpositions helps, for large layers

it too tends to fail in finding the global minimum and consequently a new idea is

required. We have tried using penalty methods whereby if we obtain a nonglobal

solution we simply add a penalty term to the objective function which forces

the algorithm to avoid converging to that same point when the algorithm is ran
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again with the new objective function. While this “works” it tends to require

an excessive number attempts - it has to repeatedly add new components to the

penalty component. In short it ends up searching a large portion of the search

space.

There is a potentially better way to address this nonglobality issue by ex-

ploiting an aspect of the probabilistic interpretation which the discretization

introduces. Namely there is an underlying theoretical aspect which we discov-

ered previously which actually led us to this new least squares formulation and

the recognition that the problem is in fact equivalent to the Maximal Corre-

spondence Problem. That theorem is the categorical result of

Pdet a Pprob (30)

where Pdet is the category of deterministic mappings (essentially what we are

employing right now) and Pprob is the category of probabilistic mappings. Our

current model and algorithmic solution does not use this fact outside the ob-

servation that we can embedd the (discrete) combinatorial problem into the

continuous domain of (the category of) Probabilistic Mappings. It is this aspect

which we are now trying to further exploit now that we have an understanding

how it translates into actual computations.

What we have determined is that to work in the category of probabilis-

tic mappings is that in the key concept revolves around the superposition

P l =
∑
f,t

plf,tP
l
f,t. The maps (matrices) P lf,t are all permutation maps which

are deterministic. To work in the category of probabilistic mappings we should

be employing stochastic matrices which are more general than simple permu-

tations. A stochastic matrix is a square P such that each of its’ rows sums to

one. (Permutations matrices are a special instance.) The problem with permu-

tation matrices appears to be that they require the convergence to take place

along certain search directions which “pass over hills” before reaching the valley

(global minimum). By enlarging the search space (number of search directions)

to include stochastic matrices convergence to a global minimum should be able
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to take a “circuitous route” to the global minimum. In the Theory of Markov

Processes the stochastic matrices are viewed as transition matrices - they al-

low you to transition from one probability to another without moving along

a deterministic route. In practice this approach fails because the basis set is

extremely large and the procedure requires excessive computational time to be

able to effectively search that space. It is a stochastic method which like all such

methods requires a very large number of attempts to find the global minimum

with no quarantee that the result one gets is indeed the global minimum.
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1.2 The Category of Probabilistic Mappings P

In the category of probabilistic mappings the objects are measurable spaces

(X,B), where X is a set and B is a σ-algebra on X. A morphism between two

such objects

(X,B) T→ (Y,B′) (31)

is a bivariate function

T : X × B′ → [0, 1] (32)

such that for each fixed x ∈ X, the induced map defined by

Tx : B′ → [0, 1]

: B′ 7→ T (x,B′)
(33)

is a probability measure on the measurable space (Y,B′), and such that for

each fixed B′ ∈ B′, the induced map defined by

TB′ : X → [0, 1]

: x 7→ T (x,B′)
(34)

is a measurable function on the measurable space (X,B). The composite of

two probabilistic mappings

(X,B) T−→ (Y,B′) U−→ (Z,B′′) (35)

is defined by

[U ◦ T ](x,B′′) =
∫
y∈Y

UB′′(y)dTx (36)

Observe that UB′′ is a real valued function on Y ,
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UB′′ : Y → [0, 1].

The m-expectation of f , for f any real valued function f and m any measure,

is defined by

Em(f)
4
=
∫
f dm. (37)

Consequently the composite [U ◦ T ](x,B′′) is the Tx-expectation of UB′′ ,

[U ◦ T ](x,B′′) = ETx(UB′′). (38)

This law of composition is associative.

Every measurable mapping

(X,B)
p−→ (Y,B′) (39)

may be regarded as a probabilistic mapping

(X,B)
δp−→ (Y,B′) (40)

defined by the one point measure

δp(x, ·) : B′ → [0, 1]

: B′ 7→

 1 If p(x) ∈ B′

0 If p(x) /∈ B′
(41)

Thus δp assigns to x the one-point measure, or dirac measure, on (Y,B′)

which is concentrated at p(x). Probabilistic mappings which are one-point mea-

sures are called deterministic mappings. We use the δ notation to denote

all such deterministic mappings, and the subscript to denote the corresponding

measurable mapping which corresponds to it.

If (X,B) is a measurable space and idX : X → X is the identity map on X

as a set, then

(X,B)
δidX−→ (X,B) (42)
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is the identity mapping on (X,B) in P. With these facts, composition,

associativity, and identity, it follows that P is a category.

2 Some Properties of P

We enumerate some properties of the category of probabilistic mappings re-

quired for modeling the recognition problem.

1. If

(X,B)
δp−→ (Y,B′) δq−→ (Z,B′′) (43)

are deterministic mappings then

δq◦p = δq ◦ δp. (44)

With this result we obtain the subcategory of deterministic mappings Pdet
which has the same objects as P but only those arrows which are deter-

ministic. The category Pdet is equivalent to the category of measurable

spaces, often denoted by Meas or

Mes.

2. A probabilistic mapping

1 P−→ (X,B) (45)

where 1 is the one-point space with the only possible algebra defined on it

can be construed as a probability measure on (X,B) since P is (isomorphic

to) a univariate function,

P : B → [0, 1].

The composition of a probabilistic mappings T with P
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1 P−→ (X,B) T−→ (Y,B′) (46)

is defined as the induced distribution on (Y,B′). When T is deterministic

then classically T is called a “random variable”.

Given that 1 P−→ (X,B) is just a probability measure on (X,B) it makes

sense to call a probabilistic map

(X,B) T−→ (Y,B′) (47)

a variable probability measure. This concept is one of the generalizations

that category theory provides; we no longer need consider just points

which are maps whose domain is the terminal object which is denoted by

1. Thus the probabilistic mapping P above is a point, while T is referred

to as an (generalized) element. (The older terminology for generalized

element is variable element.)

3. The category P has products. This follows from the standard tensor

product construction. Given probabilistic mappings µ and ν the product

is given by

(T,C)
�������)

PPPPPPPq
µ ν

(X1,B1) (X2,B2)(X1 ×X2,B1 ⊗ B2)� -
?
µ⊗ ν

δπ1 δπ2

where (µ⊗ ν) (t, (B1, B2)) = µ(t, B1)ν(t, B2) and the projections δπ1 and

δπ2 are the deterministic probabilistic mappings determined from the canon-

ical projections

(X1,B1) (X2,B2)(X1 ×X2,B1 ⊗ B2)� -
π1 π2

where B1 ⊗ B2 is the product of B1 and B2 in the category of measurable

spaces. The commutativity of the biproduct diagram follows from
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(δπ1 ◦ µ⊗ ν) (t, B1) =
∫
X1×X2

δπ1((x1, x2), B1)d(µ⊗ ν)t

=
∫
X1×X2

χB1×X2d(µ⊗ ν)t

= (µ⊗ ν)t(B1 ×X2)

= µ(t, B1) ν(t,X2)︸ ︷︷ ︸
=1

(48)

so δπ1 ◦ (µ⊗ ν) = µ and similarly δπ2 ◦ (µ⊗ ν) = ν.

Arbitrary products are similar using the standard construction for arbi-

trary products in the category of measurable spaces.

3 Further properties of P

1. The inclusion functor of the subcategory Pdet
i
↪→ P has a right adjunct

Pdet
�� - P�

i

D
i a D

defined by

D(X,B) = {1 P→ (X,B)}

which is the set of all probability measures on (X,B), and endowed with

the smallest σ-algebra such that for each A ∈ B, the evaluation function

ev(−, A) : D(X) → [0, 1]

: P 7→ P (A)

is measurable, when [0, 1] has the Borel σ-algebra.

We denote this σ-algebra by DB.

On arrows, for (X,B) T→ (X ′,B′), define

(DX,DB) -DT (DX ′,DB′)
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by

[D(T )](P,A) =

 1 If T ◦ P ∈ A

0 otherwise
.

.

The counit of the adjunction,

ε : i ◦ D → IdP

is given at component (X,B) by the evaluation probabilistic mapping

i(D(X,B)) - (X,B)
ev(X,B)

where

ev(X,B)(P,B) = P (B).

This is a natural transformation because

(X,B)

(X ′,B′)
?

T

i(D(X,B)) - (X,B)
ev(X,B)

?

DT

i(D(X,B)) - (X ′,B′)
ev(X′,B′) ?

T

commutes since

(ev(X,B) ◦ T )(P,B′) =
∫
X

T (·, B′)︸ ︷︷ ︸
limitn→∞

nPn
i=1 aiχTB′ (a

ε
i
)

o d[ev(X,B)(P, ·)]

= limitn→∞
{∑n

i=1 aiev(P, T (·, B′)−1(aεi)
}

= limitn→∞
{∑n

i=1 aiP
(
T (·, B′)−1(aεi)

)}
= b∗ some real value

whereas
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D ◦ ev(X′,B′)(P,B′) =
∫
X′

ev(X′,B′)(·, B′)︸ ︷︷ ︸
limitn→∞

Pm
j=1 bjχev(X′,B′)(·,B

′)−1(bε
j
)

ff d[DT (P, ·)]

= limitn→∞

{∑m
j=1 bjD(T )(P, ev(X′,B′)(·, B′)−1(bεj)

}
But

D(T )(P, evX′(·, B′)−1(bεj)) =

 1 iff P ◦ T ∈ evX′(·, B′)−1(bεj)

0 otherwise

=



1 iff (P ◦ T )(B′)︸ ︷︷ ︸
=

∫
X′
T (·, B′)dP

= limitn→∞
{∑n

i=1 aiP
(
T (·, B′)−1(aεi)

)}
= b∗

∈ bεj

0 otherwise

Thus at each fixed m, there exist only one nonzero term

bmk (the index k depends upon the index m) such that b∗ ∈ [bk − ε/2, bk +

ε/2). Thus, using the fact the ε intervals are disjoint,

m∑
j=1

bjD(T )(P, evX′(·, B′)−1(bεj)) = bmk

and consequently

(D(T ) ◦ evX′)(P,B′) = limitn→∞{bmk } = b∗

2. The coproduct of a collection of objects {(Xi,Bi)}i∈I is given by

(Xi,Bi) - (∪̇i∈IXi, 〈∪̇Bi〉)
διi
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where ιi is the inclusion map into the disjoint union of the sets, and 〈∪̇Bi〉

is the σ-algebra generated by the disjoint union of all the component σ-

algebras. The inclusion map is a measurable function with respect to

this algebra on the set ∪̇i∈IXi. Each such inclusion ιi has a measurable

retraction ri; choose an element xi∗ and define

ri : ∪̇i∈IXi → Xi

: y 7→

 y if y ∈ Xi

xi∗ otherwise

This is measurable since

r−1
i (Bi) =


Bi ∪

∪̇ j ∈ I

j 6= i

Xj

 ifxi∗ ∈ Bi

Bi otherwise

When challenged with a family of measurable mappings {αi}i∈I the unique

mapping θ making the diagram

(Y, C)

��
��
��*αi

(Xi,Bi) - (∪̇i∈IXi, 〈∪̇Bi〉)
διi

6
θ

commute is given by

θ = αi ◦ δri .

3. P has coequalizers.

Consider the two parallel arrows
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(X,B) -- (X ′,B′)
S

T

Define

B′′ = {B′i ∈ B′|∀x ∈ X S(x,B′i) = T (x,B′i) and

∀i, j S(x,B′i ∩B′j) = T (x,B′i ∩B′j)}

Lemma. The set B′′ is a sub σ-algebra of

B′.

Proof. (i) ∅, X ∈ B′′ since Sx(∅) = 0 = Tx(∅) and Sx(X) = 1 = Tx(X).

(ii) Suppose B′ ∈ B′′ so Sx(B′) = Tx(B′). Then since

1 = Sx(X) = Sx(B′) + Sx(B′c)

= Tx(B′) + Sx(B′c)

from which it follows

1− Tx(B′) = Sx(B′c)

Tx(B′c) = Sx(B′c)

hence

B′c ∈ B′′.

(iii) Let {B′i ∈ B′′}i∈I . Then

Sx(B′i ∪B′j) = Sx(B′i) + Sx(B′j)− Sx(B′i ∩B′j)

= Tx(B′i) + Tx(B′j)− Tx(B′i ∩B′j)

= Tx(B′i ∪B′j)

By iteration, for any finite integer n, Sx(∪ni=1B
′
i) = Tx(∪ni=1B

′
i). Since

Sx(∪i∈IB′i) is bounded from above,

Sx(∪i∈IB′i) = limitn→∞{Sx(∪ni=1B
′
i)}

= limitn→∞{Tx(∪ni=1B
′
i)}

= Tx(∪i∈IB′i)
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qed.

We can now show that the coequalizer of the parallel pair S and T is given

by the deterministic mapping δidX′

(X,B) -- (X ′,B′)
S

T
- (X ′,B′′)

δidX′

which is the restriction to sub σ-algebra B′′.

Given any other probabilistic mapping U satisfying U ◦S = U ◦T we must

show there exist a unique mapping θ making the diagram

(X,B) -- (X ′,B′)
S

T
- (X ′,B′′)

δidX′

(Y, C)

��
�
��* 6

θ
U

commute. Define

θ(x,C) = U(x,C).

From this it follows that

(θ ◦ δid) (x,C) =
∫
X′

θ(·, C)︸ ︷︷ ︸
limitn→∞{

Pn
i=1 aiχθ−1

C
(aε
i
)
}

dδid

= limitn→∞{
∑n
i=1 ai δid(x, θ(·, C)−1aεi)︸ ︷︷ ︸

=

8>><>>:
1 iff θ(x,C) ∈ aεi
0 otherwise

}

= θ(x,C)

= U(x,C)
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This proves existence. Uniqueness employs the same argument; simply

replace θ with another mapping, say η, making the diagram commute and

one concludes that η = U = θ.

4. By the previous two results, P has all colimits.

5. The object 1 is a seperator in P.

Proof. Suppose the two parallel arrows

(X,B) -- (Y,C)
T

R

are distinct, say

T (x,C) = a∗ 6= b∗ = R(x,C).

Then the one point measure

1 -δx (X,B)

seperates the pair since (T ◦ δx)(C) = a∗ while (R ◦ δx)(C) = b∗.

6. The category P is concrete.

Proof. We must prove that there exist a faithful functor

P → Set.

We have the adjunction

Set - Pdet�
Dis

U
Dis a U
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where Dis assigns the discrete σ-algebra to a set X and U is the “for-

getful” functor defined on the objects of the deterministic subcategory

Pdet by U((X, C)) = X and on the arrows by U(δf ) = f . The unit of

the adjunction is the identity arrow and the existence and uniqueness re-

quirements given an arbitrary (set) function f : X → Y follows from the

commutative diagram

X
-
U((X,PX))

idX

HHH
HHHjf

U((Y,B))
?
U(δf )

(X,PX)

?
(Y,B)

δf

which proves that the identity mapping is a universal arrow from the object

X to the functor U . Thus the unit of the adjunction, η : Id→ U ◦Dis is

defined componentwise by ηX = idX . Consider the pair of adjunctions

Set - Pdet
- P�� Dis i

U D
i ◦Dis a U ◦ D

Both the functors D and U are faithful; hence so is their composite.

4 Probability Measures and the Part/Whole Re-

lation

The objects we need to consider can be viewed as a collection of point features.

Previously we have considered an object to consist of k-points in R3. What we

really require is that the object be considered as a collection of N parts, with

each part consisting of ki points in R3.

Let M stand for model ; formally, it is just a set M ⊂ R3. It consists of a

collection of parts

mj

�� - M
ιj
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where ιj is set inclusion, and the sets mi represent points, lines, surfaces,

etc. Endow M with the σ-algebra generated by {B ∩ M |B ∈ BR3} and its’

collection of parts {mj}Nj=1, where BR3 is the Borel σ-algebra on R3. Denote

this σ-algebra by BM . Thus (M,BM ) is a measurable space and hence an object

of P.

Because the parts mj are measurable sets it follows that the sub σ-algebra

Bj = {B ∩mj |B ∈ BM} (49)

is a σ-algebra on mj , and so each (mj ,Bj) is an object of P, and each

inclusion map is a measurable map, and hence a deterministic mapping in P

(mj ,Bj)
�� - (M,BM ).
διj

If P1 and P2 are probability measures on these parts

(m1,B1)

�
�
�� @

@
@R

1 (M,B)

P1 δι1

@
@
@R �

�
��

P2 δι2

(m2,B2)

then both δι1 ◦P1 and δι2 ◦P2 are probability measures on M . Furthermore

any convex

combination of these two probability measures on M is also a

probability measure on M

1 - (M,B)
θ1(δι1 ◦ P1) + θ2(δι2 ◦ P2)

θ1 + θ2 = 1, θi ≥ 0.
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The scalars θi’s are the “weights” on the respective parts. Such a convex

combination of probability measures on the “whole object” M in terms of its’

parts mi is very appealing for the recognition problem. The individual proba-

bilities on the parts mi can be calculated as in the applications section, say by

the Monte Carlo method as mentioned, and then the probability on the whole

can be obtained as

1 - (M,B)

∑N
i=1(διi ◦ Pi) ∑N

i=1 θi = 1, θi ≥ 0.

The challenge resides is in choosing the weights θi in a reasonable fashion.

5 Sheaf-Theoretic Aspects

A convex combination of probability measures P1 and P2 as in the preceding

expression does not take into account the fact that m1 and m2 may intersect. To

construct amalgamations which take into account intersections it is necessary

to embed P into a slightly larger category which allows scalar endomappings

defined as

(X,B)
δcid−→ (X,B)

defined by

δcid : X × B → [0,∞)

: (x,B) 7→

 c if x ∈ B

0 otherwise

As the notation suggest these scalar mappings are deterministic, induced by

the identity maps, but of total measure c. It is convenient to consider probability

measures defined on the coproducts

1 - 1 + (mi,Bi)
Pi

58



where P (1) = 0.

Consider the diagram

1 +m1

�
�
�� @

@
@R

1 1 +M

P1 δι1

@
@
@R �

�
��

P2 δι2

1 +m2

where we have dropped explicit mention of the σ-algebras and where we have

redefined ι to account for the new element

∗ ∈ 1 +mj ,

ιj(x) =

 x ∀x ∈ mj

* x = ∗
.

Each measurable mapping ιj has a retraction sj

1 +mj
- 1 +M�

ιj

sj
sj ◦ ιj = id1+mj

which is measurable and defined by

sj(x) =

 x If x ∈ mj

* otherwise
.

In the category of measurable spaces, let

1 +m1

�
�
�� @

@
@R

1 + (m1 ∩m2) 1 +M

p1 ι1

@
@
@R �

�
��

p2 ι2

1 +m2
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be the pullback of ι1 and ι2. Then the inclusion maps 1+(m1∩m2) ↪→ 1+mj

both have a measurable retraction rj defined by

rj(x) =

 x If x ∈ m1 ∩m2

* otherwise
.

In P, consider the diagram

1
��
��
��

��
��1

PPPPPPPPPPq

P1

P2

1 +m1

�
�
�� @

@
@R

1 + (m1 ∩m2) 1 +M

δp1 δι1

@
@
@R �

�
��

δp2 δι2

1 +m2

@
@

@I
δr2

�
�

�	
δr1

@
@

@I
δs1

�
�
�	

δs2

Suppose P1 and P2 agree on m1 ∩m2,

P12
4
= δr1 ◦ P1 = δr2 ◦ P2.

Define (the nonprobabilistic mapping)

P̂ = δι1 ◦ P1 + δι2 ◦ P2 − δι2◦p2◦r2 ◦ P2

Then the mapping

P
4
= δ

1
P̂ (1+M)

id ◦ P̂ : 1→ 1 +M.

is a probabilistic mapping which is the amalgamation of P1 and P2. It is of

measure one because of the scaling; it satisfies finite additivity because each

component term does.

The restriction of P to 1 +m1, defined as P |1+m1

4
= δs1 ◦ δ

P̂ (1+M)
id ◦P , gives

P |1+m1 = δs1◦ι1︸ ︷︷ ︸
=id

◦P1 + δs1◦ι2 ◦ P2 − δs1◦ι2◦p2◦r2 ◦ P2︸ ︷︷ ︸
=0

= P1
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where the latter two terms cancel each other out. This can be verified by

looking at these terms on the generating elements of the σ-algebra of 1+M and

the subalgebras:

Consider the event B ∩m1, where B ∈ BM ,

(δs1◦ι2 ◦ P2) (B ∩m1) =
∫

1+m2
δs1◦ι2(·, B ∩m1)dP2

=
∫

1
δs1◦ι2(·, B ∩m1)dP2 +

∫
m1∩m2

δs1◦ι2(·, B ∩m1)dP2

+
∫
mc1

δs1◦ι2(·, B ∩m1)dP2

= 0 + P2(B ∩m1 ∩m2) + 0

where, as usual, for any measurable Z ⊂ 1+m1,
∫
Z
f(·)dP1

4
=
∫

1+m1
χZf(·)dP1.

Decomposing the integral for (δs1◦ι2◦p2◦s2 ◦ P2)(B) into three components

shows it is equal to P2(B ∩m1 ∩m2).

This same procedure works for any finite number of parts {mi}ni=1 giving

an amalgamation with the desired restriction properties. The more familiar

functorial view is given by employing the composite functor

UD : P → Set

:ob (X,B) 7→ DX

:ar (X,B) T−→ (X ′,B′) 7→ DX D(T )−→ DY

where

[D(T )](P ) = T ◦ P

Then given a finite cover {mi}ni=1 of M , and a matching compatible family of

elements {Pi ∈ (UD)(mi)}ni=1 there exist a unique amalgamation P ∈ UD(M)

(constructed as above) satisfying the restriction property.

6 Gluing and Restrictions of Probabilities.

Suppose we are working in a topos C with a subobject classifier Ω. Consider

the diagram
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X

@
@
@R

A1
f1

A2 �
�
��

f2

where f1 and f2 are parts of X (monics). Taking the pullback diagram gives

X

@
@
@R

A1
f1

A2 �
�
��

f2

A1 ∩A2
�
�
��
p1

@
@
@R
p2

There are two covariant functors of interest: The functor

G : C → Set

:ob A → {ΩA P→ [0, 1] : P a probability measure}

:ar A
f→ B 7→ {ΩA P→ [0, 1] :P a p.m.} Ωf→ ({ΩB P→ [0, 1] :P a p.m.}

(50)

where Ω· is the power object functor (contravariant hom functor hom(·,Ω) map-

ping the objects and arrows into the category of sets, where for B t→ Ω, with

transpose (adjunct) 1 t→ ΩB , Ωf (P ◦ t) = P ◦ t ◦ f .

The second functor of interest is the contravariant functor

F : C → Set

:ob A 7→ {ΩA P→ [0, 1] : P a probability measure}

: PA 7→ PA ◦ imf

(51)

where im· is the direct image functor. (The image functor goes by many names.

Another common symbol is ∃·.) Both functors F and G have the same mapping

on objects. Because of the relationship between the covariant imaging functor

im· and the contravariant power object functor Ω· we obtain the diagram
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ΩA1
HHHj

ΩX
imf1

ΩA2
��
�*imf2

ΩA1∩A2
��
�*

HH
Hj

imp1

imp2

�
���
Ωp1

H
HHY

Ωp2

HH
HY Ωf1

�
��� Ωf2

-PX [0, 1]

��
���

���
�:

P2

XXXXXXXXXz
P1

The Beck-Chevalley Theorem says that

Ωf2 ◦ imf1 = imp2 ◦ Ωp1 (52)

It is this “commutativity condition” which gives rise to the sheaf theoretic

aspects which we now describe.

Suppose P1 and P2 are two separate probability measures on A1 and A2

respectively. Hence they are maps

P1 : ΩA1 → [0, 1]

P2 : ΩA2 → [0, 1]
(53)

(More generally P1 and P2 can be any measures on any boolean subalgebra of

the power objects ΩA1 and ΩA2 respectively.) If these two measures P1 and P2

agree on A1 ∩A2 then

P1 ◦ imp1 = P2 ◦ imp2 . (54)

Both of these quantities are the restriction maps - the restriction of Pi on Ai to

A1 ∩A2 for i = 1, 2. From the above diagram we obtain the desired amalgama-

tion of PX of P1 and P2 as

PX = P1 ◦ Ωf1 + P2 ◦ Ωf2 − P2 ◦ imp2 ◦ Ωf1∩f2 . (55)
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Because f1 is a part of X, the restriction of PX to A1 is

PX ◦ imf1 = P1 ◦Ωf1 ◦ imf1 +P2 ◦Ωf2 ◦ imf1 −P2 ◦ imp2 ◦Ωf1∩f2 ◦ imf1 . (56)

Using the three properties

Ωfi ◦ imfi = idAi

Ωf1∩f2 = Ωp1 ◦ Ωf1 = Ωp2 ◦ Ωf2

P1 ◦ imp1 = P2 ◦ imp2 Matching Condition

(57)

along with the Beck-Chevalley Condition

Ωf2 ◦ imf1 = imp2 ◦ Ωp1 (58)

reduces the above equation to

PX ◦ imf1 = P1 + P1 ◦ imp1 ◦ Ωp1 − P1 ◦ imp1 ◦ Ωp1

= P1

(59)

Similarly because f2 is a part of X it follows that

PX ◦ imf2 = P2. (60)

which proves the amalgamations restrict to the parts of which it is composed.

This proof extends by induction to an arbitrary covering of parts {fi}ni=1. The

restriction that the covers be parts can be removed by using the image of each

cover fi. Consequently there is no loss in generality by assuming the cover to

consist of monic maps fi.

Conversely, given a cover {fi}ni=1 and a measure PX on X, the restriction of

PX to Ai is given by

Pi = Px ◦ imfi (61)

which is a measure on Ai because PX is a measure. When the maps fi are

monic then imfi acts as the inclusion map. The quantity Pi can be made into

a probability measure by the appropriate scaling.
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6.1 Summary

The point to surface matching algorithm is a practical approach to solving the

ATR problem because unlike its’ predecessor, using point to point matching

of “features”, it circumvents the combinatorial explosion that occurs with such

methods. The representation of objects by CAD models is seemingly obvious,

yet the representation of objects by a collection of points is still used in some

quarters. This is an unnecessary complication and makes the feasibility of such

approaches impractical for real-time computations. The feasibility of the al-

gorithm used to solve the point to surface model resides in the fact that we

can “collapse” the objective function - which is none other than the weighted

sum of every possibility with respect to the discretization - by exploiting the

bilineararity of the inner product. Because the constraints associated with this

model are all linear and decoupled the computations of the optimization algo-

rithm (search direction and line search) can be carried out in parallel for each

of the unknown parameters. With hindsight this approach seems elementary

and obvious. Unlike other ad hoc approaches (such as the Iterated Closest

Point Algorithm) it has a theoretical basis behind it. Indeed our derivation of

it came from studying the deterministic subcategory of the category of proba-

bilistic mappings which provides a solid foundation for the approach as well as

any future studies/extensions of this approach. Using the category of proba-

bilistic mappings a sheaf-theoretic view of the problem can be taken but is not

necessary from the computational point of view.

The computational time of the algorithm depends upon the number of image

points and the number of surfaces modeling the object (“the resolution” of the

CAD model). On a Mac Quad Pro with 4 processors the computation time

for our standard test case - the tank with 206 surfaces and the point cloud

consisting of 300 image points - is about 2 minutes. By using GPCA this can

be reduced an order of magnitude.

The results of the output of the algorithm for classification purposes are, like

any other algorithm, heavily dependent upon the data input to the algorithm.
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Namely the image data (point cloud of data) must cover a sufficient number

of surfaces which “distinquish” the true object from any decoys. Given data

from a side view or directly overhead is an extreme case in which it is very

difficult to make proper classification because the data falls on surfaces which

all lie in hyperplanes which are similar, i.e., have similar surface normals). On

the other hand, data taken from an aircraft ladar at 30−60 degrees tends to be

sufficient provided occlusion does not block the view of many surfaces defining

the object. This algorithm is being used in a SBIR, in joint effort with Etegent

Technologies, to further its development and integrate it with the preprocessing

of the raw image data to produce an overall ATR system.

A copy of the Mathematica code is included with this report. It is modu-

lar and documented sufficiently to be able to follow and use for experimental

purposes.
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7 Financial Report

The Table below shows the expenditures on a running monthly basis. The

graph following it shows represents the block funding on a yearly basis, the

green graph is the estimated monthly expenditures, and the red graph is the

actual monthly expenditures. The estimated expenditures were based upon

monthly linear spending of available funding. Note we did not start charging

until March 2005 so the first billing is in the 6th month of the first fiscal year.

There were no travel expenses or material charges; all charges were labor

expenses.

Table 1. Quarterly Program-to-Date Expenses
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Quarter Period Expenditures

1 March 11-June 05 31,555.95

2 July-Sept. 05 30,044.82

3 Oct.-Dec. 05 29,889.26

4 Jan.-March 06 30,489.27

5 April-June 06 31,022.61

6 July-Sept. 06 31,644.84

7 Oct.-Dec. 06 40,461.50

8 Jan.-March 07 42,072.62

9 April-June 07 42,822.62

10 July-Sept. 07 41,283.72

11 Oct.-Dec. 07 40,767.06

12 Jan.-Mar. 08 40,750.00

13 April-June 08 41,000.00

14 July-Sept. 08 44,500.00

15 Oct.-Dec. 08 41,300.00

16 Jan.-March 09 36,000.00

17 April-June 09 33,600.00

18 July 09-Sept. 09 37,400.00

19 Oct. -Dec. 09 20,800.00

20 Jan. 2010- March 2010 33,150.00

21 April -Jun 10 40,551.00

22 July - Sept. 2010 58,200.00

23 October 2010 14328

Totals March 11, 2005-Oct. 2010 822,695.14
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Figure 30: Funding - Expenditure Profile
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