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Chapter 1

INTRODUCTION

The Cramér-Rao bound (CRB), the inverse of the Fisher information, is a

limit on the performance of the estimation of parameters under certain conditions.

Hence, the variance of any unbiased estimator cannot be lower than this bound,

and the CRB may also be interpreted in some sense as a measure of performance

potential. For a large number of scenarios, it is often of interest to gauge the

performance of estimation under parametric constraints. The traditional approach

in deriving CRBs for these cases is to find a reparameterization that represents

the constraint. However, such an approach is not always feasible for a large class

of constraints and numerical approximations are often restricted to the particular

model. An alternative and equivalent option to reparameterization, the constrained

Cramér-Rao bound, is presented herein, which is also computationally simple to

program.

In communications design research, estimation performance metrics are often

interpreted to represent performance potential to study the feasibility of a model to

meet a certain measure of desired reliability. This approach is often practical since

it avoids the necessity of searching for the best performer over a class of estimators

for a particular trial model and since the CRB is analytically or numerically simple

to compute. The downside to this approach is that for each model, the CRB needs

1



to be derived each time. This effectively prohibits the practitioner from studying

an overly large class of models or, in the context of this work, a large class of

constraints on some base model. This restriction is to a great extent eliminated

using the constrained Cramér-Rao bound, as the Fisher information, which involves

an integration over many variables, for the base model only needs to be evaluated

once.

Chapter 2 offers a quick review of several connections with the Cramér-Rao

bound (CRB) within mathematical statistics and serves as a reference point for the

study of parameters under parametric equality constraints, discussed in Chapter 3.

With the possible exception of the identifiability relationship in section 2.2, much

of this section is familiar and well represented in standard mathematical statistics

texts.

In Chapter 3, a general theory of the constrained Cramér-Rao bound (CCRB)

is presented. In section 3.1, the CCRB is defined and proven, alternative formu-

las are presented, and several interesting properties of the bound are detailed. In

section 3.2, a connection is made between the CCRB and two different notions of

identifiability under certain conditions. In section 3.3, the linear model with linear

constraints is examined in the context of the CCRB. In section 3.4, connections

between the CCRB and constrained maximum likelihood estimation are detailed,

including an asymptotic normality result and an adaptation of the method of scoring

to the constrained parameter scenario. This chapter concludes with the consider-

ation of hypothesis testing under constraints in section 3.5. Chapters 2 and 3 are

designed so that the section numbers correspond directly, i.e., section 3.x relates

2



a concept for constrained parameters that section 2.x reviews for unconstrained

parameters.

In Chapter 4, the analytic tools developed in Chapter 3 are applied in the

communications context of the convolutive mixture model (section 4.1) and the

calibrated array model (section 4.2). These models are defined and their Fisher

information matrices developed in section 4.1.3 and section 4.2.1, respectively. A

variety of constraints for these models are considered in sections 4.1.4 and 4.2.2.

1.1 A note on the notation

All elements will be denoted in lowercase math font: a. All vectors will be

column vectors and be denoted in a lowercase bold math font: a. Hence, the ith

element of the column vector a will be denoted as ai. (This should not be confused

with ai, which is often used as a subvector of the vector a and will be defined

in context.) All matrices will be denoted in an uppercase bold math font: A.

All scalars, vectors, and matrices are assumed to have elements with real-valued

numbers unless otherwise noted as complex-valued (where the complex number i =

j =
√
−1 should be clear from context).

For vectors and matrices, (·)T will denote the transpose operator (do not with

confuse (·)′, which is occasionally used here as a dummy variable), (·)∗ will denote the

conjugate operator (do not confuse with (·)?, which is occasionally used as a variant

of another vector or matrix), and (·)H will denote the Hermitian (or conjugate

transpose) operator. When a vector depends on another vector value as in a(θ), then

3



the Jacobian will be a matrix denoted as A(θ) where the ith row is the transposed

of the vector ∂
∂θ
ai(θ) and ai(θ) is the ith row element of a(θ). For square matrices,

(·)−1 will denote the inverse of the matrix and (·)† will denote the pseudoinverse of

the matrix. Of course, (·)2 will denote the square of the matrix.

For symmetric matrices (or Hermitian matrices in the complex-valued case, the

expression A > B will denote that the matrix A−B is positive definite. Similarly,

A ≥ B will denote that the matrix A−B is positive semidefinite.

Sets will be denoted in an uppercase blackboard math font: A or in an up-

percase Greek letter math font: Θ. Also, all sets will be assumed open sets unless

otherwise noted.

For convenience to allow the reader to find referenced items, numbered theo-

rems, corollaries, and examples share numbering. Thus, the theorem immediately

following Example x.4 in Chapter x is numbered Theorem x.5 even though the

previous theorem is Theorem x.1.
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Chapter 2

THE CRAMÉR-RAO BOUND

The Cramér-Rao bound (CRB) is a lower bound on the error covariance of

any unbiased estimator under certain regularity conditions. As such, it is a measure

of the optimal performance of an unbiased estimator under a given model. There

are other mean-square error lower bounds, such as the Ziv-Zakai bound [78], the

Hammersley-Chapman Robbins bound [26, 16], the Barankin bound [8], the Bhat-

tacharyya bound [11], etc., and indeed, depending on the model, there are numerous

other possible performance measures, such as classification bounds like bit-error rate

(BER) or symbol-error rate (SER), but the CRB remains a very popular benchmark

due to it’s computational simplicity and its underlying well-developed theory.

This theory has led to numerous connections in areas of mathematical statis-

tics, e.g., identifiability, linear models, maximum likelihood, including asymptotic

normality and the method of scoring, and hypothesis testing. This short chapter is

a quick review of just a few of these connections. A more complete discussion of the

utility and application of the topics discussed in this chapter, as well as proofs of the

definitions, theorems and statements herein, may be found in many standard sta-

tistical inference texts, such as Shao [62] or Casella and Berger [14] for statisticians,

Kay [36] for signal processors, or Van Trees [72] for engineers.
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2.1 Definition

Suppose we have an observation x in X ⊂ Rn from a probability density

function (pdf) p(x; θ) where θ is in an open set Θ ⊂ Rm is a vector of deterministic

parameters. The Fisher information matrix (FIM) of this model is given by

I(θ)
∆
= Eθ

{

s(x; θ)sT (x; θ)
}

where s(x; θ) is the Fisher score defined by

s(x; θ)
∆
=
∂ log p(x; θ

′

)

∂θ′

∣

∣

∣

∣

θ
′
=θ

and the expectation is evaluated at θ, i.e., Eθ(·) =

∫

X

(·)p(x; θ)dx. And suppose as

regularity conditions, the pdf is differentiable with respect to θ and satisfies

∂

∂θT
Eθ(h(x)) = Eθ(h(x)sT (x; θ)) (2.1)

for h(x) ≡ 1 and h(x) ≡ t(x) where t(x) is an unbiased estimator of θ [62]. These

conditions are assured under a number of scenarios, for example, when the Jacobian

and Hessian of the density function p(x; θ) is absolutely integrable with respect to

both x and θ [72], and essentially permit switching between the order of integration

and differentiation. Under these assumptions, we have the following information

inequality theorem [14, 62, 36, 72], independently developed by Cramér [17] and

Rao [56].

Theorem 2.1. The Cramér-Rao bound is the inverse of the FIM,

CRB(θ)
∆
= I−1(θ), (2.2)

6



if it exists, and the variance of any unbiased estimator t(x) satisfies the inequality

Var(t(x)) ≥ CRB(θ)

with equality if and only if t(x)− θ = CRB(θ)s(x; θ) in the mean-square sense.

Example 2.2. Let x ∼ CN (ϑ, σ2) with unknown complex-valued mean ϑ and

known variance σ2. In terms of real-valued parameters, the equivalent model is

[

Re(x)
Im(x)

]

∼ N (

[

Re(ϑ)
Im(ϑ)

]

,
σ2

2
I2×2).

From a well-known result on normal distributions [36, equation (3.31)],

I(

[

Re(ϑ)
Im(ϑ)

]

) =
2

σ2
I2×2

and the CRB is σ2

2
I2×2.

2.1.1 Extensions

The performance of a function of parameters, e.g. the transformation α =

k(θ), is often of more interest than the performance of the parameters. If the

Jacobian of the transformation function is K(θ) = ∂k(θ
′

)

∂θ′T

∣

∣

∣

θ
′
=θ

, then the CRB on

the performance of an unbiased estimator of α is [62, 36]

CRB(α) = K(θ)I−1(θ)KT (θ),

i.e., if S(x) is an unbiased estimator of α, then Var(S(x)) ≥K(θ)CRB(θ)KT (θ).

Implicit in this inequality for the transformation is that α is differentiable with

respect to θ and (2.1) must also be satisfied for h(x) ≡ S(x). Consequently, if

7



an estimator t(x) is biased with bias b(θ) = Eθt(x) − θ, then the transformation

formula above can be used to attain a bound for α = θ + b(θ). Then Var(t(x)) ≥

CRB(θ + b(θ)) where

CRB(θ + b(θ)) = (Im +B(θ))CRB(θ)
(

Im +BT (θ)
)

with B(θ) = ∂b(θ
′

)

∂θ′T

∣

∣

∣

θ
′
=θ

.

Theorem 2.1 requires a nonsingular Fisher information, however, there are a

number of interesting cases where this requirement can not be met yet the model is

still of interest. For this scenario, the pseudoinverse of the FIM is occasionally used

as a bound in place of the CRB, i.e.,

Var(t(x)) ≥ I†(θ)

for an unbiased estimator t(x). This bound inequality is trivial for nonidentifi-

able functions of the parameters [66], i.e., the variance is finite only if H(θ) =

H(θ)I(θ)I†(θ) where H(θ) = K(θ) + B(θ) and t(x) is a biased estimator of

α = k(θ) with bias b(θ).

2.2 Identifiability

The ability to identify parameters determines the validity and utility of cer-

tain structural models. Criteria on the identifiability of parameters has numerous

connections to parametric statistical measures, such as Kullback-Leibler distance

[13] and the Fisher information matrix [58, 29, 69]. In this section, two of these con-

nections are developed to establish conditions under which a particular parametric

model is identifiable.
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2.2.1 Local identifiability

To proceed in examining the identifiability criterion from the CRB, a definition

of identifiability is required. A parameter θ ∈ Θ ⊂ Rm is identifiable in the model

p(x; ·) if there is no other other θ
′ ∈ Θ such that p(x; θ) = p(x; θ

′

) for all x ∈ Rn.

A parameter is locally identifiable if there exists an open neighborhood of θ such

that θ is identifiable in that neighborhood.

A parameter is (locally) identifiable in the additive noiseless case if the param-

eter is solvable (locally). Estimable parameters, i.e., expected values of functions

of the observations [57], are also identifiable.1 Hence, a non-identifiable parameter

is not estimable regardless of the scheme or the number of observations. These

scenarios exist when some inherent ambiguity exists in the model.

Example 2.3. The parameter vector θ = [θ1, θ2]
T in the model

x = θ1 + θ2 + w,

where w represents the observation noise, is not identifiable since it is indistinguish-

able from the parameter vector θ
′

= [θ1 + a, θ2 − a]T for any real number a.

The Fisher information matrix is called regular if I(θ) is full rank, and θ is

said to be a regular point of I(θ). If the FIM is singular, θ is a singular point.

Example 2.4. The FIM for the model

x = θ2 + w,

1The converse is not true. While it is possible to develop estimation schemes for any identifiable
parameters, there is no guarantee that those estimators will be unbiased.

9



where w ∼ N (0, 1), is I(θ) = 4θ2. For any θ 6= 0, θ is locally identifiable but not

identifiable and at the same time a regular point of the FIM. For θ = 0, θ is a

singular point, yet is identifiable.

Fisher information-regularity implies local identifiability, but as the example

demonstrates the converse is not true. Rothenberg [58] found a connection between

local identifiability and the FIM under certain conditions.

Theorem 2.5 (Rothenberg). Assume the FIM I(θ) has constant rank locally about

θ. Then θ is locally identifiable if and only if I(θ) is regular.

2.2.2 Strong Identifiability

Suppose that p(x; θ) is a normal pdf with mean µ(θ) ∈ Rp and variance

Σ(θ), whose elements may be explicitly defined by a map ϕ : Θ → Rq where

q ≤ p + p(p + 1)/2 and it is assumed m ≤ q. Then by the given definitions, (local)

identifiability holds when ϕ is injective (locally) and since by a transformation on

the FIM [12, p. 157]

I(θ) =
∂ϕT (θ)

∂θ
I(ϕ(θ))

∂ϕ(θ)

∂θT

regularity holds when the Jacobian ∂ϕ(θ)
∂θT has full rank m.

Suppose there exists a set of indices i1, . . . , im ∈ {1, . . . , q} that make ϕ∗(θ) =

[ϕi1(θ), . . . ,ϕim(θ)]T injective on Θ. Then each θ ∈ Θ is strongly identifiable and

ϕ∗ is a representative mapping. By this definition, if I(θ) is regular at θ then θ is

in a strongly identifiable open neighborhood, and if θ is strongly identifiable on Θ

then it is also identifiable on Θ. The converses are not generally true. The following

10



theorem establishes conditions under which the converses are true [29].

Theorem 2.6 (Hochwald and Nehorai). Let ϕ : Ω→ Cq be a holomorphic mapping

of z ∈ Ω ⊂ ∪α∈AΩα, where Θ ⊂ Ω ⊂ Cm and Ωα is open in Cm for each α. Then

(a) if I(z) is regular, there exists a strongly identifiable open neighborhood about

z, and

(b) if there exists a representative mapping ϕ∗
α : Ωα → Cq for each α, I(z) is

regular for every z ∈ Ω.

Therefore, the existence of a proper holomorphic function(s) equates Fisher in-

formation regularity with strong identifiability for normal distributions. And locally

constant rank in the FIM equates regularity with local identifiability for arbitrary

distributions.

2.3 Linear Model

Suppose we have observations x from a linear model

x = Hθ +w, (2.3)

on θ, where H is an observation matrix consisting of known elements and w is the

noise from the observations with mean zero and variance C.

11



2.3.1 Best Linear Unbiased Estimators

The Gauss-Markov theorem [14] states that the best linear unbiased estimator

(BLUE) is given by the (weighted) least squares solution

θ̂LS(x) =
(

HTC−1H
)−1

HTC−1x, (2.4)

so called for minimizing the (weighted) least squares (x−Hθ)T
C−1 (x−Hθ). For

any other LUE of θ, i.e. Ax, then Var(Ax) ≥ Var(θ̂LS(x)) with equality if and

only if A =
(

HTC−1H
)−1

HTC−1. This assumes a full column rank observation

matrix H . Otherwise, for any estimable function of the parameters dTθ, where d

is in the column space of the transposed observation matrix HT , its least squares

solution is dT θ̂LS(x) where

θ̂LS(x) =
(

HTC−1H
)†
HTC−1x, (2.5)

and (·)† is the generalized pseudoinverse of (·) [57, theorems 11.2B,11.3A-D]. This

solution is also the BLUE with variance dT
(

HTC−1H
)†
d.

2.3.2 Gaussian noise

Additionally, if the noise has a Gaussian distribution, i.e., w ∼ N (0,C), then

the least squares solution is also the maximum likelihood estimator (MLE) and the

minimum variance unbiased estimate (MVUE).

Theorem 2.7. If the observations obey the linear model in (2.3), where H is a

known full column rank matrix, θ is an unknown parameter vector, and w is a

12



zero-mean normal random vector with variance C, then the MVUE is

θ̂LS(x) =
(

HTC−1H
)−1

HTC−1x (2.6)

with estimator covariance equaling the CRB I−1(θ) =
(

HTC−1H
)−1

.

Similarly, if H is not full rank, and dTθ is an estimable function, then the

MLE is dT θ̂MLE(x) where θ̂MLE(x) = θ̂LS(x) from (2.5). This MLE is also the

MVUE [57, theorems 11.3F-G].

2.4 Maximum likelihood

Given observations x from a likelihood (or pdf) p(x; θ) depending on an un-

known parameter θ, a popular method of estimating the parameter is the method

of maximum likelihood. This approach chooses as an estimator θ̂ML(x) that, if true,

would have the highest probability (the maximum likelihood) of resulting in the

given observations x, i.e., the optimization problem:

θ̂ML(x) = arg max
θ

log p(x; θ)

where for convenience the log-likelihood is equivalently maximized since log(·) is

monotone. An analytic solution of the MLE can be found from the first-order

conditions on the log-likelihood by considering solutions θ̇(x) of

s(x; θ
′

) = 0. (2.7)

This is the method of maximum likelihood. Provided Θ is an open set, θ̂ML(x) will

satisfy (2.7).
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2.4.1 Efficient estimation

If an efficient estimator exists, it is well-known that the method of maximum-

likelihood finds the estimator [36, exercise 7.12], i.e., such an estimator must be a

stationary point of the maximum-likelihood optimization problem. More formerly,

we have the following theorem.

Theorem 2.8. If t(x) is an estimator of θ, which is also efficient with respect to the

CRB, then the estimator is a stationary point of the following optimization problem:

max
θ

log p(x; θ).

2.4.2 Asymptotic Normality

Let the samples x1,x2, . . . ,xn be iid as x from the pdf p(x; θ). Denote yn =

(x1,x2, . . . ,xn) to be the collection of these samples, so that the likelihood will

be p(yn; θ) =
n
∏

i=1

p(xi; θ), with the maximum likelihood of these samples denoted

θ̂(yn).

Theorem 2.9. Assuming the regularity conditions stated earlier on the pdf p(x; θ),

the MLE of the parameter θ is asymptotically distributed according to

√
n
(

θ̂(yn)− θ
)

d→N
(

0, I−1(θ)
)

where I(θ) is derived from the pdf p(x; θ), i.e., it is the Fisher information of a

single observation or sample.
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2.4.3 Scoring

There exists a number of approaches to finding the maximum likelihood, in

some cases requiring iterative techniques. One such technique is Fisher’s method

of scoring. Given an observation x from a likelihood or pdf p(x; θ) depending on

an unknown parameter θ and given some initial estimate θ̇(1) of θ, then iteratively

using the update

θ̇(k+1) = θ̇(k) + I−1(θ̇(k))s(x; θ̇(k)) (2.8)

will find the MLE under certain conditions, e.g., provided the initial estimate is

sufficiently close in a locally convex region.

2.5 Hypothesis testing

Given the inclusion of the CRB quantity in the asymptotic normality results

in section 2.4.2, it is not surprising that there would also exist connections to some

asymptotic hypothesis tests. Assume h : Rm → Rr is a consistent and nonredundant

differentiable function, which defines the null hypothesis

H0 : h(θ) = 0

in the likelihood (or model) p(yn; θ) versus the alternative hypothesisH1 : h(θ) 6= 0.

2.5.1 The Rao statistic

The Rao (or score) test statistic is given by

ρ(yn) =
1

n
sT (yn; θ̂h(yn))I−1(θ̂h(yn))s(yn; θ̂h(yn)) (2.9)
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where the Fisher score at yn is s(yn, θ̂h(yn)) =
n
∑

i=1

s(xi, θ̂h(yn)) and θ̂h(yn) is the

MLE of θ under the null hypothesis h(θ) = 0. A variant of this statistic, the

Lagrange multiplier test [3, 63]

λ̂T
nH(θ̂h(yn))I−1(θ̂h(yn))H

T (θ̂h(yn))λ̂n,

was developed by Silvey [63]. The equivalence between the Rao and Lagrange mul-

tiplier test comes from the first order condition to satisfy the constraint [45], i.e.,

s(yn; θ̂h(yn)) +HT (θ̂h(yn))λ̂n = 0,

h(θ̂h(yn)) = 0

where λ̂n ∈ Rr is a vector of Lagrange multiplier estimates. First order Taylor-series

expansions of both equations about the true parameter θ produces

s(yn; θ)− In(θ)(θ̂h(yn)− θ) +HT (θ̂h(yn))λ̂n = o(n−1/2)

h(θ) +H(θ)(θ̂h(yn)− θ) + o(n−1/2) = h(θ̂h(yn))

where In(θ) = nI(θ) (n times the Fisher information based on a single sample x).

Hence under the null hypothesis, the latter implies H(θ)(θ̂h(yn) − θ) = o(n−1/2),

and premultiplying the former by H(θ)I−1
n (θ), then

H(θ)I−1
n (θ)s(yn; θ) +H(θ)I−1

n (θ)HT (θ̂h(yn))λ̂n = o(n−1/2).

Since s(yn; θ) ∼ N (0, In(θ)), then applying Slutsky’s theorem and the continuity

of the Fisher information and the hypothesis function,

H(θ̂h(yn))I−1
n (θ̂h(yn))HT (θ̂h(yn))λ̂n

d→ N
(

0,H(θ)I−1
n (θ)HT (θ)

)

.
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Therefore,
(

H(θ̂h(yn))I−1
n (θ̂h(yn))HT (θ̂h(yn))

)−1/2

λ̂n is a r-dimensional standard

normal variable in distribution, and

ρ(yn)
d→ χ2

r.

Hypothesis H0 is rejected if ρ(yn) > χ2
r,α, where χ2

r,α is the (1 − α)-quantile of the

chi-square distribution with r degrees of freedom.

2.5.2 The Wald statistic

The Wald test statistic is given by

ω(yn) = nhT (θ̂(yn))
(

H(θ̂(yn))I−1(θ̂(yn))H
T (θ̂(yn))

)−1

h(θ̂(yn)) (2.10)

where H(θ) =
∂h(θ

′

)

∂θ′T

∣

∣

∣

∣

θ
′
=θ

and θ̂(yn) is an MLE of θ. (The nonredundancy of h

implies that H(·) is full row rank.) From section 2.1.1, the CRB of h(θ) in the

model p(x; θ) is H(θ)I−1(θ)HT (θ) and therefore, using theorem 2.9,

√
n
(

h(θ̂(yn))− h(θ)
)

d→N
(

0,H(θ)I−1(θ)HT (θ)
)

.

Hence, under H0, using Slutsky’s theorem, the convergence in probability of the

MLE, and continuity of the FIM and Jacobian of the test function,

ω(yn)
d→ χ2

r .

Therefore, the hypothesis H0 is rejected if ω(yn) > χ2
r,α.

2.6 Discussion

In this section, the Cramér-Rao bound (CRB) was defined and in theorem

2.1 it was stated to be a bound on mean-square error performance of an unbiased
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estimator. The theory of the CRB’s connection to a variety of useful theorems

and equations in mathematical statistics was demonstrated. The CRB is included

in conditions for local identifiability (theorem 2.5) as well as conditions for strict

identifiability (theorem 2.6). The CRB is the projection matrix of the BLUE under

a Gaussian model in equation (2.6). There is a connection between the existence of

efficiency with respect to the CRB and the method of ML (theorem 2.8). The CRB

is also the asymptotic variance of the ML estimator (theorem 2.9) and appears in

the update formula in (2.8) for the method of scoring. The CRB also appears in the

formulas for the Rao test statistic in (2.9) and for the Wald test statistic (2.10).

These connections are not exhaustive, e.g., the CRB formula can also be useful

in defining confidence regions or in useful as a cost function, but these are perhaps

the most prevalent general topics in mathematical statistics theory and for that

reason serve as a useful comparison for the constrained Cramér-Rao bound in chapter

3 and its connections in the theory.
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Chapter 3

THE CONSTRAINED CRAMÉR-RAO BOUND

While the Cramér-Rao bound (CRB) is a useful measure of parametric esti-

mation, it does not inherently measure the performance of estimators of parameters

that satisfy side information in the form of a functional equality constraint

f (θ) = 0. (3.1)

The statistical literature is surprisingly somewhat limited in addressing performance

measures under this general scenario. The traditional practice is to find some equiv-

alent reparameterization of the particular model and then find the CRB on the

parameters of interest using the reparameterized transformation. This approach,

however, does not lend itself to theoretical meaning beyond the particular reparam-

eterized model. Typically, works that do examine (3.1) in a general manner are

focused on developing methods for decisions (hypothesis testing) instead of mea-

suring estimation performance. Nevertheless, these results have connections to a

CRB incorporating the side information in (3.1), or a constrained CRB. A number

of papers, including Aitchison and Silvey [3] and Crowder [18], using the method of

Lagrangian multipliers, examine the asymptotic normality of the constrained maxi-

mum likelihood estimator (CMLE) and as a consequence unintentionally develop a

CRB under equality constraints. Under certain conditions, the asymptotic variance

of the MLE equaling the CRB lends credence to the claim that the asymptotic vari-
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ance of the CMLE should equal to the CRB under equality constraints, although the

authors did not always appear cognizant of this fact. Others, including Silvey [63] to

develop his Lagrange multiplier test, Osborne [55] with linear constraints to develop

a scoring algorithm, and Waldorp, Huizenga, and Grasman [73] to develop a Wald-

type test, also use the Lagrange multiplier approach in developing a constrained

bound. Again, since these authors were primarily focused on asymptotic properties

or hypothesis testing, the nature and perhaps utility of this mathematical quantity

in their work is not explicitly stated as a CRB or bound on performance estima-

tion of parameters under constraints. The creation of a constrained bound strictly

for the use in performance analysis wasn’t achieved until Gorman and Hero [23].

Gorman and Hero derived such a measure by taking the limit of the Hammersley-

Chapman-Robbins bound with test points restricted to exist only in the constraint

space. This constrained Cramér-Rao bound (CCRB)

I−1(θ)− I−1(θ)F T (θ)
(

F (θ)I−1(θ)F T (θ)
)−1

F (θ)I−1(θ) (3.2)

utilizes the Jacobian F (θ) of the functional constraint f (θ) and the inverse of

the Fisher Information matrix (FIM) I(θ) (based on the unconstrained model),

which must be nonsingular. As with the CRB, there exist a number of alternative

derivations. The works of Crowder, Waldorp, et al, Gorman and Hero, and Aitchison

[2] include the formula in (3.2) in some manner for which the CRB might be used for

the unconstrained scenario in their works, a fact that implicitly proves the validity of

the CCRB. With the explicit proof by Gorman and Hero as a guideline, Marzetta [47]

provides an elementary proof of this CCRB, which avoids the use of the application of
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the Cauchy-Schwarz inequality, and avoids the use of pseudo-inverses, by examining

the inequality created from the positive-semidefiniteness property for the variance

of a properly defined random variable. A similar construction was used by Stoica

and Ng [68] to formulate a more general CCRB

U (θ)
(

UT (θ)I(θ)U (θ)
)−1

UT (θ) (3.3)

that incorporates the constraint information without the assumption of a nonsin-

gular FIM. This CCRB utilizes the unconstrained FIM and an orthonormal com-

plement matrix U (θ) whose vectors span the null space of the constraint Jacobian

matrix. Furthermore, when the FIM is nonsingular, the Stoica-Ng CCRB in (3.3) is

equivalent to the Gorman-Hero version of (3.2). Hence, while much of the previous

work used the formula in (3.2), the more general formula (3.3) is also applicable.

Osborne, independently from much of these other works, developed a method of

scoring with constraints that utilizes the Stoica-Ng CCRB formula in (3.3) as the

projection matrix in place of the CRB. There are, of course, numerous instances of

matrix structures of the same form as (3.3), for example as part of the projection

matrix of the generalized least squares estimate of the mean of a linear model.

In this section, we develop a very simple derivation of the CCRB in (3.3).

Rather than assuming the parameters satisfy functional constraints, we approach

the problem theoretically from an alternative, yet equivalent, perspective and as-

sume the parameters locally fit a reduced parametric model. This approach permits

the extension of the existing classical theory underlying the CRB to the case of a

model under parametric constraints. While it is true that several of these exten-
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sions already exist in the literature, there does not exist a cohesive treatment of

these results. However, this chapter should not be viewed as simply a collection of

historical results, but a unified and comprehensive development of the theory of the

constrained Cramér-Rao bound.

3.1 The Constrained CRB

Suppose we observe x ∈ X ⊂ Rn from a probability density function p(x; θ)

where θ ∈ Θ ⊂ Rm is a vector of unknown deterministic parameters and, in addition,

suppose these parameters are required to satisfy k consistent and nonredundant

continuously differentiable parametric equality constraints, i.e., f (θ) = 0 for some

consistent and nonredundant f : Θ→ Rk. We shall denote

Θf =
{

θ
′ ∈ Θ : f (θ

′

) = 0,f consistent, nonredundant
}

(3.4)

to be the feasible set satisfying the constraints. Hence, the constraint can also be

stated θ ∈ Θf . The constraints being consistent means that the set Θf is nonempty.

The constraints being nonredundant means that the Jacobian F (θ
′

) = f(θ
′

)

∂θ′T
has rank

k whenever f (θ
′

) = 0.

As before, the Fisher information matrix (FIM) of this model (ignoring the

constraint) is given by

I(θ) = Eθ
{

s(x; θ)sT (x; θ)
}

where s(x; θ) is the Fisher score defined by

s(x; θ) =
∂ log p(x; θ

′

)

∂θ′

∣

∣

∣

∣

θ
′
=θ
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and the expectation is evaluated at θ, i.e., Eθ(·) =

∫

X

(·)p(x; θ)dx.

Incorporating this additional side information into the information from the

observations x directly would require an alteration of the pdf’s dependence on the

unknown parameter. Such an approach can often be analytically impractical or

numerically complex. Hence, it is desirable to have a formulaic or prescriptive ap-

proach to include the side information, or constraints, indirectly. To meet this need,

Stoica and Ng developed a method to incorporate parametric equality constraints

into the CRB [68, theorem 1].

Theorem 3.1 (Stoica & Ng). The constrained Cramér-Rao bound on θ ∈ Θf is

given by

CCRB(θ) = U (θ)
(

UT (θ)I(θ)U (θ)
)−1

UT (θ) (3.5)

where U (θ) is a matrix whose column vectors form an orthonormal basis for the

null space of the Jacobian F (θ), i.e.,

F (θ)U (θ) = 0 , UT (θ)U (θ) = I(m−k)×(m−k) . (3.6)

Thus, if t(x) is an unbiased estimator of θ, which satisfies the constraint (3.4), then

Var(t(x)) ≥ CCRB(θ)

with equality if and only if t(x)− θ = CCRB(θ)s(x; θ) in the mean-square sense.1

1The original theorem requires the estimator to satisfy the constraint. In general, the parameter
and its unbiased estimator will not simultaneously satisfy the constraint since the implication,
mainly that f (Eθt(x)) = Eθf (t(x)), is true only under particular conditions. However, the
CCRB is the same if either assumption is made exclusively. In this treatise, I assume that the
actual parameter θ satisfies the constraint and the unbiased estimator t(x) does not. (In section
3.4, the constrained maximum likelihood estimator (CMLE) is assumed to satisfy the constraint,
but unbiasedness is not assumed.)
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The Jacobian F (θ) having full row rank is not necessary since the Jacobian

does not explicitly appear in the CCRB formula in (3.5). Indeed, the requirement

that the column vectors of U (θ) form an orthonormal basis is also unnecessary, only

that they be linearly independent and that they span the basis of the null space of

the row vectors of F (θ), i.e., only that the column space of U (θ) is an orthogonal

complement of the row space of F (θ), is required since it is clear from the structure

of (3.5) that the CCRB is invariant to automorphisms in Rm−rank(F(θ)) on U (θ). Re-

gardless, for convenience, and except where otherwise noted, we will assume that the

constraints are nonredundant and the columns of U (θ) are orthonormal to ensure

that rank(U (θ)) = m − k and UT (θ)U (θ) = Im−k, respectively. The existence of

the bound only requires that UT (θ)I(θ)U (θ) rather than the FIM be nonsingular.2

The original proof of this theorem given by Stoica and Ng considers the variance

inequality generated by the random variable t(x)− θ −WU (θ)U T(θ)s(x; θ) and

maximizes W to attain the tightest bound for Var(t(x)− θ).

Example 3.2 (Unit Modulus Constraint). Suppose ϑ in example 2.2 is constrained

to be unit modulus, i.e., f(ϑ) = |ϑ|2 − 1. Then its gradient in terms of the param-

eter vector θ =

[

Re(ϑ)
Im(ϑ)

]

is F (θ) =
[

2Re(ϑ), 2Im(ϑ)
]

, which has an orthonormal

complement U (θ) =

[

−Im(ϑ)
Re(ϑ)

]

. The CCRB for this constraint is then

CCRB(θ) =
σ2

2

[

Im(ϑ)2 −Im(ϑ)Re(ϑ)
−Re(ϑ)Im(ϑ) Re(ϑ)2

]

.

2A corresponding regularity condition to that mentioned in section 2.1 will be discussed in
section 3.1.4.
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3.1.1 A proof of the CCRB

While the proof given by Stoica and Ng is sufficient to establish the validity

of the CCRB, these proofs ignore the existing classical theory encompassing the

CRB and FIM, which is already sufficient to prove the CCRB. However, prior to

developing the foundation for the CCRB from the existing theory, we require a foray

into multivariable calculus and, specifically, the use of the implicit function theorem.

The reward for this approach will be a seamless presentation of statistical inference

involving the constrained Cramér-Rao bound.

From the perspective of multivariable calculus, the constraint f (θ) = 0 effec-

tively restricts θ to a manifold Θf of the original vector space Θ, with the manifold

having dimension m− k since k degrees of freedom are lost when rank(F (θ)) = k

for all θ ∈ Θf . More formally, the following theorem [65, theorems 5-1 and 5-2]

applies.

Theorem 3.3 (Implicit Function Theorem). Let U ⊂ Rm be an open set and

assume f : U→ Rk is a differentiable function such that F (θ) has rank k whenever

f (θ) = 0. Then Θf ∩ U is an (m − k)-dimensional manifold in Rm, and for every

θ ∈ Θf ∩ U there is an open set V 3 θ, an open set W ⊂ Rm−k, and a 1-1

differentiable function gθ : W→ Rm such that

(a) gθ(W) = Θf ∩U ∩ V, and

(b) the Jacobian of gθ(ξ
′

) has rank m− k for each ξ
′ ∈W.

Therefore, there exists a function gθ : Rm−k → Rm, and sets O 3 θ and P

open in Θf and Rm−k, respectively, such that gθ : P→ O is a diffeomorphism on P,
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i.e., a continuously differentiable bijection with a continuously differentiable inverse.

A geometric example is shown in Figure 3.1. Note this diffeomorphism depends on

the parameter θ as the reparameterization is only guaranteed to exist in a local

neighborhood of θ; however, for convenience, we will omit this notation in this

subsection so that g = gθ. Thus, we may proceed under the assumption that every

θ
′ ∈ O ⊂ Θf is the image of a unique reduced parameter vector ξ

′ ∈ P ⊂ Rm−k

under g, or simply

θ
′

= g(ξ
′

). (3.7)

Necessarily, there exists some unique ξ ∈ P for which θ = g(ξ). We will denote the

Jacobian of g to be G(ξ
′

) = ∂g(ξ
′

)

∂ξ
′T , which also implicitly depends on θ.

4
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Figure 3.1: Reparameterization of f (θ) = 0 to θ = g(ξ).

Example 3.4 (Unit Modulus Constraint). As an example of this principle, con-

sider a complex parameter ϑ with a modulus constraint (as in example 3.2). The

parameter vector in this case may be θ = [θ1, θ2]
T = [Re(ϑ), Im(ϑ)]T ∈ R2 with

the constraint being f(θ) = θ2
1 + θ2

2 − 1 = 0. By the implicit function theorem,
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constraining ϑ to be unit modulus is tantamount to assuming the existence of a

ξ ∈ R such that ϑ = e−jξ. Hence, θ is a function of ξ, i.e.,

θ =

[

Re(ϑ)
Im(ϑ)

]

=

[

cos(ξ)
− sin(ξ)

]

= g(ξ). (3.8)

Also, g(R) = {θ ∈ R2 : f(θ) = 0} and G(ξ) =
[

− sin(ξ) , − cos(ξ)
]T

has rank 1

for every ξ. For the model in example 3.2, then

CCRB(θ) =
σ2

2

[

sin2(ξ) − sin(ξ) cos(ξ)
− cos(ξ) sin(ξ) cos2(ξ)

]

,

which is exactly as before.

It must be noted that g will not be unique. For the previous example, ϑ = ejξ is

another possible reparameterization. Nor is any g satisfying the theorem necessarily

a 1-1 correspondence between Rm−k and Θf ; again, for the previous example, g is

periodic. Thus, the bijection is only guaranteed locally. Finding a particular g for a

given f and θ may not be obvious. Methods for approximating an implicit function

will be discussed in section 3.1.5. Regardless, as shall be shown in the context of

the CCRB, knowledge of any particular g is unnecessary; only its existence, given

by the implicit function theorem, is necessary. Why? Using the implicit function

theorem to assume a locally equivalent reparameterization for the constraint limits

the information from the observations to the density function’s local dependence

on the unknown parameter. But as the CRB (and hence CCRB) is a local bound

that only characterizes the local noise ambiguities in the model, i.e., the average

local curvature of the density at the parameter value of interest, this limitation is

invariant to the local curvature restricted to a space determined by the constraints.
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Theorem 3.5 ([50]). The CRB on θ ∈ O under the assumption of (3.7) is given by

G(ξ)
(

GT (ξ)I(g(ξ))G(ξ)
)−1

GT (ξ) (3.9)

and if g in (3.7) is an implicit function of f (θ) = 0 then this bound is equivalent to

the constrained Cramér-Rao bound in (3.5).

Proof. This CRB can be developed from a transformation of parameters on the FIM

and the CRB. From the CRB transformation of parameters on the CRB (see section

2.1.1), if t(x) is an unbiased estimator3 of θ = g(ξ) then

Var(t(x)) ≥ CRB(g(ξ)) = G(ξ)Ĩ−1(ξ)GT (ξ) (3.10)

with equality if and only if t(x) − g(ξ) = G(ξ)Ĩ−1(ξ)s̃(x; ξ) in the mean-square

sense [36, Appendix 3B], where Ĩ(ξ) = Eξs̃(x; ξ)s̃T (x; ξ) is the FIM on ξ and

s̃(x; ξ) = ∂ log q(x;ξ
′

)

∂ξ
′

∣

∣

∣

ξ
′
=ξ

is the Fisher score of the pdf with respect to ξ, this pdf be-

ing q(x; ξ) = p(x; g(ξ)). By application of the derivative chain rule the Fisher score

of x with respect to ξ is s̃(x; ξ) = GT (ξ)s(x; θ). Hence, from the transformation

of parameters on the FIM [12, p. 157], the FIM on ξ is4

Ĩ(ξ) = E
{

s̃(x; ξ)s̃T (x; ξ)
}

= E
{

GT (ξ)s(x; θ)sT (x; θ)G(ξ)
}

= GT (ξ)I(θ)G(ξ)

= GT (ξ)I(g(ξ))G(ξ). (3.11)

3Again, there is no actual use of the assumption here that t(x) ∈ Θf although if t(x) ∈ g(P)
then t(x) does indeed satisfy the constraint. The theorem result for unbiased estimators holds
regardless and this will depend on the regularity condition detailed in section 3.1.4.

4Implicitly, it is assumed that the regularity conditions of section 2.1 hold with respect to ξ.
For how this applies to θ, see section 3.1.4.
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Substituting (3.11) into (3.10) establishes the CRB under the assumption θ = g(ξ).

To establish the equivalence with the CCRB, note since f ◦g(ξ) = 0, then by taking

the Jacobian with respect to ξ we have

0 =
∂

∂ξT
0 =

∂

∂ξ
f (g(ξ)) = F (g(ξ))G(ξ) = F (θ)G(g−1(θ)).

Hence, the columns of G(ξ) reside in the null space of the row vectors of F (θ).

And since g has an inverse locally at ξ = g−1(θ), then G(ξ) has full column rank

m − k locally about ξ. (This is true on the whole set P ⊂ Rm−k.) Therefore,

span(G(g−1(θ))) = span(U (θ)) and there exists an m− k ×m− k full rank trans-

formation matrix S(θ) such that G(g−1(θ))S(θ) = U (θ). (This is true on the

whole set O ⊂ Θf .) This matrix S(θ) is merely an orthonormalizing change of basis

on the columns of G(g−1(θ)). Therefore,

G(ξ)
(

GT (ξ)I(g(ξ))G(ξ)
)−1

GT (ξ)

= G(g−1(θ))
(

S−T (θ)U T (θ)I(θ)U (θ)S−1(θ)
)−1

GT (g−1(θ))

= G(g−1(θ)S(θ)
(

UT (θ)I(θ)U (θ)
)−1

ST(θ)G(g−1(θ))

= U (θ)
(

UT (θ)I(θ)U (θ)
)−1

UT (θ).

Also, Var(t(ξ)) ≥ CCRB(θ) with equality if and only if

t(x)− g(ξ) = G(ξ)Ĩ−1(ξ)s̃(x; ξ)

t(x)− θ = G(ξ)Ĩ−1(ξ)GT (ξ)s(x; θ)

= CCRB(θ)s(x; θ).

29



This proof of the CCRB uses the implicit function theorem, the CRB transfor-

mation formula, the FIM transformation formula, as well as well-known properties

of rank and the derivative chain rule. An advantage of establishing the CCRB from

these classical results will become clear as we establish the connection throughout

statistical information theory. An example of this is immediately evident in an

alternative proof of a proposition of Stoica and Ng [68, proposition 1].

Corollary 3.6 (Stoica & Ng). Given the regularity conditions on ξ, a necessary

and sufficient condition for the existence of a finite CCRB of θ is

∣

∣UT (θ)I(θ)U (θ)
∣

∣ 6= 0,

i.e., UT (θ)I(θ)U (θ) is nonsingular.

Proof. From the prior theorem, it is clear that UT (θ)I(θ)U (θ) is nonsingular if and

only if GT (ξ)I(g(ξ))G(ξ) is nonsingular if and only if Ĩ(ξ) is nonsingular. Since a

necessary and sufficient condition for the existence of a finite CRB of g(ξ) is that

Ĩ(ξ) is nonsingular, the corollary is proven.

Thus, with the usual regularity conditions (see section 2.1) being maintained

for ξ, the conditions for the existence of the CCRB with respect to θ are equivalent

to the conditions for the existence of the CRB in the reduced parameter space of ξ.

Moreover, the matrix UT (θ)I(θ)U (θ) is nonsingular if and only if U (θ) has

full column rankm−k and no linear combination of the columns ofU (θ) reside in the

null space of I(θ). The first condition is satisfied always by definition. The second

condition implies, for example, that ifL(θ)LT (θ) is the Cholesky decomposition [20,
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p.194] of the FIM, where L(θ) ∈ Rm×rank(I(θ)) is a full column rank lower triangular

matrix with strictly positive values on the diagonal, then U (θ) = L(θ)A(θ) +

K(θ)B(θ) where K(θ) is an orthogonal complement of L(θ) and for some full

column rank A(θ) ∈ R
rank(I(θ))×m−k.

Further properties of the CCRB will be discussed in section 3.1.4.

3.1.2 Alternative formulas

The formula Stoica and Ng used to express the constrained Cramér-Rao bound

is a generalization of an expression developed earlier first by Gorman and Hero [23,

theorem 1] and later by Marzetta [47, theorem 2]. This is the CCRB formula in

(3.12). Although Gorman and Hero’s formula requires a nonsingular Fisher informa-

tion, the version developed by Stoica and Ng appears to be inspired by a result [23,

(19) in lemma 2] in Gorman and Hero’s paper that unnecessarily assumes a positive

definite FIM. However, this result was, in essence, not unknown in the literature.

Gorman and Hero were aware of the prior work of Aitchison and Silvey [3, theorem 2

and P on p.823], which is concerned with the asymptotic variance of the maximum

likelihood estimator subject to restraints. But they were perhaps unaware (by lack

of citation) of a later paper on hypothesis tests associated with the maximum like-

lihood, in which Aitchison and Silvey suggest a solution to the problem of singular

information matrices [4, section 6]. This is the CCRB formula in (3.14). This ver-

sion of the CCRB was also proven by Crowder [18, theorem 3]. Concurrent to the

Gorman and Hero effort, Hendriks [27] and later Oller and Corcuera [53] developed
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an extension of the Cramér-Rao bound intrinsic to the manifold using Riemannian

geometry. More recently, Xavier and Barroso [74, 75] specified the lower bound on

the geodesic of estimators to the true parameter. The original and latest versions

of their bound are expressed in (3.16) and (3.17), respectively.

While these CCRB expressions are not the focus of the current treatise, they

are still important for possible insights into the constrained Cramér-Rao bound. In

this section, aspects of these insights will be briefly discussed as well as conditions

for equality with the CCRB expression in (3.5).

3.1.2.1 Gorman-Hero-Aitchison-Silvey CCRB

Aitchison and Silvey used the method of Lagrange multipliers to show that

the weighted asymptotic variance of the constrained maximum likelihood estimator,

which should be the CCRB (implicitly), tends to

CCRB2(θ) = I−1(θ)− I−1(θ)F T (θ)
(

F (θ)I−1(θ)F T (θ)
)−1

F (θ)I−1(θ) (3.12)

when the Fisher information is nonsingular. Alternatively, Gorman and Hero de-

veloped this same CCRB by restricting test points in the Chapman-Robbins bound

(a Barankin-type bound) to be in the constraint space Θf and then finding the

derivatives as the limit of the finite difference expressions in the Chapman-Robbins

bound.5 A simpler proof was provided by Marzetta by considering the positive

semidefiniteness of a properly chosen random variable.

A particular advantage to this presentation of the CCRB is the explicit quan-

5A definition of the Chapman-Robbins bound as well as a variant of the Gorman and Hero
proof, which allows for a singular FIM, can be found in Appendix A.1.
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tification of the gain in performance potential. Imposing a constraint f (θ) = 0

on a set of parameters improves (lowers) the unconstrained bound from I−1(θ) by

exactly I−1(θ)F T (θ)
(

F (θ)I−1(θ)F T (θ)
)−1

F (θ)I−1(θ). Since the CRB of f (θ)

is F (θ)I−1(θ)F T (θ) then its inverse is the Fisher information of f (θ) or 0. And

F T (θ)
(

F (θ)I−1(θ)F T (θ)
)−1

F (θ) is the Fisher information of θ generated from

the constraint f (θ) = 0. A disadvantage is the requirement of a nonsingular FIM.

There exist numerous scenarios that require constraints for the original model to be

identifiable (see Chapter 4). Additionally, this CCRB formula requires nonredun-

dant constraints, i.e., the Jacobian F (θ) must be full row rank.

Similarities include the computational complexity of both formulas, which

is O(m3). And when the Fisher information is nonsingular (and the constraints

nonredundant), both formulas are equivalent.

Theorem 3.7. When the Fisher information is nonsingular and the constraints

nonredundant, then an equivalent formula for the CCRB in (3.5) is CCRB2(θ).

Proof. This is a different proof than the one provided in [68, corollary 1].6 The

existence of the Gorman-Hero-Marzetta formula assumes that the FIM I(θ) and

the CRB of the constraint F (θ)I−1(θ)F T (θ) are regular (non-singular) [23, 47].

Correspondingly, the existence of the Stoica and Ng CCRB formula assumes that

6In addition to this alternate proof, they reference an algebraic identity from [37] that is useful
in establishing the result.

Lemma 3.8 (Khatri). Suppose A is p× q and B is p× p− q have ranks q and p− q respectively
such that BTA = 0. Then for any symmetric positive definite matrix S,

S−1 − S−1A (ATS−1A)
−1
ATS−1 = B (BTSB)

−1
BT .

Substituting I(θ) for S, F (θ) for AT , and U(θ) for B shows the equivalence between the two
CCRBs for when the FIM is nonsingular.
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UT (θ)I(θ)U (θ) is non-singular. Now, right-multiplying both formulas by F T (θ)

returns the results

CCRB(θ)F T (θ) = U (θ)
(

UT (θ)I(θ)U (θ)
)−1

UT (θ)F T (θ) = 0,

CCRB2(θ)F T (θ) = I−1(θ)F T (θ)− I−1(θ)F T (θ) = 0

since F (θ)U (θ) = 0 in the first equation and the elimination of the inverse in

CRB(f (θ)) in the second. Alternatively, right-multiplying both formulas by the

matrix I(θ)U (θ) returns the results

CCRB(θ)I(θ)U (θ) = U (θ),

CCRB2(θ)I(θ)U (θ) = U (θ)

again by eliminating the inverse in the first equation and since F (θ)U (θ) = 0 in

the second. Hence we have the equality

CCRB(θ)
[

F T (θ) I(θ)U (θ)
]

= CCRB2(θ)
[

F T (θ) I(θ)U (θ)
]

and if it can be shown that the matrix
[

F T (θ), I(θ)U (θ)
]

is regular, then the two

CCRB formulas are shown to be equivalent. Suppose there exists vectors α ∈ Rk

and β ∈ R
m−k such that

F T (θ)α+ I(θ)U (θ)β = 0. (3.13)

Pre-multiplying (3.13) by UT (θ) implies that

UT (θ)I(θ)U (θ)β = 0.
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Since UT (θ)I(θ)U (θ) is regular then β = 0. Likewise, premultiplying (3.13) by

F (θ)I−1(θ) implies that

F (θ)I−1(θ)F T (θ)α = 0.

Since F (θ)I−1(θ)F T (θ) is regular then α = 0. Hence F T (θ)α+ I(θ)U (θ)β = 0

implies α = 0 and β = 0, which proves that
[

F T (θ) I(θ)U (θ)
]

is full rank.

3.1.2.2 Aitchison-Silvey-Crowder CCRB

The solution for resolving invertibility of singular FIMs in the variance and test

results of Aitchison and Silvey [4] was to load the Fisher information with a matrix

of the form F T (θ)F (θ). This was made more rigorous by Crowder [18] by replacing

the Fisher information I(θ) with a loaded FIM D(θ) = I(θ) + F T (θ)KF (θ),

where K is any positive semidefinite matrix such that D(θ) is regular. Hence, a

generalization of (3.12) is

CCRB3(θ) = D−1(θ)−D−1(θ)F T (θ)
(

F (θ)D−1(θ)F T (θ)
)−1

F (θ)D−1(θ).

(3.14)

This extension permits a singular FIM. This formulation is also independent of the

choice of K.

Theorem 3.9. An equivalent formula for the CCRB in (3.5) is CCRB3(θ).

Proof. Replace I(θ) with D(θ) in the proof of theorem 3.7.7

7In appendix A.3, this Crowder formula for the asymptotic variance of the constrained maximum
likelihood estimate is shown to be equivalent to the CCRB using lemma 3.8 (also see section 3.4.2).
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As the computational complexity of the two formulas are O(m3), there is no

direct advantage of one CCRB version over the other. Certainly, in the nonsingular

FIM case, CCRB3(θ) is the same as the CCRB2(θ) (with K = 0). Unfortunately,

this CCRB formula does not appear to have simple connections to other areas of

statistical inference in an inherent manner. Nevertheless, this possible inefficacy in

theoretical applications does not effect its practical use.

3.1.2.3 Xavier’s & Barroso’s Intrinsic Variance Lower Bound

The prior CCRB metrics were in Euclidean Rm space, i.e., the lower bound is

on the measurement of the distance (in some direction or dimension) of the estimator

to the true value of the parameter measured by “cutting through” the manifold. In

some scenarios, it may be of interest to know what the bound is on the measurement

of the distance “over the surface” of the manifold. Since dimensional directions can

be somewhat ambiguous depending on the manifold, of particular interest is the

geodesic, or shortest distance.

For this scenario, Xavier and Barroso [74, 75] formulated an inequality, the

intrinsic variance lower bound (IVLB), for the variance of the geodesic to an unbiased

estimator intrinsic to the manifold. Their results are derived from those of Hendriks

[27] and Oller and Corcuera [53]. Ignoring elements of Riemannian geometric theory

that are beyond the scope of this presentation, their IVLB result essentially relies

on the inequality

√
C
√

var(ϑ) cot(
√
C
√

var(ϑ)) ≤
√

var(ϑ)√
λθ

, (3.15)
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where C is an upper bound on the sectional curvature of the manifold, λθ is a

bound on variance of the Euclidean estimator error, and var(ϑ) is the variance of

the geodesic. Precisely, C = maxθ∈Θf
Kθ where

Kθ = max
v1,v2 orthonormal

F(θ)vi=0

< Π(v1,v1),Π(v2,v2) > − < Π(v1,v2),Π(v1,v2) >

and Π(·, ·) is the second fundamental form [34] of Θf defined by

Π(a, b) = −F T (θ)
(

F (θ)F T (θ)
)−1
[

aT ∂Fi(θ)
∂θ

b

]

k×1

on U × U where U = span{U (θ)}.

Xavier and Barroso use a polynomial bound on the cotangent to solve the

lower bound of a quadratic in terms of var(ϑ). In an earlier variant of the IVLB [74],

Xavier and Barroso chose λ−1
θ = max

v∈U ,||v||=1
vTI(θ)v and bounded t cot(t) ≥ 1− 2

3
t2,

for 0 ≤ t ≤ T ≡ 1.35, in (3.15) where t =
√
C
√

var(ϑ), to bound on the variance of

the estimator’s geodesic to the mean by

var(ϑ) ≥ 4C + 3λθ −
√

λθ(9λθ + 24C)
8
3
C2

. (3.16)

Unfortunately, this bound was optimistic in the limit for the simple Euclidean case

(C = 0). In a more recent paper [75], the authors improved the bound by choosing

λθ = tr(UT (θ)I(θ)U (θ))−1 and an alternative lower bound for t cot(t) to obtain

var(ϑ) ≥ λθC + 1−√2λθC + 1
1
2
C2λθ

. (3.17)

Although the authors omitted a proof8, the alternative lower bound for t cot(t)

appears to be t cot(t) ≥ 1 − 1
2
t2 for 0 ≤ t ≤ T . An immediate benefit from this

8Xavier and Barroso stated in [75] that the proof would “be found in the companion paper
[14]”, but this companion paper appears to have never been published.
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improved bound is the agreement with the simple (C = 0) Euclidean case, i.e.,

var(ϑ) ≥ λθ = tr(UT (θ)I(θ)U (θ))−1. This consistency is entirely due to the choice

of λθ. Even so, greater improvement of the bound, not found in the literature, is

possible in the curved scenarios (C > 0) at least in the bound of t cot(t). Note, for

0 ≤ t < π

t cot(t) = 1 +
∞
∑

s=1

(−1)s22sB2st
2s

(2s)!
= 1−

∞
∑

s=1

2

(

t

π

)2s

ζ(2s)

≥ 1−
∞
∑

s=1

2

(

t

π

)2s
π2

6
= 1− π2

3

(

t

π

)2

1−
(

t

π

)2

≥ 1− b

2
t2

where B2s are Bernoulli numbers, ζ(·) is the Riemann zeta function, and b =

2/3

1−
“

T
π

”2 ≈ 0.8177. Then

var(ϑ) ≥ λθCb+ 1−
√

2λθCb+ 1
1
2
C2b2λθ

. (3.18)

3.1.3 Simple Extensions to the CCRB

As with unconstrained parameters, the performance of a function of parame-

ters often may be of greater interest. Consider a continuously differentiable func-

tion k : Θf → Rq. Denote the Jacobian of this transfer function to be K(θ) =

∂k(θ
′

)

∂θ′T

∣

∣

∣

θ
′
=θ

. We have a simple extension of the classical transformation of parame-

ters in section 2.1.1.

Corollary 3.10. If f (θ) = 0, then the variance of any unbiased estimator S(x) of
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α = k(θ) satisfies the inequality

Var(S(x)) ≥ CCRB(α)
∆
= K(θ)CCRB(θ)KT (θ).

Proof. Let gθ be the implicit function defined by f (θ) = 0. Then α = k(gθ(ξ))

has a Jacobian K(θ)Gθ(ξ). From the classical transformation of parameters, the

inequality Var(S(x)) ≥ CRB(α) holds where

CRB(α) = K(θ)Gθ(ξ)Ĩ
−1(ξ)GT

θ (ξ)KT (θ)

= K(θ)U (θ)
(

UT (θ)I(θ)U (θ)
)−1

UT (θ)KT (θ).

This transformation property is useful in extending the constrained Cramér-

Rao bound to biased estimation.

Example 3.11 (Biased Estimation). Assume t(x) is a biased estimator of a con-

strained parameter θ with bias b(θ) = Eθt(x) − θ and constraint f (θ) = 0. De-

fine k(θ) = θ + b(θ). Then t(x) is an unbiased estimator of α = k(θ). Since

K(θ) = Im×m +B(θ) where B(θ) = ∂b(θ
′

)

∂θ
′T

∣

∣

∣

θ
′=θ

, then we have the inequality

Var(t(x)) ≥
(

Im×m +B(θ)
)

CCRB(θ)
(

Im×m +BT (θ)
) ∆

= CCRB(θ + b(θ)).

Often, when the Fisher information matrix is singular, its pseudoinverse is

used as a bound on the variance of an estimator. As mentioned in section 2.1.1, the

bound is trivially true for some component of the estimator except under certain

conditions.
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Corollary 3.12. If t(x) is an estimator of k(θ) having bias b(θ), where θ satisfies

the constraint f (θ) = 0, then the inequality

Var(t(x)) ≥H(θ)U (θ)
(

UT (θ)I(θ)U (θ)
)†
UT (θ)HT (θ),

where H(θ) = K(θ) + B(θ), is nontrivially satisfied, i.e., all components of t(x)

have finite variance, if and only if

H(θ)U (θ) = H(θ)U (θ)
(

UT (θ)I(θ)U (θ)
)†
UT (θ)I(θ)U (θ).

Proof. Suppose t(x) is an estimator of α = k(θ) with bias b(θ) and under the

constraint f (θ) = 0. Define H(θ) = ∂
∂θ

′T

(

k(θ) + b(θ)
)

∣

∣

∣

θ
′
=θ

= K(θ) + B(θ). If

gθ is the implicit function defined by f , then we have the inequality

Var(t(x)) ≥ H̃(ξ)Ĩ†(ξ)H̃T (ξ)

where H̃(ξ) = ∂
∂ξ

′T

(

k(gθ(ξ
′

)) + b(gθ(ξ
′

))
)

∣

∣

∣

ξ
′
=ξ

= H(θ)Gθ(ξ). (This can also

be inferred from [23, lemma 2], although no assumption is made here about the

singularity of the Fisher information.) Hence, all the components of t(x) can have

finite variance if and only if [66]

H̃(ξ) = H̃(ξ)Ĩ(ξ)Ĩ†(ξ)

H(θ)Gθ(ξ) = H(θ)Gθ(ξ)Ĩ
†(ξ)Ĩ(ξ)

= H(θ)Gθ(ξ)Ĩ
†(ξ)GT

θ (ξ)I(θ)Gθ(ξ)

= H(θ)U (θ)
(

UT (θ)I(θ)U (θ)
)†
UT (θ)I(θ)Gθ(ξ)

H(θ)U (θ) = H(θ)U (θ)
(

UT (θ)I(θ)U (θ)
)†
UT (θ)I(θ)U (θ).
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By definition U (θ) will always be full column rank, so singularity of the ma-

trix UT (θ)I(θ)U (θ) implies singularity in the FIM I(θ) and insufficiency in the

constraints to resolve the inherent ambiguities in the model. This scenario will be

discussed in greater detail in the next section.

3.1.4 Properties of the CCRB

The constrained Cramér-Rao bound for the constraint f (θ) = 0 is equiva-

lent to the CRB for any reparameterization of the parameters satisfying the con-

straint. Implicit in that equivalence and in the proof of the CCRB presented in

section 3.1.1 are the regularity conditions for the CRB on the implicit parameter

ξ, i.e., ∂
∂ξT Eξ(h(x)) = Eξ(h(x)s̃T (x; ξ)) for h(x) ≡ 1 and h(x) ≡ t(x), where t(x)

in this case is an unbiased estimator of θ = g(ξ). This condition translates to

∂
∂θT Eξ(h(x))G(ξ) = Eξ(h(x)sT (x; θ)G(ξ)) or, strictly in terms of θ,

∂

∂θT
Eθ(h(x))U (θ) = Eθ(h(x)sT (x; θ)U (θ)) (3.19)

for h(x) ≡ 1 and h(x) ≡ t(x). From this condition, it can be shown that

Eθ(t(x)− θ)sT (x; θ)U (θ)U T(θ) = U (θ)U T(θ), (3.20)

which is a variant of the regularity condition required and proven by Marzetta [47]

and the same regularity condition simply stated (but not proven) by Stoica and Ng

[68] in their proofs of the CCRB. Thus, as with the CCRB, the regularity condition

for the constraint is equivalent to the regularity condition for the reparameterization

of parameters satisfying the constraint. This general fact, a restatement of theorem
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3.5, is the quintessential property of the CCRB formula. More explicitly, the CCRB

is a generalization of both the degenerate and the determinate constraint cases, as

examples 3.13 and 3.14 demonstrate.

Example 3.13 (Degenerate Case). The scenario with no constraint is equivalent

to the statement that the function which describes the constraint is null. That is,

f : Θ → R0 and f (θ) = [ ]. Then F : Θ→ R0×m is also a null gradient row vector

having rank 0. Any nonsingular m×m matrix U (θ) satisfies (3.6), and thus

U (θ)
(

UT (θ)I(θ)U (θ)
)−1

UT (θ) = I−1(θ).

Therefore the CCRB formula also incorporates the unconstrained scenario.

Example 3.14 (Determinate Case). Suppose the constraint f completely deter-

mines the parameter. Then necessarily, since we have m unknowns in the param-

eter vector θ, there must be at least k ≥ m equations in the constraint equa-

tion and the Jacobian F (θ) must have rank m. Since f is assumed to have

nonredundant constraints, F (θ) is actually a nonsingular square matrix. Only

the null vector U : Θ → Rm×0 satisfies (3.6) (UT (θ)U (θ) = I0×0), therefore

U (θ)
(

UT (θ)I(θ)U (θ)
)−1

UT (θ) is a null element, and the CCRB does not exist

for a completely determined parameter set.

Thus far, only parametric equality constraints have been considered. Gorman

and Hero show that only active constraints results in a reduction in the bound [23,

lemma 4], i.e., inactive (or strict) inequality constraints do not contribute informa-

tion to the model in the CCRB sense.9 As the test points approach the parameter

9Because the CCRB (CRB) is a local bound that only accounts for local fluctuations of the
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in the Chapman-Robbins bound, they become interior points of the constraint set

and the inequalities have no impact on the information metric. This can also be

shown without resorting to the Chapman-Robbins approach.

Example 3.15 (Inequality Constraints Are Non-Informative). Assume, in addition

to the constraint set Θf , the parameters are required to satisfy the strict inequality

h(θ) < 0 where h : Θ→ R is a continuously differentiable function. To incorporate

this constraint, we introduce a dummy parameter ϑ and add a new equality con-

straint ϑ2 = −h(θ), which is equivalent to the strict inequality constraint (whenever

ϑ 6= 0). In addition we create an extended parameterization φ
′

=

[

θ
′

ϑ
′

]

∈ Rm+1 and

constraint function f ?(φ
′

) =

[

f (θ
′

)

ϑ
′2 + h(θ

′

)

]

. This will generate a Fisher information

and a Jacobian matrix defined by

I?(φ) =

[

I(θ) 0

0 0

]

, F ?(φ) =

[

F (θ) 0

HT (θ) 2ϑ

]

,

respectively, where H(θ) = ∂h(θ
′

)

∂θ′

∣

∣

∣

θ
′
=θ

. Note that F ?(φ) will be full row rank as

long as ϑ 6= 0. If U (θ) is defined as in (3.6), then U ?(φ) =

[

U (θ)
vT (θ, ϑ)

]

will also

satisfy (3.6) with respect to F ?(φ), where v(θ, ϑ) = 1
2ϑ
HT (θ)U (θ). By theorem

true parameter, inactive constraints have no impact on performance potential. As such the CCRB
(CRB) only provides information on the pdf for the mainlobe of the density function, which typi-
cally corresponds to the true parameter. For a number of scenarios, e.g., when there is sufficiently
large variance in the pdf, sidelobes of the distribution impact the performance, thereby making
the CCRB (CRB) overly optimistic. This occurs frequently in communications when the signal-
to-noise ratio (SNR) or data transmission size decreases.
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3.1, then

U ?(φ)
(

U ?T (φ)I?(φ)U ?(φ)
)−1

U ?T(φ)

= U ?(φ)
(

U (θ)I(θ)U (θ)
)−1

U ?T (φ)

=

[

U (θ)
(

U (θ)I(θ)U (θ)
)−1

U (θ) U (θ)
(

U (θ)I(θ)U (θ)
)−1

v(θ, ϑ)

vT (θ, ϑ)
(

U (θ)I(θ)U (θ)
)−1

UT (θ) vT (θ, ϑ)
(

U (θ)I(θ)U (θ)
)−1

v(θ, ϑ)

]

.

Hence, the CCRB on the θ components of φ, the upper-left submatrix, remains

unchanged.

Equality constraints, however, do add side information to the model. Thus,

it is intuitive to expect that the constrained model should result in a lower bound

compared to the bound for the model without constraints. This statement was made

in Gorman and Hero [23, p.1292], but not in Marzetta [47] nor Stoica and Ng [68].

In the latter case, the statement is only true under certain conditions. Prior to

establishing when the bound is lowered, a powerful lemma will be proven.

Lemma 3.16. For an arbitrary full column rank matrix A, and an arbitrary sym-

metric positive semidefinite matrix B, the inequality

A
(

ATBA
)†
AT ≤ B† (3.21)

holds over the projection subspace of B†B with equality if and only if rank(ATBA)

= rank(B).

Proof. Let LLT be the Cholesky decomposition of B [20, p. 194]. Then L ∈

Rm×rank(B) is a full column rank lower triangular matrix with strictly positive values

on the diagonal. To show the inequality, consider linear unbiased estimates of the
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mean in the model y = Dβ + ε where ε ∼ N (0, (LTL)−2), and β is treated as

the unknown parameter. In particular, y is such an estimate with variance equaling

(LTL)−2 where as the best linear unbiased estimate (see section 2.3.1)

Dβ̂ = D
(

DT (LTL)2D
)†
DT (LTL)2y,

with variance equal to D
(

DT (LTL)2D
)†
DT . By the Gauss-Markov theorem we

have the inequality with the BLUE’s variance

D
(

DT (LTL)2D
)†
DT ≤ (LTL)−2

with equality if and only if (LTL)D
(

DT (LTL)2D
)†
DT (LTL) = Irank(L)×rank(L).

Substituting in D =
(

LTL
)−1

LTA in 3.1.4 and pre- and post-multiplying both

sides by L and LT , respectively, we have the inequality

B†BA
(

ATLLTA
)†
ATBB† ≤ B†.

Considering quadratic forms in B†Bv proves the result since for any vector v ∈

Rm, vTB†BB†BB†v = vTB†v. Moreover, from the definition of D, we have

(LTL)D
(

DT (LTL)2D
)†
DT (LTL) = Irank(L)×rank(L) if and only if it can be shown

that LTA
(

ATLLTA
)†
ATL = Irank(L)×rank(L), which is so if and only if A and L

satisfy rank(ATL) = rank(B).

This lemma proves the following results, including that in a linear subspace the

CCRB(θ) is lesser than or equal to the CRB(θ) in the matrix sense and that con-

straints strictly on the ambiguous information have no impact on the performance

of the unambiguous information.
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Theorem 3.17. Let U (θ) be defined as in (3.6) from a constraint f (θ) = 0. Then

U (θ)
(

UT (θ)I(θ)U (θ)
)†
UT (θ) ≤ I†(θ)

over the linear projection subspace defined by I†(θ)I(θ).

Proof. From the lemma, defining A = U (θ) and B = I(θ) gives the inequality.

The conditions under which U (θ)
(

UT (θ)I(θ)U (θ)
)†
UT (θ) and I†(θ) are

nontrivial bounds are detailed in corollary 3.12 and section 2.1.1, respectively. The

projection space of I†(θ)I(θ) corresponds to the identifiable components of θ with-

out the constraints (e.g., see [18, section 4]). The theorem establishes the result

that the constraints can only lower the bound and thereby increase performance po-

tential for (functions of) parameters that are already identifiable. This is regardless

of whether the Fisher information is singular or whether the parameters are iden-

tifiable under constraints (whether UT (θ)I(θ)U (θ) is singular, see Theorem 3.24).

Theorem 3.17 is more general than the result shown by Ash10, which is given by the

following corollary.

Corollary 3.18 (Ash). Provided no linear combination of U (θ) lies in the null

space of the Fisher information matrix, then

U (θ)
(

UT (θ)I(θ)U (θ)
)−1

UT (θ) ≤ I†(θ)

over the linear projection subspace defined by I†(θ)I(θ).

10Although not stated in this manner, this result appears in Ash’s thesis [5, equation (3.63)] as
well as in a publication of his third chapter in Ash and Moses [6, equation (63)]. The results from
Lemma 3.16 are more general than those in [5] or [6].
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Proof. Since U (θ) is full column rank and the range space of its columns does not

exist in the null space of the FIM, then
(

UT (θ)I(θ)U (θ)
)

is nonsingular.

Furthermore, if the Fisher information matrix is nonsingular, then I†(θ)I(θ)

is the identity matrix, so the inequality holds as a quadratic form over Rm and

U (θ)
(

UT (θ)I(θ)U (θ)
)−1

UT (θ) ≤ I−1(θ).

This was also cleverly shown by Gorman and Hero [23, (44) in remark 4], again,

with the unnecessary assumption that I(θ) is regular (non-singular). Next, we use

the lemma to observe the existence of non-informative constraints.

Corollary 3.19. Assume the row vectors of F (θ) ∈ Rk×m form a linearly indepen-

dent basis for the null space of I(θ). Then F1(θ) ∈ Rk
′×m is a linear combination

of a submatrix of F (θ) if and only if

U1(θ)
(

UT
1 (θ)I(θ)U1(θ)

)†
UT

1 (θ) = I†(θ),

where U1(θ) is defined as in (3.6) relative to F1(θ).

Proof. Without loss of generality, partition F as

[

F1(θ)
F2(θ)

]

. Then if U (θ) is defined

as in (3.6), define

U1(θ) =
[

U (θ),
(

Im×m −F T
1

(

F1F
T
1

)−1
F1

)

F T
2 (θ)D(θ)

]

,

where D(θ) represents a Gram-Schmidt processing matrix which orthonormalizes

the column vectors of
(

Im×m −F T
1

(

F1F
T
1

)−1
F1

)

F T
2 (θ) F T

2 (θ) (these are already

orthogonal to the column vectors of U (θ)). This satisfies (3.6). Since span(I(θ)) ⊂
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span(U1(θ)) then rank(UT (θ)I(θ)) = rank(I(θ)), and thus, by lemma 3.16,

U1(θ)
(

UT
1 (θ)I(θ)U1(θ)

)†
UT

1 (θ) = I†(θ).

This corollary details the necessary and sufficient characteristics for a con-

straint to be non-informative. Implicit from the lemma and above corollary is the

CCRB’s invariance to linear combinations of columns of U (θ) that exist in the null

space of I(θ). The specific case when span(I(θ)) = span(U (θ)) is also shown by

Ash in [5, equation (3.73)] and [6, equation (73)].11

The CCRB can be interpreted geometrically, as in Figure 3.1 as a contraction

of the information ambiguity to find the bound and then an expansion. The column

vectors of U (θ), being in the null space of the Jacobian of the constraints, restrict

the information in Θ into the constraint space Θf . The bound can be found from

(the inverse of) the information in Θf , and is then projected back into the origi-

nal space of the parameters of interest. This down-and-up projection is easiest to

observe for linear constraints, where any local reparameterization is also a global

reparameterization.

Example 3.20. Assume the parameters satisfy the linear constraint

f (θ) = Fθ + v = 0.

In this case, solutions of θ are of the form θ = −F T
(

FF T
)−1

v+Uξ = g(ξ) where

11In Ash’s thesis and paper, this scenario was referred to as the minimally constrained case,
where only all the unknown information ambiguities are constrained. However, in this current
work, the minimal number of constraints is zero, the degenerate constraint case of example 3.13,
thus it makes more sense to refer to this scenario as a non-informative constraint.
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U is defined as in (3.6). That this is a one-to-one correspondence locally (or in

this case globally) is made clear by the existence of the inverse g−1(θ) = UTθ = ξ.

Then, since G(ξ) = U , we have from (3.9)

CCRB(θ) = U
(

UTI(θ)U
)−1

UT

which is exactly the CCRB provided in (3.5).

Alternatively, another interpretation [9] is that the CCRB is less than (in a

matrix sense) the CRB because the performance bound is over an expanded class of

estimators. The (non-biased) CRB is a bound on the mean-square error of unbiased

estimators in Θ, whereas the CCRB is a bound for estimators that only need to be

unbiased on Θf and not on the whole set Θ.

3.1.5 Derivation of g(ξ)

In the proof of the CCRB as well as its application, the need for an explicit

reparameterization gθ proved unnecessary. However, in examples 3.4 and 3.20 of the

previous section, we presented scenarios where, given the constraint function f , we

were able to define a locally equivalent continuously differentiable gθ. There may

exist other scenarios where it is desirable to obtain a gθ explicitly.

In this section, we present two procedures to do so. First, we detail an approach

using the Taylor expansion of gθ given explicit knowledge of U (θ
′

). Then, we

demonstrate an approach based on fixed point methods.
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3.1.5.1 A Taylor series derivation

The Taylor series expansion of θ
′

= gθ(ξ
′

) about ξ is given by

gθ(ξ
′

) = θ +Gθ(ξ)(ξ
′ − ξ) + · · ·

where θ = gθ(ξ). For any differentiable function h : Rm → R we have

∂

∂ξ′T
h(θ

′

) =
∂

∂θ′T
h(θ

′

) ·Gθ(ξ
′

).

Since the implicit function from Rm−k into Θf is not unique, we can choose a repa-

rameterization which uses the transformation matrix S(θ) = Im−k , i.e., we choose

a reparameterization with Jacobian Gθ(ξ
′

) = U (gθ(ξ
′

)) for any null space matrix

U (θ) that satisfies (3.6) and choose ξ = 0. With this selection of the reparam-

eterization, the rth order derivatives of gθ are the (r − 1)st order derivatives of

the elements of U (θ
′

) with respect to ξ
′

, which are to be evaluated at θ for the

coefficients in the Taylor series.

Example 3.21. Reviewing example 3.4, note

U (θ
′

) =

[

θ
′

2

−θ′

1

]

=

[

0 1
−1 0

][

θ
′

1

θ
′

2

]

and hence

∂U (θ
′

)

∂θ′T
=

[

0 1
−1 0

]

(3.22)

is independent of θ
′

, so using (3.22) as a reference, we have

∂rU (θ
′

)

∂ξ′r
=

∂r−1

∂ξ′r−1

(

∂U (θ
′

)

∂θ′T
·U (θ

′

)

)

= · · · =
(

∂U (θ
′

)

∂θ′T

)r

U (θ
′

).
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With a natural selection of θ = gθ(0) = (1, 0)T as an initial value for the Taylor

series, the reparameterized function is found to be

θ
′

= g(ξ
′

) =
∞
∑

r=0

(

∂U (θ
′

)

∂θ′T

)r

θ
ξ
′r

r!

=
∞
∑

r=0

[

0 1
−1 0

]r [
1
0

]

ξ
′r

r!

=













∞
∑

r=0

(−1)r ξ
′2r

(2r)!
∞
∑

r=0

(−1)r+1 ξ
′2r+1

(2r + 1)!













=

[

cos(ξ
′

)

− sin(ξ
′

)

]

.

This particular choice of θ produces a reparameterization gθ in agreement with the

one chosen in (3.8). Any alternative reparameterization can be found utilizing an

alternative transformation matrix S(θ
′

) or an alternative initialization.

Such an approach will only derive a local bijective map and convergence of the

Taylor series may not result in a known functional form for any given constraint f .

When U (θ
′

) is not known as a function of θ
′

, numerical techniques are available to

find the derivatives of U (θ
′

) with respect to ξ
′

using the equation F (θ
′

)U (θ
′

) = 0.

3.1.5.2 A fixed point derivation

More commonly, a fixed point approach is taken to the derivation of an implicit

function. As in appendix A.2, the parameter vector is partitioned θ =

[

θ1

θ2

]

and

the constraint function rewritten as f : Rm−k × Rk → Rk defined as f ?(θ
′

1, θ
′

2) =

f (

[

θ
′

1

θ
′

2

]

). If f ?
θ
′

2

(θ1, θ2) = ∂

∂θ
′T
2

f ?(θ1, θ
′

2)
∣

∣

∣

θ
′

2=θ2
is nonsingular, then there exist a
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unique continuous function θ2 = θ2(θ1) about θ1 such that f ?(θ1, θ2(θ1)) = 0.

This is merely a particular variation of the implicit function theorem. One proof of

this version proves the existence of a fixed point in the contraction map

d(θ2(θ
′

1)) = θ2(θ
′

1)−D−1(θ1, θ2)f (θ
′

1, θ2(θ
′

1))

where D(θ1, θ2) = f ?
θ
′

2

(θ1, θ2). This motivates the use of the iteration

θ
(i+1)
2 (θ

′

1) = θ
(i)
2 (θ

′

1)−D−1(θ1, θ2)f (θ
′

1, θ
(i)
2 (θ

′

1))

to generate the (fixed point) implicit function. The iteration is essentially an appli-

cation of Newton’s method [64].

Example 3.22. Reviewing example 3.4 again, we have the constraint f?(θ1, θ2) =

θ2
1 + θ2

2− 1 = 0 and wish to find a local reparameterization at (θ1, θ2) = (1, 0). First

note,

f?
θ1

(θ1, θ2) = 2θ1 = 2 , f?
θ2

(θ1, θ2) = 2θ2 = 0,

and we only have a nonsingularity with respect to θ1. Hence, we cannot find a find

a function for θ2 in terms of θ1 using this approach at (1, 0), but we can find θ
′

1(θ
′

2)

there. Defining D(θ1, θ2) = f?
θ1

(θ1, θ2) = 2 and initializing with θ
′(1)
1 (θ

′

2) = 1, the

fixed point method dictates the next iterate to be

θ
′(2)
1 (θ

′

2) = θ
′(1)
1 −D−1(θ1, θ2)

(

(θ
′(1)
1 (θ

′

2))
2 + θ

′2
2 − 1

)

= 1− 1

2

(

1 + θ
′2
2 − 1

)

= 1− 1

2
θ
′2
2 .

Continuing, the third iterate is

θ
′(3)
1 (θ

′

2) = 1− 1

2
θ
′2
2 −

1

2

(

(

1− 1
2
θ
′2
2

)2
+ θ

′2
2 − 1

)

= 1− 1

2
θ
′2
2 −

1

8
θ
′4
2 ,
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and the fourth iterate is

θ
′(4)
1 (θ

′

2) = 1− 1

2
θ
′2
2 −

1

8
θ
′4
2 −

1

2

(

(

1− 1
2
θ
′2
2 − 1

8
θ
′4
2

)2
+ θ

′2
2 − 1

)

= 1− 1

2
θ
′2
2 −

1

8
θ
′4
2 −

1

16
θ
′6
2 −

1

128
θ
′8
2 .

As expected, as r →∞ then θ
′(r)
1 (θ

′

2) approaches a limit function

θ
′

1(θ
′

2) =
√

1− θ′2
2 = 1− 1

2
θ
′2
2 −

1

8
θ
′4
2 −

1

16
θ
′6
2 −

5

128
θ
′8
2 +O(θ

′9
2 )

near θ2 = 0.

3.2 Identifiability

Identifiability conditions based on the CRB (or FIM) were detailed in Section

2.2, and the definitions of local and strong identifiability are given therein. In this

section, the identifiability of parameters under functional equality constraints is

considered.

3.2.1 Local identifiability

To establish a new identifiability criterion from the CCRB, we will first ex-

amine an existing criterion. Rothenberg [58, theorem 6] developed conditions for

identifiability of a parameter vector θ under the constraints f (θ) = 0, which was

later partially re-derived by Crowder [18, lemma 1 is the “only if” portion of the

theorem statement].

Theorem 3.23 (Rothenberg-Crowder). Assume both F (θ
′

) and

M (θ
′

) =

[

I(θ
′

)

F (θ
′

)

]
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have constant rank in a local neighborhood about θ. Then θ is locally identifiable

if and only if M (θ) has full column rank m.

The proof of this theorem is based on the unconstrained proof of Theorem

2.5. An immediate implication is that if the FIM I(θ) is regular, then not only is

the unconstrained model locally identifiable, but the constrained model is as well.

Otherwise, if the FIM is singular, then the constraints must be such that the row

vectors of its Jacobian F (θ) eliminate the null space of the FIM. In doing so, the

constraints eliminate whatever inherent ambiguity was in the model that led to local

unidentifiability and a singular FIM (Theorem 2.5). If row vectors of the Jacobian

did not eliminate the null space of the Fisher information then there would exist a

linear combination of column vectors of U (θ) such that UT (θ)I(θ)U (θ) is singular,

as shall be shown shortly.

Additionally, regardless of the information, in the trivial case where the con-

straints are such that the Jacobian is full column rank, then the theorem says the

model is locally identifiable. Indeed, when rank(F (θ)) = m the constraints com-

pletely determine the parameter (e.g., see example 3.14).

Rothenberg’s theorem for unconstrained identifiability is useful in establishing

an alternative criterion for identifiability in relation to a component of the CCRB.

Theorem 3.24. Let θ ∈ Θf and assume UT (θ
′

)I(θ
′

)U (θ
′

) has constant rank in a

neighborhood of θ. Then θ is locally identifiable if and only if UT (θ)I(θ)U (θ) is

regular.

Proof. Let gθ satisfy Theorem 3.3. If UT (θ
′

)I(θ
′

)U (θ
′

) has constant rank in a
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local neighborhood about θ = gθ(ξ). Then Ĩ(ξ
′

) has constant rank in a local

neighborhood about ξ. And since gθ is injective, θ is locally identifiable in Θf if

and only if ξ is locally identifiable in Rm−k. By Theorem 2.5, ξ is locally identifiable

if and only if Ĩ(ξ) is regular. And Ĩ(ξ) is regular if and only if UT (θ)I(θ)U (θ) is

regular.

This is the corresponding theorem to Rothenberg’s Theorem 2.5 and agrees

with his Theorem 3.23, although the proof does not rely on this latter theorem’s re-

sult because the implicit function gθ simplifies the approach. It is, however, possible

to prove a more general result connecting the rank of the M (·) matrix of Theorem

3.23 to the implicit Fisher information UT (θ)I(θ)U (θ).

Theorem 3.25. Assume UT (θ
′

)I(θ
′

)U (θ
′

) has constant rank in a neighborhood

of θ. Then

nullity(M (θ
′

)) = nullity(UT (θ
′

)I(θ
′

)U (θ
′

)).

Proof. First, for some fixed θ
′

, assume M (θ
′

) is not full column rank and the

vectors v1, . . . ,vr are linearly independent and span the null space of M (θ
′

), i.e.,

for l = 1, . . . , r,

I(θ
′

)vl = 0

F (θ
′

)vl = 0.

Let U (θ
′

) be a matrix defined as in (3.6). Since F (θ
′

)vl = 0 then each vl = U (θ
′

)wl

for some w1, . . . ,wr ∈ Rm−k. Now if
r
∑

l=1

γlwl = 0, then
r
∑

l=1

γlvl =
r
∑

l=1

U (θ
′

)γlwl =

0, which implies γ1 = · · · = γr = 0 since the vi are linearly independent. Hence,
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the w1, . . . ,wr are also linearly independent and span an r-dimensional subspace

of Rm−k. Thus, I(θ
′

)U (θ
′

)wl = 0 for l = 1, . . . , r. This proves the implication,

namely, that nullity(UT (θ
′

)I(θ
′

)U (θ
′

)) ≥ nullity(M (θ
′

)).

To show the inverse, assume the vectors w1, . . . ,wr are linearly independent

and span the null space of the UT (θ
′

)I(θ
′

)U (θ
′

). Define vl = U (θ
′

)wl for l =

1, . . . , r. Since I(θ
′

)vl = 0 and F (θ
′

)vl = 0, then M (θ
′

)v1 = 0 for l = 1, . . . , r.

Note for any γ1, . . . , γr, then

r
∑

l=1

γlvl =

r
∑

l=1

U (θ
′

)γlwl = 0 if and only if

r
∑

l=1

γlwl = 0

(since U (θ
′

) is full column rank) which is true if and only if γl = · · · = γr = 0. This

proves the converse, i.e., nullity(M (θ
′

)) ≥ nullity(UT (θ
′

)I(θ
′

)U (θ
′

)).

The theorem essentially states that in the local neighborhood where the im-

plicit function g is defined,M (θ) has full column rank if and only ifUT (θ)I(θ)U (θ)

does, for any θ ∈ Θf . As a consequence, we have the following corollary.

Corollary 3.26. If I(θ) is regular, then UT (θ)I(θ)U (θ) is also regular. And if θ

is locally identifiable in Θ, then θ is locally identifiable in Θf .

Proof. If θ is locally identifiable, then nullity(I(θ)) = 0 by theorem 2.5. And if

nullity(I(θ)) = 0, then nullity(UT (θ)I(θ)U (θ)) = 0 by theorem 3.25. Finally, if

nullity(UT (θ)I(θ)U (θ)) = 0, then θ is locally identifiable in Θf by theorem 3.24.
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3.2.1.1 Local identifiability in the Aitchison-Silvey-Crowder CCRB

formula

In subsection 3.1.2.2, an alternative form of the CCRB is presented where a

loaded Fisher information is used in place of the FIM to resolve issues of singularity

of the FIM. The Aitchison-Silvey loaded FIM is I(θ)+F T (θ)F (θ) [4], whereas the

Crowder loaded FIM I(θ) + F T (θ)KF (θ) [18], where K is chosen such that the

loaded FIM is full rank. The following theorem, which connects local identifiability

and the Aitchison-Silvey-Crowder CCRB, shows that under certain conditions, the

matrix K is unnecessary. This result is hinted at, but not clearly stated in [18,

lemma 6].

Theorem 3.27. The Aitchison-Silvey-Crowder loaded FIM I(θ) + F T (θ)F (θ) is

nonsingular if and only if M (θ) is full column rank. Hence, if I(θ
′

) +F T (θ
′

)F (θ
′

)

is constant locally about θ, then θ is identifiable if and only if I(θ) + F T (θ)F (θ)

is nonsingular.

Proof. To show the contrapositive, assume M (θ) is not full column rank and v

is a nontrivial vector such that M (θ)v = 0. Then I(θ)v = 0 and F (θ)v = 0.

Therefore, v is in the null space of the Gram matrix I(θ) + F T (θ)F (θ). To show

the inverse, assume
(

I(θ) + F T (θ)F (θ)
)

v = 0 for some nontrivial vector v ∈ Rm.

Then since

I(θ) + F T (θ)F (θ) =
[

I1/2(θ) F T (θ)
]

·
[

I1/2(θ)
F (θ)

]

,

we must have that I1/2(θ)v = 0 and F (θ)v = 0. Hence, I(θ)v = I1/2(θ)I1/2(θ)v =

0, which implies M (θ)v = 0 and M (θ) is not full column rank.
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3.2.2 Strong Identifiability

Restricting the discussion to normal distributions in this section we can extend

the equivalence criterion between regularity and strong identifiability as defined in

section 2.2.2. That is, assume x ∼ N (µ(θ),Σ(θ)) with µ(θ) ∈ Rp, with the

elements of the mean and variance explicitly defined by a map ϕ : Θ → Rq where

q ≤ p+ p(p + 1)/2 and assume m ≤ q.

Theorem 3.28. If θ is strongly identifiable on Θ and f (θ) = 0, then θ is also

strongly identifiable on Θf .

Proof. If θ is strongly identifiable, then there exists a representative mapping ϕ∗,

which is injective on Θ. Since Θf ⊂ Θ, ϕ∗ is still injective and a representative

mapping on Θf .

This theorem is complementary to Corollary 3.26. Essentially, the imposition

of constraints does not take away existing identifiability (local or strong) or Fisher

information regularity that already exists in a model. However, it is not always the

case that the original (unconstrained) model is information regular or identifiable.

The following theorem, an extension of Theorem 2.6, connects the notion of strong

identifiability with regularity of UT (θ)I(θ)U (θ).

Theorem 3.29. Assume ϕ is a holomorphic mapping of z ∈ Ω ⊂ ∪α∈AΩα into Cq,

where Θf ⊂ Ω ⊂ Cm and Ωα is open in Cm for each α. Then

(a) if UT (z)I(z)U (z) is regular, there exists a strongly identifiable open neigh-

borhood about z, and

58



(b) if there exists a representative mapping ϕ∗
α : Ωα → Cq for each α, then the

matrix UT (z)I(z)U (z) is regular for every z ∈ Ω.

Proof. By the implicit function theorem (Theorem 3.3), then for any matrix U (θ)

whose columns form a basis for the null space of the Jacobian of f (θ), there exists

an open set V 3 θ, an open set W ⊂ Rm−k, and some transformation gθ : W→ Rm

such that θ = gθ(ξ) for some ξ ∈W. In particular, in this reduced parameter space,

there exists a FIM such that Ĩ(ξ) = UT (θ)I(θ)U (θ). Since Theorem 2.6 applies

to Ĩ(ξ), the result for UT (θ)I(θ)U (θ) is proven.

Regardless of the regularity of the FIM, only regularity of UT (θ)I(θ)U (θ)

determines strict identifiability under constraints for normal distributions, given a

proper holomorphic function(s).

3.3 Linear Model

Assume the observations x model a linear function of the parameters θ, as in

x = Hθ +w, (3.23)

whereH is a full column rank n×m observation matrix consisting of known elements

and w is a random noise vector with mean zero and known variance C. As noted

in section 2.3.1, the (weighted) LSE

θ̂LS(x) =
(

HTC−1H
)−1

HTC−1x
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is the BLUE. The LSE has a variance of Q−1 where Q =
(

HTC−1H
)

. In addition,

we assume a linear constraint

f (θ) = Fθ + v = 0,

where F is a known full row rank k ×m projection matrix and v is a known shift

vector. For a linear constraint, the Jacobian F (θ) = F does not depend on the

parameter. As the linear problem is well-studied, many of the results in this section

are known (e.g., see [61, section 3.8] and [57, section 11.3.3]) but are presented here

from a different perspective.

3.3.1 Best Linear Unbiased Estimation

The constrained (weighted) LSE (CLSE) is most often given by [36, p. 252]

θ̂CLS(x) = θ̂LS(x)−Q−1F T
(

FQ−1F T
)−1
(

F θ̂LS(x) + v
)

. (3.24)

Simple calculation confirms that this CLSE exists in ker(f ) = Θf (i.e., it satisfies

the constraint), is unbiased, and has variance

Var(θ̂CLS(x)) = Q−1 −Q−1F T
(

FQ−1F T
)−1

FQ−1. (3.25)

The BLUE property of the LSE is preserved for the CLSE. This is not a surprising

result since a linear constraint on a linear model is still a linear model, as seen in

figure 3.2.

In the context of the null space approach of the CCRB, an alternative CLSE

may be developed. One particular advantage of this approach is the avoidance of
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HΘ

x̂ = Hθ̂LSE

x

θ

HΘf

Hθ̂CLSE

Figure 3.2: Projection of the observations x onto the linear spaceHΘ and the linear

constraint space HΘf .

the need for directly using and solving for Lagrange multipliers. Note that zero

solutions of f (θ) are of the form

θ = −F T
(

FF T
)−1

v +Uξ = gθ(ξ)

where U satisfies the equations in (3.6), i.e., the columns of U form an orthonormal

basis for the null space of the row vectors of F , and ξ ∈ Rm−k is a parameter

representing the projection of θ to the constraint space Θf . Since the Jacobian F is

independent of the parameter, then U (θ) = U and, hence, gθ are as well. Moreover,

the typical local properties for the implicit function hold globally. Substituting this

solution for θ the linear model is reformulated

y =HUξ +w (3.26)

where y = x +HF T
(

FF T
)−1

v. Following the least squares result for the CRB,
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we desire a solution that minimizes a quadratic objective function

ξ̂LS = arg min
ξ

(

y −HUξ
)T
C−1

(

y −HUξ
)

.

This solution must satisfy the normal equations given by

(

UTQU
)

ξ̂LS(y) = UTHTC−1y.

Provided the normalizing matrix
(

UTQU
)

is full rank, the LSE of ξ is given by

ξ̂LS(y) =
(

UTQU
)−1

UTHTC−1y

and is the BLUE ((2.4) in section 2.3.1). The corresponding LSE of θ based on this

null space approach is

θ̂CLS(x) = −F T
(

FF T
)−1

v +Uξ̂LS(y)

= −F T
(

FF T
)−1

v +U
(

UTQU
)−1

UTHTC−1
(

x+HF T
(

FF T
)−1

v

)

= U
(

UTQU
)−1

UTQ
(

θ1 + F T
(

FF T
)−1

v

)

− F T
(

FF T
)−1

v

+U
(

UTQU
)−1

UTHTC−1
(

x−Hθ1

)

= θ1 +U
(

UTQU
)−1

UTHTC−1
(

x−Hθ1

)

(3.27)

where θ1 = −F T
(

FF T
)−1

v+Uξ1 can be any arbitrary point satisfying the linear

constraint (ξ1 is unrestricted). This alternative CLSE is more general than the prior

formula as it is applicable in scenarios whenH and F are not necessarily full column

rank and full row rank, respectively. As such, it has the more general expression for

its variance

U
(

UTQU
)−1

UT ,
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which is equivalent to (3.25) when H and F are full column rank and full row rank,

respectively. Replacing the rank conditions on H and F , the weaker necessary

conditions for this CLSE are thatHU be full column rank. If the stronger necessary

conditions on H and F exist, then the CLSE can be reformulated in terms of the

LSE as before, e.g.,

θ̂CLS(x) = θ1 +U
(

UTQU
)−1

UTQ
(

θ̂LS(x)− θ1

)

.

It is easy to confirm that θ̂CLS(x) ∈ ker(f ) by recalling that FU = 0 and θ1 ∈

ker(f ).

Also, as in section 2.3.1, if HU is not full column rank, then for estimable

functions dTθ, i.e., for vectors d in the column space of UTHT , the LSE is BLUE

and is given by

dT θ̂CLS(x) = dTθ1 + dTU
(

UTQU
)†
UTHTC−1

(

x−Hθ1

)

(3.28)

similar to (3.27) with variance dTU
(

UTQU
)†
UTd.

3.3.2 Uniform Minimum Variance Estimation under Gaussian noise

Under the assumption that the noise is normally distributed, the (uncon-

strained) LSE is also the MLE. The FIM12 is I(θ) = Q =
(

HTC−1H
)

, and the

LSE/MLE is the MVUE being efficient with respect to CRB = I−1(θ). Given this

general principle that for linear models with additive Gaussian noise, the LSE is

the MLE, then since a linear constraint is essentially a reduced dimensional linear

12Note that neither the Fisher information, the Jacobian of the constraints, nor the null space
matrix depend on the parameters in the linear model with linear constraints.
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model as evidenced in (3.26), the CLSE should be the constrained MLE (CMLE).

As we shall see, this is indeed the case.

First, for the Gaussian linear model in (3.26), the pdf is

q(y; ξ) =
1

(2π)(m−k)/2(detC)(m−k)/2
exp

{

−1
2

(

y −HUξ
)T
C−1

(

y −HUξ
)

}

.

The Fisher score s̃(y; ξ) = −UTHTC−1
(

y −HUξ
)

has a variance, or Fisher

information, of Ĩ(ξ) = UTHTC−1HU . Hence the CCRB is

CCRB(θ) = G(ξ)Ĩ−1(ξ)GT (ξ)

= U
(

UTHTC−1HU
)−1

UT

(see example 3.20).

Maximizing the likelihood (or pdf) is equivalent to minimizing the quadratic,

therefore the LSE of ξ is also the MLE of ξ. And by the invariance property [36, 14]

of the MLE, then the CMLE of θ is

θ̂CML(x) = g(ξ̂ML(y)) = θ̂CLS(x).

Theorem 3.30. The CMLE is optimal for the linear model under linear constraints.

That is, if the observations obey the linear model in (3.23), where H is a known

matrix, θ is an unknown parameter vector subject to the linear constraint f (θ) =

Fθ + v = 0, and w is a zero-mean normal random vector with known variance C,

then provided HU is full column rank, where U is defined by (3.6), the CMLE

θ̂CML(x) = θ1 +U
(

UTHTC−1HU
)−1

UTHTC−1
(

x−Hθ1

)

(3.29)

is unbiased and efficient.

64



While the formula for the CMLE based on the MLE might seem preferable,

analogous to the formula for the CLSE based on the LSE, i.e.,

θ̂CML(x) = θ1 +U
(

UTQU
)−1

UTQ
(

θ̂ML(x)− θ1

)

, (3.30)

with Q = HTC−1H , this formulation requires the existence of a full rank FIM

I(θ) = Q in the MLE. The benefit of using the CMLE in (3.29) versus the CMLE

in (3.30) is that the following proof does not require this assumption.

Proof. First note for any θ, θ1 satisfying the constraints

θ − θ1 = −F T
(

FF T
)−1

v +Uξ + F T
(

FF T
)−1

v −Uξ1

= U
(

ξ − ξ1

)

for some ξ, ξ1 ∈ Rm−k. Therefore, the expected value of the CMLE is

Eθ θ̂CML(x) = θ1 +U
(

UTQU
)−1

UTQ
(

θ − θ1

)

= θ1 +U
(

UTQU
)−1

UTQU
(

ξ − ξ1

)

= θ1 +U
(

ξ − ξ1

)

= θ1 + θ − θ1

= θ.
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Finally, the variance of the CMLE is

Varθ(θ̂CML(x)) = Varθ

(

θ1 +U
(

UTQU
)−1

UTHTC−1
(

x−Hθ1

)

)

= Varθ
(

U
(

UTQU
)−1

UTHTC−1
(

x−Hθ +Hθ −Hθ1

)

)

= Varθ
(

U
(

UTQU
)−1

UTHTC−1
(

x−Hθ
)

)

= U
(

UTQU
)−1

UTHTC−1CC−1HU
(

UTQU
)−1

UT

= U
(

UTQU
)−1

UTQU
(

UTQU
)−1

UT

= U
(

UTQU
)−1

UT ,

i.e., the CCRB of θ.

Thus, the CMLE is the MVUE for the linear model with linear constraints

under a Gaussian assumption.

Additionally, when HU is not full column rank, then when d is in the column

space of UTHT , the MLE of dTθ is still the MVUE and is given by dT θ̂CML(x) =

dT θ̂CLS(x) from (3.28), with variance dT CCRB(θ)d.

3.4 Constrained Maximum Likelihood Estimation

The constrained MLE (CMLE) of the parameter vector θ constrained to the

manifold Θf = {θ′

: f (θ
′

) = 0} is the estimator in Θf , which given the observa-

tions x, that maximizes the likelihood distribution p(x; ·), i.e. it is the maximum

likelihood in Θf . Since log(·) is concave, it is convenient to equivalently maximize

the log-likelihood log p(x; ·) since then the Jacobian of the objective is the Fisher

score. In an optimization context, the CMLE, which will be denoted θ̂CML(x), is
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the solution to the following constrained optimization problem:

max
θ
′

log p(x; θ
′

)

s.t. f (θ
′

) = 0.
(3.31)

Analogous to the method of maximum likelihood approach of (2.7), solutions θ̇(x) =

gθ̇(x)(ξ̇(x)) satisfying

∂

∂ξ′
log p(x, gθ′ (ξ

′

))

∣

∣

∣

∣

ξ
′
=ξ̇(x)

= 0,

where gθ′ is defined by (3.7), are candidates to be the CMLE. More formally, a solu-

tion to this optimization problem must satisfy the Karush-Kuhn-Tucker conditions

[45], i.e.,

s(x; θ
′

)− λTF (θ
′

) = 0 (stationarity) (3.32)

f (θ
′

) = 0. (feasibility) (3.33)

Any point satisfying these conditions is a stationary, feasible point.

Since θ̂CML(x) ∈ Θf , then the implicit function theorem implies there exists

an open set O ⊂ Θf containing θ̂CML(x), an open set P ⊂ Rm−k, and a continuously

differentiable bijection gθ̂(x) : P→ O such that θ̂(x) = gθ̂(x)(ξ̂(x)) for some ξ̂(x) ∈

P. If θ̂(x) is a maximizer of the likelihood function p(x; θ) in the constraint set Θf ,

then the likelihood q(x; ξ
′

) = p(x; gθ̂(ξ
′

)) has a maximum at ξ̂(x) in P (i.e., a local

maximum at ξ̂(x) in Rm−k). It cannot be said that q(x; ξ) has a global maximum at

ξ̂(x), since θ
′

= gθ̂(x)(ξ
′

) is only guaranteed to exist in Θf when ξ
′ ∈ P, i.e., there

may exist a point ξ
′ ∈ Rm−k\P such that q(x; ξ

′

) > q(x; ξ̂(x)) and gθ̂(x)(ξ
′

) 6∈ Θf .
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3.4.1 Efficient estimation

In Section 2.4.1, it was explained that when an efficient estimator exists, the

method of maximum likelihood finds the estimator [36, 62]. It is useful to note the

connection between efficiency and the method of constrained maximum likelihood

since Stoica and Ng ignored this extension in their paper [68], despite Marzetta

having showed that this result extends to the constrained case when the FIM is

non-singular [47, theorem 3]. What follows is the general extension of this result,

including the case for singular FIMs.

Theorem 3.31. If t(x) is a constrained estimator of θ, required to satisfy the

constraint f (t(x)) = 0, which is also efficient with respect to the CCRB, then the

estimator is a stationary point for the constrained optimization problem in (3.31).

Proof. This is perhaps more easily proven strictly from the constrained parameter

perspective, since the global maximum of the likelihood relative to the implicit

reparameterization may not correspond to global maximum in Θf relative to the

constrained parameterization. Since t(x) is efficient then in the mean-square sense

we have t(x) − θ = CCRB(θ)s(x; θ) as a function of θ. Then as θ → t(x) (this

assumes the observations are consistent with θ) we have

0← t(x)− θ = CCRB(θ)s(x; θ).

The continuity of the CCRB and the Fisher score implies s(x; t(x)) = F T (t(x)) ·λ

for some λ ∈ Rk or

s(x; t(x))− λTF (t(x)) = 0,
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which defines the stationarity condition (3.32) of the constrained optimization prob-

lem with λ being the vector of Lagrange multipliers.

3.4.2 Asymptotic Normality

The asymptotic properties of the MLE can be found in section 2.4.2. Therein,

it was mentioned that the maximum likelihood estimator was asymptotically un-

biased and efficient with variance asymptotically equivalent to the CRB. A corre-

sponding relationship exists between the CMLE and the CCRB. As before, let the

samples x1,x2, . . . ,xn, be iid as x from the likelihood p(x; θ), where θ is assumed

to exist in Θf . Denote yn = (x1,x2, . . . ,xn) to be the collection of these samples,

so that the likelihood will be p(yn; θ) =

n
∏

i=1

p(xi; θ). Hence, the asymptotic CMLE

will be denoted θ̂(yn).

Theorem 3.32. Assuming the pdf satisfies the regularity conditions (see (3.19) and

discussion after proof), then the CMLE is asymptotically distributed according to

√
n
(

θ̂(yn)− θ
)

d→N
(

0,CCRB(θ)
)

.

There exists a number of results in the literature regarding the asymptotic

characteristics of the CMLE (e.g., the works of Aitchison and Silvey [3, 63, 4, 2],

and of Crowder [18]). For example, Crowder shows that

√
n
(

θ̂(yn)− θ
)

d→

N
(

0,D−1(θ)−D−1(θ)F T (θ)
(

F (θ)D−1(θ)F T (θ)
)−1

F (θ)D−1(θ)
)

where D(θ) = I(θ) + F T (θ)KF (θ) for any positive semi-definite matrix K that

ensures the nonsingularity of D(θ). And while it would be sufficient to use these
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existing results to verify the connection between the CMLE and the CCRB, it is

also insightful (and the point of this treatise) to examine the problem entirely from

the perspective of the reduced parameter space, i.e., using the implicit function or

a null space approach.13

Proof. By the implicit function theorem (Theorem 3.3), there exists an open set

O ⊂ Θf containing θ, an open set P ⊂ Rm−k, and a continuously differentiable

bijection gθ : P → O such that θ = gθ(ξ) for some ξ ∈ P. The likelihood for ξ is

given by q(yn; ξ) = p(yn; gθ(ξ)).

Let ξ̂(yn) be the MLE of ξ based on the likelihood q(yn; ξ). Since the MLE

is consistent and asymptotically efficient, then

√
n
(

ξ̂(yn)− ξ
)

d→ N
(

0, Ĩ−1(ξ)
)

. (3.34)

In particular, since ξ̂(yn) → ξ as n → ∞, then for n sufficiently large, say n > N ,

ξ̂(yn) ∈ P. Let θ̂(yn) be the CMLE of θ based on the likelihood p(yn; θ) and the

constraint f (θ) = 0. By the invariance property [36, 62], for n > N , θ̂(yn) =

gθ(ξ̂(yn)) and θ̂(yn) ∈ O. Therefore, since ξ̂(yn) → ξ as n → ∞, θ̂(yn) → θ also

and the CMLE is consistent.

The Taylor series expansion (see section 3.1.5) of gθ(ξ
′

) can be truncated using

a Lagrange remainder term [38, p. 232] as in

gθ(ξ̂(yn)) = gθ(ξ) +Gθ(ξ, ξ̂(yn))
(

ξ̂(yn)− ξ
)

where Gθ(ξ, ξ̂(yn)) is meant to represent a matrix of the form of Gθ(ξ) where each

13Nevertheless, a proof directly from Crowder’s asymptotic normality result is detailed in ap-
pendix A.3.
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row is evaluated at possibly different points ξ
′(i), i = 1, . . . , m− k, each existing on

the line segment starting at ξ and ending with ξ̂(yn). From the invariance property

of the MLE, this can be rewritten as

θ̂(yn)− θ = Gθ(ξ, ξ̂(yn))
(

ξ̂(yn)− ξ
)

.

Since the MLE ξ̂(yn) is consistent, then Gθ(ξ, ξ̂(yn))
p→ Gθ(ξ). Given this and

(3.34), then by Slutsky’s theorem [62, p. 60]

√
n
(

θ̂(yn)− θ
)

d→ N
(

0,Gθ(ξ)Ĩ
−1(ξ)GT

θ (ξ)
)

,

which by theorem 3.5 shows θ̂(yn) is asymptotically efficient with respect to the

CCRB.

The conditions for asymptotic normality with respect to the CCRB are the

conditions that ξ̂(yn) be asymptotically normal [14, p. 516]. For the MLE these

include (a) differentiability of the Fisher score, (b) the Fisher information continuous

with respect to the parameter and nonzero at ξ, and (c) consistency. For the CMLE

and theorem 3.32, this translates to (a) differentiability of the Fisher score and the

existence of first and second derivatives of any implicit function (or equivalently, the

constraint f ), (b) UT (θ
′

)I(θ
′

)U (θ
′

) continuous with respect to θ
′

and regular at

θ
′

= θ, and (c) consistency of the CMLE.

3.4.3 The Method of Scoring Under Parametric Constraints

The method of scoring for unconstrained parameters is detailed in section 2.4.3.

Here, we examine scoring with constraints. Assume we have an iterate θ̇(k) ∈ Θf and
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we wish to improve this iterate in the sense of the optimization problem expressed

in (3.31). The method of scoring does not directly apply, since any projection step

will not take into account the constraint, i.e., it is likely the direction of steepest

ascent is not the appropriate path in terms of maximizing the likelihood subject to

the functional equality constraints. Thus, it is desirable to have projected direction

and restoration steps that take the constraints into consideration.

Given an initial estimate θ̇(k), there exists a set O 3 θ̇(1) open in Θf , a set P

open in Rm−k, and a continuously differentiable function gθ̇(k) : Rm−k → Rm such

that gθ̇(k) is a diffeomorphism on P, gθ̇(k)(P) = O, and in particular there exists a

ξ̇(k) ∈ P such that gθ̇(k)(ξ̇(k)) = θ̇(k). Scoring can now be applied in the reduced

parameter space of Rm−k.

For the given set of observations x and this corresponding initial estimate ξ̇(k),

the method of scoring suggests the projection step

ξ̇(k+1) = ξ̇(k) + Ĩ−1(ξ̇(k))s̃(x; ξ̇(k))

to generate a better estimate ξ̇(k+1) in the sense of maximizing the likelihood q(x; ξ
′

)

= p(x; gθ̇(k)(ξ
′

)). As with many iterative procedures, convergence is only guaranteed

under certain initial conditions. If the projection step or shift is too large, then θ̇(k+1)

may not be a usable point, i.e., an iterate that increases the value of the likelihood

function. To add stability to the procedure, often a step-size rule or shift-cutting

is employed. This amounts to the inclusion of a multiplicative factor α(k) ∈ [0, 1],

modifying the projection step to

ξ̇(k+1) = ξ̇(k) + α(k)Ĩ−1(ξ̇(k))s̃(x; ξ̇(k)).

72



Choosing an appropriate step-size rule for α(k) will guarantee convergence, although

typically at a cost to the rate of convergence.

The Taylor series expansion (see section 3.1.5) of gθ̇(k) about ξ̇(k) and evaluated

at ξ̇(k+1) is given by

gθ̇(k)(ξ̇(k+1)) = gθ̇(k)(ξ̇(k)) +Gθ̇(k)(ξ̇(k)) · (ξ̇(k+1) − ξ̇(k)) + o(||ξ̇(k+1) − ξ̇(k)||)

where o(||ξ̇(k+1) − ξ̇(k)||) is a term that shrinks faster than ||ξ̇(k+1) − ξ̇(k)|| as k →

∞. Ignoring this error term, this generates an iteration in the larger dimensional

parameter space Θ ⊂ Rm by defining the next iterate θ̇(k+1) = gθ̇(k)(ξ̇(k+1)). That

is,

θ̇(k+1) = gθ̇(k)(ξ̇(k)) +Gθ̇(k)(ξ̇(k)) · (ξ̇(k+1) − ξ̇(k))

= θ̇(k) + α(k)Gθ̇(k)(ξ̇
(k))Ĩ−1(ξ̇(k))s̃(x; ξ̇(k))

= θ̇(k) + α(k)Gθ̇(k)(ξ̇
(k))
(

GT

θ̇(k)
(ξ̇(k))I(θ̇(k))G

θ̇(k)(ξ̇(k))
)−1
GT
θ̇(k)(ξ̇

(k))s(x; θ̇(k))

= θ̇(k) + α(k)U (θ̇(k))
(

UT (θ̇(k))I(θ̇(k))U (θ̇(k))
)−1

UT (θ̇(k))s(x; θ̇(k)).

In comparison with the classical method of scoring, this iteration

θ̇(k+1) = θ̇(k) + α(k)CCRB(θ̇(k))s(x; θ̇(k)) (3.35)

is essentially a replacement of the CRB with the CCRB. This is the projection step

of the method of scoring with parametric equality constraints.14 Intuitively, this

should seem appropriate since the CCRB is a generalization of the CRB. However,

14Osborne [55] used a Lagrangian multiplier approach to develop the method of scoring. But his
scenario was restricted to linear constraints and, hence, lacked the restoration step. Additionally, he
makes no mention that the matrix projecting the negative Jacobian of the objective is a constrained
Cramér-Rao bound. Note the structure of this projection step is well-known as a nonstatistical
formulation exists for the conventional optimization problem in [25, p. 178].
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even with an appropriate step-size rule to generate usable iterates, since there is no

certainty that ξ̇(k+1) ∈ P, then it is likely that θ̇(k+1) will not be a feasible point.

To correct this, an encompassing restoration step is required to produce the next

iterate, i.e.,

θ̇(k+1) = π
[

θ̇(k) + α(k)CCRB(θ̇(k))s(x; θ̇(k))
]

(3.36)

where π[·] is the natural projection of Rm onto Θf . This is the method of scoring

with parametric equality constraints. With this additional restoration step, the

constraint
projection

level surfaces in the
 constraint space

θ
(5)

θ
(3)

θ
(2)

θ
(4)

θ
(1)

linear gradient projection

θ
(k+1)

 = π[θ
(k)

 + α
(k)

 CCRB(θ
(k)

) J(x;θ
(k)

)]

Figure 3.3: Path created by iterates from the method of scoring with constraints.

usability of the iterate would be tested and accepted or rejected after (3.36) as

opposed to after (3.35). For a convex set, the natural projection is well-defined. In

general, though, some other rule will likely need to be applied in cases for which

there does not exist a unique shortest distance to Θf , e.g., reducing the step size
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α(k). Simple projections, e.g., onto planar or spherical constraints, are relatively

simple operations, however, it might be more commonly the case that the restoration

cannot be expressed analytically. To ensure the iterates satisfy the constraints

approximately, one approach is to apply an additional iterative process [25]

θ̇(k,l+1) = θ̇(k,l) − F T (θ̇(k,l))
(

F (θ̇(k,l))F T (θ̇(k,l))
)−1

f (θ̇(k,l)),

where θ̇(k,1) = θ̇(k) and θ̇(k+1) = π
[

θ̇(k)
]

= θ̇(k,l) when f (θ̇(k,l)) ≈ 0 to a desired

degree of accuracy and provided the iterate is still usable. Alternatively, a penalty

can be added to the cost (objective) function, e.g., as in

log p(x; θ
′

) + η
k
∑

i=1

|fi(θ
′

)|

for some positive η and where fi is the ith constraint equation, to limit the divergence

of the iterations away from Θf .

3.4.3.1 Convergence Properties

There is a large class of conditions that guarantee convergence in fixed point

theorems, some of which can be found in [64, 25, 10]. The most general statement

is that given an initialization “sufficiently close” to the maximum value θ̂(x), the

sequence {θ̇(k)} generated by the algorithm will converge to this CMLE. As the

method of scoring with parametric equality constraints is a Newton-type method,

convergence properties that already exist for these methods can be adapted here.

As it is impossible to cover all the potential approaches to developing properties for

this constrained scoring algorithm, this section focuses on properties similar to those
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found in Goldstein [22]. To ease reading of this section, the proofs of the theorems

in this section are presented in appendix B.

First, define Θθ̇(k) = {θ′ ∈ Θf : p(x; θ
′

) ≥ p(x; θ̇(k))} as the set of all feasible

and usable iterates after the kth iterate θ̇(k). The step rule for the properties in this

section is as follows: for a fixed β ∈ (0, 1) choose the least positive integer m(k) such

that α(k) = βm(k)
satisfies the inequality

α(k)
(

log p(x; θ̇(k+1))− log p(x; θ̇(k))
)

≥ κ
∥

∥

∥θ̇(k+1) − θ̇(k)
∥

∥

∥

2

I(θ̇(k))
(3.37)

where θ̇(k+1) is defined by (3.36). If no finite m(k) exists, then choose α(k) = 0. This

type of step-size rule enforces a stepwise Lipschitz condition. For theorems 3.33 and

3.37, we require that Θf be convex.15

Theorem 3.33. If for any iterate θ̇(k) ∈ Θf there does not exist an α(k) > 0 that

satisfies (3.37), then θ̇(k) is a stationary point.

Therefore, when the step rule forces the choice of α(k) = 0 then the method

of scoring with parametric equality constraints has converged. The next theorem

details a property on the sequence of likelihood functions generated by the iterates.

Theorem 3.34. The sequence {p(x; θ̇(k))} is a monotone increasing sequence. Fur-

thermore, if p(x; ·) is bounded above, then {p(x; θ̇(k))} converges.

15For any nonlinear equality constraint, Θf will not be convex. However, locally, the restoration
of the linear projection onto the tangent space of the CCRB has the appearance of the restoration
onto a convex set for sufficiently small α(k), i.e., Θf appears locally convex. While it may be possible
to restrict the step size to this local convexity, such an enhancement is beyond the scope of the
work presented here. For inequality constraints, Θf may be convex; although such constraints, as
in example 3.15, will not inform the projection update in (3.35), they might inform the restoration
update in (3.36).
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Thus, Θθ̇(k) is a decreasing sequence of closed (nested) sets, i.e., Θθ̇(k+1) ⊂ Θθ̇(k)

or for any given sequence, θ̇(i) ∈ Θθ̇(j) provided i ≥ j. That is, using a proper step

size rule will guarantee usable iterates. The monotonicity of {p(x; θ̇(k))}, even if

bounded above, does not imply monotonicity in the sequence {log p(x; θ̇(k+1)) −

log p(x; θ̇(k))}. However, this does guarantee convergence.

Theorem 3.35. If the likelihood p(x; ·) is bounded above, then the sequence

{log p(x; θ̇(k+1))− log p(x; θ̇(k))}

vanishes.

Hence, a bounded likelihood function guarantees the existence of a maximum

likelihood solution(s). This can also be shown by the nested interval theorem [38,

problem 2-1-12]. These previous properties would be a consequence of any rule that

chooses feasible, usable iterates. The value of the rule in (3.37) is that it allows for

statements to be made on the sequence {θ̇(k)}.

Theorem 3.36. If the likelihood p(x; ·) is bounded above, then the sequence

{‖θ̇(k+1) − θ̇(k)‖I(θ̇(k))}

vanishes as k →∞.

This theorem does not guarantee that the sequence {θ̇(k)} will converge or

even have a limit point.16 (The series

k
∑

j=1

1

j
is an example of a sequence satisfying

the above theorem with no real-valued limit points.) Although, if the set Θθ̇(k) is

16A point a is a limit point of a sequence {an} if for any integer K and any ε > 0, there exists
an k > K such that |ak − a| < ε.
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bounded for some k, then the Bolzano-Weierstrass theorem [38, p. 52, theorem 2-12]

implies the existence of a limit point of the sequence.

Theorem 3.37. If Θθ̇(1) is compact and convex, then limit points of the sequence

{θ̇(k)} are also stationary points.

The theorem remains true if Θθ̇(k) is compact and convex for any k.

Theorem 3.38. If Θθ̇(1) is compact for all sequences in a closed set of Θf and if

there is a unique limit point θ? for all such sequences then lim
k→∞

θ̇(k) = θ? for every

sequence {θ̇(k)}. Also, θ? is the maximum of p(x; ·).

3.4.3.2 Linear constraints

Linear constraints on the parameter typically restrict the parameter to a set

of the form Θf = {θ′ ∈ Θ : Fθ
′

+ v = 0} (see section 3.3). Under this linear

constraint, the restoration operation π[·] is redundant since any step remains in the

constraint space, i.e., since θ̇(k) ∈ Θf and F ·CCRB(θ̇(k)) = 0. Thus the method of

scoring with parametric equality constraints in (3.36) simplifies to the iteration

θ̇(k+1) = θ̇(k) + α(k)CCRB(θ̇(k))s(x; θ̇(k)).

Example 3.39 (Linear model with linear constraints). In the linear model with nor-

mal noise case of section 3.3.2, we have x = Hθ+w withw ∼ N (0,C). In this case,

the negative Hessian is the FIM and the optimization problem becomes a null space

quadratic exercise [21], i.e., the minimization of a quadratic objective subject to a

linear constraint. The CCRB = U
(

UTHTC−1HU
)−1

UT , which is constant with

78



respect to the parameter; and the Fisher score is s(x; θ
′

) = HTC−1
(

x−Hθ′
)

.

Hence, if θ̇(1) is any feasible vector, e.g., θ̇(1) = −F T
(

FF T
)−1

v, then the method

of scoring with constraints finds the CMLE in one step to be

θ̇(2) = θ̇(1) + CCRB ·HTC−1
(

x−Hθ̇(1)
)

which is exactly the formula in (3.29) from theorem 3.30. The next iterate θ̇(3) =

θ̇(2) +CCRB ·HTC−1
(

x−Hθ̇(2)
)

reveals that the procedure reaches a fixed point

since

CCRBHTC−1
(

x−Hθ̇(2)
)

= CCRBHTC−1
(

x−H
(

θ̇(1) + CCRBHTC−1
(

x−Hθ̇(1)
))

)

= CCRBHTC−1
(

x−Hθ̇(1)
)

− CCRBHTC−1HCCRBHTC−1
(

x−Hθ̇(1)
)

= 0

Therefore, θ̂CML(x) = θ̇(2).

Example 3.40 (Jamshidian’s GP algorithm). Jamshidian [33] developed a Gradient

Projection (GP) algorithm for maximizing the likelihood subject to linear parameter

constraints using the iteration

θ̇(k+1) = θ̇(k) + α(k)
(

W−1 −W−1F T
(

FW−1F T
)−1

FW−1
)

s(x; θ̇(k)) (3.38)

for some positive definite matrix W . An optimal choice with regard to the algo-

rithm’s rate of convergence, Jamshidian suggests, is a possibly diagonally loaded

Hessian of the log-likelihood

W (x, θ̇(k)) =
∂

∂θT
s(x; θ̇(k)) + γ(k)Im×m,
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where γ(k) ≥ 0 is chosen to be sufficiently large enough to ensure the positive

definiteness of the matrix W . This formulation is closely connected to the method

of scoring with constraints. The GP iteration is equivalent to scoring by choosing

W (x, θ̇(k)) to be the FIM, when it is nonsingular. Indeed, the projecting matrix

is similar to the Marzetta form of the CCRB in [47] with W (x, θ̇(k)) replacing the

FIM. This fact produces a slight generalization of the GP iteration, given by

θ̇(k+1) = θ̇(k) + α(k)U
(

UTW (x, θ̇(k))U
)−1

UTs(x; θ̇(k))

where U is defined as in (3.6). In this formulation, the projecting metricW (x, θ̇(k))

only needs to be positive semidefinite. Alternatively, in (3.38) the Aitchison and

Silvey [4] substitution for the FIM, I(θ̇(k)) + F T (θ̇(k))KF (θ̇(k)), instead of a di-

agonally loaded Hessian of the log-likelihood (or even a diagonally loaded Fisher

information matrix).

In this sense, the two iterations are equivalent for the linear model, when the

FIM is simply the negative Hessian. This occurs when the log-likelihood is quadratic

(normal). This also suggests the adaption of Jamshidian’s GP algorithm to cases of

nonlinear constraints. Likewise, asymptotically, where yn is denoted as in section

3.4.2, then by the law of large numbers the Jamshidian projection matrix

W (yn, θ̇
(k))→ nI(θ̇(k)) + γ(k)Im×m

for an arbitrarily small (possibly zero) γ(k) > 0, as I(θ̇(k)) is positive semidefinite.

The projection step update then becomes

θ̇(k+1) = θ̇(k) + α(k)CCRB(θ̇(k))s(yn; θ̇(k))− α(k)γ(k)s(yn; θ̇(k)),
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i.e., essentially equivalent to the method of scoring with parametric equality con-

straints in (3.35).

3.5 Hypothesis testing

In section 2.5, hypothesis testing (the Rao and Wald tests) using the CRB

was reviewed. In this section, hypothesis testing is considered under a constrained

alternative. Assume h : Rm → Rr is a consistent and nonredundant differentiable

function, which is also consistent and nonredundant with the differentiable function

f : R
m → R

k. Hence, Θh = {θ′

: h(θ
′

) = 0} ⊂ Θf , where Θf is defined as in (3.4),

and also rank(

[

H(θ)
F (θ)

]

) = r + k ≤ m and r < m− k. Then the hypothesis test can

be stated as

H0 : h(θ) = 0 vs. H1 : f (θ) = 0. (3.39)

Naturally, f (θ
′

) = 0 under these conditions defines an implicit function locally, so

assume gθ′ : Rm−k → Rk is such a function satisfying theorem 3.3 for any θ
′ ∈ Θf .

Then, a locally (or asymptotically) equivalent hypothesis can be stated as

H0 : h(gθ(ξ)) = 0 vs. H1 : h(gθ(ξ)) 6= 0. (3.40)

In this formulation, the well-known Rao and Wald statistics were shown in section

2.5.
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3.5.1 The Rao statistic

For the hypothesis testing scenario in (3.40), the Rao test statistic presented

in section 2.5.1 is given by

ρ(yn) = s̃T (yn; ξ̂h(g)(yn))Ĩ
−1
n (ξ̂h(g)(yn))s̃(yn; ξ̂h(g)(yn))

where s̃(yn; ξ̂h(g)(yn)) is the Fisher score of the observations yn (as defined in sec-

tion 3.4.2) and evaluated at theH0-constrained maximum likelihood estimate or con-

strained root of the likelihood estimate (CRLE) ξ̂h(g)(yn) of the likelihood q(yn; ξ) =

p(yn; gθ(ξ)), and Ĩ−1
n (ξ̂h(g)(yn)) is the n-sample Fisher information evaluated at the

CMLE. In this context, the CMLE is the solution to the optimization problem

max
ξ
′

log q(x; ξ
′

) s.t. h ◦ gθ′ (ξ
′

) = 0. As in theorem 3.5, s̃(yn; ξ
′

) = Gθ′ (ξ
′

)s(yn; θ
′

)

and Ĩn(ξ
′

) = n GT (ξ
′

)I(gθ′ (ξ
′

))G(ξ
′

). Also, recall that for sufficiently large n,

θ̂h(yn) = gθ(ξ̂h(g)(yn)). Therefore, the locally (or asymptotically) equivalent Rao

test statistic for the hypothesis in (3.39) is

ρ(yn) =
1

n
sT (yn; θ̂h(yn))CCRB(θ̂h(yn))s(yn; θ̂h(yn)), (3.41)

which is analogous to (2.9) with the CCRB replacing the CRB. Under H0, ρ(yn)

is still asymptotically χ2
r in distribution. The corresponding Lagrange-multiplier

variant of this statistic is given by

ρ(yn) =
1

n
λ̂h(yn)H(θ̂h(yn))CCRB(θ̂h(yn))HT (θ̂h(yn))λ̂h(yn), (3.42)

where the Lagrange multiplier estimates λ̂h(yn) are based on the first order condi-

tions relating to the constraint h (not h and f ).
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The result in (3.41) is consistent with the classical results in [63], although not

explicitly in this form. For the hypothesis scenario in (3.39) the Lagrange multiplier

statistic should be λ̂T
hR

−1

θ̂
λ̂h, where Rh,θ̂ is defined by





Pθ ∗ ∗
∗ ∗ ∗
∗ ∗ Rh,θ



 =





I(θ) + F T (θ)F (θ) −F T (θ) HT (θ)
F (θ) 0 0

H(θ) 0 0





−1

,

which is a variant of what appears in [63, equation (6.5)]. Finding the inverse using

the Schur complement, it is clear that

Rh,θ = HT (θ)
[

D−1(θ)−D−1(θ)F T (θ)
(

F (θ)D−1(θ)F T (θ)
)−1

F (θ)D−1(θ)
]

H(θ)

with D(θ) = I(θ) + F T (θ)F (θ). Recognizing the inner matrix as the Aitchison-

Silvey-Crowder variant of the CCRB formula in (3.14) and substituting the CMLE

for the parameter obtains (3.42).

3.5.2 The Wald statistic

Similarly, the Wald test statistic presented in section 2.5.2 is

hT (g(ξ̂(yn)))
(

H(g(ξ̂(yn)))GT (ξ̂(yn))Ĩ−1
n (ξ̂(yn))G(ξ̂(yn))HT (g(ξ̂(yn)))

)−1
h(g(ξ̂(yn)))

for the testing problem in (3.40), where g is localized about θ. Following the steps

in section 3.5.1, then to test (3.39), the corresponding Wald test statistic is

ω(yn) = nhT (θ̂(yn))
(

H(θ̂(yn))CCRB(θ̂(yn))HT (θ̂(yn))
)−1

h(θ̂(yn)).

As with the Rao statistic, this general Wald statistic replaces the CRB in (2.10)

with the CCRB, and under H0, ω(yn) is asymptotically χ2
r in distribution.
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This agrees with the classical result in [2, ‘λ21(θ)’ on p. 240] where the Gorman-

Hero-Aitchison-Silvey variant of the CCRB formula in (3.12) is used instead. (The

general scenario when the FIM is singular is discussed in [2, section 3.9].)

A requirement for the existence of this statistic is that H(θ)CCRB(θ)HT (θ)

be regular. This is not an additional requirement, but a necessity in testing that

the hypothesis testing function itself be identifiable for the hypothesis to be valid.

3.6 Discussion

The previous sections have established that the theory of the constrained CRB

is equivalent to that of the CRB. The majority of the proofs, besides their novelty in

the recent literature on the CCRB, essentially rely on the generation of an implicit

function that translates the constrained parametric problem into an unconstrained

parametric problem, for which the theory of the CRB is well-established.

This theory has been extended to the CCRB, in particular, for identifiabil-

ity under constraints; for the linear model with linear constraints (already well-

documented in the literature but perhaps not with reference to this CCRB); for the

constrained maximum likelihood problem, its asymptotic normality and the method

of scoring; as well as for the Wald and Rao hypothesis tests. This list is by no means

exhaustive. There exists recent research, for example, related to biased estimation

with the CCRB [9], and an extension of the CCRB for complex-valued parameters

[32]. In addition, there are other areas in mathematical statistics that, as far as I

know, have not yet been connected to the CCRB, including a geometric interpreta-
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tion of the CCRB (possibly in the manner of [60] or and extension of [5]), biasedness

issues with constrained estimation, confidence intervals or sets, and the plausibility

of a Bayesian version of the CCRB.

While the primary contributions of this thesis are the theoretical results and

their proofs existing in this chapter, this should not discount the practical applica-

tions of these ideas. From the practitioners viewpoint, this research has produced a

number of useful tools. For example, to test local identifiability, in addition to the

classic result of Rothenberg (theorem 3.23), theorem 3.24 may be used. Likewise,

for strict identifiability, theorem 3.29 is useful. And the method of scoring in (3.36)

adds to the list of constrained maximum likelihood methods. These and others will

be applied in a communications context, in the next chapter.
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Chapter 4

Applications of the CCRB in Communications Models

Communications models in statistical signal processing often have the struc-

ture

y(n) = µ(n, θn) + w(n) , n = 0, . . . , N, (4.1)

where y(n) are the received observations of some model µ(n, θn) affected (additively)

by noise w(n) over a series of time samples n. The parameters may or may not

be dependent on the number of time samples and the noise may or may not be

independent (or even normally distributed). This general model encompasses a

number of areas of signal processing, e.g., communications, sonar, radar, speech,

imaging, control, sensing, networks, etc. In every one of these areas, there exist

models where parametric equality constraints are of interest to practitioners in the

field. The CCRB has proven useful as a performance analysis tool in localization [6],

watermarking security [15], tomography [28], source bearing and symbol estimation

[59], space-time block coding [42], and even a variant of least squares [46].

In this chapter, we shall detail just two rather general signal processing com-

munications models: the convolutive channel and the calibrated array, each with

unknown signal and channel components. Because the source and channel interact

multiplicatively in the models, numerous variations of these two basic models are

possible (and necessary). We shall formulate constraints for just a few of these vari-
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ations and connect the results of this chapter to the theory developed in Chapter

3. For the sake of coherence in the presentation, the lengthier proofs of theorems in

this chapter are relegated to appendix C.

In section 4.1, the convolutive mixture model with deterministic parameters is

presented using a variety of descriptions. In addition, several useful terms are defined

in section 4.1.1.2 that are useful to characterize conditions on the a notion of near-

identifiability presented in section 4.1.2 and conditions on the Fisher information

derived in 4.1.3. The corresponding complex-valued FIM (CFIM) is defined in

4.1.3.2 and important properties are given in 4.1.3.3. These properties are critical to

understanding the particular inherent ambiguities in the basic convolutive mixture

model and determining the class of constraints are necessary to obtain a CCRB, as

discussed in 4.1.4.1. Two constraint models, the norm constraint (in 4.1.4.2) and the

semiblind constraint (in 4.1.4.3) serve as further validation of the CCRB method

by obtaining prior results in the literature; while another constraint model, the

combination of the semiblind and unit modulus constraints in 4.1.4.4, demonstrates

an important constraint model that did not previously exist in the literature.

In section 4.2, a special case of the convolutive mixture model, called the cal-

ibrated array model, is considered. The FIM for this (sub)model and its properties

are detailed in section 4.2.1 and various constraints are considered in section 4.2.2.

As before, a number of the constraint models are validations of the CCRB method

compared with previous results in the literature (in 4.2.2.1, 4.2.2.2 and 4.2.2.5).

The CCRB approach is also used to detail constraint models where the constraints

are inappropriate either because the constraints are over-determined (in 4.2.2.3) or
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because they are under-determined (in 4.2.2.4). As with the more general convo-

lutive mixture model, a constraint model case is presented in 4.2.2.6 that did not

previously exist in the literature.

4.1 Convolutive Mixture Model

The complex baseband representation of a multi-input, multi-output (MIMO)

finite impulse response (FIR) system, or the convolutive mixture model, may be

written as

ym(n) =
K
∑

k=1

s(k)(n) ∗ h(k)
m (n) + wm(n)

=
K
∑

k=1

Lk
∑

l=0

s(k)(n− l)h(k)
m (l) + wm(n) (4.2)

for the nth observation of the mth channel where the model consists of K sources,

M channels (1 ≤ m ≤ M) with maximal order Lk for the kth source (or Lk +1 taps

for the kth source), N output samples (0 ≤ n ≤ N − 1) per channel and N + Lk

input samples per channel per source. For each source, the model can be seen in

figure 4.1. The dimensions K, M , Lk for k = 1, . . . , K, and N are all assumed

known. The elements s(k)(n) denote the scalar, complex value of the kth input

source at time n; the elements of h
(k)
m (l) denote the scalar, complex value of the lth

filter coefficient (or lag) of the kth source processed by the mth channel. Both the

signal inputs and channel coefficients are treated as deterministic unknowns, i.e.,

parameters having true values that can be estimated. The noise elements wm(n)

are commonly assumed to be zero-mean, complex-valued, circular Gaussian iid over
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space and time (and channel) with known variance σ2.1

s[n] z
−1 z

−1
z
−1

L∑

l=0

h[l]s[n− l]

Σ

× × ×h[0] h[1] h[L]

Figure 4.1: Finite Impulse Response (tapped delay line) model.

The convolution aspect of this model is often used to characterize the inter-

symbol interference in direct sequence CDMA (code-division multiple-access) over

dispersive channels [44]. This occurs, for example, when the propagation time of

the signal is shorter than the coherence time of the channel in wideband signals.

The varying channel order lengths Lk represent the different coherence times of

the different source-channel links. This convolution also applies to scenarios where

reverberation of the transmitted signal is present, which occurs when the commu-

nications is echoed. Additionally, the additive aspect over the sources represents

the multiuser interference (e.g., the cocktail problem) common in communications

systems today. Moreover, this convolutive mixture model incorporates a number of

important model subclasses:

1. the convolutive single-input, multi-output (SIMO) model when K = 1,

1Under the Gaussian assumption, an unknown variance parameter decouples from the unknown
mean parameters in the Fisher information. So, while the noise power will affect the performance
potential, whether σ2 is known or not does not affect how the CRB (CCRB) depends on the
parameters. It does, of course, affect estimation.
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2. the convolutive single-input, single-output (SISO) model when K = M = 1,

3. the memoryless, instantaneous mixing model when Lk = 0 for all k = 1, . . . , K,

and

4. the calibrated model (with constraints and a transformation of parameters).

For generality, we consider the full (MIMO) model, but the results contained in this

section also apply to the preceding subclasses.

4.1.1 Equivalent Convolutive Mixture Models

4.1.1.1 The Vector-Matrix Model

In vector-matrix notation, the model may be written as

y =
K
∑

k=1

H
(k)
M s(k) +w =HMs+w (4.3)

where the observations are contained in yT =
[

yT
1 , · · · ,yT

M

]

∈ C
NM and the ob-

servations for each channel contained in yT
m =

[

ym(0), · · · , ym(N − 1)
]

∈ CN for

m = 1, . . . ,M , s(k)T =
[

s(k)(−Lk), . . . , s
(k)(N − 1)

]

∈ CN+Lk represents the input

sequence of the kth source, the channel matrix is represented by the NM ×N +Lk

matrix

H
(k)
M =









H
(k)
(1)

...

H
(k)
(M )









(4.4)
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where the mth channel submatrix over the kth source is given by the N ×N + Lk

matrix

H
(k)
(m)

=

















h
(k)
m (Lk) h

(k)
m (Lk − 1) · · · h

(k)
m (0)

h
(k)
m (Lk) h

(k)
m (Lk − 1) · · · h

(k)
m (0)

. . .
. . .

h
(k)
m (Lk) h

(k)
m (Lk − 1) · · · h

(k)
m (0)

















(4.5)

for m = 1, . . . ,M , and the noise vector is wT =
[

wT
1 , · · · ,wT

M

]

∈ CMN with

the noise for each channel given by wT
m =

[

wm(0), . . . , wm(N − 1)
]

∈ CN . This

particular vector-matrix ordering of the model can also be represented as

y =

K
∑

k=1

(

IM×M ⊗S(k)
)

h(k) +w = SMh+w (4.6)

where the input samples are now organized into an N × Lk + 1 Toeplitz matrix

S(k) =











s(k)(0) s(k)(−1) · · · s(k)(−Lk)

s(k)(1) s(k)(0) · · · s(k)(−Lk + 1)
...

...
. . .

...

s(k)(N − 1) s(k)(N − 2) · · · s(k)(N − Lk − 1)











with ⊗ being the Kronecker product, and the channel elements are vectorized as

h(k)T =
[

h
(k)T
1 , . . . ,h

(k)T
M

]

∈ CM (Lk+1) with h
(k)T
m =

[

h
(k)
m (0), . . . , h

(k)
m (Lk)

]

∈ CLk+1

for each k = 1, . . . , K and m = 1, . . . ,M . The purpose of these alternative vector-

matrix methods will become evident in the development of the Fisher information

(see section 4.1.3) for the original model in (4.2).

4.1.1.2 The Z transform model

Yet another alternative representation of this model, necessary to introduce

relevant characteristics of the model parameters, and often referred to as being in
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the Z-transform domain, is the M-variate stationary process

y(n) =
[

H(z)
]

∗ s(n) +w(n) (4.7)

where H(z) is a M ×K (global) transfer function (polynomial) defined by

H(z) =
[

H(1)(z), . . . ,H(K)(z)
]

for nonzero z ∈ C∗ (including∞) withH(k)(z) being the kth source transfer function

H(k)(z) =

Lk
∑

l=0

h(k)(l)z−l

and with h(k)(l)T =
[

h
(k)
1 (l), h

(k)
2 (l), . . . , h

(k)
M (l)

]

∈ CM for l = 0, . . . , Lk and k =

1, . . . , K, s(n)T =
[

s(1)(n), s(2)(n), . . . , s(K)(n)
]

∈ CK for n = 0, . . . , N − 1, and

y(n) and w(n) correspond to match the models in (4.3) and (4.6).

Hence, H(z) is a polynomial matrix of the backward shift z−1. The kth

source transfer function is said to have a common zero if there exists a nonzero

z0 ∈ C∗ such that H(k)(z0) = 0. If the transfer function does not have a common

zero, then the polynomials H
(k)
(m)(z) =

Lk
∑

l=0

h(k)
m (l)z−l, for m = 1, . . . ,M , are said

to be coprime. The global transfer function is said to be reducible if there exists a

nonzero z0 ∈ C∗ such that rank(H(z0)) < K. If not, it is said to be irreducible.

The global transfer function is said to be column-reduced if lim
z→0

rank(H(z)Z) = K

where Z = diag{zL1, . . . , zLK}. This necessarily implies for an irreducible and

column-reduced transfer function, called a minimum polynomial basis [35], that

M ≥ K. The connection between irreducibility in the multi-source case and not

having common zeros in the single source case is made clear in the following result.
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Theorem 4.1. H(z) is irreducible if and only if

K
∑

k=1

αkH
(k)(z) has no common

zeros for any nontrivial complex-valued collection α1, . . . , αK .

Proof. H(z) is reducible if and only if there exists some point z0 ∈ C∗ such that

rank(H(z0)) < K, which follows if and only if there exists nontrivial β1, . . . , βK ∈ C

such that

K
∑

k=1

βkH
(k)(z0) = 0, i.e., if and only if

K
∑

k=1

βkH
(k)(z) has a common zero.

The connection between the model in (4.3) and (4.7) is that the K-source, M-

channel matrix HM is a column-rotated, generalized Sylvester matrix of the block

Toeplitz matrix











H(L) H(L− 1) · · · H(0)
H(L) H(L− 1) · · · H(0)

. . .
. . .

H(L) H(L − 1) · · · H(0)











where H(l) =
[

h(1)(l), . . . ,h(K)(l)
]

with h(k)(l) a null vector when l > Lk and

L = max
k
Lk. Furthermore, under certain conditions, the rank of HM is determined

by the characterization of the basis H(z).

Theorem 4.2. Assume M > K and N ≥
K
∑

k=1

Lk. Then HM is full column rank if

and only if H(z) is a minimum polynomial basis.

Proof. This can be shown by a variant of the proof in Loubaton and Moulines [44,

theorem 1].

The input sequence s(k) is said to have pk modes2 if it can be written as a

2There are a number of alternative definition of modes [30, 43], [35, p. 168].
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linear combination

s(k)(n) =

pk
∑

i=1

cim
n+Lk

i ,

where ci, i = 1, . . . , pk are complex-valued weights and mi, i = 1, . . . , pk are the

C∗-valued roots of the polynomial

a(0) + a(1)z−1 + a(2)z−2 + · · ·+ a(pk)z
−pk ,

whose coefficients satisfy
pk
∑

j=0

s(k)(i+ j)a(j) = 0

for i = −Lk, . . . , N − pk − 1. Hence, the Toeplitz matrix

S(k)(n) =











s(k)(n) s(k)(n− 1) · · · s(k)(−Lk)

s(k)(n+ 1) s(k)(n) · · · s(k)(−Lk + 1)
...

. . .
...

s(k)(N − 1) s(k)(N − 2) · · · s(k)(N − n − Lk − 1)











(4.8)

has rank min{N − n, p, n + Lk + 1} [76, lemma 1]. Note, S(k)(0) = S(k) and

S(k)(−Lk) = s(k) from section 4.1.1.1. If one of the modes of s(k) is a common

zero of the channel transfer function H(k)(z), say mv, then the channel makes no

distinction between s(k) and s(k)′ , defined by

s(k)′(n) =

pk
∑

i=1
i6=v

cim
n+Lk

i ,

even though s(k) 6= s(k)′. Ironically, if a channel lacks sufficient diversity, the more

modes an input has leads to greater risk of lost information on the input but poten-

tially less meaningful loss depending on the weights.

Theorem 4.3. The matrix

S(n) =
[

S(1)(n) S(2)(n) · · · S(K)(n)
]

(4.9)
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is full column rank only if N ≥ (K + 1)n +K +

K
∑

j=1

Lj, ptotal ≥ Kn+ K +

K
∑

k=1

Lk,

and pk ≥ Lk +1+n for each k = 1, . . . , K and if N ≥ (K+1)n+K+(K+2)

K
∑

j=1

Lj,

ptotal ≥ K ∗ n+K + (K + 1)
K
∑

k=1

Lk, and pk ≥ Lk + 1 + n +
K
∑

j=1

Lj.

Proof. This is a variation of the results in [76, 1, 48, 49].

In particular, for n = 0 then S(0) requiresN ≥ K+

K
∑

j=1

Lj , ptotal ≥ K+

K
∑

j=1

Lj,

and pk ≥ Lk + 1, for each k = 1, . . . , K, to be full rank. Or conversely, S(0) is full

rank if N ≥ K+(K+2)
K
∑

j=1

Lj , ptotal ≥ K+(K+1)
K
∑

k=1

Lk, and pk ≥ Lk+1+
K
∑

j=1

Lj.

Before continuing to the development of the Fisher information for this con-

volutive mixture model, it is relevant to consider a notion of identifiability using the

concepts of the Z-transform model in (4.7). However, this next section is a brief

aside that may be skipped if not of interest to the reader.

4.1.2 Strict Identifiability

The K-user, M-channel FIR system in (4.2) or (4.3) is said to be strictly

identifiable (SI) if and only if

HMs = H
′

Ms
′ ⇐⇒H

′

(z) = H(z)A and s
′

(n) = A−1s(n)

for some nonsingular matrix A. The converse statement is always true, so strict

identifiability depends on the conditional statement. The term strict identifiability

is a misnomer. As is clear from the definition, the deterministic parameters are

not “identifiable” when they are strictly identifiable. Instead, the parameters are
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identifiable up to some minimal ambiguity. When this situation occurs, then it

is possible to treat the channel (signal) components statistically to truly identify

the deterministic signal (channel) parameters using stochastic approaches, e.g., the

subspace method [24, 44]. In the context of this thesis, where the parameters are

not treated as random but as deterministic, the reduction to a minimal ambiguity

set also reduces the number of necessary constraints to eliminate it.

Strict identifiability in the convolutive channel model, it shall be shown, has

some interesting connections with the Fisher information matrix. This is not sur-

prising, given the results in section 3.2. It is perhaps also intuitive to expect that as

strict identifiability is a notion of near-identifiability, then the corresponding Fisher

information will satisfy some notion of near-regularity.

Abed-Meraim and Hua [1] developed necessary and sufficient conditions for

strict identifiability in terms of characteristics in the Z-transform model, i.e., no

channel zeros, the number of signal modes, more sources than sensors, etc. The

following two theorems will be presented without proof, as they were in [1]. Proofs

I developed can be found in [48].

Theorem 4.4 (SI necessary conditions). The M-channel K-source FIR system is

strictly identifiable only if3

(a) H(z) is irreducible and column-reduced,

(b) ptotal ≥ K +
K
∑

j=1

Lj,

3In [1], condition (a) omits the column-reducedness requirement, condition (c) did not include

the special case, and condition (d) is originally (and I think erroneously) stated N ≥ 2K+
∑K

j=1 Lj.
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(c) pk ≥ Lk + 2 for k = 1, . . . , K of pk ≥ 1 if Lk = 0, and

(d) N ≥ K +
K
∑

j=1

Lj.

Theorem 4.5 (SI sufficiency conditions). The M-channel K-source FIR system is

strictly identifiable if

(a) H(z) is irreducible and column-reduced,

(b) ptotal ≥ K + (K + 1)
K
∑

j=1

Lj,

(c) pk ≥ Lk + 1 +
K
∑

j=1

Lj for k = 1, . . . , K, and

(d) N ≥ K + (K + 2)

K
∑

j=1

Lj.

Yet other notions of near-identifiability in the convolutive channel model exist

in the literature, e.g., cross-relation-based identifiability [43], which have an equiv-

alence to strict identifiability in the SIMO case [30]. The necessary and sufficient

conditions presented here are independent of the number of channels, although one

should expect that increasing the number of channels would increase channel di-

versity thereby weakening the requirements on the other channel or source charac-

teristics. Hence, theorems 4.4 and 4.5 are in some sense conditions for the least

diversified, strictly identifiable scenario M = K + 1. Table 4.1 shows the growth

in necessary and sufficient conditions as the number of users increases for a fixed

channel size and for fixed channel orders.
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Table 4.1: Necessary and sufficient data sizes for strict identifiability

# of sources K 1 2 3 4 5

necessary data size N 6 12 18 24 30

sufficient data size N 16 42 78 124 180

(M = 6 channels, Lk = 5 for all sources)

4.1.3 The Fisher information of the convolutive mixture model

4.1.3.1 Complex-valued Fisher information

Before presenting the Fisher information on the model in (4.2), certain details

about Fisher information matrices on complex-valued parameters are necessary. The

structure of the FIM depends on the ordering of the parameters. For complex-valued

parameters, the FIM parameter vector consists of the real and imaginary parts of

the parameters. If the complex-valued parameters are collected in the vector ϑ and

the (FIM) real parameter vector is defined to be θT =
[

Re(ϑT ), Im(ϑT )
]

and the

real-valued parameter FIM has the structure

I(θ) =

[

E1(θ) −E2(θ)
E2(θ) E1(θ)

]

, (4.10)

then the complex-valued parameter Fisher information matrix (CFIM) may be de-

fined as4

I(ϑ) = Eϑ∫(x;ϑ)∫H(x;ϑ) =
1

2

(

E1(θ) + j ·E2(θ)
)

where ∫ (x;ϑ) =
∂ log p(x;ϑ)

∂ϑ∗ .5 A number of properties for the real-valued param-

eter FIM can be gleaned from properties on the CFIM.

4This CFIM is a submatrix of the complex-valued parameter FIM developed by van den Bos
[70], which would be the preferred FIM for use in a performance metric or in applying constraints
[32]. However, in this and the next sections, the CFIM presented here is only used to obtain
properties relevant to the real-valued parameter FIM.

5The complex derivative is defined to be ∂
∂ϑ

= ∂
∂Reϑ − j · ∂

∂Imϑ
in this thesis.
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Theorem 4.6. The null space of the FIM of the form (4.10) has dimension exactly

twice the dimension of the null space of the corresponding CFIM, i.e.,

nullity(I(θ)) = 2 · nullity(I(ϑ)).

Proof. Note

[

E1 −E2

E2 E1

][

a

b

]

= 0 if and only if E1a−E2b = 0 and E2a+E1b = 0

if and only if
(

E1 + jE2

) (

a + jb
)

=
(

E1a−E2b
)

+ j
(

E2a+E1b
)

= 0. Also,
[

E1 −E2

E2 E1

][

a

b

]

= 0 if and only if

[

E1 −E2

E2 E1

] [

−b
a

]

= 0. Finally, the dimension

of

[

a −b
b a

]

is 2 unless a = b = 0; however, the dimension of
[

a + jb, −b+ ja
]

is

only 1 since
(

−b+ ja
)

= −j ·
(

a + jb
)

.

A version of Bang’s formula [36, a variant of (15.52) on p. 525] can be devel-

oped for complex-valued parameters, i.e.,

I ij(ϑ) = tr

[

C−1(ϑ)
∂C(ϑ)

∂ϑ∗
i

C−1(ϑ)
∂C(ϑ)

∂ϑj

]

+
∂µH(ϑ)

∂ϑ∗
i

C−1(ϑ)
∂µ(ϑ)

∂ϑj

+
∂µT (ϑ)

∂ϑ∗
i

C−1(ϑ)
∂µ∗(ϑ)

∂ϑj

for any observations y ∼ CN (µ(ϑ),C(ϑ)).

4.1.3.2 CFIM for the convolutive mixture model

For the convolutive mixture model in (4.3) and (4.6), only the mean vector

depends on the unknown parameters, hence

I(ϑ) =
∂µH(ϑ)

∂ϑ∗ C−1∂µ(ϑ)

∂ϑT
+
∂µT (ϑ)

∂ϑ∗ C−1∂µ
∗(ϑ)

∂ϑT
.

The mean vector is

µ(ϑ) =

K
∑

k=1

H
(k)
M s(k) =

K
∑

k=1

(

IM ⊗ S(k)
)

h(k).
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Therefore, if the complex-valued parameter vector in the model in (4.3) is defined

by

ϑT =















h(1)T

s(1)T

...

h(K)T

s(K)T















(4.11)

then the complex-valued FIM of the model can be shown to be

I(ϑ) =
1

σ2
QHQ =

1

σ2











QH
1 Q1 QH

1 Q2 · · · QH
1 QK

QH
2 Q1 QH

2 Q2 · · · QH
2 QK

...
... · · · ...

QH
KQ1 QH

KQ2 · · · QH
KQK











(4.12)

where Q =
[

Q1, . . . ,QK

]

and Qk =
[

IM ⊗ S(k) H
(k)
M

]

.

4.1.3.3 Properties of the CFIM

In this section, I develop properties of this CFIM. In particular, the singularity

of the CFIM is proven and a limit on the dimension of this singularity is detailed, as

well as necessary and sufficient conditions on the parameter characteristics to attain

this limit.

Given the inherent relationship between regularity of the FIM and identifi-

ability as detailed in section 3.2, it should not be surprising that the FIM, and

hence CFIM, is singular. The model presented in (4.3) or (4.6) has a multiplicative

ambiguity with any source interacting with its corresponding channel, i.e., for any

nonsingular matrix A ∈ RLk+1×Lk+1, the input source matrix S(k) and the channel

vector h
(k)
m are indistinguishable from S(k)A and A−1h

(k)
m , respectively. Over all the

channels, this presumes a complex-valued multiplicative ambiguity of at least MLk.

Additionally, cross-source ambiguities exist between a source input and a different
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source channel. The limit for the minimal degrees of freedom or the rank of the

ambiguity is given in the following theorem.

Theorem 4.7. The CFIM is singular and the dimension of its null space is lower

bounded as

nullity(I(ϑ)) ≥
K
∑

i=1

K
∑

j=1

(Li − Lj + 1)+, (4.13)

where (a)+ = a for a ≥ 0 and (a)+ = 0 for a < 0. This limit quantity is the nullity

lower bound (NLB).

The proof can be found in the appendix C. The proof constructs the following

matrix, whose linearly independent columns are a basis for the null space of I(ϑ),

N =





















h(1) H
(2)
(1)

0 0 · · · H
(K)
(1)

0 · · · 0 · · · 0 0

−s(1) 0 0 −S
(2)
(1)

· · · 0 0 · · · 0 · · · 0 −S
(K)
(1)

0 0 h(2) H
(1)
(2)

· · · 0 H
(K)
(2)

· · · 0 · · · 0 0

0 −S
(1)
(2)

−s(2) 0 · · · 0 0 · · · 0 · · · −S
(K)
(2)

0

..

.
..
.

..

.
..
.

. . .
..
.

..

. · · ·
..
. · · ·

..

.
..
.

0 0 0 0 · · · 0 0 · · · h(K) · · · H
(2)
(K)

H
(1)
(K)

0 0 0 0 · · · −S
(1)
(K)

−S
(2)
(K)

· · · −s(K) · · · 0 0





















,

(4.14)

where H
(i)
(j) and S

(i)
(j) are defined in (C.2) and (C.4), respectively.

The nullity lower bound (NLB) seems to be an unusual quantity. The term

(Li − Lj + 1)+ represents the ambiguity for the “tap window” of the ith channel

masking the interaction of the jth channel with its corresponding source. This

quantity also reveals that an ambiguity exists only if the coherence-propagation

delay of the ith channel is at least as greats as for the jth channel. Intuitively,

the greater the spread between the channel orders increases the overlapping window

for the jth channel’s interaction to be masked and thereby increases the ambiguity.

Conversely, when the channel orders have narrow differences, this increases the
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diversity of the channel by limiting the window where one channel can cover that of

another.

A simple corollary follows stating that the NLB or the dimension of the am-

biguity set is at least the square of the number of sources.

Corollary 4.8. nullity(I(ϑ)) ≥ K2.

Proof. Note (Li − Lj + 1)+ + (Lj − Li + 1)+ ≥ 2 with equality if and only if

|Li − Lj| ≤ 1. Thus,

K
∑

i=1

K
∑

j=1

(Li − Lj + 1)+ =
K
∑

i=1

K
∑

j=1
j 6=1

(Li − Lj + 1)+ +
K
∑

i=1

(Li − Li + 1)+

=

K
∑

i=1

K
∑

j=i+1

(Li − Lj + 1)+ + (Lj − Li + 1)+ +K

≥ K(K − 1)

2
· 2 +K = K2.

The proof also reveals that this K2 degree of uncertainty can only be attained

if any two orders differ by at most 1 tap, which agrees with the intuition that channel

diversity is enhanced when the channel orders are not widely spread.

In addition to the ambiguity due to the channel order spread, the degrees of

freedom in the model depends on the number of parameters and the number of

observations.

Theorem 4.9. nullity(I(ϑ)) ≥
K
∑

k=1

(N + Lk +M(Lk + 1))−MN .

Proof. Since I(ϑ) = 1
σ2 Q

HQ then rank(I(ϑ)) = rank(Q). Since Q is a MN ×
K
∑

k=1

(N+Lk+M(Lk+1)), then rank(I(ϑ)) ≤ min

{

MN,

K
∑

k=1

(N + Lk +M(Lk + 1))

}
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and therefore

nullity(I(ϑ)) ≥ colsize(I(ϑ)) − rank(I(ϑ))

≥ max

{

0 ,

K
∑

k=1

(N + Lk +M(Lk + 1))−MN

}

.

The number of columns of Q (or I(ϑ)) corresponds to the number of unknown

parameters. Likewise, the number of rows of Q corresponds to the number of equa-

tions (observations) in the model (4.2). In most scenarios, having more equations

(rows) than unknowns (columns) is a necessary requirement for the unknowns to be

solvable. Thus, the degrees of freedom of the ambiguity space is at least the number

of unknowns (parameters) less the number of equations. However, if the equations

are linearly dependent (redundant), as is the case in the convolutive mixture model,

then the degrees of freedom is potentially greater. The following corollary combines

theorems 4.7 and 4.9.

Corollary 4.10.

nullity(I(ϑ)) ≥ max

{

K
∑

i=1

K
∑

j=1

(Li − Lj + 1)+,
K
∑

k=1

(N + Lk +M(Lk + 1)) −MN

}

.

The NLB depends only on the channel orders and number of sources, whereas

the “equations vs. unknowns” nullity bound depends on the channel orders, the

sample size per source, the number of subchannels per source, and the number of

sources. Hence, it is of interest to determine under what conditions on the sample

size N and the number of channels M per source will this second bound be of

no consequence. Control over the dimensions K (the number of transmitters), M
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(the number of receivers), N (the number of time snapshots or transmission length)

is possible in the design of many communications models. The next two results

determine conditions on the dimensions of the model which allow the NLB to be the

minimum possible degrees of freedom. The first condition requires more subchannels

per source than sources (or more receivers than transmitters in a communications

context).

Theorem 4.11. The CFIM I(ϑ) can attain the CFIM nullity lower bound only if

M > K.

Proof. If M ≤ K then HM , which is a MN × KN +
K
∑

k=1

Lk matrix, cannot be

full column rank by theorem 4.2. This implies the existence of a null space of a

larger dimension than the space spanned by the columns of N in (4.14). Hence

nullity(I(ϑ)) >

K
∑

i=1

K
∑

j=1

(Li − Lj + 1)+.

Under the assumption that more receivers than transmitters are in the model,

then corollary 4.10 implies a minimal requirement on the transmission snapshots.

Theorem 4.12. Provided M > K, the CFIM I(ϑ) can attain the CFIM nullity

lower bound only if

N ≥ K + 1

M −K
K
∑

j=1

Lj +
K
∑

j=1

Lj +K+
1

M −K

(

K2 −
K
∑

i=1

K
∑

j=1

(Li − Lj + 1)+

)

(4.15)

Proof. We desire

K
∑

i=1

K
∑

j=1

(Li−Lj +1)+ ≥
K
∑

k=1

(N +Lk +M(Lk +1))−MN . Solving

for N shows the result.

As the channel diversity (in terms of the number of channels per source) in-

creases, the necessary size on the data to attain the CFIM NLB decreases. As
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M →∞ then the bound on the sample size becomes simply N ≥ K+

K
∑

j=1

Lj, which

is comparable to theorem 4.4(d). However, for any finite M and nontrivial channel

orders, the bound is effectively N ≥ K +
K
∑

j=1

Lj +1 since −
K
∑

i=1

K
∑

j=1

(Li−Lj +1)+ ≥

−K
K
∑

j=1

(Lj + 1), and hence a looser bound than (4.15) is

N ≥ K + 1

M −K

K
∑

j=1

Lj +

K
∑

j=1

Lj +K +
1

M −K

(

K2 −K
K
∑

j=1

(Lj + 1)

)

≥
K
∑

j=1

Lj +K +
1

M −K
K
∑

j=1

Lj.

In the scenario requiring the most data samples, M = K + 1, then the system

requires N ≥ (K + 1)
K
∑

j=1

Lj +
K
∑

j=1

Lj +K +

(

K2 −
K
∑

i=1

K
∑

j=1

(Li − Lj + 1)+

)

. (This

last term is always nonpositive.) In the SIMO scenario (K = 1), this necessary

condition becomes N ≥ 3L+ 1 which agrees with the requirement in [31].6

Given that M > K and N satisfies (4.15), then the minimum possible nullity

of I(ϑ) is the nullity lower bound,

K
∑

i=1

K
∑

j=1

(Li − Lj + 1)+,

i.e., it is possible to limit the ambiguity strict to the mixing of sources in the convo-

lutive channel. If it is possible to understand the conditions under which the CFIM

attains this nullity lower bound, then it is known that the null space is completely

characterized by the columns of N in (4.14). The importance of this is that when

6For the SIMO (K = 1) case, this nullity lower bound is exactly 1 and parameters for which
the CFIM attains this bound are said to be Fisher information identifiable in [30]. The notion
of identifiability for the SIMO case is sensible since by scaling a single parameter it is possible to
obtain a bound on all the remaining parameters relative to the scaled parameter. This naturally
connects with the notion of strict identifiability in section 4.1.2. This interpretation does not
extend simply to the MIMO (K > 1) case; however, it shall be shown that there does exist an
inherent connection between a CFIM attaining the NLB and the notion of strict identifiability.
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the null space can be parameterized, then it is possible to use theorems 3.23 and

3.24 to determine constraints that lead to regularity of the CFIM (and FIM). Us-

ing the concepts of signal excitation (modes) and channel diversity (irreducibility

and column-reducedness) as defined in section 4.1.1.2, the following theorems also

establish a correlation of conditions between the idea of near-regularity when the

FIM attains the NLB and of near-identifiability (or strict identifiability) of section

4.1.2.

Theorem 4.13 (CFIM NLB necessary conditions). The M-channel K-source FIR

system Fisher information matrix has a nullity of exactly the NLB in (4.13) only if

(a) H(z) is irreducible and column-reduced,

(b) ptotal ≥ K +
K
∑

j=1

Lj,

(c) pk ≥ Lk + 2 for k = 1, . . . , K or pk ≥ 1 if Lk = 0,

(d) N ≥ K +
K
∑

j=1

Lj, and

(e) M > K.

Theorem 4.14 (CFIM NLB sufficiency conditions). The M-channel K-source FIR

system FIM has a nullity of exactly the NLB in (4.13) if

(a) H(z) is irreducible and column-reduced,

(b) ptotal ≥ K + (K + 1)

K
∑

j=1

Lj,

(c) pk ≥ Lk + 1 +
K
∑

j=1

Lj for k = 1, . . . , K,
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Table 4.2: Necessary and sufficient data sizes for the FIM to attain the NLB

# of sources K 1 2 3 4 5

necessary data size N 8 20 38 74 180

sufficient data size N 16 42 78 124 180

(M = 6 channels, Lk = 5 for all sources)

(d) N ≥ K + (K + 2)
K
∑

j=1

Lj, and

(e) M > K.

With the exception of condition (e), then theorems 4.13 and 4.14 are identical

to theorems 4.4 and 4.5, respectively. This is an expected result since the Fisher

information for identifiable parametric components within the model should meet

certain regularity conditions (see theorem 2.5). For theorem 4.13(d), the condition

is weaker than the condition in theorem 4.12, but it is left weaker to agree with the

necessary condition for strict identifiability in theorem 4.4(d). (It is unclear if that

condition would change if dependence on channel sizeM is considered.) Table 4.1.3.3

show the growth in the necessary and sufficient data size N as the number of sources

increases for fixed channel size and channel orders, using the stronger condition in

theorem 4.12 instead of that in theorem 4.13(d). It is clear that in comparison,

as the number of sources increases the number of channels, the necessary data size

grows to match the sufficient data size, which lead to theorem 4.15 and corollary

4.16.

First, the special case when the CFIM attains the minimal ambiguity is con-

sidered. As stated earlier this occurs when the windows of the channels are, in some

sense, minimally spread.
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Theorem 4.15. Given sufficient channel diversity and modes in the signals, e.g.,

the sufficient conditions of theorem 4.14, then nullity(I(ϑ)) = K2 if and only if

Lj ∈ {L0, L0 + 1} for all j = 1, . . . , K, for some integer L0.

Proof. Under the conditions of theorem 4.14, then nullity(I(ϑ)) = NLB and from

the proof of corollary 4.8, NLB = K2 if and only if (Li−Lj +1)++(Lj−Li+1)+ ≡ 2

for each i, j = 1, . . . , K. Either (Li−Lj+1)+ = (Lj−Li+1)+ = 1 or (Li−Lj+1)+ = 2

and (Lj − Li + 1)+ = 0 or vice versa.

The next corollary details the necessary and sufficient data size for the sources

under the special case of equivalent channel orders.

Corollary 4.16. Given sufficient signal modes and channel diversity, e.g., as in

theorem 4.14, if Lk = L for each k and M = K+1, then the CFIM attains the NLB

if and only if

N ≥ (K + 2)KL+K.

4.1.4 Constraints for the convolutive mixture model

In the previous section, necessary and sufficient conditions on characteristics

of the signal source and channel properties were detailed for the CFIM to have a

null space with minimal dimensions equaling the nullity lower bound
K
∑

i=1

K
∑

j=1

(Li −

Lj + 1)+. In this section, pathways to regularity in the CFIM (and hence the FIM)

as well as several typical constraint sets are considered.
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4.1.4.1 Pathways to regularity

Requiring constraints to attain regularity in the Fisher information is unnec-

essary to use this CCRB theory (theorem 3.17), but often without constraints the

identifiable parameters are not in the desired framework to be of use to the practi-

tioner. In the communications context, constraints on a model assumed a priori are

simply a common method used to maintain a particular parametric structure in the

model.

Guided by theorems 3.23, 3.24, 3.25, 3.27, and 3.29, then an objective of

communications system design is to discover constraints for which identifiability of

the parameter, as they are defined, is achieved, i.e., what properties can be imposed

on the signal or channel to guarantee parametric identifiability. For the convolutive

mixture model in (4.2), this involves an examination of the Fisher information in

(4.10) with the CFIM in (4.12). In some sense, this has already been done. In

section 4.1.3.3, conditions under which the CFIM has a null space spanned by the

columns of the matrix N , defined in (4.14), are derived.

If I(θ) is a Fisher information with Cholesky factorization L(θ)LT(θ) where

V (θ) is an orthogonal complement to LT (θ) [20, p.194]. Then theorem 3.23 implies

for any constraint to achieve local identifiability, its Jacobian must satisfy F (θ) =

ALT (θ) +BV T (θ) where BV T has full row rank. Similarly, theorem 3.24 implies

the constraints must have an orthonormal complement U (θ) satisfying U (θ) =

L(θ)C + V (θ)D where L(θ)C if full column rank.
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4.1.4.2 Norm channel + real-valued source constraint

The norm channel constraint

∥

∥h(1)
∥

∥

2
= 1 (4.16)

is a common scaling “trick” used in SIMO (K = 1 source) models to obtain chan-

nel estimates under second-order statistics assumptions. Combined with the (rota-

tional) constraint of restricting the source elements to be real-valued, i.e.,

Im(s(1)(n)) = 0 (4.17)

for n = −L1,−L1 +1, . . . , N − 1, it is clear that the multiplicative ambiguity which

is the basis of N is eliminated. For the parameter vector θ =
[

Re(ϑT ), Im(ϑT )
]T

with ϑ defined in (4.11), the constraints are essentially separated as

F (θ) =

[

FRe(h) 0 FIm(h) 0

0 FRe(s) 0 FIm(s)

]

where h = h(1) and s = s(1). An orthonormal complement, or a basis for the null

space, of
[

FRe(s) , FIm(s)

]

is simply

[

I(N+L1)×(N+L1)

0

]

, but an analytic formula for

the null space relating to the channel components is not so simple and requires

numerical programming for arbitrary sizes L1 and N .

Example 4.17. As a particular example of this constraint, consider the M = 2

SIMO convolutive channel model with L = 3 taps, where the channel is predefined

by

[

h
(1)T
1

h
(1)T
2

]

=

[

0.3079 + j0.0698 0.1657 + j0.2304 0.0198− j0.3823 0.0929− j0.1853

−0.1841 + j0.3294 0.4484− j0.1689 0.0156 + j0.1526 0.4750− j0.0952

]

,
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under a white noise assumption (with known variance σ2) and the constraints in

(4.16) and (4.17). The 54 (N = 50) signal elements are BPSK (±1) symbols

randomly generated with equal probability (i.e., Bernoulli(1
2
)) and fixed for the

simulation. The subspace method [52, 68] is used with a smoothing factor of 8.

Additionally scoring with constraints (CSA) using (3.36) is applied on the subspace

method’s estimate ĥ(1) for possible improvement. The results are shown in figure

4.2, where the mean-square error (MSE) per real channel coefficient is evaluated by

1
16R

R
∑

r=1

∥

∥

∥
ĥ(1) − h(1)

∥

∥

∥

2

overR = 100 runs or trials and the SNR is given by 10 log10
1
σ2 .

This example is also in [68] and shows how the subspace method, which had no prior

theory-based performance metric, tracks with the CCRB. The additional overlaying

estimation using the method of scoring demonstrates the local maximum likelihood

properties in the subspace method.
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Figure 4.2: Norm-constrained channel estimation performance.
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4.1.4.3 Semiblind constraints: s(k)(t) = p(t) for t ∈ T

For multiple sources, designing communications with channel constraints, such

as in the previous section, is less tenable since it is not always possible to estab-

lish guarantees on functions of the channel elements. The sources, however, are

often entirely designable elements by restricting the class of signals which are to be

passed through the channels. The class only needs to be defined by some functional

constraint.

Perhaps, the simplest constraint is knowledge of a parameter element, i.e.,

θi = a. This constraint produces a row vector eT
i in the Jacobian F (θ), where ei is

the unit vector with unity in the ith position and zero values in the other positions.

Therefore, the corresponding orthonormal complement U (θ) for this unit vector

eliminates or nulls out the i row and column of the Fisher information I(θ) while

preserving the other elements. Any other nonredundant constraint in f does not

change this.

Theorem 4.18. Assume the conditions of theorem 4.14, then nullity(I(ϑ)) =
K
∑

i=1

K
∑

j=1

(Li − Lj + 1)+. Let I∗(ϑ) be denoted by I(ϑ) with the rows {ip : p =

1, . . . ,

K
∑

i=1

K
∑

j=1

(Li − Lj + 1)+} and the corresponding columns removed. Then the

nullity(I∗(ϑ)) = 0 if and only if N ∗ is full column rank, where N ∗ is the matrix

formed by taking the rows {ip} of N in (4.14).

Proof. Let F be a matrix that when multiplied by the matrix N selects the rows

{ip}, i.e., F is the matrix consisting of the row vectors {eT
i : i ∈ {ip}}. Then

FN = N ∗, a square full rank matrix. Therefore F = AI(θ) + BN T for some
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A and some B where BN T is full row rank. As discussed in section 4.1.4.1, this

identifies the parameters and hence nullity(I∗(ϑ)) = 0 by theorem 3.24.

This theorem can be used to specify either channel or source parameters to

achieve identifiability and FIM regularity. For example, if only source signal param-

eters are specified, then it is necessary and sufficient to specify
K
∑

j=1

(Li − Lj + 1)+

parameters of s(i) for each i = 1, . . . , K, under the conditions of theorem 4.18.

4.1.4.4 Unit Modulus constraint + Semiblind constraint

The unit or constant modulus constraint is a particularly powerful and rea-

sonable assumption. All the source elements are assumed to have unit modulus,

i.e.,

|s(k)(n)|2 = 1, (4.18)

for every n = −Lk, . . . , N−1 and for each k = 1, . . . , K. This constraint is useful for

modeling P -ary phase-shift keying (PSK) in communications models with unknown

P , where the signals are assumed to be derived from a finite constellation of P

equispaced points on the unit circle. While in practice, this assumption is often

viewed as a single constraint, it is ultimately
K
∑

i=1

(N +Li) constraints. Nevertheless,

despite this, it is insufficient to identify the parameters by itself. For the parameter

vector in (4.11), the constraint has a gradient

F (θ) =







0 2Re(S
(1)
d ) 0 0 · · · 0 2Im(S

(1)
d ) 0 0 · · ·

0 0 0 2Re(S
(2)
d ) · · · 0 0 0 2Im(S

(2)
d ) · · ·

. . .
...






,
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which has an orthonormal complement

U (θ) =







































0 IM (L1+1) 0 0 0 0 · · ·
−Im(S

(1)
d ) 0 0 0 0 0 · · ·

0 0 0 0 IM (L2+1) 0

0 0 0 −Im(S
(2)
d ) 0 0

...
...

...
. . .

0 0 IM (L1+1) 0 0 0 · · ·
Re(S

(1)
d ) 0 0 0 0 0 · · ·

0 0 0 0 0 IM (L2+1)

0 0 0 Re(S
(2)
d ) 0 0

...
...

...
. . .







































satisfying (3.6) and where S
(i)
d = diag(s(i)). Using this complement with (4.10) and

(4.12), we have that the i, j subblock of UT (θ)I(θ)U (θ) has the structure C(i, j) =






Re[S
(i)H
d H

(i)H
M H

(j)
M S

(j)
d ] Im[S

(i)H
d H

(i)H
M (Im ⊗ S(j))] Re[S

(i)H
d H

(i)H
M (Im ⊗ S(j))]

−Im[(Im ⊗ S(i)H)H
(j)
M S

(j)
d ] Re[Im ⊗ S(i)HS(j)] Im[Im ⊗ S(i)HS(j)]

Re[H
(i)H
M H

(j)
M S

(j)
d ] Im[H

(i)H
M (Im ⊗ S(j))] Re[H

(i)H
M (Im ⊗ S(j))]






.

Lack of identifiability is noted since

C(k, k) ·





1N+Lk

Im(h(k)∗)

Re(h(k)∗)



 = 0

for each k = 1, . . . , K. Careful examination determines these are the only vectors

in the null space of UT (θI(θ)U (θ), resulting in the following theorem.

Theorem 4.19. Assume nullity(I(θ)) = 2
K
∑

i=1

K
∑

j=1

(Li − Lj + 1)+. If all sources

are assumed to be unit modulus and one complex-valued parameter for each source

is assumed known, then UT (θ)I(θ)U (θ) will be regular (and the model locally

identifiable).

Intuitively, the unit modulus constraint eliminates the convolutive mixture

and intra-source multiplicative amplitude ambiguity leaving only an intra-source

multiplicative phase ambiguity.

114



Example 4.20. Consider a K = 2 source-M = 2 sensor linear instantaneous mixing

model (Lk = 0 for all sources), with N = 30 samples per source, under a R = 3-ray

multipath subchannels, i.e., the spatial signature of the kth source is expressed as a

weighted sum of steering vectors, i.e., hk =

R
∑

r=1

βkra(ψkr) where βkr and ψkr are the

complex-valued amplitude and the real-valued AOA of the rth multipath of the kth

source (see Figure 4.3). The AOAs and corresponding amplitudes are {ψ−1, ψ, ψ+4}

source

sensors

direct paths

side paths

Figure 4.3: Example of multipath channel.

and {
√

0.2∠(−π
6
),
√

0.5,
√

0.15∠(−pi
5
)} for source s(1) and {ψ+∆ψ−5, ψ+∆ψ, ψ+

∆ψ+6} and {
√

0.15∠(−pi
5
),
√

0.6,
√

0.25∠(π
3
)} for source s(2). (See section 4.2 for a

greater description on steering vectors.) The source elements come from an 8PSK

alphabet with signal powers SNR(s(1)) = 20dB and SNR(s(2)) = 15dB. The channel

elements are normalized so that SNR(s(k)) =
‖h(k)‖2

Mσ2 with σ2 = 1. The constraints

assumed are unit modulus (8PSK) as well as knowledge of the first T = 2 symbols

for each source, more than sufficient for identifiability and FIM regularity (theorem

4.19).

An initial estimate is obtained using the zero-forcing (bias reducing) variant

of the algebraic constant modulus algorithm (ZF-ACMA) [71]. This algorithm is a

useful tool for estimation of constant modulus source parameters in short data length
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experiments (only N ≥ K2 or 2K required), but has no means of incorporating the

training side information. The ZF-ACMA estimate is projected onto Θf to establish

an initialization for the method of scoring with constraints. The step size rule chose

α(k) = 2−m for the least positive integer m satisfying (3.37). The average MSE (per

real parameter coefficient) at each iteration over 5000 trails is compared with the

CCRB for each source in figure 4.4.
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Figure 4.4: Source estimation with varying ∆ψ.

The mean-square error improvement by utilizing the complete side information

in scoring maintains efficiency with respect to the constrained CRB for moderately

separated angle of arrivals compared with ZF-ACMA. As should be expected, the

estimation performance degrades as the primary source angles overlap, but even in
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the worst case scenario with ∆ψ = 0◦ of separation, the approximate corresponding

8PSK bit-error-rate (BER) for ZF-ACMA and scoring with constraints is .2914 and

.0254, meaning the estimation schemes result in bit decision errors roughly 29% and

3% of the time, respectively. The departure of the estimation performance from

the CCRB as ∆ψ approaches 0◦ is possibly due to a loss of unbiasedness in the

estimation.

4.2 Calibrated Array Model

The narrowband (calibrated) array model may be written as

ym(n) =

K
∑

k=1

am(ωk)γks
(k)(n) + wm(n) (4.19)

for n = 1, . . . , N and m = 1, . . . ,M , where s(k)(n) is the value of the kth input

source at time index n, γk is the complex-valued channel gain for the kth input,

am(ωk) is the mth sensor response to the kth input source, ωk is the angle-of-arrival

(AOA) of the kth source, and wm(n) is the noise, modeled as zero-mean circular

Gaussian with variance σ2 iid in both time and space. In vector-matrix notation,

the model for each time slot can be written as

y(n) =
K
∑

k=1

a(ωk)γks
(k)(n) +w(n) = A(ω)Γs(n) +w(n) (4.20)

where the input is given by sT (n) =
[

s(1)(n), . . . , s(K)(n)
]

, the channel gain matrix

is Γ = diag
(

γ1, . . . , γK

)

, and the response matrix is given by

A(ω) =
[

a(ω1) a(ω2) · · · a(ωK)
]

(4.21)
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Figure 4.5: Calibrated array model geometries for (a) uniform linear and (b) circular

arrays.

with the array response vectors a(ωk) depending on the physical design of the array

and the AOA. Calibration posits this known array geometry. The examples consid-

ered in this section consist of the uniform linear array (ULA) and uniform circular

array (UCA), as shown in Figure 4.5. For example, for the ULA the response vectors

typically have a Vandermonde vector structure with base e−iπ sin(ωk).

4.2.1 The Fisher information of the calibrated array model

4.2.1.1 Indirect derivation of the FIM

As was mentioned in section 4.1, the calibrated array model can be a special

case of the convolutive mixture model using constraints. The method for transform-

118



ing the model is to keep the parameters for the instantaneous mixing model and to

the parameter vector add extra parameters for the calibrated array and channel gain.

When evaluating the FIM, the elements in the rows and columns corresponding to

these extra parameters are zero. The constraint then represents the model reparam-

eterization, e.g., for this case, we choose the constraints which define H = A(ω)Γ,

element by element. The resulting CCRB submatrix corresponding to the extra

parameters will be equivalent to the CRB of those parameters. This procedure is

made clear in the following example.

Example 4.21. Assume x ∼ N (ab, 1). The FIM for θT = [a, b] is I(θ) =

[

b2 ab
ab a2

]

,

which is singular. Suppose we wish to reparameterize the model replacing ab with

c. This is equivalent to the constraint f(θ?) = ab − c for the expanded parameter

vector θ∗T = [a, b, c]. For this orthonormal complement

U (θ∗) =





1 0
0 1
b a





of the Jacobian of the constraints, thenUT (θ∗)I(θ∗)U (θ∗) = I(θ), which is still sin-

gular. Hence CCRB(θ∗) = U (θ∗)I†(θ)U T (θ∗) where the pseudoinverse is I†(θ) =

1
(a2+b2)2

I(θ), or

CCRB(θ∗) =





b2 ab b3 + a2b
ab a2 ab2 + a3

b3 + a2b ab2 + a3 b4 + 2a2b2 + a4



 .

The component corresponding to CCRB(c) = 1
(a2+b2)2

(b4 + 2a2b2 + a4) = 1, which

agrees with the value of CRB(c) for the model x ∼ N (c, 1).

Note that the original model need not be identifiable, nor does the replace-

ment model. Additional constraints under either model can also be included in the
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constraint function. The example verifies that even for the more difficult case it

is possible to find the CRB and CCRB for the calibrated array model indirectly

from the instantaneous mixing model using constraints. However, in the interests

of clarity, in the next section the FIM and CCRB will be derived for the calibrated

array model directly.

4.2.1.2 Direct derivation of the FIM

The calibrated model in (4.19) has a likelihood given by

p(y(1), . . . ,y(N); θ)

=
1

(πσ2)MN
exp

{

− 1

σ2

N
∑

n=1

(

y(n)−A(θ)Γs(n)
)H (

y(n)−A(θ)Γs(n)
)

}

.(4.22)

For clarity, since there exists a mixture of complex and real parameters requiring

estimation, then using the parameter vector7

θ =























Re(s(1))
Im(s(1))

...
Re(s(N))
Im(s(N))

γ

ω























, (4.23)

with γT =
[

γ1, . . . , γK

]

and ωT =
[

ω1, . . . , ωK

]

, the Fisher information matrix is

given by

I(θ) =



















M 0 · · · 0 M1 L1

0 M 0 M2 L2

...
. . .

...
...

...
0 0 · · · M MN LN

MT
1 MT

2 · · · MT
N Kγ L

LT
1 LT

2 · · · LT
N LT Kω



















(4.24)

7It is also possible to include the noise variance parameter σ2 in the parameter vector. However,

this parameter decouples from the other parameters resulting in an optimistic CRB of σ4

MN
[16, 59],

and so is uninteresting to the results herein.
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where

M =

[

Re(M) −Im(M)
Im(M) Re(M)

]

, M =
2

σ2
ΓHAH(ω)A(ω)Γ, (4.25)

Mn =

[

Re(Mn) −Im(Mn)
Im(Mn) Re(Mn)

]

, Mn =
2

σ2
ΦHAH(ω)A(ω)S(n), (4.26)

Ln =

[

Re(Ln)
Im(Ln)

]

, Ln =
2

σ2
ΓHAH(ω)D(ω)ΓS(n), (4.27)

L =

[

Re(L)
Im(L)

]

, L =
2

σ2

N
∑

n=1

SH(n)AH(ω)D(ω)ΓS(n), (4.28)

Kγ =

[

Re(Kγ) −Im(Kγ)
Im(Kγ) Re(Kγ)

]

, Kγ =
2

σ2

N
∑

n=1

SH(n)AH(ω)A(ω)S(n), (4.29)

and Kω =
2

σ2

N
∑

n=1

Re
(

SH(n)ΓHDH(ω)D(ω)ΓS(n)
)

. (4.30)

In the equations above, we redefine S(n) = diag
(

s(1)(n), . . . , s(K)(n)
)

and

D(ω) =

[

∂a(ω1)

∂ω1

∂a(ω2)

∂ω2
· · · ∂a(ωK)

∂ωK

]

.

4.2.1.3 Properties of the FIM

The model in (4.19) admits an ambiguity as γks
(k)(n) is indistinguishable from

(

ckγk

)

(

s(k)(n)
ck

)

for any nonzero ck ∈ C. From Section 2.2, then it should be expected

that the FIM in (4.24) is singular. This is indeed the case, e.g., note that



















M 0 · · · 0 M1

0 M 0 M2

...
. . .

...
...

0 0 · · · M MN

MT
1 MT

2 · · · MT
N Kγ

LT
1 LT

2 · · · LT
N LT



















·















S(1)
S(2)

...
S(N)
−Γ















= 0.
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And since the FIM consists of real and imaginary parts of this matrix, it too has a

null space, namely, the columns of

N(θ) =



























Re(S(1)) −Im(S(1))
Im(S(1)) Re(S(1))

...
...

Re(S(N)) −Im(S(N))
Im(S(N)) Re(S(N))
−Re(Γ) Im(Γ)
−Im(Γ) −Re(Γ)

0 0



























are a basis for the null space (or at least a null subspace) of I(θ). So the nullity,

or dimension of the null space, of I(θ) is at least 2K. In fact, it is exactly 2K

(provided N ≥ K
M−K

for reasons similar to that given in theorem 4.12).

4.2.2 Constraints for the calibrated array model

4.2.2.1 Constraints on the complex-valued channel gain: Γ = IK×K

One approach to eliminating the ambiguity between the complex-valued gain

and the source input is to incorporate this gain into the signal. Instead of remodeling

the mean of (4.19) to be

µ(n, θ) =
K
∑

k=1

a(ωk)s
(k)(n) (4.31)

by eliminating the unknown gain, it is equivalent to impose the constraints γk = 1

for k = 1, . . . , K. The model in (4.31) is a model presented in a paper on “direction

finding with narrow-band sensor arrays” by Stoica and Nehorai [67]. Hence, if

the theory of Chapter 3 is to be trusted, then results found by imposing proper

constraints that Γ = IK×K (or γ = 1K) should be equivalent to the results of Stoica
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and Nehorai. TheK constraints of a complex-valued parameter γ are 2K constraints

of the corresponding real-valued parameters, i.e., the vector f of constraints can be

defined as

fk(θ) = Re(γk)− 1 = 0

fK+k(θ) = Im(γk) = 0

for k = 1, . . . , K. For the parameter vector in (4.23), the Jacobian of these con-

straints is given by

F (θ) =
[

02K×2KN I2K×2K 02K×K

]

.

Since F (θ)N (θ) = I2K×2K , then by theorem 3.23, this constraint is sufficient to

(locally) identify the parameters and by theorem 3.24 the matrix UT (θ)I(θ)U (θ)

will be regular for any matrix U (θ) satisfying (3.6). An orthonormal basis for the

null space of the Jacobian would be the columns of

U (θ) =





I2KN×2KN 02KN×K

02K×2KN 02K×K

0K×2KN IK×K



 ,

and this generates a reduced “FIM”

UT (θ)I(θ)U (θ) =















M 0 · · · 0 L1

0 M 0 L2

...
. . .

...
...

0 0 · · · M LN

LT
1 LT

2 · · · LT
N Kω















,

which is equivalent to the Fisher information in [67, equation (E.9)]. Since the γ

parameters are known and therefore it is unnecessary to understand the performance

potential (or CCRB) of a known parameter, it is only of interest to have a bound
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on the performance of estimators of the transformation

α = k(θ) =



















Re(s(1))
Im(s(1))

...
Re(s(N))
Im(s(N))

ω



















,

which has the Jacobian ∂
∂θTα = UT (θ). Hence, CCRB(α) =

(

UT (θ)I(θ)U (θ)
)−1

is the same as the CRB found by Stoica and Nehorai. This equivalence serves as

further validation of the CCRB approach.

4.2.2.2 Semiblind constraints: s(t) = p(t) for t ∈ T

An alternative approach to eliminating the ambiguity between the source and

coefficient is the have prior knowledge of some of the source signals. These known

elements are often referred to as training or pilot symbols in communications. Knowl-

edge of any kth source element s(k)(t) = p(k)(t) at any time sample t resolves the

ambiguity between γks
(k)(n) for all n since γk is solvable in the observation corre-

sponding to time sample t and can thus be used to solve the unknown source values

when n /∈ T. This model can be written as

µ(n, θ) =
K
∑

k=1

a(ωk)
(

γkp
(k)(n)δn∈T + γks

(k)(n)δn/∈T

)

(4.32)

where δstatement = 1 when the statement is true and = 0 when the statement is false.

This model is equivalent to the model designed by Kozick and Sadler [39, equation

(9)] except with γks
(k)(n) being simply s(k)(n), a distinction that still allows for a

match of results of the CCRB of a properly chosen transformation. The model is

also equivalent to the model designed by Li and Compton [41, equation (2)] when
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T = {1, 2, . . . , N}. Equivalence of the reparameterized CRBs in [39, 41] with the

CCRB can be found in [59]. As in the previous example, the CCRB on the unknown

parameters is the inverse of the (unconstrained) FIM after the elimination of its rows

and columns corresponding to the known or specified parameters.

4.2.2.3 Finite alphabet constraint: s(k)(n) ∈ S

This constraint derives from the assumption that the source elements exists in

a (finite) discrete set S. In communications models, this corresponds to digital mod-

ulation designs such as pulse amplitude modulation (PAM), quadrature amplitude

modulation (QAM), phase-shift keying (PSK), etc. As such, the model can also be

the same as any of the previous models in (4.19), (4.31), or (4.32), but the defining

characteristic is that the source samples only exist on a discrete set. There do not

exist any CRB-type bounds for this model in the literature due to the problem of

differentiability with respect to the parameters.8 It is certainly possible to constrain

any single real-valued parameter to a discrete set by creating a polynomial (or sine

function) whose zeros match the set values. But what information can be gained

from a constraint formulation of this discrete-alphabet model? This is perhaps best

answered with the following example.

Example 4.22. Reconsider the model in example 2.2, y ∼ CN (ϑ, σ2). Suppose the

8A Chapman-Robbins or Barankin-type bound, which does not require differentiability with
respect to the parameters would be possible but even this approach does not seem to exist in
the literature. Many communications engineers also discount the importance of a mean-square
error bound for a digital signal and rely an alternative performance criteria, such as bit-error rate
(BER).
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parameter is required to satisfy the constraints

f1(ϑ) = (Re(ϑ))2 − 1

2
= 0

f2(ϑ) = (Im(ϑ))2 − 1

2
= 0.

This constraint restricts the real and imaginary part of ϑ to reside in the discrete

set {
√

2
2
,−

√
2

2
}, i.e.

ϑ ∈ S =

{√
2

2
+ i

√
2

2
,

√
2

2
− i
√

2

2
,−
√

2

2
+ i

√
2

2
,−
√

2

2
− i
√

2

2

}

.

(In the communications vernacular, this is quadrature PSK or 4-QAM.) The Jaco-

bian for this constraint is

F (θ) =

[

2Re(ϑ) 0
0 2Im(ϑ)

]

,

which is full column rank for the possible set of values for ϑ. Hence, to satisfy (3.6),

U (θ) = [ ] is a 2× 0 null matrix.

This is analogous to the determinate case of example 3.14, therefore knowledge

that a parameter exists in a discrete set is equivalent to complete knowledge of the

parameter value in terms of mean-square error performance potential-the result

being a Cramér-Rao bound of zero. This does not mean that the mean-square

error will be zero (the decision of which set value the parameter actually is can be

wrong given sufficient power in the noise), but it does mean that the mean-square

error bound is trivial and not particularly helpful. This result is not surprising

considering the degrees of freedom of the parameter that are restricted from such

constraints. The restriction of a real-valued parameter to satisfying a single root

equation eliminates its single degree of freedom.
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4.2.2.4 Unit modulus constraints: |s(n)| = 1 for all n

Since knowledge of parameters from a discrete (finite) alphabet results in a

trivial bound, then to obtain a relevant and useful measure of performance potential

a relaxation of the side information is necessary. One such example of this approach

is using a constant or unit modulus constraint on the source elements as in section

4.1.4.4 for the convolutive mixture model. This approach remodels the mean as

µ(n, θ) =
K
∑

k=1

a(ωk)γke
jφ(k)(n). (4.33)

This is the constraint considered in example 3.4 applied to the communications

context. Therefore, imposing the constraints

f(n−1)K+k(θ) =
∣

∣s(k)(n)
∣

∣

2 − 1 = 0,

for k = 1, . . . , K, n = 1, . . . , N , is an alternative approach than rederiving the Fisher

information for the model in (4.33). The Jacobian for this constraint has the form

F (θ) =







2Re(S(1)) 2Im(S(1)) 0K×3K

. . .
...

2Re(S(N)) 2Im(S(N)) 0K×3K






, (4.34)

which has a null space generated by the columns of the matrix

U (θ) =



















−Im(S(1))
Re(S(1))

. . .

−Im(S(N))
Re(S(N))

I3K×3K



















. (4.35)

From this we can check the (local) identifiability of this model under the (unit)

constant modulus constraint using theorem 3.24. The matrix UT (θ)I(θ)U (θ) is
2

6

6

6

6

6

6

6

6

4

Re(S∗(1)MS(1)) Im(S∗(1)M1) Re(S∗(1)M1) Im(S∗(1)L1)

.. .
..
.

..

.
..
.

Re(S∗(N)MS(N)) Im(S∗(N)MN ) Re(S∗(N)MN ) Im(S∗(N)LN )

−Im(MH
1 S(1)) · · · −Im(MH

NS(N)) Re(Kγ ) −Im(Kγ ) Re(L)

Re(MH
1 S(1)) · · · Re(MH

NS(N)) Im(Kγ ) Re(Kγ ) Im(L)

−Im(LH
1 S(1)) · · · −Im(LH

NS(N)) Re(LH) −Im(LH) Kω .

3

7

7

7

7

7

7

7

7

5
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Since

UT (θ)I(θ)U (θ) ·



















IK×K

...
IK×K

−Im(Γ)
Re(Γ)
0K×K



















= 0,

then UT (θ)I(θ)U (θ) is singular and by theorem 3.24 the (unit) constant modulus

constraints are not sufficient for identifiability. This was also the case for the convo-

lutive mixture model in section 4.1.4.4. Furthermore, reviewing the model in (4.33),

this result has more reason to be expected. The original identifiability issue in the

calibrated model (4.19) is the multiplicative ambiguity between the sources and the

channel gain. While the constant modulus constraint resolves any amplitude ambi-

guity of the channel gain, i.e., |γk| =
∣

∣γks
(k)(n)

∣

∣ for any n, there still exist a phase

rotation ambiguity. It is clear from both the model and from theorem 3.23, that for

each source k knowledge of an element for either the real or imaginary part of either

the channel gain or a source sample will be sufficient for identifiability and a regular

UT (θ)I(θ)U (θ). Of course, given this constant unit modulus constraint, knowl-

edge of the real (imaginary) part of any source sample is equivalent to restricting

the imaginary (real) part of the source sample to a finite discrete alphabet, which

as discussed in section 4.2.2.3 is the same as knowledge of the parameter in regards

to the CCRB performance potential but not in regards to the estimation. Hence for

estimation performance it is a necessity to constrain the real and/or imaginary part

of the source sample.
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4.2.2.5 Unit modulus constraint; real-valued channel gain: Im(γk) =

0 for all k

This model is that given in (4.33) except with γk being real-valued. As seen

in sections 4.2.2.2 and 4.2.2.3, the constraint is knowledge of the imaginary parts of

γ and the effect of the corresponding U (θ) matrix is the elimination of the columns

and rows corresponding to the Im(γk) parameters. This model is equivalent to that

of Leshem and van der Veen [40]. Verification that the CCRB is equivalent can be

found in [59]. The bound is essentially the inverse of the reduced-parameter-space

Fisher information UT (θ)I(θ)U (θ) from section 4.2.2.4 after the elimination of the

rows and columns corresponding to the channel gain parameters.

4.2.2.6 Semi-blind and unit modulus constraint

This model merges the models in (4.33) and (4.32). Without loss of generality,

assume the source elements are known for the first T time slots for each source. Then

the constraint Jacobian is F (θ) =






I2TK×2TK 02TK×3K

2Re(S(T + 1)) 2Im(S(T + 1)) 0K×3K

. . .
...

2Re(S(N)) 2Im(S(N)) 0K×3K






,

(4.36)

which has an orthonormal complement

U (θ) =























02TK×K

−Im(S(1))
Re(S(1))

. . .

−Im(S(N))
Re(S(N))

I3K×3K























. (4.37)
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The reduced FIM is then

U (θ)I(θ)U (θ) =



















G(T + 1) C(T + 1) B(T + 1)
G(T + 2) C(T + 2) B(T + 2)

. . .
...

...
G(N) C(N) B(N)

CT (T + 1) CT (T + 2) · · · CT (N) Kγ L

BT (T + 1) BT (T + 2) · · · BT (N) LT Kω



















(4.38)

where G(t) = Re[S∗(t)MS(t)] and M is defined as in (4.25), where C(t) =

[

Im[S∗(t)Mt] Re[S∗(t)Mt]
]

and Mn is defined in (4.26), B(t) = Im[S∗(t)Lt]

and Lt is defined in (4.27). To analytically invert this matrix, the Schur comple-

ment,

Φ =















Kγ −
N
∑

t=T+1

CT (t)G−1(t)C(t) L−
N
∑

t=T+1

CT (t)G−1(t)B(t)

LT −
N
∑

t=T+1

BT (t)G−1(t)C(t) Kω −
N
∑

t=T+1

BT (t)G−1(t)B(t)















, (4.39)

is useful. If Φ is partitioned into corresponding subblocks

[

ΦKγ
ΦL

ΦLT ΦKω

]

, then the

CCRB subblocks for the unknown elements are given by

CCRB(ω) =
[

ΦKω
−ΦLT Φ−1

Kγ
ΦL

]−1

CCRB(γ) =
[

ΦKγ
−ΦLΦ

−1
Kω

ΦLT

]−1

CCRB(

[

Re(s(t))
Im(s(t))

]

) =

[

−Im(S(t))
Re(S(t))

]

X(t)
[

−Im(S(t)) Re(S(t))
]

where X(t) = G−1(t) +G−1(t)
[

C(t) B(t)
]

Φ−1

[

CT (t)
BT (t)

]

G−1(t).

Example 4.23. A distinct advantage of the CCRB, as implemented in this treatise,

is the ability to compare the performance potential of a number of different models

seamlessly. Suppose we consider M = 5 omni-directional sensors with a beamwidth
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Figure 4.6: CCRBs on AOA for blind, constant modulus, and known signal models.

of ≈ 23.6◦ in a uniform linear array receivingK = 2 source signals overN = 100 time

samples. Then, it is possible to compare various communications design scenarios,

e.g.,

(a) the “blind” case9: sk(1) known for k = 1, 2,

(b) the unit modulus case: |sk(t)|2 = 1 for k = 1, 2 and t = 1, . . . , 100,

(c) the semiblind case: sk(t) known for k = 1, 2 and t = 1, . . . , T = 20,

(d) the unit modulus and semiblind case: sk(t) known for k = 1, 2 and t =

1, . . . , T = 20, and |sk(t)|2 = 1 for k = 1, 2 and t = T + 1, . . . , 100, and

(e) the known signal case: sk(t) known for k = 1, 2 and t = 1, . . . , 100.

9This is not a truly blind scenario, but is often referred to as blind in the literature.
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Figure 4.7: CCRBs on AOA for semiblind, constant modulus + semiblind, and

known signal models.
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Figure 4.6 displays a comparison between blind, unit modulus constraints, and

known signal model designs of the CCRBs on angle-of-arrival (AOA) estimation for

the second source signal over varying directions and different signal-to-noise ratios

(SNRs) with the first source signal arriving at 0◦. Figure 4.7 displays a comparison

of CCRBs on AOA estimation between semiblind constraints, unit modulus with

semiblind constraints, and known signal model designs. And finally, figure 4.8 dis-

plays CCRBs on signal phase estimation between blind, unit modulus constraints,

semiblind constraints, and a mixture of unit modulus and semiblind constraints.

The known signal model is the best case scenario for AOA estimation potential

and is a useful guideline for more desirable scenarios where information (data or un-

known parameters) is included in the transmission. Figures 4.6 and 4.7 demonstrate

the characteristic loss of performance when the sources’ AOAs differ by roughly the

beamwidth. The value of the unit modulus constraint is evident when the sources’

AOAs are closely spaced as the CCRB performance potential approximates that of

the known signal model. In figures 4.7 and 4.8, the estimation potential actually

improves for closely space sources with the semiblind and unit modulus constraint

mixture.

4.3 Discussion

This chapter includes extensions of only a brief sampling of my prior research

[59, 39, 48, 51, 39, 48, 59, 49] as it relates to the practical application of the CCRB.

In this chapter, the convolutive mixture model and the calibrated array model were
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treated as base models for which the Fisher information was derived a single time

and then a series of variations on the models in the form of differentiable parametric

constraints were considered. This approach presents a simple procedure to compare

and contrast a large class of constraints, essentially different models, in an efficient

manner to determine the value of particular formulation in terms of performance

potential as measured in the CCRB.
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Appendix A

Appendices

A.1 A proof of the CCRB using the Chapman-Robbins version of

the Barankin bound

Gorman and Hero developed a CCRB using the multiparameter version of

the Hammersley-Chapman-Robbins bound (HCRB) [16, 26]. However, the result

produced a variant form of the CCRB

I−1(θ)− I−1(θ)F T (θ)
(

F (θ)I−1(θ)F T (θ)
)−1

F (θ)I−1(θ),

which requires a nonsingular FIM. What follows is a shorter variation of their ap-

proach that does not assume a nonsingular FIM, starting with a brief description of

the HCRB.

Rather than relying on the Fisher score, which is the derivative of the log-

likelihood, i.e.,

s(x; θ) =
∂

∂θ
log p(x; θ) =

1

p(x; θ)

∂p(x; θ)

∂θ

the regularity conditions requiring a differentiable likelihood can be relaxed by con-

sidering finite differences, i.e., for each i = 1, . . . , m,

1

p(x; θ)

p(x; θ + εiei)− p(x; θ)

εi

where the ei are canonical unit vectors. If the likelihood is differentiable then the

limit as each εi → 0 is the Fisher score. Of course, the finite differences need not

136



be with respect to the canonical axis and the number of finite differences need not

be the same as the dimension of the parameters. This is the generalization of the

CRB known as the Hammersley-Chapman-Robbins (HCR) version of the Barankin

bound.

Theorem A.1. If t(x) be an unbiased estimate of h(θ) ∈ h(Rm) ⊂ Rt, and ψ =

[

ψ(1), . . . ,ψ(p)
]

is a matrix whose columns are test points in Rm, all distinct from

each other as well as from θ, then the variance of t(x) is bounded below by the

inequality

Var(t(x)) ≥ sup
ψ(1) ,...,ψ(p),p

∆(θ,ψ)Υ−1(θ,ψ)∆T(θ,ψ)

where ∆(θ,ψ) is called a translation matrix defined by

∆(θ,ψ) =
[

h(ψ(1))− h(θ), · · · , h(ψ(p))− h(θ)
]

and Υ(θ,ψ) is called an HCR information matrix defined by

Υij(θ,ψ) = Eθ
p(x;ψ(i))− p(x; θ)

p(x; θ)

p(x;ψ(j))− p(x; θ)

p(x; θ)
.

This result encompasses the CRB result when the test points satisfy ψ(i) =

θ + εiei and the εi → 0 for i = 1, . . . , m = p, i.e., as a properly chosen set of test

points approach the parameter. If the set of vectors ψ(1) − θ, . . . ,ψ(m) − θ span

an m-dimensional space, then the limit as the finite differences approach derivatives

will still obtain the CRB.

Since f (θ) = 0 it makes sense to restrict the test points to also satisfy the

constraints, f (ψ(i)) = 0, and examine the limit of the HCRB as the finite differences
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approach derivatives. The Taylor series approximation of f (ψ(i)) about θ is

f (ψ(i)) = f (θ)F (θ)
(

ψ(i) − θ
)

+ o(||ψ(i) − θ||).

Since f (ψ(i)) = f (θ) = 0, then ψ(i) − θ almost entirely resides in null(F (θ)). So

without loss of generality we can allow

ψ(i) = θ + δiui(θ) + o(||ψ(i) − θ||)

where ui(θ) is the ith column of the matrix U (θ) satisfying (3.6). Then

p(x;ψ(i))− p(x; θ)

δip(x; θ)
=

p(x; θ + δiui(θ) + o(||ψ(i) − θ||))− p(x; θ)

δip(x; θ)

→ uT
i (θ)

∂p(x; θ)

∂θ

1

p(x; θ)
= uT

i (θ)s(x; θ)

and

ψ(i) − θ
δi

= ui(θ) +
1

δi
o(||ψ(i) − θ||)→ ui(θ)

as δi → 0. This is true for any i, so if the test points are chosen such that each

column of U (θ) is used, this gives us the CCRB

U (θ)
(

UT (θ)I(θ)U (θ)
)−1

UT (θ)

as the limit of a constrained HCRB when the finite differences become derivatives.

A.2 A proof of the CCRB using the method of implicit differentiation

Suppose θ is restricted to the zeros of f : R
m → R

k with Jacobian F (θ) =

∂f(θ)
∂θT having rank k whenever f (θ) = 0. The method of implicit differentiation

assumes that parameters that would be eliminated under a reparameterization can
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be written in terms of the remaining parameters, since the conditions satisfy the

implicit function theorem. The actual function generally remains unknown, but it’s

derivative is calculated by first taking partial derivatives of constraint function and

using linear algebra to solve for the partial of the eliminated parameters in terms of

the remaining parameters. This approach was also used by Marzetta [47, proof of

theorem 1] to prove the regularity conditions given in (3.20).

The parameter vector may be separated as θ =

[

θ1

θ2

]

and the constraint f

may be rewritten as f ? : Rm−k × Rk → Rk via the mapping f ?(θ1, θ2) = f (

[

θ1

θ2

]

).

Then the Jacobian of f can be represented as

F (θ) =
[

f ?
θ1

(θ1, θ2) f ?
θ2

(θ1, θ2)
]

where f ?
θi

(θ1, θ2) = ∂
∂θT

i

f ?(θ1, θ2) for each i = 1, 2.

Without loss of generality, assume θ2 ∈ Rk is a function of θ1 ∈ Rm−k, i.e.,

θ2 = θ2(θ1) is an implicit function. Therefore, f ? is implicitly only a parameter of

θ1 and

∂

∂θT
1

f ?(θ1, θ2(θ1)) = f ?
θ1

(θ1, θ2(θ1)) + f ?
θ2

(θ1, θ2(θ1))
∂θ2(θ1)

∂θT
1

.

If this derivative is only taken where f ?(θ1, θ2) = 0, then in matrix form,

[

fθ1(θ1, θ2) fθ2(θ1, θ2)
]

[

Im−k,m−k
∂θ2(θ1)

∂θ1

]

= 0.

The first matrix above is F (θ); the second matrix above consists of m− k linearly

independent columns which exist in the null space of the row vectors of F (θ), i.e.,

the second matrix is merely some transformation of some matrix U (θ) defined as

in (3.6).
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A.3 Alternative proof of asymptotic normality

Crowder [18] proved the following theorem.

Theorem A.2 (Crowder). If

1. there is a consistent solution (θ̇n, λ̇n) of the likelihood equations,

2. s(x; θ0)
d∼ N (0, I(θ0)),

3. D−1(θ̇n)
(

I(θ0) + ∂
∂θT s(x; θ0, θ̇n)

)

p→ 0,

4. Q(θ̇n)−Q(θ0)
p→ 0, and

5. detQ(θ̇n) ≤ K <∞

6. detD−1(θ̇n)F T (θ̇n)
(

F (θ, θ̇n)D
−1(θ̇n)F

T (θ̇n)
)−1 ≤ K <∞

where s(x; θ0, θ) is a matrix in the form of the Fisher score s(x; θ) but with each row

evaluated at possibly different points on the line between θ0 and θ̇n, and similarly

for F (θ, θ̇n), and Q(θ) = D−1(θ)F T (θ)
(

F (θ0, θ)D−1(θ)F T (θ)
)−1

. Then

√
n
(

θ̇ − θ
)

d→ N
(

0,D−1(θ)−D−1(θ)F T (θ)
(

F (θ)D−1(θ)F T (θ)
)−1

F (θ)D−1(θ)
)

where D(θ) = I(θ) + F T (θ)KF (θ) for an arbitrary positive semi-definite matrix

K.

Crowder’s asymptotic normality theorem shows that variance of the CMLE

satisfies

Var(
√
nθ̂n)

d→D−1(θ0)−D−1(θ0)F
T (θ0)

(

F (θ0)D
−1(θ0)F

T (θ0)
)−1

F (θ0)D
−1(θ0)
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as n→∞, where D(θ) = I(θ) + F T (θ)KF (θ). This asymptotic variance has the

exact structure as the Marzetta form of the CCRB when K = 0 and the FIM is full

rank. Applying the algebraic identity of Lemma 3.8, then

Var(
√
nθ̂n)

d→ U (θ0)
(

UT (θ0)D(θ0)U (θ0)
)−1

UT (θ0).

It only remains to note

UT (θ0)D(θ0)U (θ0) = UT (θ0)I(θ0)U (θ0)

since F (θ)U (θ) = 0.
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Appendix B

Proofs of Convergence Properties of Constrained Scoring

Theorem (Theorem 3.33). If for any iterate θ̇(k) ∈ Θf there does not exist an

α(k) > 0 that satisfies (3.37), then θ̇(k) is a stationary point.

Proof. Let θ̇ ∈ Θf and define θ̈(α) = π
[

θ̇ + αCCRB(θ̇)s(x; θ̇)
]

. By a property of

the natural projection of convex sets,

∥

∥

∥
θ̈(α) − θ̇

∥

∥

∥

I(θ̇)
≤ α

∥

∥

∥
CCRB(θ̇)s(x; θ̇)

∥

∥

∥

I(θ̇)
.

Hence it is sufficient to show there exists an α > 0 such that

(

log p(x; θ̈(α)) − log p(x; θ̇)
)

α
≥ κsT (x; θ̇)CCRB(θ̇)s(x; θ̇).

To show this by contradiction, assume not and take the limit as α→ 0. Then

sT (x; θ̇)CCRB(θ̇)s(x; θ̇) ≤ κsT (x; θ̇)CCRB(θ̇)s(x; θ̇)

0 ≤ (κ − 1)sT (x; θ̇)CCRB(θ̇)s(x; θ̇).

This inequality implies CCRB(θ̇)s(x; θ̇) = 0 and s(x; θ̇) ∈ span(F T (θ̇)) since

κ < 1, so θ̇ satisfies the stationarity condition (3.32).

Theorem (Theorem 3.34). The sequence {p(x; θ̇(k))} is a monotone increasing se-

quence. Furthermore, if p(x; ·) is bounded above, then {p(x; θ̇(k))} converges.

Proof. Since κ ≥ 0 and ‖θ̇(k+1) − θ̇(k)‖2
I(θ̇(k))

≥ 0, then by the rule in (3.37), the

value of the likelihood function can only increase after each iteration. The second
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statement is a consequence of the monotone convergence principle, i.e., a bounded

monotone sequence converges [38, p. 44, theorem 2-6].

Theorem (Theorem 3.35). If the likelihood p(x; ·) is bounded above, then the

sequence

{log p(x; θ̇(k+1))− log p(x; θ̇(k))}

vanishes.

Proof. Since {p(x; θ̇(k))} converges, then p(x;θ̇(k+1))

p(x;θ̇(k))
→ 1.1 And since log(·) is contin-

uous, then log p(x;θ̇(k+1))

p(x;θ̇(k))
→ 0.

Theorem (Theorem 3.36). If the likelihood p(x; ·) is bounded above, then the

sequence

{‖θ̇(k+1) − θ̇(k)‖I(θ̇(k))}

vanishes as k →∞.

Proof. Again, by the rule in (3.37), the sequence {‖θ̇(k+1)− θ̇(k)‖2
I(θ̇(k))

} is bounded

above by the product of a bounded sequence {α(k)} and a vanishing sequence

{log p(x; θ̇(k+1)) − log p(x; θ̇(k))}, and clearly each element of the sequence is non-

negative. Hence, by the squeezing theorem2, the sequence vanishes as k → ∞.

Theorem (Theorem 3.37). If Θθ̇(1) is compact and convex, then limit points of the

sequence {θ̇(k)} are also stationary points.

1If ak → a, bk → b, and bk 6= 0 for any k, then ak

bk
→ a

b
[38, p. 41, theorem 2-4(d)].

2If 0 ≤ ak ≤ bk and bk → 0, then ak → 0 [38, p. 43, theorem 2-5(c)].
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Proof. Let θ? be a limit point of the sequence {θ̇(k)}. Then by virtue of Bolzano-

Weierstrass [38, p. 54, theorem 2-14], there exists a convergent subsequence {θ̇(ki)}

that converges to θ?. Additionally, since {α(ki)} is a bounded sequence, it contains a

convergent subsequence {α(kij
)} with a limit point we shall denote α?. It is still true

that θ̇(kij
) → θ? [38, p.49, theorem 2-10]. Then we can bound the norm-distance

between π
[

θ? + α?CCRB(θ?)s(x; θ?)
]

and θ? using the triangle inequality, e.g.,

∥

∥π
[

θ? + α?CCRB(θ?)s(x; θ?)
]

− θ?
∥

∥

I(θ?)

≤
∥

∥

∥π
[

θ? + α?CCRB(θ?)s(x; θ?)
]

− π
[

θ̇
(kij

)
+ α

(kij
)
CCRB(θ̇

(kij
)
)s(x; θ̇

(kij
)
)
]∥

∥

∥

I(θ?)

+
∥

∥

∥
π
[

θ̇
(kij

) + α
(kij

)CCRB(θ̇(kij
))s(x; θ̇(kij

))
]

− θ̇(kij
)
∥

∥

∥

I(θ?)
+
∥

∥

∥
θ̇

(kij
) − θ?

∥

∥

∥

I(θ?)

≤
∥

∥

∥θ? + α?CCRB(θ?)s(x; θ?)− θ̇(kij
) − α

(kij
)
CCRB(θ̇

(kij
)
)s(x; θ̇

(kij
)
)
∥

∥

∥

I(θ?)

+
∥

∥

∥θ̇
(kij

+1) − θ̇(kij
)
∥

∥

∥

I(θ?)
+
∥

∥

∥θ̇
(kij

) − θ?
∥

∥

∥

I(θ?)
.

The second inequality is a result of a property of projections on convex sets for the

first term and the definition of our method of scoring with constraints for the second

term. Note this second term will vanish by theorem 3.36 as kij → ∞. Also, the

third term will vanish as kij →∞ since θ? is the limit of the sequence {θ̇(kij
)}. The

first term is bounded, using the triangle inequality again, as in

∥

∥

∥θ? + α?CCRB(θ?)s(x; θ?)− θ̇(kij
) − α

(kij
)
CCRB(θ̇

(kij
)
)s(x; θ̇

(kij
)
)
∥

∥

∥

I(θ?)

≤
∥

∥

∥θ̇
(kij

) − θ?
∥

∥

∥

I(θ?)
+
∥

∥

∥α
?CCRB(θ?)s(x; θ?)− α

(kij
)
CCRB(θ̇

(kij
)
)s(x; θ̇

(kij
)
)
∥

∥

∥

I(θ?)
.

Again, this first term will vanish as kij → ∞. This last term, using the triangle
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inequality, satisfies

∥

∥

∥
α?CCRB(θ?)s(x; θ?)− α(kij

)CCRB(θ̇(kij
))s(x; θ̇(kij

))
∥

∥

∥

I(θ?)

≤
∥

∥

∥
α?CCRB(θ?)s(x; θ?)− α(kij

)CCRB(θ?)s(x; θ?)
∥

∥

∥

I(θ?)

+
∥

∥

∥α
(kij

)CCRB(θ?)s(x; θ?)− α(kij
)CCRB(θ(kij

))s(x; θ(kij
))
∥

∥

∥

I(θ?)

≤
∥

∥

∥α
(kij

) − α?
∥

∥

∥

I(θ?)
‖CCRB(θ?)s(x; θ?)‖I(θ?)

+
∥

∥

∥α
(kij

)
∥

∥

∥

I(θ?)

∥

∥

∥CCRB(θ(kij
))s(x; θ(kij

))− CCRB(θ?)s(x; θ?)
∥

∥

∥

I(θ?)
.

The second inequality used the distributive property of norms [19, p.170, theorem

6.9.2]. By compactness, {‖CCRB(θ?)s(x; θ?)‖I(θ?)} is bounded. So the first term

above will vanish as kij →∞ since α? is the limit of the sequence {α(kij
)}. Similarly,

{‖α(kij
)‖I(θ?)} is a bounded sequence, and so the second term above will vanish as

kij →∞ since CCRB(θ(kij
))→ CCRB(θ?) and s(x; θ(kij

))→ s(x; θ?) by continuity

[38, p.78, corollary 4-2]. Therefore,

π
[

θ? + α?CCRB(θ?)s(x; θ?)
]

= θ?

and one of the following holds:

(a) α? = 0,

(b) CCRB(θ?)s(x; θ?) = 0, or

(c) the step projection θ? + α?CCRB(θ?)s(x; θ?) is perpendicular to Θf at θ?.

This last case (c) is impossible since the step is directed by linear combinations of

the vectors of U (θ?) which are tangent to the constraint space at θ?. This first case

(a) implies stationarity by applying continuity on the step size rule condition (3.37)
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and then theorem 3.33. And (b) implies s(x; θ?) is some linear combination of the

columns of F T (θ?), i.e., θ? satisfies (3.32). Therefore, θ? is a stationary point.

Theorem (Theorem 3.38). If Θθ̇(1) is compact for all sequences in a closed set of

Θf and if there is a unique limit point θ? for all such sequences then lim
k→∞

θ̇(k) = θ?

for every sequence {θ̇(k)}. Also, θ? is the maximum of p(x; ·).

Proof. Let θ̇(2) be any point in the compact set Θθ̇(1). Since {θ̇(k)} resides in a

compact set it has a limit point (Bolzano-Weierstrass [38, p. 52, theorem 2-12]),

which must be unique and therefore lim
k→∞

θ̇(k) = θ?. By theorem 3.34, p(x; θ̇(k+d)) ≥

p(x; θ̇(k)), and by continuity p(x; θ̇(k)) → p(x; θ?). Hence, p(x; θ?) ≥ p(x; θ
′

) for

every θ
′ ∈ Θθ̇(1) .
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Appendix C

Proofs of Theorems in Chapter 4

Theorem (Theorem 4.7). The CFIM is singular and the dimension of its null space

is lower bounded as

nullity(I(ϑ)) ≥
K
∑

i=1

K
∑

j=1

(Li − Lj + 1)+, (C.1)

where (a)+ = a for a ≥ 0 and (a)+ = 0 for a < 0. This limit quantity is the nullity

lower bound (NLB).

Proof. This proof is by construction. We shall develop a null subspace of the sub-

matrix
[

Qi Qj

]

of Q. In particular, consider the submatrix of consisting of the

ith source elements and j channel elements corresponding to the mth channel, i.e.,

[

S(i) H
(j)
(m)

]

. There exists three case to consider: (1) Li = Lj , (2) Li > Lj, and

(3) Li < Lj. But first, for use in the proof, define the M(Lj + 1) × (Lj − Li + 1)+

matrix

H
(i)
(j) =













H(i)
(j)1

H
(i)
(j)2

...

H(i)
(j)M













(C.2)
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where H
(i)

(j)m is the (Lj + 1)× (Lj − Li + 1)+ matrix

H
(i)
(j)m =





























h
(i)
m (0) 0 · · · 0

h
(i)
m (1) h

(i)
m (0) · · · 0

... h
(i)
m (1)

. . . 0

h
(i)
m (Li)

... · · · h
(i)
m (0)

0 h
(i)
m (Li) · · · h

(i)
m (1)

...
... · · · ...

0 0 · · · h
(i)
m (Li)





























. (C.3)

Then H
(i)

(j)m = h
(i)
m and H

(i)

(j) = h(i) from the secondary vector-matrix model in (4.6)

if Li = Lj. And also define the (N + Lj)× (Li − Lj + 1)+ matrix

S(i)
(j) =











s(i)(−Lj) s(i)(−Lj − 1) · · · s(i)(−Li)

s(i)(−Lj + 1) s(i)(−Lj) · · · s(i)(−Li + 1)
...

...
. . .

...

s(i)(N − 1) s(i)(N − 2) · · · s(i)(N − Li + Lj − 1)











. (C.4)

Then S (i)
(j) = s(i) if Li = Lj. Now consider the cases:

(1) From the dual interpretation of the model in (4.3) and (4.6), it is clear that

H
(j)
(m)s

(i) = S(i)h
(j)
m ; hence,

[

IM ⊗ S(i) H
(j)
M

]

[

H
(j)
(i)

−S(i)
(j)

]

= 0.

Also, (Li−Lj +1)+ = dim(

[

h(j)

−s(i)

]

) = 1 unless h(j) = 0 and s(i) = 0, in which

case, nullity(
[

IM ⊗ S(i) H
(j)
M

]

) > (Li − Lj + 1)+.

(2) H(j)
(i)m in (C.3) has rank (Li − Lj + 1) unless h

(j)
m = 0, which is impossible

by definition. Likewise, S
(i)
(j) is full column rank unless s(i) has fewer than

(Li − Lj + 1) modes or N < Li − 2Lj + 1 (see theorem 4.3). Therefore, since

[

IM ⊗ S(i) H
(j)
M

]

[

H
(j)

(i)

−S(i)
(j)

]

= 0

then nullity(
[

IM ⊗ S(i) H
(j)
M

]

) ≥ (Li − Lj + 1)+.
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(3) Finally, nullity(
[

IM ⊗ S(i) H
(j)
M

]

) ≥ 0 ≥ (Li − Lj + 1).

Theorem (CFIM NLB necessary conditions, Theorem 4.13). The M-channel K-

source FIR system Fisher information matrix has a nullity of exactly the NLB in

(4.13) only if

(a) H(z) is irreducible and column-reduced,

(b) ptotal ≥ K +

K
∑

j=1

Lj,

(c) pk ≥ Lk + 2 for k = 1, . . . , K or pk ≥ 1 if Lk = 0,

(d) N ≥ K +
K
∑

j=1

Lj, and

(e) M > K.

Proof. If any of these conditions fail, then the null space of I(ϑ) is greater than the

NLB.

(a) If H(z) is reducible or not column-reduced, then by theorem 4.2 HM is not

full column rank. Let v ∈ null(HM) and partition v as

v =











v(1)

v(2)

...

v(K)











where v(k) is a N + Lk length vector. (It is assumed that v is independent of

s otherwise Eϑy = 0 and the model itself is not identifiable.) Then

v∗ =















0(1)

v(1)

...

0(K)

v(K)















∈ null(I(ϑ))
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where 0(k) is a M(Lk + 1) length zero vector. Assume v∗ is a linear com-

bination of the columns of N in (4.14). Then for some k the columns of

[

H
(1)

(k) H
(2)

(k) · · · H
(K)

(k)

]

must be linearly dependent. (Otherwise without

this assumption, then v∗ /∈ span(N ). This corresponds to the 0(k) subvector

in v∗.) Let

u(k) =













u
(1)

(k)

u
(2)
(k)

...

u
(K)

(k)













∈ null(
[

H
(1)

(k) H
(2)

(k) · · · H
(K)

(k)

]

)

with u
(i)
(k) a (Lk − Li + 1)+ length vector. Then

U(k) =













U
(1)

(k)

U
(2)
(k)

...

U
(K)
(k)













∈ null(HM )

where

U
(i)
(k) =













u
(i)T
(k) 0 · · · 0

0 u
(i)T
(k) · · · 0

...
. . .

...

0 · · · u
(i)T
(k)













N+Li×N+Lk

.

(If Li > Lk then U
(i)

(k) is a null matrix. Also, U
(k)

(k) = u(k)IN+Lk×N+Lk
.) The

matrix U(k) can be arranged to create N+Lk linearly independent columns in

the null space of I(ϑ), where the submatrices U
(i)
(k) correspond to the rows of

N containing
[

−S
(1)

(i) −S
(2)

(i) · · · −S
(K)

(i)

]

, which has rank at most
K
∑

j=1

(Lj−

Li +1)+ ≤
K
∑

j=1

(Lj +1). For the columns of N to be a basis of the null space of

I(ϑ), it is needed then that
K
∑

j=1

(Lj+1) ≥
K
∑

j=1

(Lj−Lk+1)+ ≥ N+Lk ≥ N+Li,
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which implies at most N = K +

K
∑

j=1

Lj contradicting theorem 4.12 unless all

the channel orders are zero. In this latter case, then note that

N ·













IK×K ⊗













u
(1)
(k)

u
(2)
(k)
...

u
(K)
(k)

























will not be full rank, and hence neither can N be so.

(b) If ptotal < K +

K
∑

k=1

Lk, then there exists v ∈ null(S) where the matrix S =

[

S(1) S(2) · · · S(K)
]

. If v is partitioned as

v =











v(1)

v(2)

...

v(K)











where v(k) is a Lk + 1 length vector, then

v∗ =















1M×1 ⊗ v(1)

0(1)

...

1M×1 ⊗ v(K)

0(K)















∈ null(I(ϑ))

with 0(j) is an N + Lj length zero vector. If v∗ ∈ span(N ), then for some

k we have rank(
[

S
(1)
(k) S

(2)
(k) · · · S

(K)
(k)

]

) <
K
∑

j=1

(Lj − Lk + 1)+. Then by a

construction similar to part (a), nullity(S) ≥ Lk + 1 and this contribution to

the null space of I(ϑ) has rank at least M(Lk + 1), with submatrices that

coincide with
[

H
(1)
(k) H

(2)
(k) · · · H

(K)
(k)

]

, which has rank at most
K
∑

j=1

(Lk −

Lj + 1)+ ≤
K
∑

j=1

(Lk + 1) = K(Lk + 1) < M(Lk + 1) for any Lk since M > K.

Therefore, nullity(I(ϑ)) >
K
∑

i=1

K
∑

j=1

(Li − Lj + 1)+.

151



(c) If pk < Lk + 1 then by [31, lemma 1], S(k) and, consequently S, has a null

space and the argument in (b) applies. So assume pk = Lk + 1. If N <

Lk + 1 (and Lk 6= 0) then S(k) has a null space [76, lemma 1], so assume

N ≥ Lk + 1. From [31, the proof of theorem 1], it is possible to construct

a v independent from s(k) such that span(V ) = span(S(k)) for V defined

similarly as S(k). So for any h(k) there exists a h∗ such thatH
(k)
M v = (IM×M⊗

V )h(k) = (IM×M ⊗ S(k))h∗. Therefore both

[

−v
h∗

]

and

[

−s(k)

h(k)

]

reside in

null(
[

H
(k)
M (IM×M ⊗S(k))

]

), which increases the nullity lower bound by at

least one.

(d) This is a looser bound and hence required by theorem 4.12.

Theorem (CFIM NLB sufficiency conditions, theorem 4.14). The M-channel K-

source FIR system FIM has a nullity of exactly the NLB in (4.13) if

(a) H(z) is irreducible and column-reduced,

(b) ptotal ≥ K + (K + 1)
K
∑

j=1

Lj,

(c) pk ≥ Lk + 1 +
K
∑

j=1

Lj for k = 1, . . . , K,

(d) N ≥ K + (K + 2)
K
∑

j=1

Lj, and

(e) M > K.

This result is conceptually easier to prove from yet another alternative matrix

model from the ones in (4.3) or (4.6) using S(n) as defined in (4.9). Then define
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the (Lk + 1 + n)× (n+ 1) matrix

H
(k)
(m)(n) =













h
(k)
m (0)

...
. . . h

(k)
m (0)

h
(k)
m (Lk)

. . .
...

h
(k)
m (Lk)













,

which is the impulse response for the ith subchannel of the kth source. Then define

H(k)(n) =
[

H
(k)
(1) (n), . . . ,H

(k)
(M )(n)

]

and the (K(n+ 1) +

K
∑

k=1

Lk)×M(n+ 1) matrix

H(n) =





H(1)(n)
· · ·

H(K)(n)



 .

The observations for the mth channels (receiver) can be collected into the (N−n)×

(n+ 1) matrix

Y(m)(n) =







ym(n) · · · ym(0)
...

...
ym(N − 1) · · · ym(N − 1− n)







with Y (n) =
[

Y(1)(n), . . . ,Y(M )(n)
]

. The noise matrix W (n) is defined similarly.

Then the alternative model is

Y (n) = S(n)H(n) +W (n). (C.5)

Before this theorem is proven, a lemma will be needed. This lemma is a

generalization of a result in [52, theorem 3]. The proof was originally shown in [49,

Appendix].

Lemma C.1. AssumeH(n) be full row rank and h
′(k) be any nontrivial M(Lk +1)

length vector, and defineH
′(k)(n∗) to be the Lk+1+n∗×M(1+n∗) matrix composed

from h
′(k) as in (4.4) and (4.5). Then the following two statements are equivalent:

(i) corange{H ′(k)(n∗)} ⊂ corange{H(1)(n∗), . . . ,H(K)(n∗)} = corange{H(n∗)}.
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(ii) h
′(k) ∈ range{H(1)

(k), . . . ,H
(K)

(k) }.

We shall prove a more general version of the lemma, which is essentially an

extension of the identifiability theorem of [52, theorem 3] from the SIMO to the

MIMO scenario. First, define h(j)(l) =
[

h
(j)
(1)(l), . . . , h

(j)
(M )(l)

]T

and the Mn×(n+Lj )

matrix

H(j)(n) =











h(j)(Lj) h(j)(Lj − 1) · · · h(j)(0)
h(j)(Lj) h(j)(Lj − 1) · · · h(j)(0)

. . .
. . .

. . .
. . .

h(j)(Lj) h(j)(Lj − 1) · · · h(j)(0)











so that H(N) =
[

H(1)(N), . . . ,H(K)(N)
]

is similar to HM in the original model

(4.3), except for the order of the rows. Let L satisfy min
j
{Lj} ≤ L ≤ max

j
{Lj}.

Also define HL as the M(L + 1)× (L− Lj + 1)+ matrix

H(j)
L =







h(j) 0M×1 · · · 0M (L−Lj−1)×1

0M×1 h(j) . . . 0M×1

0M (L−Lj−1)×1 0M (L−Lj−1)×1 h(j)







where h(j) =
[

h(j)(0)T , . . . ,h(j)(Lj)
T
]T

, an M(Lj + 1) × 1 matrix. (The matrix is

not to scale, i.e., 0M×1 does not align with h(j).) Note, that H(j)
L is null for L < Lj.

Now, we restate the lemma as the following. Instead, we show the following are

equivalent:

(1) Range {H ′(N)} ⊂ Range
{

H(1)(N), . . . ,H(K)(N)
}

= Range {H(N)}.

(2) h′ ∈ Range
{

H
(1)
L , . . . ,H

(K)
L

}

.

Proof. Assume N >
K
∑

j=1

Lj and H(N − 1) is full-column rank. Let h′ be any

M(L + 1) × 1 nonzero complex vector, and define H ′(N) to be the MN ×N + L

channel matrix composed from h′. We’ll first assume (1), and show (2). Note that

H(j)(N) =

[

h(j)(0) p(j)(N − 1)
0M (N−1)×1 H(j)(N − 1)

]

=

[

H(j)(N − 1) 0M (N−1)×1

q(j)(N − 1) h(j)(Lj)

]

154



where

p(j)(N − 1) =
[

h(j)(1), . . . ,h(j)(Lj), 0M×N−1

]

, and

q(j)(N − 1) =
[

0M×N−1,h
(j)(0), . . . ,h(j)(Lj − 1)

]

.

Note statement (1) implies the first column of H ′(N) satisfies

[

h′(0)
0M (N−1)×1

]

=
K
∑

j=1

[

h(j)(0) p(j)(N − 1)
0M (N−1)×1 H(j)(N − 1)

]

·
[

α
(j)
0

a
(j)
0

]

where α
(j)
0 is a constant and a

(j)
0 is an N − 1 + Lj × 1 vector. Hence, we have the

following two linear systems:

(A1) h′(0) =

K
∑

j=1

α
(j)
0 h

(j)(0) + p(j)(N − 1)a
(j)
0

(A2) 0M (N−1)×1 =
K
∑

j=1

H(j)(N − 1)a
(j)
0

But H(N − 1) is full-column rank, thus a
(j)
0 = 0N+Lj−1×1 for all j. Therefore,

h′(0) =
K
∑

j=1

α
(j)
0 h

(j)(0). (C.6)

Likewise, the next column of H ′(N) is given by





h′(1)
h′(0)

0M (N−2)×1



 =
K
∑

j=1

[

h(j)(0) p(j)(N − 1)
0M (N−1)×1 H(j)(N − 1)

]

·
[

α
(j)
1

a
(j)
1

]

where, again, α
(j)
1 is a constant and a

(j)
1 is an N + Lj − 1× 1 vector. Now, we have

the following two systems:

(B1) h′(1) =

K
∑

j=1

α
(j)
1 h

(j)(0) + p(j)(N − 1)a
(j)
1

(B2)

[

h′(0)
0M (N−2)×1

]

=
K
∑

j=1

H(j)(N − 1)a
(j)
1
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Note (C.6) implies that

[

h′(0)
0M (N−2)×1

]

=

K
∑

j=1

α
(j)
0 ·

[

h(j)(0)
0M (N−2)×1

]

, i.e., it is a linear

combination of column vectors of H(N − 1). Since H(N − 1) is full-column rank,

then (B2) implies that a
(j)
1 =

[

α
(j)
0

0N+Lj−2×1

]

. Thus, evaluating (B1), we have

h′(1) =
K
∑

j=1

α
(j)
1 h

(j)(0) + α
(j)
0 h

(j)(1). (C.7)

Continuing in this fashion, we arrive at the general expression

h′(l) =
K
∑

j=1

l
∑

i=0

α
(j)
l−ih

(j)(i) (C.8)

for 0 ≤ l ≤ L. For convenience, we define h(j)(i) to be null if i < Lj or i < 0. Now,

consider the (L+ 2)nd column of H ′(N),















0M×1

h′(L)
...

h′(0)
0M (N−L−2)×1















=
K
∑

j=1

[

h(j)(0) p(j)(N − 1)
0M (N−1)×1 H(j)(N − 1)

]

·
[

α
(j)
L+1

a
(j)
L+1

]

It follows that

(C1) 0M×1 =
K
∑

j=1

α
(j)
L+1h

(j)(0) + p(j)(N − 1)a
(j)
L+1

(C2)











h′(L)
...

h′(0)
0M (N−L−2)×1











=
K
∑

j=1

H(j)(N)a
(j)
L+1

Since H(N − 1) is full-column rank, equation (C.8) and (C2) imply that a
(j)
L+1 =

[

α
(j)
L , . . . , α

(j)
0 , 01×M (N−L−2)

]T

. Applied to (C1) we have

0M×1 =
K
∑

j=1

α
(j)
L+1h

(j)(0) + α
(j)
L h

(j)(1) + · · ·+ α
(j)
L−Lj+1h

(j)(Lj)
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Continuing in this fashion, we see that for L + 1 ≤ l ≤ N − 1,

0M×1 =
K
∑

j=1

Lj
∑

i=0

α
(j)
l−ih

(j)(i) (C.9)

In particular, (C.8) and (C.9) show that the Nth column of H ′(N) can be written

as










0M (N−L−1)×1

h′(L)
...

h′(0)











=
K
∑

j=1

H(j)(N) ·











α(j)(N − 1)
...

α
(j)
0

0Lj×1











(C.10)

Similarly, statement (1) implies the last column of H ′(N) satisfies

[

0M (N−1)×1

h′(L)

]

=
K
∑

j=1

[

H(j)(N − 1) 0M (N−1)×1

q(j)(N − 1) h(j)(Lj)

]

·
[

y
(j)
L

β
(j)
L

]

where y
(j)
L is an N + Lj + 1× 1 vector and β

(j)
L a constant. Thus we have

(a1) 0M (N−1)×1 =

K
∑

j=1

H(j)(N − 1)y
(j)
L

(a2) h′(L) =
K
∑

j=1

q(j)(N − 1)y
(j)
L + β

(j)
L h

(j)(Lj)

Here, since H(N − 1) is full rank, then (a1) implies that y
(j)
L = 0N+Lj−1×1, hence

h′(L) =
K
∑

j=1

β
(j)
L h

(j)(Lj)

Proceeding as before, it is clear that

h′(L− l) =
K
∑

j=1

l
∑

i=0

β
(j)
L−lh

(j)(Lj − l + i)

for 0 ≤ l ≤ L. Thus, the Nth column of H ′(N) can also be expressed as











0M (N−L−1)×1

h′(L)
...

h′(0)











=
K
∑

j=1

H(j)(N) ·











0N+Lj−L−1×1

β
(j)
L
...

β
(j)
0











(C.11)
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But H(N) is full-column rank, hence (C.10) and (C.11) imply that











α(j)(N − 1)
...

α
(j)
0

0Lj×1











=











0N+Lj−L−1×1

β
(j)
L
...

β
(j)
0











Thus, α
(j)
l = 0 for all l ≥ L+ 1. Now, consider the following three cases:

(i) L = Lj, then α
(j)
0 = β

(j)
L and α

(j)
l , β

(j)
L−l = 0 for 1 ≤ l ≤ L.

(ii) L < Lj, then α
(j)
l , β

(j)
L−l = 0 for 0 ≤ l ≤ L.

(iii) L > Lj, then α
(j)
l = β

(j)
Lj+l for 0 ≤ l ≤ L−Lj and α

(j)
l , β

(j)
L−l = 0 for L−Lj +1 ≤

l ≤ L.

Define an (L− Lj + 1)+ × 1 vector α(j) =
[

α
(j)
0 , . . . , α

(j)
L−Lj

]T

for each j. If L < Lj,

let α be null. Then,

h′ =

K
∑

j=1

H
(j)
L α

(j)

or h′ ∈ Range
{

H(1)
L , . . . ,H(K)

L

}

. This proves statement (2).

Now, conversely assume statement (2). Then h′ =

K
∑

j=1

H
(j)
L γ

(j) where γ(j) =

[

γ
(j)
1 , . . . , γ

(j)

(L−Lj+1)+

]T

is an (L− Lj + 1)+ × 1 vector. Define

Γ(j)(N) =















γ
(j)
1 γ

(j)
2 · · · γ

(j)
(L−Lj+1)+

γ
(j)
1 γ

(j)
2 · · · γ

(j)

(L−Lj+1)+

. . .
. . .

. . .
. . .

γ
(j)
1 γ

(j)
2 · · · γ

(j)
L−Lj+1)+















N+Lj×N+L

Note, if L < Lj, then Γ(j)(N) = 0N+Lj×N+L. Then, it is simple to verify that

H ′(N) =
K
∑

j=1

H(j)(N)Γ(j)(N)

which proves statement (1).
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Now having this lemma at hand, theorem 4.14 can be proven.

Proof. Let n∗ =

K
∑

j=1

Lj. If (a)-(d) are satisfied, then we have column-rank(S(n∗)) =

row-rank(H(n∗) = K + (K + 1)n∗. Let v ∈ null(I(ϑ)) where v is partitioned as

v =















h
′(1)

s
′(1)

...

h
′(K)

s
′(K)















.

Then
K
∑

k=1

(IM×M ⊗ S(k))h
′(k) +H

(k)
M s

′(k) = 0, or in the alternative model in (C.5),

we have
K
∑

k=1

S(k)(n∗)H
′(k)(n∗) +

K
∑

k=1

S
′(k)(n∗)H(k)(n∗) = 0, or

[

S(n∗)S
′

(n∗)
]

[

H
′

(n∗)
H(n∗)

]

= 0.

Therefore nullity(
[

S(n∗)S
′

(n∗)
]

) ≥ rank(

[

H
′

(n∗)
H(n∗)

]

). Since

nullity(
[

S(n∗)S
′

(n∗)
]

) = columns(
[

S(n∗)S
′

(n∗)
]

)− rank(
[

S(n∗)S
′

(n∗)
]

)

≤ 2K + 2(K + 1)n∗ − rank(S(n∗))

= K + (K + 1)n∗

and

rank(

[

H
′

(n∗)
H(n∗)

]

) ≥ rank(H(n∗)) = K + (K + 1)n∗,

then nullity(
[

S(n∗)S
′

(n∗)
]

) = rank(

[

H
′

(n∗)
H(n∗)

]

) = K+(K+1)n∗ . Since rank(H(n∗))

= K + (K + 1)n∗ then there exist some matrix T such that H
′

(n∗) = TH(n∗).

Thus, by the lemma, for each k then h
′(k) =

K
∑

j=1

H(j)
(k)γ

(k,j) for some (Lk − Lj + 1)+

length vector. In the alternative model of (C.5), H
′(k)(n∗) =

K
∑

j=1

Γ(k,j)H(j)(n∗)
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where

Γ(k,j) =































γ
(k,j)
(Lk−Lj+1)+

...
. . .

γ
(k,j)
2 γ

(k,j)

(Lk−Lj+1)+

γ
(k,j)
1

... γ
(k,j)
(Lk−Lj+1)+

. . . γ
(k,j)
2

...

γ
(k,j)
1 γ

(k,j)
2

0 γ
(k,j)
1































Lk+1+n∗×Lj+1+n∗

and this defines T as

T =











Γ(1,1) Γ(1,2) · · · Γ(1,K)

Γ(2,1) Γ(2,2) · · · Γ(2,K)

...
... · · · ...

Γ(K,1) Γ(K,2) · · · Γ(K,K)











.

Then since

(

S(n∗)T + S
′

(n∗)
)

H(n∗) =
[

S(n∗) S
′

(n∗)
]

[

TH(n∗)
H(n∗)

]

= 0

and H(n∗) is full row rank, it can be seen that S
′

(n∗) = −S(n∗)T or S
′(k)(n∗) =

K
∑

j=1

−S(j)(n∗)Γ(j,k), which implies in the vector-matrix model in (4.3) that s
′(k) =

K
∑

j=1

−S
(j)
(k)γ

(j,k). Let

γ =







































γ(1,1)

γ(1,2)

γ(2,2)

γ(2,1)

...

γ(1,K)

...

γ(K,K)

...

γ(K,1)







































.

Then v = Nγ and span(N ) ≡ null(I(ϑ)).
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