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This thesis examines the influences of five factors on the strain energy at 

failure of metallic alloy plates during a shock wave impact.  The five factors are 

material type, initial damage, boundary conditions, plate thickness, and plate 

temperature.  The finite element simulation matrix was developed using a 

statistical design of experiments (DOE) technique.  The Eulerian hydrocode CTH 

was used to develop the pressure histories that were input into the finite element 

code Abaqus/Explicit, which implemented the Mississippi State University 

internal state variable (ISV) plasticity-damage model (DMG).  The DMG model is 

based on the Bammann-Chiesa-Johnson (BCJ) ISV plasticity formulation with the 

addition of porosity and the void nucleation, growth, and coalescence rate 

equations that admit heterogeneous microstructures.  Material type and 

thickness were the primary influences on the strain energy at failure, and the 

materials studied, magnesium and aluminum, showed two different failure 

mechanisms, tearing at the boundaries and spalling, respectively.
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CHAPTER I 

INTRODUCTION 

Blast mitigation has been the focus of increasing research efforts due to 

the growing threat of both civil and military blast attacks.  The goal of this 

research effort is to incorporate a phenomenological material model into a 

simulation-based, blast-resistant design analysis, which should increase the 

understanding of the loading and failure mechanisms that are involved during an 

explosion.  The phenomenological model used in this thesis is the DMG model, 

which consists of the Bammann-Chiesa-Johnson (BCJ) plasticity/damage model 

(Bammann and Aifantis, 1989) modified to include void nucleation, growth, and 

coalescence as damage (Horstemeyer and Gokhale, 1999).  Using the DMG 

model with a simulation-based approach should improve the effectiveness of the 

design and lower the expenses and time spent in the blast-resistant design 

process by reducing the number of experiments needed by the traditional design 

process. 

Blast mitigation is comprised of two aspects, ballistic protection and shock 

wave reduction.  Ballistic protection requires the dissipation of kinetic energy 

from projectiles because projectiles cause damage when they come in contact 

with other bodies.  Projectiles can consist of anything in the area of the explosion 

including the container around the explosive and soil particles in the case of 

underground explosions.  Shock waves cause damage by propagating a nearly 
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instantaneous change in pressure and energy that causes deformation when 

contact is made with a solid object.  Structures are damaged directly from shock 

waves due to high incident pressures.  Human injuries can result from shock 

waves, directly and indirectly.  Direct damage occurs because lungs, brains, and 

other organs are vulnerable to shock waves (Bellamy et al., 1991).  Humans can 

also be injured indirectly by falling debris from damaged structures.  The 

mechanisms involved in shock wave loading need further study so that sufficient 

protection from them can be created. 

In structural responses, the failure mechanisms caused by blast-induced 

shock loads are as complicated as the blast loads themselves.  The high-rate 

nature of blast loads require material characterization for high strain rate loading 

in order to better understand the structural response following a blast.  This 

thesis analyzes the structural response of metallic alloy plate armor using a rate-

and temperature-dependant internal state variable (ISV) material model, the 

DMG model, in a finite element analysis (FEA) in order to improve the 

understanding of the failure mechanisms involved in blasts and to improve 

design techniques for blast mitigation.  The DMG model incorporates failure 

mechanisms by capturing the effects of the nucleation, growth, and coalescence 

of voids. 

The simulation-based design technique applied in this thesis uses a 

design of experiments (DOE) approach made popular by Taguchi (Horstemeyer 

et al., 2003).  The approach allows the study of the effects of many parameters 

while minimizing the number of experiments.  The DOE approach was used to 

determine the influence of five factors on the energy absorbed in a plate from a 
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shock wave: material, plate thickness, temperature, initial damage, and boundary 

conditions.  Conventional Weapons, or ConWep (2005), was originally used to 

determine the blast loads but did not accurately represent the blast loading 

needed in the FEA.  To obtain accurate blast loads, the hydrocode CTH (2007) 

was used to generate the pressure histories for a given explosive and standoff 

distance.  Those pressure histories were input into the finite element code 

Abaqus/Explicit (2009) to simulate the plate response.  Determining the 

influences of the five factors on the plate response should improve blast 

mitigation design by focusing the design around parameters that will most 

influence the structural response. 

The following chapter will describe the loading conditions from an 

explosion caused by shock waves.  Then, an overview of the statistical DOE 

technique is given followed by a description of the material models used in the 

design simulations.  The last two chapters present the setup of the shock wave 

and structural response models and explain the results from the simulation-

based analysis, respectively. 
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CHAPTER II 

SHOCK WAVE AND BALLISTIC LOADING THEORY 

2.1 Introduction 

The loading conditions on solid bodies in the vicinity of an explosion are 

complex due to high loading rates and complicated pressure and temperature 

variations.  Blast loading is the result of two distinct sources resulting from an 

explosion: projectile impact and shock wave impingement.  These two 

phenomena are the results of a sudden increase in volume of the explosive 

products and release of energy, usually from a chemical reaction in the 

explosive, which projects fragments away from the explosion along with a shock 

wave.  Projectiles and shock waves can cause significant injuries and property 

damage to anything in the blast area; however, the loading conditions caused by 

the two events are entirely different, and the understanding of both should be 

furthered for better blast mitigation systems. 

This chapter describes the loading conditions from an explosion caused 

by shock waves.  The explosive process that produces these two phenomena will 

be described first.  The loading conditions from shock wave impingement will be 

described next and will include shock front parameters, shock wave scaling laws, 

and shock wave loading on structures.   A literature review on dynamic 

fragmentation will also be included.  The information found in this chapter relies 
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heavily on Blast and Ballistic Loading of Structures by Smith and Hetherington 

(1994). 

2.2 Generalities of Explosions 

Explosions are caused by a rapid release in energy that can be classified 

into three unique categories:  physical, nuclear, or chemical.  The sudden failure 

of a pressure vessel, detonation of a hydrogen bomb, and detonation of a 

convention explosive such as TNT are examples of each category, respectively.  

Chemical explosives can be further categorized into high and low explosives, 

which are classified according to their burn rates.  Low explosives deflagrate, or 

burn rapidly, while high explosives detonate, which is the process where a shock 

wave propagates through the explosive material initiating a chemical reaction 

behind it.  Though some of the phenomena discussed here are applicable to all 

explosions, blasts from high explosives and shock waves in air are the focus of 

the information discussed in this thesis.   

To initiate a blast from a high explosive, detonation of the explosive 

material must occur.  As the detonation shock wave progresses through the 

explosive, the chemical reactions release large amounts of energy that generate 

hot gases at pressures from 10-30 gigapascals and temperatures from 3000 to 

4000°C (Smith and Hetherington, 1994).  The expansion of these gases forces 

the surrounding air from the space it was occupying, which creates a shock 

wave.  The explosive gases move outward until their pressure and temperature 

reach equilibrium.  The shock wave also moves outward until its pressures reach 

equilibrium.  Further from the blast source, negative pressures can occur before 
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the shock wave reaches equilibrium.  These negative pressures are caused by 

the inertia of the air that had been accelerated in the direction of the blast.  This 

is not found very close to the explosive charge (Cooper, 1996). 

2.3 Shock Waves and Blast Loading 

2.3.1 Quantifying Shock Waves 

A fixed point in air exposed to a shock front will experience significant 

pressure variations.  An almost instantaneous rise to the maximum pressure 

occurs when the shock front contacts the fixed point.  Any pressure above 

ambient pressure is known as overpressure.  The pressures drop rapidly as the 

shock front passes until the pressures drop below ambient for a period of time.  

Figure 2.1 shows the pressure-time history for an ideal shock wave.  The shape 

of the pressure-time curve depends on the standoff distance and type of 

explosive used. 

 

 

Figure 2.1 Pressure-time history of an ideal shock wave. 
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Po is the peak overpressure, Pa is the ambient pressure, ta is the arrival time, td is 

the duration of the positive overpressures or positive phase, i+ is the impulse of 

the positive phase, i- is the impulse of the negative phase. 

2.3.2 Shock Front Parameters 

Four types of pressure are considered in the study of shock waves: 

Incident overpressure, dynamic pressure, reflected pressure, and total or 

stagnation pressure.  Incident overpressure, also known as hydrostatic pressure 

or side-on pressure, is the pressure found from a side-on measurement, or 

measurement tangential to the shock front.  Incident overpressure is usually used 

to define the strength of a shock wave.  Dynamic pressure is related to the kinetic 

energy of a fluid.  Reflected pressure is associated with the reflection of a shock 

front from a surface.  The reflected pressure is the effective loading for structures 

and can be many times greater than the measured incident pressures 

(Dharmasena, 2008).  The total or stagnation pressure is the pressure found 

from a head-on measurement and is the sum of the incident overpressure and 

dynamic pressure with a compressibility factor (Braid, 2001). 

The shock front parameters given by Smith and Hetherington (1994) are 

shock front velocity, air density behind the shock front, and maximum dynamic 

pressure and are given by 
 

௦ܷ ൌ ට
଺௣ೞା଻௣బ

଻௣బ
· ܽ଴  Equation 2.1 

௦ߩ ൌ ଺௣ೞା଻௣బ

௣ೞା଻௣బ
·  ଴  Equation 2.2ߩ

௦ݍ ൌ ହ௣ೞ
మ

ଶሺ௣ೞା଻௣బሻ
  Equation 2.3 
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where ௦ܷ is shock front velocity, ߩ௦ is the air density behind the shock front, ݍ௦ is 

the maximum dynamic pressure, ݌௦ is the peak static overpressure, ݌଴ is the 

ambient air pressure ahead of the shock wave, ߩ଴ is the density of the air at 

ambient pressure ahead of the shock wave, and ܽ଴ is the speed of sound in air at 

ambient pressure. 

The peak static overpressure from Brode (1954) according to Smith and 

Hetherington (1994) can be found according to 
 

௦݌ ൌ ଺.଻

௓య ൅ ௦݌ሺ  ݎܾܽ 1  ൐  ሻ  Equation 2.4ݎܾܽ 10

௦݌ ൌ ଴.ଽ଻ହ

௓
൅ ଵ.ସହହ

௓మ ൅ ହ.଼ହ

௓య െ ሺ0.1 ൏  ݎܾܽ 0.019  ௦݌   ൏  ሻ  Equation 2.5ݎܾܽ 10

where Z is the scaled distance given by 
 

ܼ ൌ ோ

ௐ
భ
య
 . Equation 2.6 

In Equation 2.5, R is the distance from the center of the charge in meters 

and W is the charge mass in kilograms of TNT.  TNT is universally used as the 

reference explosive for blast scaling.  Blast scaling will be discussed more in the 

next section. 

Henrych (1979) also described the peak static overpressure with 

equations similar to that of Brode (1954), as shown in Equations 2.7, 2.8, and 

2.9.  The accuracy of both Brode’s and Henrych’s solutions decreases as the 

distance from the center, z, decreases due to the formation of shock waves near 

the explosive. 
 

௦݌ ൌ ଵସ.଴଻ଶ

௓
൅ ହ.ହସ଴

௓మ െ ଴.ଷହ଻

௓య ൅ ଴.଴଴଺ଶହ

௓ర ሺ0.05 ൑  ݎܾܽ   ܼ ൏ 0.3 ሻ  Equation 2.7 

௦݌ ൌ ଺.ଵଽସ

௓
െ ଴.ଷଶ଺

௓మ ൅ ଶ.ଵଷଶ

௓య ሺ0.3 ൑  ݎܾܽ   ܼ ൑ 1 ሻ  Equation 2.8 
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௦݌ ൌ ଴.଺଺ଶ

௓
൅ ସ.଴ହ

௓మ ൅ ଷ.ଶ଼଼

௓య ሺ1 ൑  ݎܾܽ   ܼ ൑ 10 ሻ  Equation 2.9 

Another shock wave parameter is the area under the pressure-time curve 

known as the impulse, which can be used to describe a shock wave with a single 

value.  The impulse of the positive phase is given by 
 

݅ା ൌ ׬  ܲሺݐሻ ݀ݐ
௧ೌା௧೏

௧ೌ
  Equation 2.10 

Brode (1954) also had a solution for the maximum negative impulse during the 

negative phase given by 
 

݅ି ൎ ݅ା ቀ1 െ ଵ

ଶ ௓
ቁ  Equation 2.11 

2.3.3 Shock Wave Scaling Laws 

Blast scaling is used to predict the behavior of shock waves knowing the 

weight of the explosive and the distance from the explosion.  Blast scaling is 

commonly used to scale incident overpressure values for a known charge mass 

and distance and is used in the program ConWep discussed in Chapter 5.  The 

most common form of shock wave scaling is Hopkinson, or cube-root scaling 

(Baker, 1973).  Hopkinson scaling implies that two charge masses W1 and W2 

with diameters d1 and d2 of the same explosive material exhibit the relationship in 

Equation 2.12. 
 

ௗభ

ௗమ
ൌ ቀௐభ

ௐమ
ቁ

భ
య  Equation 2.12 

Assuming that 
ௗభ

ௗమ
 = K, then Figure 2.2 shows the relationship between the 

shock wave parameters and the size of the explosive. The shock wave ranges, 
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R1 and R2, can also be calculated by an equation similar to Equation 2.12, shown 

as Equation 2.13 (Smith and Hetherington, 1994).  It can be seen from Figure 2.2 

that for a ratio of charge diameters 
ௗభ

ௗమ
 = K, identical impulses can be produced by 

keeping the ratio of the ranges equal to K also. 
 

ோభ

ோమ
ൌ ቀௐభ

ௐమ
ቁ

భ
య  Equation 2.13 

 

 

Figure 2.2 Hopkinson shock wave scaling (After Baker, 1973). 
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Another common scaling law is that of Sachs (1944) that takes into account the 

effects of high altitude where ambient conditions differ from those at sea level.  

However, these will not be discussed here. 

2.3.4 Shock Wave Loading 

Shock wave-induced structural loading, or simply shock wave loading, 

depends on a number of factors including size of the explosive, standoff 

distance, geometry of the target, and the angle at which the shock wave impacts 

the target.  Variations in any one of those factors could result in loadings that 

differ by an order of magnitude.  Shock wave loading for the simplest case, an 

infinitely large rigid wall with a zero degree angle of incidence, will be discussed 

first.  Then, the effects of changing the angle of incidence and the structure size 

will be examined. 

The simplest cases of shock wave loading occur on an infinitely large wall 

because no waves are able to diffract around the wall, which can greatly 

complicate the loading conditions.  Loading for the wall with a zero degree angle 

of incidence is also known as the reflected overpressure.  For this case, the 

reflected peak pressure can be found from the Rankine and Hugoniot (1870) 

equations derived in Equations 2.2 and 2.3 and is given by 
 

௥݌ ൌ ௦݌2 ൅ ቀ
஼೛

஼ೡ
൅ 1ቁ  ௦  Equation 2.13ݍ

where ܥ௣ is the specific heat at constant pressure and ܥ௩ is the specific heat at 

constant volume.  The dynamic pressure, ݍ௦, is shown in Equation 2.14 and the 

velocity behind the shock front, ݑ௦, is given in Equation 2.15. 
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௦ݍ ൌ ଵ

ଶ
௦ݑ ௦ߩ

ଶ  Equation 2.14 

௦ݑ ൌ ௔బ௣ೞ
಴೛
಴ೡ

௣బ

൭1 ൅ ൥
಴೛
಴ೡ

ାଵ

ଶ
಴೛
಴ೡ

൩
௣ೞ

௣బ
൱  Equation 2.15 

where ܽ଴, is the speed of sound.  Smith and Hetherington (1994) show that 

Equation 2.13 can be shown as 
 

௥݌ ൌ ௦݌2  ቂ଻௣బାସ௣ೞ

଻௣బା௣ೞ
ቃ  Equation 2.16 

which indicates that an upper and lower limit on the reflected pressure can be 

set.  The lower limit occurs when the incident overpressure is a lot less than the 

ambient pressure, and the upper limit occurs when the incident overpressure is 

much greater than the ambient pressure.  These two cases result in the 

simplification of Equation 2.16 into the upper and lower limits shown in Equations 

2.17 and 2.8. 
 
௥݌ ൌ  ௦  Equation 2.17݌2

௥݌ ൌ  ௦  Equation 2.18݌8

The ratio between the reflected peak pressure and incident overpressure is 

known as the reflection coefficient, ܥோ.  From the Rankine and Hugoniot (1870) 

equations, the reflection coefficient is found in the range ܥோ ൌ 2 െ 8 (Smith and 

Hetherington, 1994).  However, these equations assume ideal gas conditions 

that may not be valid for a large blast that generates a large temperature and 

pressure jump.  The reflection coefficient for those conditions can be as large as 

twenty (Wilkinson and Anderson, 2003). 
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The angle of incidence, ߙ௜, of the shock wave on the surface of the 

structure also plays a role in determining the reflection coefficient.  In the 

previous discussion where ߙ௜ ൌ 0°, the reflection coefficient could be between 

ோܥ ൌ 2 െ 8 for ideal gas conditions or as high as ܥோ ൌ 20 without ideal gas 

conditions.  When ߙ௜ ൌ 90°, there is no reflection and the loading is simply the 

peak overpressure.  Between these limits, two different types of reflection can 

occur that affect the reflection coefficient: regular reflection and Mach reflection 

(Smith and Hetherington, 1994).  The effects of these types of reflection are not 

discussed here, but Figure 2.3 shows the effects of ߙ௜ on the reflection coefficient 

for various peak positive incident overpressures. 
 
 

 

Figure 2.3 Reflection coefficient vs. angle of incidence for varying values of 
incident overpressure (from Structures to Resist the Effects of 
Accidental Explosions, 1990). 
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The last factor affecting the magnitude of the shock wave loading 

considered here is the geometry of the target.  In the case of the infinite wall, no 

diffraction can occur, which greatly simplifies the loading conditions and allows 

us to set the limits for reflected pressure.  However, those loading conditions are 

not typical, and the geometry of the target must be taken into consideration to 

represent realistic conditions surrounding a blast.  A rigid, rectangular structure is 

discussed here to examine the shock wave interaction with a target of simple 

geometry as shown in Figure 2.4. 
 
 

 

Figure 2.4 Shock wave approaching target structure. 

When the front face of the structure is impacted by the shock wave, a 

reflected wave is formed and the face is loaded with the reflected pressure, ݌௥.  

As the reflected wave reaches the free edges of the front face, the air flows from 

the high pressure region to the low pressure region around the edges of the front 

face.  This flow of air moves from the free edges and progresses towards the 
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center of the front face as a rarefaction or relief wave.  As the relief wave arrives 

at the center, it decreases the reflected pressure.  The reflected pressure 

decreases until the pressure is equal to the stagnation pressure ݌௦௧௔௚ given by 
 

௦௧௔௚݌ ൌ ௦݌ ൅  ௦  Equation 2.19ݍ ஽ܥ

where ݌௦ is the peak top and side overpressure, ܥ஽ is the drag coefficient for the 

front face, and ݍ௦ is the dynamic pressure (Rickman and Murrell, 2007).  Once 

the shock wave diffracts around the free edges, the overpressure will load the top 

and sides of the structure.  There will also be a drag loading on the structure that 

will push the structure in the direction that the shock wave is traveling.  The drag 

force is given by 
 
஽ܨ ൌ  Equation 2.20  ܣ ௦ݍ ஽ܥ 

where ܣ is the area loaded by the pressure.  Once the shock front has passed, 

the structure is loaded with a suction force caused by the dynamic pressure 

passing over and around the structure.  A more detailed description of shock 

wave external loading on structures can be found in Smith and Hetherington 

(1994). 

2.4 Ballistic Loading 

2.4.1 Literature Review on Dynamic Fragmentation 

Dynamic fragmentation is the separation of a body of material into discrete 

sections caused by an impulsive loading.  Many materials fail by dynamic 

fragmentation when subjected to a rapid increase in energy. Sources of impulse 

loading may include an impact with another body, rapid temperature change, or 
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impingement of a shock wave.  The fundamental mechanisms of dynamic 

fragmentation have received little attention, though the prevention or controlling 

of this phenomenon is of importance especially in defense applications.  

Furthermore, brittle materials have been the focus of most research with regard 

to dynamic fragmentation and will be the only materials discussed here. 

Brittle materials fail under slow strain rates by the growth of a single 

dominant crack across the entire section of a body.  The crack is usually 

nucleated from an initial flaw in the body due to a material defect.  Because of 

the slow loading, this single crack relieves the stresses at other potential crack 

nucleation sites allowing only the single crack.  When high strain rates are 

applied, large stresses occur in a relatively short amount of time allowing for 

increased crack nucleation at many sites.  Without enough time to relieve the 

stresses, many cracks nucleate and propagate simultaneously through the 

material that coalesce to allow the material to separate into fragments.  This 

describes the phenomenon of dynamic fragmentation in brittle materials. 

Many models have been developed to describe dynamic fragmentation 

with the main goal of predicting fragment size distributions.  The earliest models 

use energy balance principles to predict fragment sizes.  Grady (1982), Glenn 

and Chudnovsky (1986), Yatom and Ruppin (1989), and Yew and Taylor (1994) 

are some of the theoretical models used that apply energy balance principles.  

Other models use statistical methods to determine fragment size distributions 

such as Grady and Kipp (1985), Grady (1990), and Zhou et al. (2006).  More 

recent models have emphasized the importance of determining time to 

fragmentation onset in addition to fragment sizes.  These models include the 



 

17 

analytical models of Drugan (2001) and Miller et al. (1999) and the computational 

models of Camacho and Ortiz (1996), Espinosa et al. (1998), Miller et al. (1999), 

and Cirak et al. (2005). 

The energy balance models began with a simple balance of local kinetic 

energy and surface energy and became increasingly more complex with the 

addition of stored elastic energy and thermodynamic principles.  When 

computational models became popular, the energy balance models were shown 

to be applicable only at very high strain rates (greater than 107 s-1) because they 

assume that the energy available to form fracture surfaces causes the surfaces 

to form instantaneously.  Recent studies have shown that the time history of the 

fragmentation process and the speed of crack propagation are important for a 

model to be valid at all testing regimes. 

The computational and advanced analytical models recently developed 

include the effects of time on dynamic fragmentation and are able to predict the 

fragment size distribution more accurately than the energy balance models.  The 

majority of computational models available are finite element models based on a 

cohesive law.  A cohesive-law model forms a body of material by joining 

prospective fragments with nonlinear cohesive zones to the rest of the body.  

This allows the prediction of fragment sizes with the consequent inclusion of time 

to fragmentation initiation as a function of material properties and the applied 

strain rate.  This model is more powerful than the energy balance models in that 

it can account for discrete cracks where the energy balance models cannot.  The 

analytical models from Drugan (2001) and Miller et al. (1999) are also based on a 

cohesive law. 
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Though the computational and analytical models mentioned previously are 

far more comprehensive than the foundational energy balance models, several 

areas are still in need of research before they can be adequately understood.  

Experimentation is needed to validate the current models across a wider regime 

of problems that may be faced in applications involving dynamic fragmentation.  

Material characterization is also needed in regard to this phenomenon to gain 

insight as to how different materials behave during dynamic fragmentation.  

Moreover, the current models should be tested for their validity with ductile 

materials.  If the models cannot adequately determine the behavior of ductile 

materials in dynamic fragmentation, new models should be researched that have 

this ability. 
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CHAPTER III 

DESIGN OF EXPERIMENTS 

3.1 Introduction 

The design of experiments (DOE) methodology is comprised of statistical 

techniques developed by Ronald Fisher (1935, 1936) to relate statistical 

procedures to physical experiments.  Fisher’s studies focused on reducing the 

amount of experiments needed when the effects of a large amount of factors 

were being studied.  As the number of experiments became too large due to the 

presence of many factors, he created methods to reduce the total number of 

combinations needed such that all of the factors would be evenly present while 

also capturing the effects of the factors.  His techniques demonstrated how to 

study the effects of multiple variables simultaneously.  As the theory behind his 

techniques became more complicated, fewer people chose to use them in 

practical applications.  Genechi Taguchi alleviated this problem in the field of 

quality engineering by developing a modified and standardized form of DOE 

which has been utilized in this paper (Roy, 2001). 

The Taguchi approach has been used in various contexts of mechanics 

and design by Trinh and Gruda (1991), Horstemeyer (1993), Stutsman et. al 

(1996), Young (1996), Nedler and Lee (1991), Horstemeyer and McDowell 

(1997), Horstemeyer et. al (1999, 2003), and Horstemeyer and Ramaswamy 

(2000).  This approach allows the evaluation of multiple parameters in an efficient 
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manner (Horstemeyer et. al, 2003).  In the context of this paper, the DOE 

technique is used to determine the influences of five parameters on the energy 

absorption from a shock wave.  These parameters are placed in an orthogonal 

array, standardized by Taguchi, which allows the optimal determination of 

parametric effects.  The parameters used in the orthogonal array are discussed 

in the next section followed by an explanation of the DOE methodology. 

3.2 Parameters 

Five parameters (material, damage distribution, boundary conditions, plate 

thickness, and temperature) are examined in this analysis to determine their 

effect on the energy absorption in a metallic alloy plate.  These parameters were 

chosen so that they would represent conditions around a driver-side floor pan of 

an Armed Forces Hummer. 

3.2.1 Material 

Four materials have been chosen to determine how each would respond 

to the shock wave loading: cast AM60 magnesium alloy, rolled AZ31 magnesium 

alloy, cast A356-T6 aluminum alloy, and extruded 6061-T6 aluminum alloy.  The 

AZ31 magnesium alloy was chosen to determine its blast mitigation properties 

relative to other materials that have been characterized for the DMG model, 

discussed in Chapter 4, and based off of military specifications for AZ31 

magnesium alloy (‘Detail Specification Armor Plate, Magnesium, AZ31B, 

Applique’, 2009).  The 6061 aluminum alloy was chosen because it is also used 

in plate armor applications, and the AM60 magnesium alloy and A356 aluminum 

alloy were chosen solely for comparison with the other metallic alloys. 
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3.2.2 Damage Distribution 

The DMG model predicts failure using a damage ISV approach where void 

nucleation, growth, and coalescence are included as damage.  As such variation 

of initial damage is considered, four damage distributions are used to determine 

how varying damage affects the amount of energy absorbed by the plate.  A 

homogeneous distribution is used and should be able to absorb the most energy.  

Three heterogeneous distributions are also used that have the same mean 

damage, but the standard deviation of the damage is varied.  The mean initial 

damage is based off of the initial void volume fraction for each material that can 

be found in the appendix.  The three heterogeneous distributions have 30 

percent, 60 percent, and 100 percent standard deviation from the mean and each 

distribution should have effects that increase as the standard deviation 

increases. 

3.2.3 Boundary Conditions 

Boundary conditions in a numerical model play a significant role in 

determining the response of the model.  As discussed in Chapter 5, a 3D finite 

element model was used to calculate the energy absorption of a plate.  Pinned-

like and clamped boundary conditions will be used in the structural response 

model to see how the results are affected.  The pinned-like and clamped 

conditions should bound the minimum and maximum response, respectively, with 

realistic conditions yielding a response between the two.  The force boundary 

conditions will be the same for all of the simulations, which are the pressures 

applied from the Abaqus/Explicit VDLOAD subroutine.  The entire model 
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including the boundary conditions and subroutine will be discussed in detail in 

Chapter 5. 

3.2.4 Plate Thickness 

Plate thickness is expected to be the dominant influence in the response 

of the plate.  Four plate thicknesses were chosen, 10, 30, 50 and 75 mm.  The 

minimum and maximum plate thickness values were chosen based on Detail 

Specification Armor Plate, Magnesium, AZ31B, Applique (2010).  The middle 

values were chosen somewhat arbitrarily, but they can be used to further 

optimize the plate thickness for a given shock wave if desired. 

3.2.5 Initial Plate Temperature 

Since plasticity is temperature dependant, temperature is expected to 

have some influence on the response of the plate following the shock wave 

impact.  The temperatures used in this thesis were used to represent the normal 

operational conditions for a vehicle.  However, a small temperature range (273 K 

to 323 K) is considered so its effects are expected to be limited.  Also, the AM60 

is the only material for which mechanical response at various temperatures was 

available. 

3.3 Design of Experiments Methodology 

To evaluate the influences of the five parameters, 16 finite elements 

calculations are set up in an orthogonal array according to the Taguchi method.  

An orthogonal array is generated to govern the arrangement of the five 

parameters in the 16 calculations.  After the calculations are completed 

according to their arrangement in the array, the DOE method is used to 
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determine the influences of the parameters on the response, energy absorption 

of the plate.  The value of this approach is easily seen when compared to 

another DOE method, the full factorial approach.  The full factorial approach 

examines every combination of parameters resulting in 2(44), or 512, simulations 

to determine the parametric influences as compared to the 16 calculations 

performed in this thesis.  The concept of the orthogonal array is discussed next 

followed by the procedure for determining the parametric influences.  A more 

detailed description can be found in Box et al. (1978).   

The orthogonal array used in this thesis is the mixed L16(4
4 23) array 

where 16 is the number of experiments (finite element calculations), 4 and 2 are 

the number of levels for the respective parameters, and 4 and 3 are the number 

of parameters that can be investigated.  However, only 21 is used in this thesis 

for the single two level parameter, boundary condition; the other two orthogonal 

array columns for extra two level parameters are zeroed out.  The number of 

levels refers to the different options for each parameter, e.g., AM60, AZ31, A356, 

and 6061 are the four levels under the parameter material as seen in Table 3.1.  

In a typical array, each level has an equal number of occurrences in each 

column.  Since the columns are orthogonal, or independent of each other, large 

variations in the results when changing levels of a factor show that the factor has 

a strong influence on the design response parameter (energy absorption for this 

analysis).  The effects of the other factors are canceled out because the levels of 

the other factors occur an equal number of times (Peace, 1993 cited in Young, 

1996).  The L16 array can be seen in Table 3.1.  After the parameters have been 
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determined and the array has been created, the calculations can be run and the 

parametric influences can be found. 

Table 3.1 L16 orthogonal array showing the parameters. 

Calculation Material Thickness Temperature
Damage 

Distribution 
Boundary 

Conditions

1 AM60 Magnesium 10 mm 323 K 100% St. Dev. Clamped 
2 AM60 Magnesium 30 mm 303 K 60% St. Dev. Clamped 
3 AM60 Magnesium 50 mm 293 K 30% St. Dev. Pinned-like 
4 AM60 Magnesium 75 mm 273 K 0% St. Dev. Pinned-like 
5 AZ31 Magnesium 10 mm 303 K 30% St. Dev. Pinned-like 
6 AZ31 Magnesium 30 mm 323 K 0% St. Dev. Pinned-like 
7 AZ31 Magnesium 50 mm 273 K 100% St. Dev. Clamped 
8 AZ31 Magnesium 75 mm 293 K 60% St. Dev. Clamped 
9 A356 Aluminum 10 mm 293 K 0% St. Dev. Clamped 
10 A356 Aluminum 30 mm 273 K 30% St. Dev. Clamped 
11 A356 Aluminum 50 mm 323 K 60% St. Dev. Pinned-like 
12 A356 Aluminum 75 mm 303 K 100% St. Dev. Pinned-like 
13 6061 Aluminum 10 mm 273 K 60% St. Dev. Pinned-like 
14 6061 Aluminum 30 mm 293 K 100% St. Dev. Pinned-like 
15 6061 Aluminum 50 mm 303 K 0% St. Dev. Clamped 
16 6061 Aluminum 75 mm 323 K 30% St. Dev. Clamped 

 

After determining the response (energy absorption) of each calculation, 

Minitab-15 statistical software (2007) was used to determine how each 

parameter affected the response.  This software allows the input of the 

parameters and responses (energy absorption for each calculation) and 

determines the parameters that most influence the response.  To determine the 

influences of the parameters, the mean response for each level of the 

parameters is determined (e.g., the average energy absorption for the level AZ31 

Mg alloy for the parameter material).  Then, the difference between the highest 

and lowest average value for each level of a parameter measures the amount of 

influence a parameter has on the response.  For example, in this analysis the 
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parameter boundary condition had the smallest difference between the average 

energy absorption for the calculations using clamped (level 1) boundary 

conditions and the average energy absorption for the calculations using the 

pinned-like (level 2) boundary conditions.  Therefore, the parameter boundary 

condition had the smallest influence on the response (energy absorption).  The 

results for the other parameters can be found in Chapter 6. 

The DOE analysis can be used to determine the parametric influences for 

any set of responses.  For this thesis, energy absorption by the plate is the 

response of interest.  Other responses could easily be studied such as the 

amount of damage created or maximum deflection.  However, a separate 

statistical analysis must be run for each set of responses.  Once the parametric 

influences are determined for the responses, the parameters can be adjusted to 

achieve an optimal design.  In this case, the optimal design would consist of the 

best plate design and conditions to increase energy absorption during a shock 

wave impact. 
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CHAPTER IV 

MATERIAL MODELS 

4.1 Introduction 

Several material models were used in the hydrocode CTH and finite 

element code Abaqus/Explicit.  In CTH, three material models were used for the 

air, soil, and TNT.  The air model used the equations of state (EOS) based on the 

work of Graboske (1975), the soil model used the CTH geological strength model 

using data from Kerley (2001), and the TNT model used the Jones-Wilkins-Lee 

(JWL) EOS (Lee, 1968).  The DMG model, or modified BCJ plasticity-damage 

model, was used to model the structure in Abaqus/Explicit.  These models are 

discussed in detail in the following sections. 

4.2 CTH 

CTH is a shock physics code used to predict the pressure histories of a 

given explosive.  Three material models were used from the CTH material model 

database called SESAME that contained tabular EOS for air, the CTH geological 

soil model was used for the soil, and the JWL EOS was used for TNT.  These 

models are shown in this section. 

4.2.1 Air 

The default SESAME tabular EOS were used for air.  An EOS is a 

relationship between the volume, pressure, quantity, and temperature of a 
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material in a given state (Cooper, 1996).  The SESAME option in CTH uses EOS 

tables in the CTH database that are constructed using EOS modeling codes.  

The tables are intended to cover a broad density-temperature range and can 

include tables based on the Mie-Gruneisen model, the Debye specific heat, and 

other extensions to treat high compressions, large expansions, and high 

temperatures.  Some tables may even include theories that treat chemical and 

physical phenomena (Hertel Jr. and Kerley, 1998).  The SESAME tabular 

equations for air are based on Graboske (1975). 

4.2.2 Soil 

Sand was the soil used in all of the CTH simulations.  Sand is a porous 

aggregate of granular materials commonly composed of crushed rock and 

mineral particles such as silica.  Sand properties vary depending on the degree 

of compaction, the minerals present, and the moisture content (Kerley, 2001).  

Dry sand was used in the initial simulations, but wet sand was incorporated in the 

latter ones because it was shown by Kerley that an explosive in wet sand 

produces a larger impulse than the same explosion in dry sand. 

The initial CTH simulations that incorporated soil models used dry sand 

with a zero initial air void porosity and zero percent water content.  This should 

give unrealistic pressure histories and was not used for the structural response 

simulations.  The reference state properties for dry sand are shown in Table 4.2. 

The CTH simulations that produced the pressure histories used in the 

structural response simulations used wet sand in the soil model.  Kerley (2001) 

shows that dry sand is able to absorb more explosive energy than wet sand 
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because the energy absorption of dry sand is 50 to 100 percent greater than for 

wet sand at the same shock pressure.  The wet sand soil model is described in 

Kerley (2005). 

The wet sand properties are based on quartz sand with a 24% water 

content.  The grain density of the quartz is 2.648 g/cm3.  With no air filled voids, 

the density of the sand with the 24% water is 2.0028 g/cm3.  The strength of the 

soil is found using the CTH geological strength model given in Equation 4.1 in 

Kerley (2005) from McGlaun et al. (1988). 
 

ܻሺܲሻ ൌ ଴ܻ ൅ ∆ܻሺ1 െ ݁
షೊುು

∆ೊ ሻ  Equation 4.1 

where ∆ܻ ൌ ௠ܻ௔௫ െ ଴ܻ, ଴ܻ is the zero-pressure strength, ௣ܻ is the pressure 

derivative, and ௠ܻ௔௫ is the maximum strength.  The parameters used for wet 

sand in CTH are shown in Table 4.1. 

Table 4.1 Properties for dry and wet sand used in CTH. 

Soil Properties 
Dry Sand 

Initial Density (g/cc) 2.605 
Fracture Strength (dynes/cm2) -1.0E+6 
Sound Speed (km/s) 3.883 

Wet Sand 
Initial Density (g/cc) 1.97 
Fracture Strength (dynes/cm2) -1.0E+6 
Sound Speed (km/s) 1.5499 
Crush Pressure (dynes/cm2) 5.0E+8 
Yield Strength (dynes/cm2) 2.0E+8 
Zero-Pressure Strength 
(dynes/cm2) 3.0E+6 
Pressure Derivative 2 
Poisson Ratio 0.32 
Melt Temperature (electron volts) 0.15 
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4.2.3 TNT Explosive 

The explosive was modeled using the default JWL EOS for TNT.  The 

JWL formulas were developed to represent the EOS for explosive detonation 

products.  The TNT in the CTH simulation was detonated by programmed burn 

(HEBURN) at the bottom center of the explosive with a detonation velocity of 

6.93E5 cm/s (Dobratz and Crawford, 1985, cited in Kerley, 2001).  Though the 

JWL EOS have been shown to predict lower pressures as standoff distance 

increases (Kerley, 2005), it is commonly used and  gives an approximate 

pressure history given the large number of variables involved. 

4.3 DMG Damage Model 

The finite element analyses performed in this paper used the DMG model 

(Horstemeyer et al., 2000).  The DMG model is an ISV plasticity/damage model 

based on the microstructure-property model equation of Bammann and Aifantis 

(1989) and Horstemeyer and Gokhale (1999).  The DMG model predicts damage 

evolution by incorporating separate void nucleation, growth, and coalescence 

evolution equations in the BCJ ISV plasticity model.  The ISVs in this model are 

used to describe the macroscale effects of microstructural features (e.g., voids, 

cracks, and inclusions).  These microstructural features are dependant on the 

material, forming process, environment in which it is used, and the loading 

conditions present.  Using this concept, the present state of the material depends 

only on the present values of the observable variables and the ISVs, which 

allows the model to implicitly capture the loading history of the material.   

The DMG model can be divided into three major aspects: kinematics; void 

nucleation, growth, and coalescence; and plasticity.  The kinematics in the 
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continuum damage mechanics framework are described first.  Then, the void 

nucleation, growth, and coalescence aspects of the model are discussed.  Lastly, 

the elastic-plastic aspects of the macroscale model are discussed. 

4.3.1 Kinematics 

The formulation of the kinematics follows that of Davison et al. (1977) and 

Bammann and Aifantis (1989) as described in Horstemeyer et al. (2000).  The 

kinematics of motion are described by elastic straining, inelastic flow, and 

formulation and growth of damage.  As shown in Figure 4.1, the deformation 

gradient, F, is decomposed into the plastic, (ܨௗ
௣), dilatational inelastic (ܨ௩

௣), and 

elastic parts (ܨ௘) given by  
 

ܨ ൌ ௩ܨ௘ܨ 
௣ܨௗ

௣. Equation 4.2 

 

Figure 4.1 Multiplicative decomposition of the deformation gradient (After 
Horstemeyer et al., 2007). 

For crystalline metallic alloys, ܨ௘ represents lattice displacements from 

equilibrium, ܨௗ
௣ represents a continuous distribution of dislocations whose motion 

produces permanent shape changes but no volume change, and ܨ௩
௣ represents a 
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continuous distribution of voids contributing to permanent volume change.  ܨ௩
௣ is 

the deformation gradient that describes the damage and is discussed in detail in 

the following paragraphs. 

Porosity, or volume of voids per unit total volume, is used as the measure 

of damage because it allows the evolution of damage to be expressed directly in 

terms of nucleation and growth rates of the void population (Bammann and 

Aifantis, 1989).  From the multiplicative decomposition used here, damage, ߔ, 

can be written as 
 

ߔ ൌ  ௏ೇ

௏మ
, Equation 4.3 

where ௏ܸ is the volume of voids and ଶܸ is the volume of an element in the 

elastically unloaded state, R2. Equation 4.3 defines damage as the ratio of the 

change in volume of an element in the elastically unloaded state, R2, from its 

volume in the reference state, R0.  The change in volume from R2 to R0 is the 

volume of voids, Vv, is the only volume change to occur between the different 

states; there is no volume change between R0 and R1 due to inelastic 

incompressibility.  From Equation 4.3, it follows that 
 

଴ܸ ൌ ሺ1 ൅ ሻߔ  ଶܸ , Equation 4.4 

The Jacobian of the deformation gradient is related to the change in volume or 

change in density for constant mass as 
 

ܬ ൌ det ௩ܨ
௣ ൌ  ௏మ

௏బ
ൌ  ఘబ

ఘమ
     Equation 4.5 

and must be positive.  Combining Equation 4.4 and 4.5, yields 
 

ܬ ൌ det ௩ܨ
௣ ൌ  ଵ

ଵି ః
 . Equation 4.6 
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where the Jacobian is now determined by the damage parameter, ߔ.  For 

simplicity, the damage is assumed to produce isotropic dilation, which gives the 

volumetric part of the deformation gradient as 
 

௩ܨ
௣ ൌ  ଵ

ሺଵି ఃሻభ/య  Equation 4.7 ,  ܫ 

where ܫ is the second-order identity tensor The velocity gradient associated with 

the deformation gradient, ܮ ൌ ሶܨ   ଵ, from Equation 4.2 is given byିܨ 
 
ܮ ൌ ௘ܮ ൅ ௩ܮ

௣ ൅ ௗܮ
௣   Equation 4.8 

Similar formulas exist for the elastic, volumetric plastic, and deviatoric plastic 

parts of the velocity gradients as ܮ ൌ ሶܨ   ଵ.  The volumetric part of theିܨ 

deformation gradient reads 
 

௩ܮ
௣ ؠ  ሶܨ 

௩
௣ ܨ௩

௣ିଵ
ൌ  ఃሶ

ଷ ሺଵି ఃሻ
 Equation 4.9 . ܫ 

This defines the plastic volumetric rate of deformation as 
 

௩ܦ
௣ ൌ  ఃሶ

ଷ ሺଵି ఃሻ
 Equation 4.10 .ܫ

The trace of the plastic volumetric rate of deformation shows that the damage 

parameter, ߔ, directly relates to the volumetric rate of deformation, as seen in 

Equation 4.11. 
 

௩ܦ൫ݎݐ
௣൯ ൌ  ః

ሺଵି ఃሻ
, Equation 4.11 

The symmetric parts of the velocity gradient decompose similar to Equation 4.8. 
 
ܦ ൌ ௘ܦ ൅ ௩ܦ

௣ ൅ ௗܦ
௣ , Equation 4.12 



 

33 

When the rate of deformation related to the damage is defined, the 

damage in terms of void nucleation and growth can be described.  The total 

number of voids in the reference configuration, R0, is assumed to be N in the 

representative continuum volume, V0.  Let η* represent the number of voids per 

unit volume in the reference configuration so that η*=N/V0.  The average void 

volume becomes ݒ௩ ൌ ܰିଵ  ∑ ௜ݒ
ே
௜ୀଵ .  The volume of voids is  

 
௩ܸ ൌ  ηכ V଴ ݒ௩. Equation 4.13 

Equation 4.3 can then be written as 
 

ߔ ൌ  ஗כ Vబ ௩ೡ

Vబା஗כ Vబ ௩ೡ
ൌ  ஗כ ௩ೡ

ଵା஗כ ௩ೡ
 . Equation 4.14 

If the number of voids per unit volume, η, is defined in the intermediate 

configuration, then 
 

ߔ ൌ ௏ೇ

௏మ
ൌ  ௏ೇ

ே

ே

௏మ
ൌ  ௩η , Equation 4.15ݒ 

where 
 

η ൌ  ே

௏మ
ൌ ே

௏బ

௏బ

௏మ
ൌ   ηכ ௏బ

௏మ
 . Equation 4.16 

Using V2 = V0 – Vv and Equation 4.3, the previous equation becomes 
 
ηכ ൌ  ஗

ሺଵି ఃሻ
 . Equation 4.17 

4.3.2 Void Nucleation, Growth, and Coalescence 

Three different phenomena related to damage initiation and progression 

are accounted for in the DMG model: void nucleation, growth, and coalescence.  

These three phenomena and how they are accounted for in the model will be 
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discussed beginning with void nucleation and followed by void growth and 

coalescence. 

A modified version of the void nucleation rule of Horstemeyer and Gokhale 

(1999) is used in this model.  This version includes a multiplier of the effective 

stress to capture strain rate or other stress variation effects on the nucleation rate 

(Tucker et al., 2010).  The void nucleation rate equation is given by 
 

ሻݐሺߟ  ൌ ௖௢௘௙௙ܥ  exp ൝ఌሺ௧ሻௗ
భ
మ

௄಺಴௙
భ
య

௏ሺ்ሻ

௒ሺ்ሻ
ଶܬ ൥ܽ ቀ ସ

ଶ଻
െ ௃య

మ

௃మ
యቁ ൅ ܾ ௃య

௃మ

య
మ

൅  ܿ ฯ ூభ

ඥ௃మ
ฯ൩ൡ exp ቆ

െC஗T
Tൗ ቇEquation 4.18 

where ߟሺݐሻ is the void nucleation density, ߝሺݐሻ is the strain magnitude at time t, 

 ௖௢௘௙௙ is a material constant, and T is the temperature.  The material parametersܥ

a, b, and c relate to the volume fraction of the nucleation events caused by local 

stresses in the material.  The void nucleation rate equation is stress state 

dependent due to the inclusion of the stress invariants I1, J2,  and J3.  I1 is the first 

invariant of stress, J2 is the second invariant of deviatoric stress, and J3 is the 

third invariant of deviatoric stress.  The volume fraction of the second phase 

material is f, the average silicon particle size is d, and the bulk fracture toughness 

is KIC.  C஗T is the void nucleation temperature dependent parameter.  V(T) 

determines the magnitude of rate-dependence on yielding and Y(T) is the rate-

independent yield stress.  The motivation for the choice of stress invariants can 

be found in Horstemeyer and Gokhale (1999). 

Void growth is the next phenomena to consider when determining the 

damage state.  The damage framework described in the previous section allows 
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for different growth rules; however, the growth rule currently being used is that of 

McClintock (1968), 
 

௏ݒ ൌ ସ

ଷ
൜ܴ଴ ݌ݔ݁ ൤ߝሺݐሻ √ଷ

ଶሺଵି௡ሻ
 ൈ ݄݊݅ݏ  ൬√3ሺ1 െ ݊ሻ √ଶூభ

ଷඥ௃మ
൰൨ൠ

ଷ

  Equation 4.19 

The material constant n is related to the strain hardening exponent.  R0 is the 

initial radius of the voids.  From Equation 4.19, the void volume increases as the 

strain and/or stress triaxiality increases. 

The last phenomena related to damage taken into account in the DMG 

model is void coalescence, the joining of voids.  Coalescence has been observed 

to occur by two mechanisms, natural coalescence (Garber et al., 1976) and by a 

void sheet mechanism (Cox and Low Jr., 1974 and Rogers, 1960).  Natural 

coalescence occurs when two neighboring voids grow together and become one.  

The void sheet mechanism is the process when a localized shear band occurs 

between neighboring voids.  As described in Horstemeyer (2001), natural 

coalescence and the void sheet mechanism of coalescence arises naturally with 

the multiplicative relation between the nucleation and growth terms as 
 

ܥ ൌ  ሺܥ஽ଵ ൅ ሻݒ ߟ ஽ଶܥ ቀ஽஼ௌబ

஽஼ௌ
ቁ

௭
஼்ܥ൭െ ݌ݔ݁

ܶൗ ൱  Equation 4.20 

The parameters ܥ஽ଵ and ܥ஽ଶ are material constants that affect natural coalesce 

and the void sheet mechanism, respectively.  CCT is the void coalescence 

temperature dependent parameter.  ܵܥܦ଴,  are parameters to capture ݖ and ,ܵܥܦ

the microstructure effect of grain size.  The dependence on dendrite cell size 

(DCS) is based on the work of Major et al. (1994). 
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4.3.3 Plasticity 

The BCJ ISV plasticity model (Bammann et al., 1993) is used to model the 

elastic-plastic aspects of the DMG model.  The void nucleation, growth, and 

coalescence aspects mentioned in the previous section are inserted into the BCJ 

ISV model to account for stress state dependent damage evolution.  The relevant 

equations in this model are indicated by the rate of change of the observable 

variables and internal state variables.  The equations used within the finite 

element method framework include a linear, isotropic material response 
 

₀
ߪ ൌ ሺ1 ߣ  െ ܫ௘൯ܦ൫ݎݐ ሻߔ ൅ ሺ1ߤ2 െ ௘ܦሻߔ െ ቀ ఃሶ

ଵିః
ቁ  Equation 4.21 , ߪ

Equation 4.22 shows the additive decomposition of the strain rate followed by 

Equation 4.23 showing the rate and temperature-dependent  evolution equation 

for plastic flow. 
 
௘ܦ ൌ ܦ െ  ௣ , Equation 4.22ܦ

௣ܦ ൌ ݂ሺܶሻ sinh ቄ
ฮఙᇱି ఈฮି ሾோା௒ሺ்ሻሿ ሾଵିఃሿ

௏ሺ்ሻሼଵିఃሽ
ቅ 

ఙᇱି ఈ

ฮఙᇱି ఈฮ
 , Equation 4.23 

where ߪ and 
₀
 are the Cauchy stress and the co-rotational rate of the Cauchy ߪ

stress, respectively.  As mentioned earlier, ߔ is an ISV representing damage with 

ሶߔ  representing its material time derivative.  ߣ and ߤ are the elastic Lame 

constants, and ܦ௘ is the elastic deformation tensor.  Equation 4.23 shows the 

plastic deformation tensor or inelastic flow rule, ܦ௣, where ߪԢ is the deviatoric part 

of the stress tensor, ܶ is temperature, ߙ is kinematic hardening, and ܴ is isotropic 

hardening. 
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Equations 4.24 to 4.26 are functions related to yielding with Arrhenius-type 

temperature dependence and modified to account for stress state dependence. 
 

ܻሺܶሻ ൌ ଷܥ   ൥1 ൅ ௔ܥ ቀ ସ

ଶ଻
െ  ௃య

మ

௃మ
యቁ ൅ ௕ܥ

௃య

௃మ

య
మ
൩ ݁ቀ಴ర

೅
ቁ  Equation 4.24 

݂ሺݐሻ ൌ ହ ݁ቀష಴లܥ 
೅

ቁ  Equation 4.25 

ܸሺܶሻ ൌ ଵܥ   ൥1 ൅ ଵଽܥ ቀ ସ

ଶ଻
െ  ௃య

మ

௃మ
యቁ ൅ ଶ଴ܥ

௃య

௃మ

య
మ
൩ ݁ቀష಴మ

೅
ቁ  Equation 4.26 

where ܬଶ ൌ ଵ

ଶ
൫ߪᇱ െ ߙ൯

ଶ
 and ܬଷ ൌ ଵ

ଷ
൫ߪᇱ െ ൯ߙ 

ଷ
.  The function ܻሺܶሻ is the rate-

independent yield stress, ݂ሺݐሻ determines when the rate-dependence affects 

initial yielding, and ܸሺܶሻ determines the magnitude of rate-dependence on 

yielding.  The parameters ܥଵ through ܥ଺ are material parameters determined 

experimentally.  ܥ௔ and ܥ௕ are the material parameters that relate the stress state 

to the rate-independent yield stress, and ܥଵଽ and ܥଶ଴ relate the stress state to the 

magnitude of rate-dependence on yielding. 

The co-rotational rate of the kinematic hardening, 
₀
 and the material time ,ߙ

derivative of isotropic hardening, ሶܴ ,  are cast in a hardening-recovery format that 

includes dynamic and static recovery as 
 

₀
ߙ  ൌ ቊ݄ሺܶሻܦ௣ െ  ቈටଶ

ଷ
௣ฮܦௗ ሺܶሻฮݎ  ൅ ݎ௦ ሺܶሻ቉ ฮߙฮߙቋ ൫ವ಴ೄబ

ವ಴ೄ
൯

௭
, Equation 4.27 

ሶܴ ൌ  ቊܪሺܶሻܦ௣ െ  ቈටଶ

ଷ
 ܴௗ ሺܶሻฮܦ௣ฮ ൅ ܴ௦ ሺܶሻ቉ ܴଶቋ ൫ವ಴ೄబ

ವ಴ೄ
൯

௭
 . Equation 4.28 

 are parameters to capture the microstructure effect of grain ݖ and ,ܵܥܦ ,଴ܵܥܦ

size as mentioned earlier.  The scalar functions of temperature ݎௗ ሺܶሻ and ܴௗ ሺܶሻ 
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describe dynamic recovery, ݎ௦ ሺܶሻ and ܴ௦ ሺܶሻ describe thermal (static) recovery, 

and ݄ሺܶሻ and ܪሺܶሻ represent the anisotropic and isotropic modulus.  These six 

functions account for deformation-induced anisotropy caused by texture and 

dislocation substructures.  They are modified versions of those found in Miller et 

al. (1995) and Horstemeyer et al. (1995) where the hardening and recovery 

terms had a stress state dependence.  For this thesis, the stress state 

dependence has been placed on the yield terms leaving the hardening and 

recovery terms as 
 

ௗሺܶሻݎ ൌ ଻݁ቀష಴ఴܥ 
೅

ቁ , Equation 4.29 

ܴௗሺܶሻ ൌ ଵଷ݁ቀష಴భరܥ 
೅

ቁ , Equation 4.30 

௦ሺܶሻݎ ൌ ଵଵ ݁ቀష಴భమܥ 
೅

ቁ , Equation 4.31 

ܴ௦ሺܶሻ ൌ ଵ଻ ݁ቀష಴భఴܥ 
೅

ቁ , Equation 4.32 

݄ሺܶሻ ൌ ଽܥ  െ ܥଵ଴ܶ , Equation 4.33 

ሺܶሻܪ ൌ ଵହܥ  െ  ଵ଺ܶ , Equation 4.34ܥ 

 ଵଶ are the material plasticity parameters related to the kinematicܥ ଻ throughܥ

hardening and recovery terms, ܥଵଷ through ܥଵ଼ are the material plasticity 

parameters related to the isotropic hardening and recovery terms. 

Damage was introduced in the kinematics into Equation 4.7 as the void 

volume fraction.  Different damage evolution rules can be included into the 

framework because of its inclusion as an ISV.  Equations 4.18, 4.19, and 4.20 

describe the void nucleation, growth, and coalescence, respectively.  The models 
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come together within the plasticity framework where the time derivative of 

damage, ߔሶ , is expressed as 
 

ሶߔ ൌ ൫ߔሶ ௣௔௥௧௜௖௟௘௦ ൅ ሶ௣௢௥௘௦൯ܿߔ  ൅ ൫ߔ௣௔௥௧௜௖௟௘௦ ൅ ௣௢௥௘௦൯ߔ  ሶܿ  Equation 4.35 

where 
 
ሶߔ ௣௔௥௧௜௖௟௘௦ ൌ ݒሶߟ  ൅ ሶݒߟ    Equation 4.36 

ሶ௣௢௥௘௦ߔ ൌ  ൤ ଵ

൫ଵି ః೛೚ೝ೐ೞ൯
೘ െ  ൫1 െ ௣௢௥௘௦൯൨ߔ  sinh ቈ

ଶ ቀమ ೇሺ೅ሻ
ೊሺ೅ሻ

ି ଵቁ

ቀమ ೇሺ೅ሻ
ೊሺ೅ሻ

ା ଵቁ

ఙಹ

ఙೡ೘
቉ ฮܦ௣ฮ  Equation 4.37 

ሶܿ ൌ  ሾ݀ܥଵ ൅ ݒሶߟଶሺ݀ܥ ൅ ሶݒߟ  ሻሿ݁ሺ஼೎೟்ሻ൫ವ಴ೄబ
ವ಴ೄ

൯
௭
 . Equation 4.38 

The variables ߔ௣௔௥௧௜௖௟௘௦ and ߔ௣௢௥௘௦ represents void growth from particle 

debonding and fracture, and void growth from pores, respectively.  Each has 

their corresponding time derivatives. 

The integrated form of Equation 4.35 is used as the damage state.  When 

damage, ߔ, approaches unity, failure is assumed to have occurred.  However, 

failure can be assumed to have occurred at a much smaller value.  In practice, 

the total damage for failure should probably be less than 50% and is material 

dependent, but in most applications the damage will approach unity rapidly after 

it reaches a certain percentage. 

The DMG model incorporates separate void nucleation, growth, and 

coalescence evolution equations in the BCJ ISV plasticity model to solve 

problems using the finite element method.  The practicality of this model along 

with its physical basis makes it an ideal choice for use in the problems seen in 

this paper. 
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4.3.4 DMG Model Constants 

The DMG material constants for AM60 magnesium alloy came from 

Horstemeyer et al. (2007) and the AM60 magnesium alloy simulations used the 

DMG model equations from that paper.  The DMG constants for AZ31 

magnesium alloy, A356 aluminum alloy, and 6061 aluminum alloy were obtained 

from experimental stress-strain data in tension and compression and strain rate-

dependent nucleation data.  However, coalescence data for those materials was 

not available, so they were estimated by matching the failure strain of the 

simulations incorporating predicted coalescence constants with the failure strain 

from experimental data.  Coalescence data needs to be explicitly determined and 

implemented into these constants before they can be validated.  The AZ31 

magnesium alloy, A356 aluminum alloy, and 6061 aluminum alloy used the DMG 

model equations from this paper, and their DMG constants can be found in the 

appendix. 
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CHAPTER V 

SHOCK WAVE AND STRUCTURAL RESPONSE MODELS 

5.1 Introduction 

The computational modeling used in this analysis consisted of two stages, 

shock wave modeling and structural response modeling.  The shock wave 

modeling initially began as a planar wave with pressure values from the empirical 

data-based program ConWep.  ConWep can model only planar waves, which did 

not accurately reflect the shock wave for our analysis, so the hydrocode CTH 

was used to capture the non-uniform loading.  After the shock wave had been 

modeled, the pressure values were input into the finite element program 

Abaqus/Explicit.  The modeling stages are discussed in detail in the following 

sections. 

5.2 Shock Wave Model 

Modeling of the shock wave was done in four phases with each 

successive phase adding a level of refinement not included in the previous 

phase.  The first phase used a shock wave that was modeled as a planar wave 

using pressure values from ConWep.  The next phase incorporated the 

computational hydrodynamic software CTH and modeled the shock wave as an 

open air blast using a reflection coefficient.  The last two phases also used CTH 

to find the shock pressures but from flush buried explosives instead of explosives 

in open air.  The pressure histories were initially multiplied by a reflection 
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coefficient to account for pressures when the shock wave encounters a structure.  

The last phase included a rigid body in the CTH simulations and the reflected 

pressures from the rigid body were calculated directly. 

5.2.1 ConWep 

ConWep is a program that calculates the blast effects, such as projectile 

penetration and shock wave strength, of conventional weapons using the 

equations and curves found in TM 5-855-1, Design and Analysis of Hardened 

Structures to Conventional Weapons Effects (1986).  The equations found in TM 

5-855-1 and used in ConWep were developed by Kingery and Bulmash (1984) to 

predict air blast parameters from spherical air bursts and hemispherical surface 

bursts.  Those equations were found by curve-fitting high-order polynomial 

equations to experimental data from explosive test using charge weights from 

less than 1 kg to over 400,000 kg (Remennikov, 2003). 

All air blast calculations used in ConWep are based on the explosive 

weight of TNT.  For other types of explosives, ConWep uses the average of the 

equivalent weight factor for pressure and impulse to find an equivalent weight of 

TNT (see Chapter 2 for explanation).  However, TNT was the only explosive 

used in these simulations. ConWep also uses an exponential decay function, 

Equation 5.1, for its pressure histories instead of the triangular histories proposed 

by TM 5-855-1 which should yield more accurate results because realistic 

pressure histories decay exponentially instead of linearly. 
 

ܲሺݐሻ ൌ ௦ܲ௢ ቂ1 െ ௧ି்ೌ

బ்
ቃ ݁

షಲሺ೟ష೅ೌሻ
೅బ   Equation 5.1 
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where P(t) is the pressure at time t, Pso is the peak incident pressure, T0 is the 

positive phase duration, A is the decay coefficient, and Ta is the arrival time.  The 

negative phase of the pressure history is not taken into account which is a good 

approximation for close ranges.  The same method is used for the reflected 

pressure histories.  Additionally, the reflected pressures assume an infinitely 

large reflective surface which does not take into account clearing effects but 

yields conservative results (Hyde, 1988). 

ConWep was used to make incident and reflected pressure histories for a 

hemispherical surface burst of a 3-kg TNT explosive at a distance of 46 cm as 

shown in Figure 5.1. 

 

 

Figure 5.1 ConWep pressure history for 3 kg TNT explosive. 

These pressures are applied to the structure as a planar wave, which is simply a 

uniform load varying with time.  Because shock waves are not planar but non-

uniformly distributed at the close ranges used, the hydrocode CTH was used to 
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capture the spatially- and temporally-varying pressure histories for the 3-kg TNT 

explosive. 

5.2.2 CTH 

To obtain pressure histories from shock waves with correct wave forms, 

explosive effects were investigated by numerical hydrocode simulations with the 

three-dimensional, Eulerian code CTH.  CTH was designed to simulate shock 

wave propagation and material motion phenomena.  Three series of CTH 

simulations were performed to determine the pressure histories representative of 

a mine blast: open air explosion multiplied by a reflection coefficient, flush buried 

explosion multiplied by a reflection coefficient, and flush buried explosion with 

directly measured reflected pressures. 

Initial simulations modeled an explosion in air as seen in Figure 5.2.  The 

incident pressure histories were determined for a 3 kg TNT explosive at a 

distance of 46 cm from the explosive.  These pressure histories were then 

multiplied by a reflection coefficient to obtain the reflected pressures. As 

discussed in Chapter 2, these reflected pressures are the effective loading on a 

structure.  However, an open air blast does not include pressures reflected off of 

the ground and underestimates the pressure histories.  Therefore, the ground 

should be modeled in the simulations as well.  The pressure history for the air 

blast is shown in Figure 5.3. 
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Figure 5.2 Explosion in air simulated with CTH. 

 

 

Figure 5.3 CTH pressure history for 3 kg TNT explosive in open air. 

 

The next simulations found pressure histories from flush buried explosives 

which were also multiplied by reflection coefficients.  Those simulations included 

the pressures reflected off of the ground, which make the results more realistic 

than the air blast simulations.  However, the use of a reflection coefficient 

neglects relief effects when a shock wave encounters an obstacle and passes 
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around it.  Figures 5.4 and 5.5 show the flush buried explosion and pressure 

history, respectively. 

 

 

Figure 5.4 Flush buried explosive simulated with CTH. 

 

 

Figure 5.5 CTH pressure history for 3 kg TNT flush buried explosive. 

 

The last and most comprehensive simulations used flush buried 

explosives with a rigid plate, and the actual reflected pressure histories were 

calculated.  A more comprehensive soil model was also used in this simulation 
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as discussed in Chapter 4.  This last simulation captured all of the major factors 

which would affect the magnitude of the shock waves.  The pressure histories 

from this simulation are the ones used in the structural response model.  Figures 

5.6 and 5.7 show the flush buried explosion with rigid plate and pressure history, 

respectively.  

 

 

Figure 5.6 Flush buried explosive with rigid plate simulated with CTH. 

 

 

Figure 5.7 CTH reflected pressure history for 3 kg TNT flush buried explosive 
with rigid plate. 



 

48 

When comparing the four stages of shock wave modeling, the magnitudes 

of the peak pressures of the shock waves increased with each stage showing 

that the ConWep calculations were the least conservative for peak pressure 

predictions.  However, ConWep over-predicted the impulse of the shock wave 

and was the least conservative in that regard.  When comparing the CTH 

calculations, the first two simulations were nearly identical with the addition of the 

soil model providing only a small increase in the impulse, which was probably 

due to the soil used.  As mentioned in Chapter 4, Kerley (2001) shows that dry 

sand is able to absorb more explosive energy than wet sand because the energy 

of dry sand is 50 - 100% greater than for wet sand at the same shock pressure.  

These initial calculations led up to the inclusion of wet sand that magnified the 

shock waves and a rigid plate that captured the reflected wave from the plate and 

relief effects of the shock wave going around the plate.  The last CTH simulation 

yielded a peak pressure that more than doubled any of the previous simulations 

and had a greater impulse, also.  This comparison is a good example of how 

each portion of the model, e.g., the type of soil, can have a large effect on the 

results. 

The two-dimensional CTH simulations are all represented using a 

cylindrical coordinate system.  This enables the simulations to be represented in 

half symmetry to save computational time.  It also simplifies the pressure history 

data extraction.  Tracers are placed along the rigid plate to capture the pressure 

history data at different points in space as shown in Figure 5.8.   
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Figure 5.8 Location of tracers in CTH simulations. 

 

Since the simulation is in the cylindrical coordinate system, the pressure histories 

are equivalent at equal distances from the axis of rotation.  This will be useful 

when applying the pressure load to the plate in the structural response simulation 

as described in the next section. 

After the initial structural response models were performed, it was 

observed that the thickest plates were not failing.  So, the amount of TNT was 

scaled up until the desired failure was achieved.  The amount of TNT used in the 

final models was 15 kg, and the pressure histories for the center of the 15 kg 

blast are shown in Figure 5.9.  The peak pressures for the 15 kg explosive were 

almost three times as much as the pressures for the 3 kg explosives with 

comparable increases for the impulse as well. 

axis of 
rotation 

soil 

detonation 
products 

tracers 

rigid plate 
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Figure 5.9 CTH reflected pressure history for 15 kg TNT flush buried explosive 
with rigid plate. 

5.3 Structural Response Model 

Abaqus/Explicit, a commercially available finite element analysis software 

package, was used to model the structural response of the plate during the shock 

wave impact.  The structural response model was created to represent the 

response of a military Humvee floor pan to an explosive device blast.  Pressure 

histories from CTH are applied to the plate using an Abaqus/Explicit VDLOAD 

subroutine. 

The plate geometry used in the simulations was square with side lengths 

of 560 mm using 8-noded brick elements with reduced integration. These 

dimensions are approximately the dimensions of the floor pan used in the military 

Humvee.    The Abaqus/Explicit input file can be found in the appendix for 

reference.  The thickness of the plate is determined by the simulation 

corresponding to the DOE matrix as discussed in Chapter 3.  The 10 mm and 30 

mm plates contained approximately 90,000 elements, and the 50 mm and 75 mm 
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plates contained approximately 175,000 and 300,000 elements, respectively.  

Figure 5.10 shows the plate geometry for the 30 mm plate with the sacrificial 

element boundary conditions discussed next. 

 

 

Figure 5.10 30mm plate geometry. 

5.3.1 Boundary Conditions 

Boundary conditions were found to have a significant effect on the 

predicted failure response of the model.  Several different types of boundary 

conditions were developed and tested to reduce the likelihood that the boundary 

conditions would adversely affect the simulation results.  Because clamped and 

pinned-like boundary conditions were of interest for the DOE analysis, suitable 
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boundary conditions were needed to capture the clamped and pinned-like 

behavior.  Several types of boundary conditions were tested: constraining all of 

the degrees of freedom (DOF) or constraining the displacement DOF on one row 

of nodes along each side; constraining all of the DOF on all of the rows along 

each side; modeling each side as a rigid body with a reference node that 

governed the DOF; and modeling each side as a rigid body with a reference 

node and the addition of sacrificial elements. 

 

 

Figure 5.11 Simple pinned-like boundary conditions. 

 

Modeling the simple pinned-like boundary condition proved difficult 

because these boundaries, where only one row of nodes was constrained on 

each side, yielded poor results.  As shown in Figure 5.11, sides 1 and 3 were 

Side 1 
X, Z constrained 

Side 3 
X, Z constrained 

Side 2 
Y, Z constrained 

Side 4 
Y, Z constrained 
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constrained in the X and Z directions, and sides 2 and 4 were constrained in the 

Y and Z directions.  None of the rotations were constrained.  With this 

configuration, stress concentrations occurred around the constrained nodes and 

resulted in excessive hourglassing in the model as seen in Figure 5.12.  Pinning 

all of the rows of nodes on the boundary leads to a clamped boundary condition 

where a pinned-like boundary condition is required. 

 

 

Figure 5.12 Problems with the simple pinned-like boundary condition. 

 

To make a suitable pinned-like condition around the plate, every row of 

nodes on each side (except the nodes on each corner, which kept each side’s 

boundary condition separated to allow rotation) was modeled as a rigid body 

governed by a reference node.  This boundary setup allows the rotation of the 

rigid body, or plate edges, around the reference node, which is not attached to 
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the body.  So, each side of the plate acts collectively as a rigid body with its 

rotation governed by the reference node.  For the clamped boundary condition, 

the X, Y, and Z displacements and rotations at the reference node were 

constrained for each side face, which prevented the sides from translating and 

rotating.  For the pinned-like boundary condition, the X, Y, and Z displacements 

were constrained for each side face, but the rotations were not.  Figure 5.13 

shows the location of the reference nodes for each side face of the plate. 

 

 

Figure 5.13 Boundary conditions using a reference node. 

 

However, the rigid body boundaries crushed elements along the edges, 

which was not desirable, so the boundary conditions used in the final simulations 

contained sacrificial elements that were more compliant than the plate material 

and contained the boundary nodes.  The width of the section of boundary 
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elements on each side was equal to the thickness of the plate.  Identical to the 

last boundary conditions tested, a reference node was created on each that 

governed whether or not there could be rotation on that side.  This type of 

boundary for the 75 mm plate can be seen in Figure 5.14. 

 

 

Figure 5.14 Boundary condition with sacrificial elements and reference node. 

5.3.2 Abaqus VDLOAD Subroutine 

To apply the time histories from the CTH simulations to the model, an 

Abaqus/Explicit user distributed load subroutine (VDLOAD) was written.  The 

user load functionality allowed representation of the transient and spatial 

variation of the blast loads.  The subroutine used the CTH tracer data and 

coordinates to determine the pressures to apply to each point.  Linear 

interpolation was used to determine pressures in areas between tracer element 

data locations.  The linear interpolation equation used in the VDLOAD is shown 

by 
 

Reference 
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 ܲሺݔሻ ൌ ଴ܲ ൅ ሺݔ െ ଴ሻݔ ቀ௉భି௉బ

௫భି௫బ
ቁ Equation 5.2 

where P(x) is the pressure at x, and P0, P1, x0, and x1 are the pressures and 

positions of the data at the tracer locations as illustrated in Figure 5.15.  

 

 

Figure 5.15 Illustration of linear interpolation used in Abaqus/Explicit VDLOAD. 

The VDLOAD used a similar linear interpolation function to determine 

pressure values at times between the times pressures were recorded in CTH.  

The VDLOAD can be found in the appendix.  Using the geometry and pressure 

loads determined here, the 16 DOE calculations were performed to determined 

the effects of the five parameters on energy absorption at first element failure.  

These results are discussed in the next chapter. 
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CHAPTER VI 

INTERPRETATION OF RESULTS AND DISCUSSION 

6.1 Introduction 

The simulations were designed and carried out according to the Taguchi 

method described in Chapter 3.  Energy absorption of the plate was the response 

investigated and was calculated as strain energy at first element failure.  Sixteen 

simulations were performed and energy absorption was taken as the strain 

energy at first element failure.  The effects of the parameters are discussed first 

followed by a discussion of the macroscale response of the plate.  These energy 

absorption results can be seen in Table 6.1. 

6.2 Discussion of Parameter Effects 

The material response, energy absorbed at first element failure, for each 

level was analyzed using the Taguchi method.  Table 6.1 shows the energy 

absorbed by first element failure for each of the 16 simulations.  Those results 

were placed in the statistical software, Minitab 15 (2007), and analyzed to 

determine how the parameters affected the response.  Table 6.2 shows the 

parameters according to their integer level numbers and Table 6.3 shows the 

energy absorption means for each level.  The level numbers correspond to a 

particular object in a parameter in order to aid in graphical representations, e.g., 

AM60 is the level 1 object for the parameter material, 30mm is the level 2 object 
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for the parameter thickness, etc.  Figure 6.1 shows the energy absorption means 

in graphical form. 

Table 6.1 L16 orthogonal array showing the parameters. 

Calculation Material Thickness Temperature
Damage 

Distribution 
Boundary 

Conditions 

Strain 
Energy 
at 1st 

Element 
Failure 

(J) 
1 AM60 Mg 10 mm 323 K 100% St. Dev. Clamped 35077 
2 AM60 Mg 30 mm 303 K 60% St. Dev. Clamped 125072 
3 AM60 Mg 50 mm 293 K 30% St. Dev. Pinned-like 163126 
4 AM60 Mg 75 mm 273 K 0% St. Dev. Pinned-like 141904 
5 AZ31 Mg 10 mm 303 K 30% St. Dev. Pinned-like 24151 
6 AZ31 Mg 30 mm 323 K 0% St. Dev. Pinned-like 66684 
7 AZ31 Mg 50 mm 273 K 100% St. Dev. Clamped 48616 
8 AZ31 Mg 75 mm 293 K 60% St. Dev. Clamped 148882 
9 A356 Al 10 mm 293 K 0% St. Dev. Clamped 53211 
10 A356 Al 30 mm 273 K 30% St. Dev. Clamped 29625 
11 A356 Al 50 mm 323 K 60% St. Dev. Pinned-like 35444 
12 A356 Al 75 mm 303 K 100% St. Dev. Pinned-like 50300 
13 6061 Al 10 mm 273 K 60% St. Dev. Pinned-like 102328 
14 6061 Al 30 mm 293 K 100% St. Dev. Pinned-like 168227 
15 6061 Al 50 mm 303 K 0% St. Dev. Clamped 298742 
16 6061 Al 75 mm 323 K 30% St. Dev. Clamped 308755 

 

Table 6.2 Integer representation of parameters as levels. 

Level Material Thickness Temperature 
Damage  

Distribution 
Boundary 

 Conditions 
1 AM60 Mg 10 mm 323 K 100 percent St. Dev. Clamped 
2 AZ31 Mg 30 mm 303 K 60 percent St. Dev. Pinned-like 
3 A356 Al 50 mm 293 K 30 percent St. Dev. 
4 6061 Al 75 mm 273 K 0 percent St. Dev. 
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Table 6.3 Response table for means in joules. 

Level Material Thickness Temperature
Damage  

Distribution
Boundary 

Conditions
1 116295 53692 111490 75555 130998 
2 72083 97402 124566 102932 94021 
3 42145 136482 133362 131414 
4 219513 162460 80618 140135 

Delta 177368 108769 52743 64580 36977 
Rank 1 2 4 3 5 

 

 

Figure 6.1 The effects of the parameters on energy absorbed by the plate. 

 

In Table 6.3, the energy absorption means are shown along with the 

differences between the highest values to the lowest values called delta.  The 

rankings for the influences of the parameters on the energy absorption were 

based on the deltas and are also shown.  Material and thickness were primary 

influences followed by damage distribution, temperature, and boundary 

conditions.  To normalize the influences of the parameters on the energy 

absorption, each delta was divided by the largest delta (from the parameter 
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material), which gives relative influences of each parameter as shown in Figure 

6.2. 

 

 

Figure 6.2 Normalized parameter influences on energy absorption. 

6.2.1 Effects of Material 

The material used for the plate was the largest influence on the energy 

absorption of the plate.  The A356 aluminum absorbed the least amount of 

energy followed by the AZ31 magnesium, AM60 magnesium, and 6061 

aluminum.  The 6061 aluminum alloy had a significantly higher von Mises stress 

at failure than the other materials and one of the highest failure strains, which 

may be the reason that material absorbed the most energy.  If other materials 

had been compared that had similar strengths and failure strains, the thickness 

should have a dominant influence.  Table 6.4 shows the average von Mises 

stress for the first failed element of the four simulations for each material.  The 

approximate failure strain in tension for each material is also included.  From 

Table 6.4, it can be seen that the A356 aluminum alloy had the second highest 
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average von Mises stress at failure, but it was the worst performing material out 

of the four materials.  This is likely due to the fact that the A356 had a 

significantly lower failure strain than the other materials.  So, the best 

combination of high stress and strain to failure should lead to better performance 

of a material, which was the case for the 6061 aluminum alloy.  

Table 6.4 Average Mises stress at failure and failure strains. 

Material 

Avg. Mises 
Stress at 
Failure 
(MPa) 

Approximate 
Failure Strain 

in Tension 

AM60 
Magnesium 

332 0.10 

AZ31 Magnesium 286 0.14 

A356 Aluminum 382 0.07 

6061 Aluminum 443 0.13 

 

6.2.2 Effects of Thickness 

The plate thickness was another primary influence on the energy 

absorption.  Though this was expected to be the main influence, the energy 

absorption due to the thickness was significantly less than that due to the 

material.  As noted before, this may not be the case if different materials with 

more similar yield strengths and failure strains are used.  Nevertheless, the 

response followed the expected trend as energy absorption increased with 

increased thickness. 

6.2.3 Effects of Temperature 

Temperature was a tertiary influence on the plate response.  However, 

only the AM60 had temperature dependant stress-strain characterization.  Better 
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characterization of the other materials for temperature dependence should 

increase this influence on the response.  Therefore, the AM60 alone probably 

determined the effects of the temperature. The energy absorption gradually 

increases as temperature decreases as expected, except for 273 K where the 

mean energy absorbed is lower than all of the other temperatures.  The energy 

absorption was expected to increase as the temperature increased because 

metals are weaker at higher temperatures.  Characterization of the AZ31, A356, 

and 6061 alloys for temperature-dependence should make the energy absorption 

follow the expected trend because the effects of the temperature would be 

averaged over four materials instead of the AM60 only.  The mean energy 

absorbed at first element failure for each temperature can be seen in Table 6.5. 

Table 6.5 Response table for temperature means. 

Temperature
Energy at 

First Element 
Failure 

323 K 111490 
303 K 124566 
293 K 133362 
273 K 80618 

Difference 52743 

6.2.4 Effects of Damage Distribution 

The damage distribution in the plate was a secondary influence on the 

energy absorbed.  It also behaved as expected since the ability to absorb energy 

decreased as the standard deviation of the damage distribution increased.  As 

discussed in Chapter 3, the damage distribution with the highest standard 

deviation should absorb less energy because there are areas of concentrated 
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damage due to the non-uniformity of the distribution.  This hypothesis was 

proven correct, as shown in Table 6.6. 

Table 6.6 Response table for damage distribution means. 

Damage 
Distribution 

Energy at 
First Element 

Failure 
100 percent St. Dev. 75555 
60 percent St. Dev. 102932 
30 percent St. Dev. 131414 
0 percent St. Dev. 140135 

Difference 64580 

6.2.5 Effects of Boundary Conditions 

The pinned-like boundary condition was expected to allow the absorption 

of more energy than the clamped boundary condition because it allows more 

plate movement.  However, the boundary conditions influenced the response 

opposite of what was expected, but its influence was minor compared to the 

other parameters. Due to the high-rate nature of the shock wave impact, the 

effects of the boundary conditions are lessened from the lack of time allowed for 

the stress wave to travel to the boundaries.  The mean energy at first element 

failure for all of the simulations for the pinned-like and clamped is 130,998 J and 

94,021 J, respectively, which is the smallest difference for all of the parameters.  

If more simulations are to be run, this parameter could probably be left out and 

another parameter studied. 

6.3 Discussion of Macroscale Effects 

As discussed previously, the material was the primary influence on the 

energy absorbed in the plate.  From observation of the simulations, it also 
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determined the type of failure that occurred after the shock wave impacted the 

plate.  Each of the magnesium plates failed near the boundaries from either 

tearing away from the boundaries or from a compressive failure at the boundary 

in the case of some of the bigger plates.  In all of the aluminum plates, tensile 

failure occurred in center of the plates resembling spalling.  Some of these 

failures are shown in the following figures.  All of the simulation figures can be 

found in the appendix for reference. 

 

 

Figure 6.3 Tearing at the boundaries in magnesium plate. 
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Figure 6.4 Spalling in aluminum plate. 

 

The other primary influence, thickness, was the determining factor in the 

deflection of the plate.  If deflection was the response being investigated, 

thickness would have likely been the dominating influence for that response, as 

shown by Table 6.7.  The other factors did not seem to have an affect on the type 

of failure or any other responses that could be observed. 
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Table 6.7 Mean deflection at first element failure. 

Thickness

Mean 
Deflection at 
1st Element 
Failure (mm) 

10 mm 102 
30 mm 76 
50 mm 56 
75 mm 48 

6.4 Conclusions and Recommendations 

A design of experiments approach by Taguchi was used to evaluate the 

effects of five parameters on the energy absorption of a plate during a shock 

wave impact.  The five parameters were material, thickness, temperature, 

damage distribution, and boundary conditions.  The simulations were performed 

using finite element software implementing the DMG model. 

The analysis indicated that the material and thickness were primary 

influences followed by damage distribution, temperature, and boundary 

conditions.  The simulations showed that the 6061 aluminum should absorb the 

most energy followed by AM60 magnesium, AZ31 magnesium, and A356 

aluminum.  Energy absorption increased as thickness increased as expected.  

The damage distributions also followed the expected trend as energy absorption 

decreased as the standard deviation of the distribution increased.  However, 

temperature did not behave as expected, which is probably due to incomplete 

characterization of the materials for the DMG model.  Boundary conditions did 

not have a significant effect on the response. 

Upon completion of this analysis, the main recommendation for 

improvement of this analysis and for other simulations using the DMG model is to 
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accurately and completely characterize the DMG material parameters that are 

being used in the model.  The DMG material parameters used in this analysis 

were only fit for tension and compression stress states and the AZ31, A356, and 

6061 have no temperature dependence.  It would also be helpful to have 

experimental results to compare against the deflection data for verification. 

In summary, the phenomenological aspects of the DMG model and the 

use of the DOE method combine to form a powerful tool to optimize components 

based on the physical aspects of a material.  From this analysis, it can be seen 

that the material and thickness play major roles in the energy absorption of a 

plate.  Though that was obvious before the analysis, the use of a 

phenomenological model has shown the failure modes for this type of blast 

loading for aluminum and magnesium, tearing and spalling, respectively.  

Furthermore, this framework would be even more useful for very specific 

problems, e.g., minimizing weight of a floor pan armor plate to eliminate spalling 

from a 5 kg TNT blast.  For those specific problems, this type of analysis would 

be ideal to determine the material, its thickness, and the manufacturing 

processes to reduce initial damage while lowering the weight of component.  

Therefore, the DOE technique and DMG damage model are recommended for 

use in blast mitigation component analyses. 
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APPENDIX A 

ABAQUS SIMULATION RESULTS
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Please note that most of these figures are well after first element failure. 
 

 
 

Figure A.1 Calculation 1 initial damage. 

 
 

Figure A.2 Calculation 1 final damage front. 

 
 

Figure A.3 Calculation 1 final damage back. 
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Figure A.4 Calculation 2  initial damage. 

 
 

Figure A.5 Calculation 2  final damage front. 

 
 

Figure A.6 Calculation 2 final damage back. 
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Figure A.7 Calculation 3 initial damage. 

 
 

Figure A.8 Calculation 3 final damage front. 

 
 

Figure A.9 Calculation 3 final damage back. 
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Figure A.10 Calculation 4 initial damage. 

 
 

Figure A.11 Calculation 4 final damage front. 

 
 

Figure A.12 Calculation 4 final damage back. 
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Figure A.13 Calculation 5 initial damage. 

 
 

Figure A.14 Calculation 5 final damage front. 

 
 

Figure A.15 Calculation 5 final damage back. 
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Figure A.16 Calculation 6 initial damage. 

 
 

Figure A.17 Calculation 6 final damage front. 

 
 

Figure A.18 Calculation 6 final damage back. 
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Figure A.19 Calculation 7 initial damage. 

 
 

Figure A.20 Calculation 7 final damage front. 

 
 

Figure A.21 Calculation 7 final damage back. 
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Figure A.22 Calculation 8 initial damage. 

 
 

Figure A.23 Calculation 8 final damage front. 

 
 

Figure A.24 Calculation 8 final damage back. 
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Figure A.25 Calculation 9 initial damage. 

 
 

Figure A.26 Calculation 9 final damage front. 

 
 

Figure A.27 Calculation 9 final damage back. 
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Figure A.28 Calculation 10 initial damage. 

 

Figure A.29 Calculation 10 final damage front. 

 
 

Figure A.30 Calculation 10 final damage back. 
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Figure A.31 Calculation 11 initial damage. 

 
 

Figure A.32 Calculation 11 final damage front. 

 

Figure A.33 Calculation 11 final damage back. 
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Figure A.34 Calculation 12 initial damage. 

 
 

Figure A.35 Calculation 12 final damage front. 

 
 

Figure A.36 Calculation 12 final damage back. 
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Figure A.37 Calculation 13 initial damage. 

 
 

Figure A.38 Calculation 13 final damage front. 

 
 

Figure A.39 Calculation 13 final damage back. 
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Figure A.40 Calculation 14 initial damage. 

 
 

Figure A.41 Calculation 14 final damage front. 

 
 

Figure A.42 Calculation 14 final damage back. 
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Figure A.43 Calculation 15 initial damage. 

 
 

Figure A.44 Calculation 15 final damage front. 

 
 

Figure A.45 Calculation 15 final damage back. 
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Figure A.46 Calculation 16 initial damage. 

 
 

Figure A.47 Calculation 16 final damage front. 

 
 

Figure A.48 Calculation 16 final damage back. 
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APPENDIX B 

ABAQUS VDLOAD SUBROUTINE
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C 
C User subroutine VDLOAD 
      subroutine vdload ( 
C Read only (unmodifiable) variables - 
     *     nblock, ndim, stepTime, totalTime,  
     *     amplitude, curCoords, velocity, dircos,  
     *     jltyp, sname, 
C Write only (modifiable) variable - 
     *     value ) 
cc 
      include 'vaba_param.inc' 
cc 
      dimension curCoords(nblock,ndim),  
     *     velocity(nblock,ndim), 
     *     dircos(nblock,ndim,ndim),  
     *     value(nblock) 
cc 
      character*13 shkwv_data 
      character*70 :: press_file_dir = 'directory' 
      integer, parameter :: max = 5000 
      integer :: i, j, k, valnum, filenum 
      real, dimension(max) :: xcoord, ycoord, zcoord 
      real, dimension(40,max) :: p, t 
      real, parameter :: x_ab_cen = 0.0d0, y_ab_cen = 0.0d0 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCC 
C     Open shockwave amplitude file and save values 
C     to time and pressure arrays 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCC 
      do i = 1, 40 
        write(shkwv_data, 20) i 
        open(10,file=press_file_dir//shkwv_data, status='old', err=30) 
        read(10, *) 
        read(10, *) xcoord(i) 
        read(10, *) 
        read(10, *) ycoord(i) 
        read(10, *) 
        read(10, *) zcoord(i) 
        read(10, *) 
        j = 1 
        do while (.true.) 
         read(10, *, end = 10) t(i,j), p(i,j) 
         j = j + 1 
         valnum = j - 1 
         filenum = i 
        end do 
10      close(10) 
      end do 
20    format( '15kg_press', i3.3 ) 
30    close(10) 
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCC 
C     Apply the blast 
C     load to the plate 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCC 
      do k = 1, nblock 
        x_ab = curCoords(k,1) 
        y_ab = curCoords(k,2) 
        r_ab = sqrt((x_ab-x_ab_cen)**2+(y_ab-y_ab_cen)**2) 
        if (r_ab < xcoord(filenum)) then 
          do i = 1, filenum 
            if (r_ab >= xcoord(i) .and. r_ab < xcoord(i+1)) then 
              do j = 1, valnum 
                if (totalTime < t(i, valnum)) then 
                  if (totalTime >= t(i,j) .and.  
     *              totalTime < t(i,j + 1)) then 
                    p1 = p(i,j) + (totalTime - t(i,j)) * 
     *                  ((p(i,j + 1) - p(i,j))/(t(i, j + 1) - t(i,j))) 
                  end if 
                else 
                  p1 = p(i,valnum) 
                end if 
              end do 
              do j = 1, valnum 
                if (totalTime < t(i+1, valnum)) then 
                  if (totalTime >= t(i+1,j) .and.  
     *              totalTime < t(i+1,j+1)) then 
                    p2 = p(i+1,j) + (totalTime - t(i+1,j)) * 
     *                  ((p(i+1,j + 1)-p(i+1,j))/ 
     *                  (t(i+1,j + 1) - t(i+1,j))) 
                    value(k) = p1 + (r_ab - xcoord(i)) * 
     *                  ((p2 - p1)/(xcoord(i+1) - xcoord(i))) 
                    goto 40 
                  end if 
                else 
                  p2 = p(i+1,valnum) 
                  value(k) = p1 + (r_ab - xcoord(i)) * 
     *              ((p2 - p1)/(xcoord(i+1) - xcoord(i))) 
                  goto 40 
                end if 
              end do 
            end if 
          end do 
        else 
          value(k) = 0 
        end if 
40    end do     
      return 
      end subroutine vdload 
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APPENDIX C 

PYTHON SCRIPT TO CONVERT ABAQUS INPUT FILE TO LS-DYNA INPUT 

FILE
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#Copyright Kyle Crosby 
#Version 1.0 
#7/6/2009 
 
#Converts Abaqus input file to LS-Dyna input file. 
 
import linecache 
import math 
 
input_file = raw_input('Enter input file name: ') 
node_file = open('node.nd', 'w') 
element_file = open('element.el', 'w') 
ns_file = open('node_sets.ns', 'w') 
 
#Find line number for Abaqus key words 
node_line_number = [] 
element_line_number = [] 
ns_line_number = [] 
instance_line_number = [] 
for i, info in enumerate(open(input_file, 'r')): 
    if "*Part" in info: 
        node_line_number.append(i+1) 
    if "*Element" in info: 
        element_line_number.append(i+1) 
    if "*Nset" in info: 
        ns_line_number.append(i+1) 
    if "*Instance" in info: 
        instance_line_number.append(i+1) 
print('Keyword Locations Found') 
 
#Find part translation and rotation and save to a list. 
translation_data = {} 
m = 0 
n = instance_line_number[m] 
 
while m < len(instance_line_number): 
    try: 
        if "*" in linecache.getline(input_file, n + 1): 
            zero = [0.0, 0.0, 0.0] 
            translation_data[m] = zero 
            m = m + 1 
            n = instance_line_number[m] 
        else: 
            raw_translation_data = linecache.getline(input_file, n + 1) 
            raw_translation_data = eval(raw_translation_data) 
            translation_data[m] = list(raw_translation_data) 
            m = m + 1 
            n = instance_line_number[m] 
    except IndexError: 
        break 
 
rotation_data = {} 
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m = 0 
n = instance_line_number[m] 
 
while m < len(instance_line_number): 
    try: 
        if "*" in linecache.getline(input_file, n + 2): 
            zero = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] 
            rotation_data[m] = zero 
            m = m + 1 
            n = instance_line_number[m] 
        else: 
            raw_rotation_data = linecache.getline(input_file, n + 2) 
            raw_rotation_data = eval(raw_rotation_data) 
            rotation_data[m] = list(raw_rotation_data) 
            m = m + 1 
            n = instance_line_number[m] 
    except IndexError: 
        break 
 
# Rotates and translates nodes to global coordinates, and 
# writes node data to node file.   
node_data = [] 
j = 0 
i = node_line_number[j] 
 
node_file.write('*Node\n$   node               x               y' + \ 
               '               z      tc      rc\n') 
 
while j < 10000: 
    try: 
        while i < 100000: 
            node_data = linecache.getline(input_file, i + 2) 
            node_data = eval(node_data) 
            node_data = list(node_data) 
             
            a = rotation_data[j][0] 
            b = rotation_data[j][1] 
            c = rotation_data[j][2] 
            d = rotation_data[j][3] 
            e = rotation_data[j][4] 
            f = rotation_data[j][5] 
 
            u = d - a 
            v = e - b 
            w = f - c 
            theta = rotation_data[j][6] * (math.pi / 180) 
 
            x = node_data[1] + translation_data[j][0] 
            y = node_data[2] + translation_data[j][1] 
            z = node_data[3] + translation_data[j][2] 
            L = math.sqrt((u**2) + (v**2) + (w**2)) 
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            try: 
                x_rotated = a * (v**2 + w**2) + u * (-b*v - c*w + u*x + v*y + \ 
                            w*z) + ((x - a) * (v**2 + w**2) + u * (b*v + c*w - \ 
                            v*y - w*z)) * math.cos(theta) + L * (b*w - c*v - w*y + \ 
                            v*z) * math.sin(theta) / L**2 
 
                y_rotated = b * (u**2 + w**2) + v * (-a*u - c*w + u*x + v*y + \ 
                            w*z) + ((y - b) * (u**2 + w**2) + v * (a*u + c*w - \ 
                            u*x - w*z)) * math.cos(theta) + L * (-a*w + c*u + w*x - \ 
                            u*z) * math.sin(theta) / L**2 
 
                z_rotated = c * (u**2 + v**2) + w * (-a*u - b*v + u*x + v*y + \ 
                            w*z) + ((z - c) * (u**2 + v**2) + w * (a*u + b*v - \ 
                            u*x - v*y)) * math.cos(theta) + L * (a*v - b*u - v*x + \ 
                            u*y) * math.sin(theta) / L**2 
                node_file.write('%8i%16E%16E%16E       0       0\n' % \ 
                            ((node_data[0] + (j * 100000)), \ 
                            x_rotated, y_rotated, z_rotated)) 
                i = i + 1 
            except ZeroDivisionError: 
                node_file.write('%8i%16E%16E%16E       0       0\n' % \ 
                            ((node_data[0] + (j * 100000)), \ 
                            x, y, z)) 
                i = i + 1 
    except SyntaxError: 
        j = j + 1 
        try: 
            i = node_line_number[j] 
        except IndexError: 
            break 
node_file.write('*End') 
print('Node File Written') 
 
# Write element data to element file.         
element_data = [] 
j = 0 
i = element_line_number[j] 
 
element_file.write('*ELEMENT_SOLID\n$    eid     pid      n1      n2      n3' + \ 
                  '      n4      n5      n6      n7      n8\n') 
 
while j < 10000: 
    try: 
        while i < 100000: 
            element_data = linecache.getline(input_file, i + 1) 
            element_data = eval(element_data) 
            element_data = list(element_data) 
            element_file.write('%8i%8i%8i%8i%8i%8i%8i%8i%8i%8i\n' % \ 
                                ((element_data[0] + (j * 100000)), \ 
                                (j + 1), \ 
                                (element_data[1] + (j * 100000)), \ 
                                (element_data[2] + (j * 100000)), \ 
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                                (element_data[3] + (j * 100000)), \ 
                                (element_data[4] + (j * 100000)), \ 
                                (element_data[5] + (j * 100000)), \ 
                                (element_data[6] + (j * 100000)), \ 
                                (element_data[7] + (j * 100000)), \ 
                                (element_data[8] + (j * 100000)))) 
            i = i + 1 
    except SyntaxError: 
        j = j + 1 
        try: 
            i = element_line_number[j] 
        except IndexError: 
            break 
element_file.write('*End') 
print('Element File Written') 
 
# Write node set data to node set file. 
# This section isn't correct right now 
# due to the way the elements are named.       
ns_data = [] 
j = 0 
i = ns_line_number[j] 
 
while j < len(ns_line_number): 
    try: 
 ns_file.write('*Set_Node_List\n' + '       ' + str(j + 5) + \ 
                     ',       0,' + '       0,' + '       0,' + \ 
                     '       0\n') 
        if "*" in linecache.getline(input_file, i + 1): 
            j = j + 1 
            i = ns_line_number[j] 
        while i < 100000: 
            ns_data = linecache.getline(input_file, i + 1) 
            ns_data = eval(ns_data) 
            ns_data = list(ns_data) 
            ns_file.write('%8s,%8s,%8s,%8s,%8s,%8s,%8s,%8s\n\ 
%8s,%8s,%8s,%8s,%8s,%8s,%8s,%8s\n' % \ 
                         ((ns_data[0] + (j * 100000)), \ 
                         (ns_data[1] + (j * 100000)), \ 
                         (ns_data[2] + (j * 100000)), \ 
                         (ns_data[3] + (j * 100000)), \ 
                         (ns_data[4] + (j * 100000)), \ 
                         (ns_data[5] + (j * 100000)), \ 
                         (ns_data[6] + (j * 100000)), \ 
                         (ns_data[7] + (j * 100000)), \ 
                         (ns_data[8] + (j * 100000)), \ 
                         (ns_data[9] + (j * 100000)), \ 
                         (ns_data[10] + (j * 100000)), \ 
                         (ns_data[11] + (j * 100000)), \ 
                         (ns_data[12] + (j * 100000)), \ 
                         (ns_data[13] + (j * 100000)), \ 
                         (ns_data[14] + (j * 100000)), \ 
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                         (ns_data[15] + (j * 100000)))) 
            i = i + 1 
    except IndexError: 
        break 
ns_file.write('*End') 
print('Node Set File Written') 
 
node_file.close() 
element_file.close() 
ns_file.close() 
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APPENDIX D 

SAMPLE ABAQUS INPUT FILE
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******************************************************************************* 
*HEADING 
Shock Wave Impacting Plate 
**in mm, N, tonne(10^3 kg), s, MPa(N/mm^2), mJ, tonne/mm^3 
******************************************************************************* 
*NODE, INPUT=10mm.nd 
*INCLUDE,INPUT=node_sets.ns 
*ELEMENT, INPUT=10mm.el, TYPE=C3D8R 
*solidsection, elset=plate, controls=EC-1, material=Magnesium 
1., 
*INCLUDE,INPUT=magnesium_am60.mtrl 
*solidsection, elset=boundary, controls=EC-1, material=Boundary 
1., 
*Material, Name=Boundary 
*Density 
 7.850E-09 
*Elastic 
 10000, 0.03 
*Include, Input=el_sets.es 
*sectioncontrols, name=EC-1, Hourglass=Viscous 
1.0, 1.0, 1.0 
*boundary 
Fixed, 1, 3, 0 
*Initial Conditions, Type=Solution, INPUT=solution.dat 
*surface,type=element,name=plate_surf 
surface, S3 
******************************************************************************* 
*Step, name=Step-1 
*dynamic, explicit, Direct User Control 
1.5E-07,0.00035 
*DSLoad 
plate_surf, PNU, 1 
*output, field, Num=150 
*nodeoutput 
U, V, A, RF 
*elementoutput 
S, LE, SDV, ER, PE, ELEN 
*Output, History 
*Energy Output, Variable=Preselect, Elset=plate 
*endstep 
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APPENDIX E 

PYTHON SCRIPT TO CREATE ABAQUS SOLUTION FILE
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#Imports Abaqus node and element files and outputs Abaqus solution file. 
#Copyright Kyle Crosby ("ha") 
#Version 3.0 
#This version is for use with 25 dependant variables and can read element 
#labels from element sets. 
#1/15/09 
 
import linecache 
import random 
import math 
 
 
#graph = open('graph.dat', 'w') 
solution_file = open('solution.dat', 'w') 
input_file_type = raw_input('Enter number of file type:\n1. Element file' + \ 
                            '\n2. Element Set File\n') 
 
if input_file_type == "1": 
    node_input = raw_input('Enter node file name: ') 
    element_input = raw_input('Enter element file name: ') 
    temp = raw_input('Enter initial temperature: ') 
    distribution_type = raw_input('Enter number of damage distribution type: ' + \ 
                              '\n' + '1. Uniform Distribution' + '\n' + \ 
                              '2. Random Normal Distribution' + "\n") 
elif input_file_type == "2": 
    es_file = raw_input('Enter element set file name: ') 
    temp = raw_input('Enter initial temperature: ') 
    distribution_type = raw_input('Enter number of damage distribution type: ' + \ 
                              '\n' + '1. Uniform Distribution' + '\n' + \ 
                              '2. Random Normal Distribution' + "\n") 
    es_line_number = [] 
    for i, info in enumerate(open(es_file, 'r')): 
        if '*Elset, elset=plate' in info: 
            es_line_number.append(i+1) 
else: 
    print('Invalid value for file type') 
 
if distribution_type == "1": 
    uniform_value = raw_input('Enter value for uniform damage: ') 
elif distribution_type == "2": 
    normal_mean = float(input('Enter mean value for normally distributed ' + \ 
                        'damage: ')) 
    normal_stdev = float(input('Enter standard deviation for normally ' + \ 
                        'distributed damage: ')) 
else: 
    print('Invalid value for distribution type') 
 
if input_file_type == "1": 
#Import node file 
    node_data = {} 
    i = 1 
    while i < 2000000: 
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        node_file = linecache.getline(node_input, i) 
        if node_file == "": 
            break 
        node_file = eval(node_file) 
        node_file = list(node_file) 
        node_index = node_file[0] 
        node_coordinates = node_file[1:4] 
        node_data[node_index] = node_coordinates 
        i = i + 1 
#Checks the number of lines that one line of element data takes up. 
#This affects the interval used in the loop. 
        line_check = linecache.getline(element_input, 2) 
        line_check = eval(line_check) 
    try: 
        line_check = list(line_check) 
        num = 1 
    except TypeError: 
        num = 2 
#Calculate element centroid location 
    j = 1 
    while j < 2000000: 
        element_data = linecache.getline(element_input, j) 
        if element_data == "": 
            break 
        element_data = eval(element_data) 
        element_data = list(element_data) 
        del(element_data[2:5]) 
        element_name = element_data[0] 
#Find x coordinate of Node 1 
        node_1_x = node_data[element_data[1]][0] 
#Find x, y, and z coordinate of Node 5 
        node_5_x = node_data[element_data[2]][0] 
        node_5_y = node_data[element_data[2]][1] 
        node_5_z = node_data[element_data[2]][2] 
#Find y coordinate of Node 6 
        node_6_y = node_data[element_data[3]][1] 
#Find z coordinate of Node 7 
        node_7_z = node_data[element_data[4]][2] 
        x_centroid = (node_1_x + node_5_x)/2 
        y_centroid = (node_5_y + node_6_y)/2 
        z_centroid = (node_5_z + node_7_z)/2 
#Print solution and graph file 
#Solution file is file used in Abaqus with the *Solution keyword 
#Graph file is file with x and y coordinte of element centroid and 
#element damage value used for graphical representation of damage 
        if distribution_type == "1": 
            solution_file.write(str(element_name) + ",,,,,,,\n " + str(temp) + \ 
                                ",,,,,," + str(uniform_value) + ",\n ,," + \ 
                                str(uniform_value) + ",,,,,\n ,\n") 
            element_data = str(element_data[:]).strip('[]') 
#        graph.write(str(x_centroid) + ",  " + \ 
#                str(y_centroid) + ",  " + \ 
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#                str(uniform_value) + "\n") 
        if distribution_type == "2": 
            rand_number = str(abs(random.normalvariate(normal_mean,normal_stdev))) 
            solution_file.write(str(element_name) + ",,,,,,,\n " + str(temp) + ",,,,,," + \ 
                                rand_number + ",\n ,," + rand_number + ",,,,,\n ,\n") 
            element_data = str(element_data[:]).strip('[]') 
#        graph.write(str(x_centroid) + ",  " + \ 
#                str(y_centroid) + ",  " + \ 
#                str(random.normalvariate(0.0001,0.0001)) + "\n") 
        print(element_name) 
        del(element_data) 
        j = j + num 
 
elif input_file_type == "2": 
    element_name = [] 
    i = es_line_number[0] + 1 
    while i < 100000: 
        try: 
            element_name = linecache.getline(es_file, i) 
            if '*' in linecache.getline(es_file, i): 
                break 
            else: 
                element_name = eval(element_name) 
                element_name = list(element_name) 
                j = 0 
                while j < 8: 
                    if distribution_type == "1": 
                        solution_file.write(str(element_name[j]) + ",,,,,,,\n " + str(temp) + \ 
                                            ",,,,,," + str(uniform_value) + ",\n ,," + \ 
                                            str(uniform_value) + ",,,,,\n ,\n") 
                    if distribution_type == "2": 
                        rand_number = str(abs(random.normalvariate(normal_mean,normal_stdev))) 
                        solution_file.write(str(element_name[j]) + ",,,,,,,\n " + str(temp) + ",,,,,," + \ 
                                            rand_number + ",\n ,," + rand_number + ",,,,,\n ,\n") 
                    print(element_name[j]) 
                    j = j + 1 
                i = i + 1 
        except SyntaxError: 
            break 
#graph.close() 
solution_file.close() 
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APPENDIX F 

DMG MODEL MATERIAL CONSTANTS 
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Table F.1 DMG model (elastic-plastic) constants for AM60 Mg Alloy. 

 

AM60 Mg Constants Value 

Constants for 
J/B formulas 
for G and K 

G (MPa) 12810 
a 1 

Bulk (MPa) 38440 
b 0 

melt temp 
(K) 

5556 

Specifies the 
yield stress 

C1 (MPa) 2.66 
C2 (K) 0 

C3 (MPa) 92.82 
C4 (K) 47.93 

C5 (1/MPa) 0.00001 
C6 (K) 6.991E-07 

Kinematic 
hardening and 

recovery 
terms 

C7 (1/MPa) 1.929E+07 
C8 (K) 6868 

C9 (MPa) 1577 
C10 (K) 0.6931 

C11 
(sec/MPa) 

6.529E-05 

C12 (K) 1.064E+06 

Isotropic 
hardening and 

recovery 
terms 

C13 (1/MPa) 14.8 
C14 (K) 6.911E-07 

C15 (MPa) 40770 
C16 (K) 102.4 

C17 
(sec/MPa) 

0 

C18 (K) 0 
Yield strength 

adjustment 
terms 

C19 0 

C20 0 

Hardening 
and recovery 

cons. 

Ca 1.883 

Cb 0.008272 

Temperature 
init. Temp 

(K) 
297 

  
heat gen. 

Coeff. 
0.34 
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Table F.2 DMG model (damage) constants for AM60 Mg Alloy. 

 

AM60 Mg Constants Value 

McClintock void 
growth 

Void Growth exp 0.246 

Init. rad. (mm) 0.0002

Nucleation 

a 1 

b 1 

c 1 

Nuc coeff 0 

Fract. Toughness MPa 
(m^1/2) 

17.3 

Part. Size (mm) 0.0004

Part. vol fract. 0.07 

Coalescence 

cd1 0.7 

cd2 1 

dcs0 (mm) 20 

dcs (mm) 20 

dcs exp zz 0.0509

CA pore growth Init. Void vol fract. 0.001 

Nucleation Nuc temp dependence 0 

Coalescence Coal temp dependence 0 
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Table F.3 DMG model (elastic-plastic) constants for AZ31 Mg Alloy. 

 

AZ31 Mg Constants Value 

Constants for 
J/B formulas 
for G and K 

G (MPa) 16667 
a 0 

Bulk (MPa) 50000 
b 0 

melt temp 
(K) 

5556 

Specifies the 
yield stress 

C1 (MPa) 4.8 
C2 (K) 0 

C3 (MPa) 125 
C4 (K) 0 

C5 (1/MPa) 1 
C6 (K) 0 

Kinematic 
hardening and 

recovery 
terms 

C7 (1/MPa) 1 
C8 (K) 0 

C9 (MPa) 1950 
C10 (K) 0 

C11 
(sec/MPa) 

0 

C12 (K) 0 

Isotropic 
hardening and 

recovery 
terms 

C13 (1/MPa) 0.08 
C14 (K) 0 

C15 (MPa) 1200 
C16 (K) 0 

C17 
(sec/MPa) 

0 

C18 (K) 0 
Yield strength 

adjustment 
terms 

C19 0 

C20 3 

Hardening 
and recovery 

cons. 

Ca 0 

Cb 0.9 

Temperature 
init. Temp 

(K) 
297 

  
heat gen. 

Coeff. 
0.34 
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Table F.4 DMG model (damage) constants for AZ31 Mg Alloy. 

 

AZ31 Mg Constants Value 

McClintock void 
growth 

Void Growth exp 0.3 

Init. rad. (mm) 0.003 

Nucleation 

a 0 

b 20 

c 10 

Nuc coeff 4.2 

Fract. Toughness MPa 
(m^1/2) 

24.9 

Part. Size (mm) 0.0056

Part. vol fract. 0.0085

Coalescence 

cd1 20 

cd2 0 

dcs0 (mm) 0.003 

dcs (mm) 0.003 

dcs exp zz 0 

CA pore growth Init. Void vol fract. 0.0001

Nucleation Nuc temp dependence 0 

Coalescence Coal temp dependence 0 
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Table F.5 DMG model (elastic-plastic) constants for A356 Al Alloy. 

 

A356 T6 Constants Value 

Constants for 
J/B formulas 
for G and K 

G (MPa) 27200 
a 0 

Bulk (MPa) 70890 
b 0 

melt temp 
(K) 

1089 

Specifies the 
yield stress 

C1 (MPa) 1.5 
C2 (K) 0 

C3 (MPa) 255 
C4 (K) 0 

C5 (1/MPa) 1 
C6 (K) 0.000E+00 

Kinematic 
hardening and 

recovery 
terms 

C7 (1/MPa) 1.400E+00 
C8 (K) 0 

C9 (MPa) 3160 
C10 (K) 0 

C11 
(sec/MPa) 

0.000E+00 

C12 (K) 0.000E+00 

Isotropic 
hardening and 

recovery 
terms 

C13 (1/MPa) 0.2 
C14 (K) 0.000E+00 

C15 (MPa) 2300 
C16 (K) 0 

C17 
(sec/MPa) 

0 

C18 (K) 0 
Yield strength 

adjustment 
terms 

C19 0 

C20 0 
Hardening 

and recovery 
cons. 

Ca 0 

Cb -0.2 

Temperature 
init. Temp 

(K) 
297 

  
heat gen. 

Coeff. 
0.39 
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Table F.6 DMG model (damage) constants for A356 Al Alloy. 

 

A356 T6 Constants Value

McClintock void 
growth 

Void Growth exp 0.4 

Init. rad. (mm) 0.003

Nucleation 

a 530 

b 450 

c 184 

Nuc coeff 10 

Fract. Toughness MPa 
(m^1/2) 

17.3 

Part. Size (mm) 0.006

Part. vol fract. 0.07 

Coalescence 

cd1 0.85 

cd2 0 

dcs0 (mm) 0.03 

dcs (mm) 0.03 

dcs exp zz 0 

CA pore growth Init. Void vol fract. 0.001

Nucleation Nuc temp dependence 0 

Coalescence Coal temp dependence 0 
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Table F.7 DMG model (elastic-plastic) constants for 6061 Al Alloy. 

 

6061 T651 Constants Value 

Constants for 
J/B formulas 
for G and K 

G (MPa) 25900 
a 0 

Bulk (MPa) 67500 
b 0 

melt temp 
(K) 

855 

Specifies the 
yield stress 

C1 (MPa) 2.2 
C2 (K) 0 

C3 (MPa) 255 
C4 (K) 0 

C5 (1/MPa) 1 
C6 (K) 0 

Kinematic 
hardening and 

recovery 
terms 

C7 (1/MPa) 2.2 
C8 (K) 0 

C9 (MPa) 10000 
C10 (K) 0 

C11 
(sec/MPa) 

0 

C12 (K) 0 

Isotropic 
hardening and 

recovery 
terms 

C13 (1/MPa) 0.2 
C14 (K) 0 

C15 (MPa) 1500 
C16 (K) 0 

C17 
(sec/MPa) 

0 

C18 (K) 0 
Yield strength 

adjustment 
terms 

C19 0 

C20 0 
Hardening 

and recovery 
cons. 

Ca 0 

Cb -0.4 

Temperature 
init. Temp 

(K) 
297 

  
heat gen. 

Coeff. 
0.372 
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Table F.8 DMG model (damage) constants for 6061 Al Alloy. 

 

6061 T651 Constants Value 

McClintock void 
growth 

Void Growth exp 0.3 

Init. rad. (mm) 0.0013 

Nucleation 

a 185 

b 130 

c 60 

Nuc coeff 7.25 

Fract. Toughness MPa 
(m^1/2) 

29 

Part. Size (mm) 0.0013 

Part. vol fract. 0.00085

Coalescence 

cd1 1.4 

cd2 0 

dcs0 (mm) 0.003 

dcs (mm) 0.003 

dcs exp zz 0 

CA pore growth Init. Void vol fract. 0.0001 

Nucleation Nuc temp dependence 0 

Coalescence Coal temp dependence 0 
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APPENDIX G 

DMG PYTHON POINT SIMULATOR
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# 
#     Python point simulator for DMG damage model 
#     Written by Kyle Crosby 
# 
 
from linecache import * 
from math import * 
from pylab import * 
 
input_file = raw_input('Enter parameter file name: ') 
 
num_sim = eval(raw_input('Enter Number of Simulations to be run: ')) 
total_epslon = eval(raw_input('Enter Final Strain for Simulations: ')) 
nstep = eval(raw_input('Enter Number of Steps for Simulations: ')) 
 
#  Read number of parameters 
num_param = getline(input_file, 2) 
num_param = eval(num_param) 
 
i = 1 
props = [] 
props.append(0.0) 
 
while i <= num_param: 
    j = 2*(i+1) 
    props_data = getline(input_file, j) 
    if input_file == "": 
        break 
    props_data = eval(props_data) 
    props.append(props_data) 
    i = i + 1 
 
sim_run = 1 
while sim_run <= num_sim: 
 
#    rate = eval(raw_input('Enter Strain Rate for this Simulation: ')) 
    if sim_run==1: 
        rate = 0.001 
    if sim_run==2: 
        rate = -0.001 
    if sim_run==3: 
        rate = 1000 
    if sim_run==4: 
        rate = -3900 
 
    if rate >= 0.0: 
        test_type = 'Tension' 
    else: 
        test_type = 'Compression' 
 
    output_file = open('output'+str(sim_run)+'.csv', 'w') 
    output_file.write('Test Type\n'+test_type+'\n') 
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    output_file.write('Strain Rate\n'+str(rate)+'\n') 
    output_file.write('True Strain,True Stress,Total Damage,Nucleation\n') 
 
    nucleation = [] 
    plot_strain = [] 
 
    ttotal  = total_epslon/rate       #total time 
    dt      = ttotal/nstep            #time step 
    eng_str = rate*dt                 #engineering strain 
 
    cc1   = props[6] 
    cc2   = props[7] 
    cc3   = props[8] 
    cc4   = props[9] 
    cc5   = props[10] 
    cc6   = props[11] 
    cc7   = props[12] 
    cc8   = props[13] 
    cc9   = props[14] 
    cc10  = props[15] 
    cc11  = props[16] 
    cc12  = props[17] 
    cc13  = props[18] 
    cc14  = props[19] 
    cc15  = props[20] 
    cc16  = props[21] 
    cc17  = props[22] 
    cc18  = props[23] 
    cc19  = props[24] 
    cc20  = props[25] 
    ca    = props[26] 
    cb    = props[27] 
    tempi = props[28] 
    htcp  = props[29] 
    cd1   = props[39] 
    cd2   = props[40] 
    dcs0  = props[41] 
    dcs   = props[42] 
    zz    = props[43] 
 
    vmcc10 = pi*(props[31]**2)       # McClintock void growth(second phase pores) 
    vmcc11 = 0.0                     # rate of change of M porosity 
    vnuc13 = props[35]               # nucleation  
    dam14 = props[35]*vmcc10         # damage 
    vnuc17 = 0.0                     # nucleation from previous time step    
    coash18 = props[44]              # Cocks-Ashby void growth(large pores) 
    coash19 = 0.0 
 
    theta = tempi 
    if (tempi == 0.): 
        theta = temp 
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    if (props[5] == 0.0): 
        blk = props[3] 
        g = props[1] 
    else: 
        tratio = theta/props[5] 
        tratio = min(tratio,0.9999) 
        g = props[1]*(1.0-tratio*exp(props[2]*(1.0-1.0/tratio))) 
 
    twog = 2.0 * g 
    blk = props[3] - props[4]*tratio       
#    Young's Modulus       
    young = (9.0*g*blk)/(g+3.0*blk) 
    iplast=0 
    sig   = 0.0             # Stress 
    atr   = 0.0             # Alpha 
    xktr  = 0.0             # Kappa 
    epto  = 0.0             # Total Strain 
    time  = 0.0             # total step time 
    eps   = 0.0 
    epst  = 0.0 
    drate = 0.0             # Damage rate:state(16) 
    tot_eng_str = 0.0 
 
    icycle = 1 
 
    while icycle <= nstep:        # Iteration Cycle 
 
        tot_true_str_old = log(1+tot_eng_str) 
        tot_eng_str = tot_eng_str + eng_str 
        tot_true_str_new = log(1+tot_eng_str)    #true strain 
        true_str_inc = tot_true_str_new - tot_true_str_old 
        epslon = true_str_inc                    #strain increments 
 
        time = time+dt          
        sig1 = sig 
        epto = tot_eng_str 
#---- damage 
        dam1 = 1.0-dam14          
#---- check for melt 
#      
         
        if(theta < props[5]): 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
#               Yield and Rate-Dependant Yield Terms 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
# Loading Parameter (+ for tension, - for compression) 
            tsion = (rate/abs(rate))*(2.0/(3.0*sqrt(3.0))) 
            ztheta = 1.0/theta 
# Anisotropic Hardening 
#            ytheta = cc3*exp(cc4*ztheta) 
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#            vtheta = cc1*exp(-cc2*ztheta) 
#            ftheta = cc5*exp(-cc6/theta) 
#            rd1 = cc7*(1.0-cb*tsion)*exp(-cc8/theta) 
#            h1 = (cc9-cc10*theta)*(1.0+cb*tsion) 
#            rs1 = cc11*exp(-cc12*ztheta) 
#            rd2 = cc13*(1.0-cb*tsion)*exp(-cc14/theta) 
#            h2 = (cc15-cc16*theta)*(1.0+cb*tsion) 
#            rs2 = cc17*exp(-cc18*ztheta) 
#           h3 = 0.0 
#Anisotropic Yielding 
            ytheta = cc3*exp(cc4*ztheta)*(1.0+cb*tsion) 
            vtheta = cc1*exp(-cc2*ztheta)*(1.0+cc20*tsion) 
            ftheta = cc5*exp(-cc6*ztheta) 
            rd1 = cc7*exp(-cc8/theta) 
            h1 = (cc9-cc10*theta) 
            rs1 = cc11*exp(-cc12*ztheta) 
            rd2 = cc13*exp(-cc14*ztheta) 
            h2 = (cc15-cc16*theta) 
            rs2 = cc17*exp(-cc18*ztheta) 
            h3 = 0.0 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
 
            ddd = epslon/dt 
 
#            den = (dcs0/dcs)**zz 
            den = 1.0 
 
            alpm = sqrt(2.0/3.0)*abs(atr)         
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
#                                  trial alpha 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
            atr1=atr 
            atr = atr*(1.0-(dt*(rs1+(rd1*ddd))*abs(atr)*den)) 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
#                                  trial kappa 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
            xktr1 = xktr 
            xktr = xktr*(1.0-(dt*(rs2+(rd2*ddd))*xktr*den)) 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
#                                  yield radius 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
            if (ftheta == 0.0): 
                belog = 1.0 
            else: 
                belog = log((ddd+sqrt(ddd**2+ftheta**2))/ftheta) 
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            ak = ((vtheta*belog)+ytheta+xktr)*dam1 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
#                             trial elastic stress 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
#            dam2 = 1.0-min(1.0,dt*drate/dam1) 
            dam2 = 1.0-(dt*drate/dam1) 
# 
            sig = (dam2*sig)+(dam1*young*epslon) 
# 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
            ximag11 = sig-atr 
 
            ximag2 = ximag11**2 
            
            ak2 = ximag2-(ak*abs(ak)) 
 
          
            if (ak2 <= 0.0) and (iplast == 0): 
                output_file.write(str(epto)+','+str(sig)+','+str(dam14)+ 
                                  ','+str(vnuc13)+'\n') 
                continue 
            else: 
                iplast=1 
                ximag = sqrt(ximag2)          
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
#                                  dgam 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
                dter = den*(h1+h2*dam1) 
                dte1 = (dam1*young)+dter 
                dgam = (ximag-ak)/dte1 
                dgam2 = dgam/ximag 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
                dsig = dam1*young*dgam2 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
#                                 stress 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
                sig = sig-(dsig*ximag11) 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
#                                 kappa 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
                xktr = xktr+(dgam*h2*den) 
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                xktr = max(0.0,xktr) 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
                dalph = (h1+h3)*dgam2 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
#                                 alpha 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
                atr = atr + h1*dgam2*ximag11*den 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
#                                 eps 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
                eps = eps+dgam 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
#               Update temperature for adiabatic problems 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
                theta = theta+(htcp*dgam2*sig*ximag11) 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
#                               epsdot 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
                epsdot= dgam/dt 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
#                               cacon 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
                cacon = abs(vtheta/ytheta) 
                if (cacon <= 0.0): 
                    cacon=11.0 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
#                               beta 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
                rrat = (1.0/3.0)*sqrt(2.0/3.0) 
                dterm=2.0*(2.0*cacon-1.0)/(2.0*cacon+1.0) 
                arg = min(15.0,dterm*rrat) 
                beta = sinh(max(0.,arg) ) 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
#                               Cocks-Ashby 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
#     Cocks-Ashby large pore growth term 
                phi1 = 1.0-coash18 
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                c90 = 1.0 + cacon 
                psi = min(15.0,beta*dt*epsdot*c90) 
                tmp = max(0.0,(1.0+(phi1**c90-1.0)*exp(psi))) 
                coash18 = min((1.0-tmp**(1.0/c90)),.99) 
#     Cocks-Ashby void growth rate 
                coash19 = beta*epsdot*(1.0/(1.0-coash18)**(vtheta/ytheta) 
                          -(1.0-coash18)) 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
#     McClintock form of void growth 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
                abc = (3.0**0.5/(2.0*(1.0-props[30]))*sinh(3.0**0.5* 
                      0.5*(1.0-props[30])*((2.0*rrat)+(1.0/3.0)))) 
                vrad   = props[31]*exp(eps*abc/sqrt(2.0/3.0)) 
                vmcc10 = pi*(vrad**2) 
                vmcc11 = 3.0*vmcc10*abc*epsdot 
                p30 = 1.0-props[30] 
                ddt1 = -sqrt(3.0)/(sqrt(2.0/3.0)*p30) 
          
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
#     nucleation 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
                tn1   = (props[33]*tsion)+props[34] 
                tn1 = abs(tn1) 
                zzzz  = (props[37]**0.5/(props[36]*props[38]**(1.0/3.0)))*tn1 
                vnuc17 = vnuc13 
                j2 = (1.0/3.0)*sig**2.0 
                vnuc13 = (props[35]*exp(abs(vtheta/ytheta)*j2 
                                             *eps*zzzz/sqrt(2.0/3.0)) 
                                             *exp(-props[45]/theta)) 
                nucleation.append(vnuc13) 
#     added for nonmonotonic path sequences, statev(17) is old nucleation 
                if(vnuc13 < vnuc17): 
                    vnuc13 = abs(vnuc17+vnuc13) 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++ 
#     Coalescence factor 
                cf=(cd1+cd2*vnuc13*vmcc10)*exp(props[46]*theta)*den         
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++ 
#     Damage 
                damage = cf*(vnuc13*vmcc10+coash18) 
                if(damage >= 0.20): 
                    damage = .99 
                dam14 = min(damage,0.99) 
 
                if(dam14 >= 0.99): 
                    drate = 0.0 
                    sig = 0.0 
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                    output_file.write(str(epto)+','+str(sig)+','+str(dam14)+ 
                                  ','+str(vnuc13)+'\n') 
                    break 
                else: 
#     Nucleation Rate 
                    epsdot=abs(epsdot) 
                    rnuc15=zzzz*vnuc13*epsdot 
#     Damage Rate 
                    zsecond=cf*((rnuc15*vmcc10)+(vnuc13*vmcc11)+coash19) 
                    zthird=(((vnuc13*vmcc10)+coash18)* 
                             cd2*((dcs0/dcs)**zz)*exp(0.0*theta)* 
                             ((rnuc15*vmcc10)+(vnuc13*vmcc11))) 
                    drate = zsecond+zthird 
                    output_file.write(str(epto)+','+str(sig)+','+str(dam14)+ 
                                      ','+str(vnuc13)+'\n') 
 
        else: 
            atr  = 0.0 
            xktr = 0.0 
            sig  = 0.0 
            eps  = 0.0 
 
        icycle = icycle + 1 
 
    output_file.close() 
    sim_run = sim_run + 1 
 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
#   Plots Nucleation Data 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
i = 1 
while i <= num_sim: 
    mod_data = 'output'+str(i)+'.csv' 
    test_type = getline(mod_data, 2).rstrip() 
    strain_rate = eval(getline(mod_data, 4)) 
    figure(1) 
    nucl_model = plotfile(mod_data, ('true_strain', 'nucleation'),newfig=False, lw=2, 
                          label=test_type+' Nucleation Model for '+str(abs(strain_rate)) 
                          +' /s', skiprows=4) 
    xlabel('Strain') 
    ylabel('Nucleation') 
    ylim(0, 80) 
    xlim(0, total_epslon) 
    title('Nucleation') 
    legend(loc='lower right') 
    grid(True) 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
#   Plots Model Stress-Strain Data 
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#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
    figure(2) 
    model_line = plotfile(mod_data, ('true_strain', 'true_stress'), lw=2, 
                          label=test_type+' Model for '+str(abs(strain_rate))+' /s', 
                          newfig=False, skiprows=4) 
    i = i + 1 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
#   Plots Experimental Stress-Strain Data 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++ 
 
num_exp_data = raw_input('Enter Number of Experimental Data\n' 
                         'files to be entered: ') 
 
i = 1 
num_exp_data = eval(num_exp_data) 
while i <= num_exp_data: 
    exp_data = raw_input('Enter file name: ') 
    mat_name = getline(exp_data, 2).rstrip() 
    test_type = getline(exp_data, 4).rstrip() 
    strain_rate = eval(getline(exp_data, 6)) 
    data_line = plotfile(exp_data, ('strain', 'stress'), 
                 newfig=False, skiprows=6, lw=2, 
                 label=test_type+' Data for '+str(abs(strain_rate))+' /s') 
    i = i + 1 
 
xlabel('Strain') 
ylim(0, 500.0) 
xlim(0, total_epslon) 
ylabel('Stress (MPa)') 
title('Stress-Strain Curve') 
legend(loc='lower right') 
grid(True) 
 
show() 
 


