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Complex Variable Methods for Shape Sensitivity of Finite Element Models 

Andrew Voorhees, Ronald Bagley, Harry Millwater 

Abstract 

 Complex variable methods have some potential advantages over classical finite 

differencing methods for sensitivity analysis. Two methods, complex Taylor series expansion 

and Fourier differentiation, are applied and compared to central differencing for shape sensitivity 

analysis. A two dimensional finite element model with an analytical solution is chosen for use in 

comparing the accuracy of the methods.  It is found that for the accuracy of the model chosen, 

the error in the sensitivities is primarily defined by the error in the solution, not the error in the 

sensitivity method. 

Introduction 

 Finite element analysis is a powerful tool in computational engineering.  The method 

allows for the approximate solution of boundary value partial differential equations.  Given 

enough computational power it is possible to solve highly non-linear equations, on extremely 

complicated and intricate domains, with arbitrary boundary conditions [1].  Finite element 

analysis has become an important part of the design process for mechanical engineers.  Accurate 

numerical solutions can reduce the need for costly laboratory experiments.  Furthermore, the 

effect that a small design change has on the performance of the model can be calculated quickly, 

avoiding the need to build new test specimens.  

 The effect that a small design change has on the output parameters of the model can be 

characterized through a process known as sensitivity analysis.  A sensitivity is in fact identical to 
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a partial derivative, in that it quantifies the change in one parameter due to a change in another 

parameter, with all other inputs held constant.  This means that sensitivity analyses can be 

performed using simple numerical differentiation techniques.  For design work, the most 

important type of sensitivity is the shape sensitivity [2]. A shape sensitivity tells the designer 

what effect a small change in the size or shape of the domain will have on the output.  Examples 

of shape sensitivities include the sensitivity of the lift generated by an aircraft wing to the shape 

of the wing’s cross section, or the sensitivity of the stress in a beam due to a change in it’s 

length. 

 Sensitivities are easily calculated through numerical differentiation techniques.  

Traditionally, the numerical differentiation method of choice has been finite differencing. Finite 

differencing requires that a function be evaluated at additional sample points and the derivative 

of the function can be evaluated by calculating the difference in the function’s value between 

two of the sample points.  Central differencing (CD) is a widely used form of finite differencing 

chosen for it’s increased accuracy.  Over the last ten years, alternative numerical differentiation 

techniques have emerged for use in sensitivity analysis.  Two of these methods are complex 

Taylor series expansion (CTSE), also referred to as the complex step derivative method, and 

Fourier differentiation.  These methods offer more accurate and stable derivatives compared to 

CD.   

 CTSE was first described by Lyness and Moler in the late 1960’s [3,4].  It reemerged as a 

tool for engineering analysis with a paper by Squire and Trapp in 1998 [5].  Since then it has 

been used in a wide variety of engineering fields including computational fluid dynamics, 

dynamic system optimization and many more [6-13].  In all of these fields CTSE has offered a 

great improvement in accuracy over CD.  However, CTSE was only found to offer similar 
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accuracy to CD for use in the calculation of shape sensitivity problems for one dimensional and 

two dimensional finite element models [13].   

 FD was also developed by Lyness in the late 60’s and early 70’s[3,4,15].  The method 

has was further described by Henrici and more recently Bagley [16,17]. The method utilizes 

additional sample points in the complex plane and an FFT routine to calculate derivatives 

including high order derivatives with exceptional accuracy.   To date the method has not been 

widely used for the determination of sensitivities for engineering problems.  

 Although the scope of this paper does not cover them, several other sensitivity methods 

that do not rely on the evaluation of sample points have come into use in the engineering 

community [18-24].  These codes are typically more difficult to apply to problems in that they 

require extra coding or the derivation and solution of new equations rather than simply 

generating extra sample points and applying simple numerical differentiation formulas. For the 

most part they are restricted to problems in which high-dimensional gradients need to be 

calculated.  The first of these methods is automatic differentiation.  This method is based on the 

concept of the chain rule, and the fact that a large code thought of as a single function composed 

of several small functions each having its own partial derivative [18].  Thus by tracking the use 

of each small function in a code, i.e. every multiplication or subtraction operation, and storing 

the derivative information, sensitivities can be obtained by carefully applying the chain rule.  

Fortunately, several automatic differentiation codes for a variety of programming languages 

already exist.  These include ADIFOR and ADI-C codes for FORTRAN and C respectively 

[25,26].   This method has been found to be more accurate than the sampling methods because 

each derivative evaluation can be done symbolically, which means that the error will due to 

machine round-off. Automatic differentiation is also very efficient for computing high-
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dimensional gradients.  Direct differentiation and the adjoint method are two additional methods 

[20].  In direct differentiation, sensitivities are calculated through linearization and discretization 

of the original differential equations to produce discrete linearized state equations that can be 

solved to produce the desired sensitivities.  The adjoint method is similar, except the 

linearization is replaced with an adjoint operation.  These methods have been found to be very 

useful in the field of CFD where problems often involve large numbers of input variables [20].  

 The goal of this paper is to demonstrate the use of complex variable methods for the 

calculation of shape sensitivities for a simple two-dimensional finite element model.  The two 

dimensional plane stress elastic model of a thick walled cylinder under uniform boundary 

pressure will be used as a numerical example.  This problem has an analytical solution, which 

can be differentiated to determine the shape sensitivities.  The sensitivities calculated by CTSE 

and FD will be compared to the analytical sensitivities as well as those calculated by CD.    

Methodology 

Numerical Differentiation 

 Numerical differentiation is a process through which an estimate of a function’s 

derivative can be obtained.  A derivative is defined as the limit of the change in a function’s 

value across two different points, as the distance between the two points goes to zero.   



f '(xo)  lim
xxo

f (x) f (xo)

x  xo      (1) 

Finite differencing methods calculate derivatives by estimating the limit in eq. 1 as a difference 

between a function evaluated a two distinct points located a distance h apart.  



f '(xo) 
f (xo  h) f (xo)

h       (2) 
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This distance, h, is often called the step size.  When h is positive, the method is referred to as 

forward differencing.  When h is negative it is called backwards differencing.  When the forward 

difference and the backwards difference are averaged, the method is called central differencing.  

The equation for central differencing is as follows. 

 



f '(xo) 
f (xo  h) f (xo  h)

2h      (3) 

The approximation of the derivatives as a difference between two non-identical numbers leads to 

error due to the truncation of terms in the functions Taylor series.  This error can be eliminated 

by making the step size as small as possible.  However, as the step size gets very small, a new 

source of error arises.  This new error is round-off error and it is due to the fact that a computer 

cannot accurately calculate a small difference between two large numbers.  This means that for 

finite differencing there is a lower limit on the step size and also a limit on the maximum 

achievable accuracy.   

 For the forward differencing method all Taylor series terms above the first order term are 

ignored.  This means that the order of accuracy for a given step size is O(h).  By using CD all the 

even order terms in the Taylor series cancel out and the accuracy of the method becomes O(h
2
). 

The increased accuracy of CD is the reason it has become the standard method for sensitivity 

calculations. 

 Higher order derivatives can also be calculated through CD, by using additional sample 

points.  The formula for the second derivative is. 



f (2)(xo) 
f (xo  h)2 f (xo) f (xo  h)

h2     (4) 

Formulae exist for derivatives above second order but are not printed here.  One of the problems 

with CD is that the calculation of higher order derivatives requires more sample points and more 
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difference operations.  Each additional difference operation results in an increase in the round-off 

error, which further restricts the lower limit of h.  This means that CD is not a good choice for 

the calculation of higher order derivatives. 

 CTSE is another numerical differentiation method.  CTSE uses the orthogonality of the 

real and imaginary axes of the complex plane to calculate derivatives with fewer difference 

operations and in turn less round-off error when compared to CD.  CTSE is capable of 

calculating both the first and second order derivatives from a single sample point located at 

xo+ih.  The formulae for the derivatives can be derived from the Taylor series representation of 

the function evaluated at the complex sample point. 



f (xo  ih)  f (xo) f
(1)(xo) 

i  h

1!
 f (2)(xo) 

(i  h)2

2!
 f (3)(xo) 

(i  h)3

3!
 ...

   (5) 

Taking the imaginary part of both sides of eq. 5 and solving for the first derivative will result in 

an approximation with accuracy O(h
2
).   



f '(xo) 
Im( f (xo  ih))

h
     (6) 

It is noted that for the first derivative no difference operation is needed.  This means that the step 

size can be made arbitrarily small with no concern about increasing round-off error.  Taking the 

real part of eq. 5, the formula for the second derivative with error O(h
2
) can be derived. 



f '(xo) 
2( f (xo)Re( f (xo  ih)))

h2
     (7) 

It is noted that the second derivative contains a difference operation meaning that round-off error 

will be a problem if h is set too small.  By using more sample points it is possible to solve 

equation 5 to obtain the higher order derivatives.  

 FD can be derived from the Cauchy integral formula. 
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

f (n )(z) 
n!

2i

f ()

(  z)n1
d

     (8) 

which, relates any nth order derivative to a simple contour integral in the complex plane.  The 

form of this integral is identical to the form of a Fourier integral, and hence it can be evaluated 

using an FFT routine.  If the function of interest is evaluated at N sample points along a circular 

contour in the complex plane centered on the initial point, a vector of the sampled data can be 

run through an FFT routine, and the output will be the first N terms in the functions Taylor 

series.  The nth order derivative of the function can then be calculated from the Taylor series 

coefficients by using the following relationship. 

 



f
n (zo) 

ann!

hn       (9) 

where an is the n
th

 Taylor series coefficient.  For more information on Fourier differentiation see 

Bagley, 2006 [17].
 

Finite Element Analysis 

 A two-dimensional finite element code capable of solving the 2-D equations of elasticity 

under the assumptions of plane stress was written in Matlab.  The code uses second order shape 

functions and six-node triangular elements.  The equations for the shape functions in terms of the 

natural coordinates can be found in Huebner, on page 543 [27].  The use of natural coordinates 

allows for all numerical integration to be replaced with algebraic manipulation, which greatly 

improves the run time of the program.  Geometry and meshes were created using the Comsol 

finite element package and were then imported into Matlab.  After importation, the edges of the 

elements were reconstructed so that all element edges were linear, and all non-vertex nodes were 

placed on the midpoint of the edges.   The code used a conjugate gradient solver with a minimum 
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error of 1e-8.  After solving the global system of equations for the displacements, the stresses at 

each of the nodes were calculated on an element by element basis using the equations of 

elasticity, second order shape functions and the nodal displacements.  Since, the nodal stress 

calculated from one element does not always agree with the nodal stress calculated using another 

element, stress averaging was used to smooth the stress field.  The code then calculated the 

principal stresses and the Von Mises stresses using the stresses at the nodal points.  

 In order to perform the shape sensitivity calculations, a small step must be added to the 

nodal coordinates.  This was done by first identifying every node that was located on the 

geometry feature that was being sampled.  For instance, if the sensitivity of the solution to the 

radius of a hole was being calculated, the program would identify each node that was located on 

the surface of the hole.  The code would then add a small step (complex or real depending on the 

method) to the nodal coordinate of each of the identified nodes.  All other nodes in these 

elements would remain the same.  If the step size chosen for the numerical differentiation 

technique is very large, be it real or imaginary, the elements may become distorted, which can 

lead to poor numerical results, and as such the step sizes and sampling radii of the differentiation 

methods were typically kept much smaller than the edge lengths of the elements. 

Numerical Example: Thick Walled Cylinder 

 In order to test the accuracy of the three numerical differentiation techniques it is 

necessary to find a problem with an analytical solution.  The thick walled cylinder under uniform 

boundary pressure is such a problem.  The equations that govern the stress through the thickness 

of the cylinder are given in eq. 10 [28], 
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

 r 
r1
2
r2
2
p

r2
2
 r1

2

1

r2

r2
2
p

r2
2
 r1

2

  
r1
2
r2
2
p

r2
2
 r1

2

1

r2

r2
2
p

r2
2
 r1

2

      (10)

 

where, r1 is the inner radius, r2 is the outer radius, and p is the boundary pressure.  For this 

example, the inner radius of the cylinder is 0.5 m, the outer radius is 1 m and the boundary 

pressure is 10 kPa.  The stress equations given in eq. 10 can be differentiated with respect to the 

inner radius to generate the sensitivities of the stresses.  The sensitivities of the stresses with 

respect to the inner radius appear in eq. 11 and the second order sensitivities appear in eq. 12.  



 r
r1

 2
r1r2

2
p

(r2
2
 r1

2
)2
r2
2

r2
1























r1
 2

r1r2
2
p

(r2
2
 r1

2
)2
r2
2

r2
1





















      (11) 



2 r
r1

2
 2

(3r1  r2
2
)r2

2
p

(r2
2
 r1

2
)3

r2
2

r2
1





















2

r1
2
 2

(3r1  r2
2
)r2

2
p

(r2
2
 r1

2
)3

r2
2

r2
1





















     (12) 

 The problem was solved using four different meshes in order to examine the convergence 

of the error in the solution.  The coarsest mesh contained 888 elements, and 1868 nodes, the next 

mesh contained 1792 elements and 3716 nodes, the third mesh contained 6184 elements and 

12,608 nodes, and the finest mesh consisted of 25,124 elements and 50,724 nodes.  The solutions 

for the radial and tangential stresses as calculated using the 6184 element mesh are shown in 

figure 1.  The following norm was selected in order to compare the error in the four different 

mesh cases.   
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

error 
mean( analytical numerical )

mean( analytical)      (13) 

The following formula was used to calculate the error plotted in the figures for this example.  



error 
 analytical numerical

max(  analytical)      (14)

 

This formula was chosen so as to minimize the influence of large errors at locations where the 

solution is near zero, such as at the inner radius for the radial stress.  Table 1 shows the norm of 

the error in both the radial and tangential stress solutions for each mesh case.  This data is shown 

graphically in figure 2.  It is seen that each successive mesh iteration reduces the error by 

approximately half an order of magnitude.  The amount of computational time (wall time) 

needed to solve each mesh case is shown in table 2.  Given the amount of computational time 

required for 25,124 element case and the fact that the complex sensitivity solutions will require 

three times more computation than the real valued case, the 6184 element case was used to 

generate the first, second and third order sensitivities.  For each sensitivity method the step size 

or sampling radius was 0.001 which is approximately 1/30th of the average element edge length.  

CTSE and CD were both performed using as few sample points as possible, and FD was 

performed using 6 sample points. The norm of the error in the sensitivities appears in table 3.  

The error in the first order sensitivities of the radial stress over the entire domain appear in figure 

3, and the error in the second order sensitivities of the radial stress appear in figure 4.  These 

figures show only very slight differences between the three methods.  It is also seen that along 

the inner circumference of the cylinder the error is very large.  This is due to the fact that the 

sensitivity cannot be accurately calculated on the sampled surface itself, because the boundary 

conditions require the solution to be fixed at the inner surface. 
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 The norm of the error in each case is mostly independent of the method selected.  This is 

especially true for the first order sensitivities. The third order sensitivities show some small 

differences between the methods, with CTSE having the highest accuracy.  The fact that the error 

is similar between all three methods points to the fact that the error in the solution is dominating 

any errors arising from the differentiation methods themselves.  This is seen by looking at the 

first and second order sensitivities of the radial stress as a function of the number of elements 

(table 4).  It is quickly seen that each additional mesh refinement increases the accuracy of the 

method.  This reduction in the errors of the sensitivities is similar to the reduction in the error of 

the solution due to further mesh refinement seen in table 1.   

 The error in the first and second order sensitivities of the radial stress calculated using 

three different step sizes are shown in table 5.  It is seen that changing the step size does not have 

much effect on the accuracy of the sensitivity.   This is a further indicator that the accuracy of the 

solution is limiting the accuracy of the sensitivities, not the accuracy of the numerical 

differentiation methods.  One exception is the second order sensitivity at the smallest step size, 

0.0001 or 1/300
th

 of the average element edge length. At this step size each method produces 

sensitivities that are less accurate than those calculated with a larger step size.  This indicates that 

the machine round-off error associated with this step size may be similar in magnitude to the 

error due to the solution.   

Numerical Example: Disc in Diametrical Compression  

One of the classic tests in material analysis is the disc in diametrical compression [20].  

In this test a circular disc is loaded in compression along its y-axis.  The load is modeled as a 

point load. This loading and geometry generates a very nice uniform tensile stress along the x-
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axis of the specimen.  It is thus useful in examining the tensile properties of a material without 

actually loading the specimen in tension.  This test is also known as the indirect tensile test or the 

Brazil nut test. 

The diametrical compression test has an analytical solution that can be derived through 

simple superposition.  The solution of the stresses is seen in eq. 15 [28]. 



 x 
2P



(R  y)x 2

x 2  (R  y)2 
2


(R  y)x 2

x 2  (R  y)2 
2

1

2R















 y 
2P



(R  y)3

x 2  (R  y)2 
2


(R  y)3

x 2  (R  y)2 
2

1

2R















 xy 
2P



(R  y)2 x

x 2  (R  y)2 
2


(R  y)2 x

x 2  (R  y)2 
2















     (15) 

 

In these equations, P is the magnitude of the point load, R is the radius of the disc, and x and y 

specify the location at which the stress is calculated, with the point (0,0) located at the center of 

the disc.  The analytic solutions of eq. 15 can be differentiated to yield the sensitivities with 

respect to the radius of the disc.  The equations for the first two sensitivities of the normal stress 

in the x-direction with respect to the radius are 



d x
dR


2P



(3R2  6Ry  x 2  3y 2)x 2

x 2  (R  y)2 
3


(3R2  6Ry  x 2  3y 2)x 2

x 2  (R  y)2 
3


1

2R2















d2 x
dR2


2P



12(R  y)(R2  2Ry  x 2  y 2)x 2

(R2  2Ry  x 2  y 2)4

12(R  y)(R2  2Ry  x 2  y 2)x 2

(R2  2Ry  x 2  y 2)4

1

R3











 (16) 

The closed-form solutions for the sensitivities make this problem another excellent choice for 

exploring the use of the complex variable sensitivity methods. 

 The diametrical compression test model was solved using three different meshes, with a 

coarse mesh consisting of 1148 elements and 2357 nodes, a moderately refined mesh of 2502 
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elements and 5093 nodes and a fine mesh with 8,374 elements and 16,909 nodes.   The solution 

for the stresses as calculated using the fine mesh appears in figure 5.  It should be noted that for 

each figure in this example, no solution is plotted for the elements that share the node where the 

load is applied.  This is due to the fact that the stress on this node would be infinite.  The error 

norm used for this example is the same as for the thick walled cylinder example. The formula for 

the error plotted in the figures is. 



error 
 analytical numerical

 analytical
       (17) 

Table 6 shows the error for the three stresses for the three different mesh sizes.  As before, it is 

seen that each successive mesh refinement results in a fairly large reduction in the error norm.  

This is seen visually in figure 6.  The red areas are regions of high error.  As the number of 

elements increases, it is seen that the total size of the red regions decreases significantly as the 

mesh is further refined.  The computational time required to generate one solution appears in 

table 7. The errors in the sensitivities of the normal stress in the x-direction, calculated by each 

of the three methods are plotted in figure 7  (first order) and figure 8 (second order) for the fine 

mesh case.  It is seen that there is again high error along the circumference of the disc due to 

boundary conditions.  It is also noted that a few lines of high error form inside the discs.  These 

lines represent regions where the analytical sensitivity is zero or near zero.  Since the analytical 

sensitivity appears in the denominator of the error formula given in eq. 17, the error becomes 

very large when the analytical sensitivity tends towards zero. The norm of the error in the 

sensitivities are shown in table 8.  It is seen that the norm of the error is much larger in this case. 

This is in keeping with the fact that the error norm of the solutions themselves are much higher 

than for the first example.  This time it is seen that there is not a large dependence of the error 

norm on the number of elements.  It is, however, seen that there is not much difference between 
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the methods themselves.  This points to the fact that the error in the derivatives is not due to the 

truncation error of the derivative methods, since the truncation error of CTSE and CD should be 

of the order O(h
2
) while the truncation error of FD should be O(h

6
).   The lack of dependence on 

the choice of method is further shown in table 9 where the norm of the errors is shown for the 

2502 element mesh for three different step sizes, or sampling radii.  Very little variation in the 

error is seen as a function of the step size, which is not the behavior of truncation error. 

  

 

Conclusions 

 CTSE, FD, and CD can all be used to calculate shape sensitivities.  This marks the first 

time that FD has been used for calculating finite element shape sensitivities.  Unfortunately, For 

2-D finite element problems using second order shape functions, the error in the model is greater 

than the error due to the truncation errors associated with the numerical differentiation methods.  

This means that the complex variable sensitivity methods do not offer extra accuracy compared 

to CD.  If the model were made to be more accurate, such as with higher order basis functions or 

more elements, then FD and CTSE could offer improved accuracy.  It has been shown that FD is 

capable of producing highly accurate sensitivities for functions with solutions that are accurate to 

machine precision [17].  The trade-off for the increased accuracy of FD is the requirement of 

several complex sample points.  It takes three times more computational effort to generate a 

complex sample than a real valued sample.  Thus for the problems described in this paper, FD is 

not a good choice for shape sensitivity calculations, due to the limited accuracy of the solution.  

CTSE requires only half of the number of sample points required by CD, thus CTSE only 

requires 1.5 times more computational effort than CD.  This coupled with the fact that CTSE 
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doesn’t require changing the location of nodes in the complex plane means that it may still be a 

good choice for shape sensitivity problems. 

 One of the biggest problems with CD is that it requires the user to change the location of 

several nodes.  Depending on the method chosen, this may lead to elements with poor aspect 

ratios, or complete remeshing of the domain, or both.  This is especially true when the step size 

is rather large.  Since CTSE does not require moving the nodes in the real plane, remeshing is not 

required, and there is less concern over the aspect ratio of the elements.  Furthermore, if only the 

first order sensitivity is required, than the step size can be made very small without fear of 

increasing the round-off error.  This may be very useful for problems in which external 

constraints may prohibit the domain boundary from moving. 
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Tables 
 
Table 1. The Norm of the Error in the Stress Solutions for Example 1 

Number of Elements Radial Stress Tangential Stress 

888 5.2510e-3 3.1852e-3 

1792 2.6262e-3 1.7412e-3 
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6184 7.5747e-4 5.3097e-4 

25124 1.8608e-4 1.3248e-4 

 
Table 2. The Computational Time Required to Solve each Model for Example 1 

Number of Elements Time For Solution 

888 8.49 s 

1792 19.48 s 

6184 130.76 s 

25124 2799.77 s 

 
 
Table 3. The Norm of the Error in the Sensitivity of the Stress to the Inner Radius  for Example 1 

 
Table 4. The Norm of the Error in the First Order Sensitivity of the Radial Stress as a Function of the 
Number of Elements for Example 1 

Number of Elements CD CTSE FD 

Order 1st 2nd 1st 2nd 1st 2nd 

888 1.2707e-1 2.0865e-1 1.2720e-1 2.0856e-1 1.2720e-1 2.0859e-1 

1792 8.9792e-2 1.5315e-1 8.9924e-2 1.5214e-1 8.9934e-2 1.5248e-1 

6184 4.7265e-2 8.1689e-2 4.7268e-2 8.1766e-2 4.7268e-2 8.1671e-2 

25124 2.2981e-2 4.0049e-2 2.2983e-2 4.0088e-2 2.2983e-2 3.9894e-2 

 
 
Table 5. The Norm of the Error in the First and Second Order Sensitivities of the Radial Stress as a 
Function of Step Size for Example 1 

Step Size CD CTSE FD 

Order 1st 2nd 1st 2nd 1st 2nd 

.0001 4.7268e-2 8.2959e-2 4.7268e-2 1.0500e-1 4.7268e-2 9.2942e-2 

.001 4.7265e-2 8.1689e-2 4.7268e-2 8.1766e-2 4.7268e-2 8.1671e-2 

.01 4.7091e-2 8.2920e-2 4.7249e-2 8.1197e-2 4.7271e-2 8.1748e-2 

 
Table 6. The Norm of the Error in the Stress Solutions for Example 2 

Number of 

Elements 

Norm of Error in Stress 

in X 

Norm of Error in 

Stress in Y 

Norm of Error in 

Shear Stress 

1148 1.2615e-1 4.3792e-2 9.7171e-2 

Method Radial Stress  Tangential Stress  

Order 1st 2nd 3rd 1st 2nd 3rd 

CD 4.7265e-2 8.1689e-2 2.4292e-2 8.4286e-2 3.2213e-1 1.4765e-2 

CTSE 4.7268e-2 8.1766e-2 2.4298e-2 8.2488e-2 3.1587e-1 1.4769e-2 

FD 4.7268e-2 8.1671e-2 2.4295e-2 8.7353e-2 3.3258e-1 1.4769e-2 
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2502 8.6330e-2 3.2347e-2 6.1229e-2 

8374 4.5780e-2 2.0857e-2 3.9533e-2 

 
Table 7. The Computational Time Required to Solve each Model for Example 2 

Number of Elements Time For 

Solution 
1148 10.41 s 

2502 27.82 s 

8374 200.00 s 

 
 
Table 8. The Norm of the Error in the First Order Sensitivity of the Normal Stress in X as a Function of 
the Number of Elements for Example 2 

Number of Elements CD CTSE FD 

Order 1st 2nd 1st 2nd 1
st
 2nd 

1148 0.4681 0.6378 0.4681 0.6379 0.4681 0.6378 

2502 0.4164 0.5673 0.4164 0.5675 0.4164 0.5674 

8374 0.4267 0.6572 0.4270 0.6581 0.4270 0.6577 

 
Table 9. The Norm of the Error in the First and Second Order Sensitivities of the Radial Stress as a 
Function of Step Size for Example 2 

Step Size CD CTSE FD 

Order 1st 2nd 1st 2nd 1st 2nd 

.0001 0.4164 0.5679 0.4164 0.5726 0.4164 0.5688 

.001 0.4164 0.5673 0.4164 0.5675 0.4164 0.5674 

.01 0.4143 0.5609 0.4166 0.5707 0.4164 0.5674 
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Figures 

 
Figure 1. Convergence of the Error in the Radial and Tangential Stress Models for Example 1. A. The 
norm of the error in the radial stress, B. The norm of the error in the Tangential Stress 

 

 
Figure 2. The Numerical Solution of the Radial and Tangential Stresses for Example 1. A) The FEM solution 

for the radial stresses B) The FEM solution for the tangential stresses 
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Figure 3. The Error in the First Order Sensitivity of the Radial Stress for Example 1.  A) Error in CD, B) error 

in CTSE, C) error in FD.  
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Figure 4. The Error in the Second Order Sensitivity of the Radial Stress to the Inner Radius for Example 1. 

A) Error in CD, B) error in CTSE, C) error in FD.  
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Figure 5. The Finite Element Solution for the Stresses in a Disc in Diametrical Compression. A) The numerical 

solution for the stresses in the x-direction B) The numerical solution for the stresses in the y-direction C) The 

numerical solution for the shear stress  
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Figure 6. The Error in the Finite Element Method for Three Different Meshes for Example 2. A) The error for 

the mesh with 1,148 elements and 2,357 nodes, B) The error for the mesh with 2,502 elements and 5,093 nodes, C) 

The error for the mesh with 8,374 elements and 16,909 nodes. 
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Figure 7. The Error in the First Order Sensitivity for Example 2. A) Solution calculated by CD, B) Solution 

calculated by CTSE, C) Solution calculated by FD 
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Figure 8. The Error in the Second Order Sensitivity for Example 2. A) Solution calculated by CD, B) Solution 

calculated by CTSE, C) Solution calculated by FD 
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