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ABSTRACT 

A Field Programmable Gate Array (FPGA) offers a flexible solution for 

transferring data obtained from hardware to a PC for analysis and storage.  Traditionally, 

an RS-232 serial interface is used to connect hardware to the PC.  The RS-232 protocol is 

straightforward to implement with minimum hardware support.  However, the presence 

of the Universal Serial Bus (USB) protocol has largely replaced traditional RS-232 

communications, mainly due to a higher data rate and ease of configuration.  In this 

thesis, models for the FPGA to send data in memory via RS-232 and USB were 

developed, as well as programs on the PC to accept those data streams.  By using timing 

alone (no bidirectional communication), the RS-232 model could send data up to 36.9 

kbps where as the USB model achieved a data rate of 702.6 kbps.  By using the TXE pin 

and writing data only when the chip was ready, a 3.17 Mbps transfer rate was achieved. 
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EXECUTIVE SUMMARY 

With the amount of data that today’s sensors can gather, data needs to be quickly 

offloaded from the sensor to a storage device for analysis and storage.  Initial benchmarks 

consisted of a data stream running at approximately 32 kbps, and while it may seem slow 

in terms of a gigabit Ethernet, it is not trivial in terms of embedded applications.  

Furthermore, the timing and synchronization are not done via a simple command in 

software, but must be programmed with logical components.  An FPGA was used to tie 

the external sensor boards with the PC for rapid development and flexible configuration. 

Two approaches were compared to transfer the data from the FPGA to the PC.  A 

traditional RS-232 serial exchange was first used for its simple protocol and its 

availability.  It was found that the top speed using this protocol achieved 36.9 kbps, 

slightly above the required data rate.  Data rates faster than 36.9 caused errors to be 

transmitted, regardless of extra added idle time in the end of each word for padding and 

synchronization. 

The second approach was to connect the FPGA with the PC using an USB 

interface.  This approach yielded a data rate of 702.6 kbps using a fixed write period.  

Attempts to increase the data rate yielded errors as well, although not as many.  

Synchronization was again the issue with higher data rates, due to pauses required to 

transfer data in the USB buffer.  However, by monitoring the TXE pin and writing data 

only when the chip was ready, a 3.1 Mbps transfer rate was achieved. 

This thesis demonstrated that data transfer is possible from a FPGA to a PC for 

data rates not exceeding what was achieved.  The results are generally applicable to any 

devices that want to offload data to a PC.  It improved on exsiting solutions by offering a 

easy to use and maintain development environment without risking proprietary vendor 

locking.  By using more stringent flow control in the future, the transfer rate could be 

improved to provident services to a wider range of applications. 
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I. INTRODUCTION  

A. RESEARCH GOAL 

The goal of this research was to develop a data acquisition solution to transfer 

data from a Field Programmable Gate Array (FPGA) to a Personal Computer (PC).  Data 

from sensors are often analyzed in real time with an oscilloscope but rarely stored in raw 

digital form.  Depending on the application, a large amount of data may need to be 

moved very quickly from the hardware to PC memory.  This research is aimed at 

developing an efficient way to transfer that data on the PC, where it can be stored and all 

the tools of analysis can be put to use. 

The programs for both RS-232 and USB had to be developed because there are no 

premade implementations available from the venders.  There was a sample program 

packaged with the USB drivers for Linux.  That sample program read and wrote to the 

USB FIFO chip from the PC.  However, no mechanism exists to get meaningful data to 

the FIFO. 

B. MOTIVATION 

The original motivation for this thesis was to take data from digital sensors and 

offload it to the PC.  The initial data stream was two channels with 10,000 16-bit data 

points per channel every 10 seconds.  A mechanism was needed to transfer data at 32+ 

kbps to the PC for calculations and storage.  This requirement was later dropped to make 

the system applicable to as many devices as possible. 

C. BACKGROUND 

The RS-232 standard specifies all aspects of communications from connector 

types to voltage levels, and signals used.  It is an extensive standard, and pertinent 

information will be presented here. 
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The physical connection is between Data Terminal Equipment (DTE) and Data 

Circuit-terminating Equipment (DCE).  In this case, the DTE is the PC and the DCE is 

the FPGA.  The pins on the serial cable are labeled 1 through 9, with the important pins 

being 2 and 5.  Pin 5 is the ground pin that the voltages of the other pins are compared 

against.  Pin 2 is the Receive Data (RxD) pin, which receives data from the FGPA to the 

PC.  Pin 3 could be used later should a need arise to send data to the FPGA from the PC.  

There are also handshaking signals on other pins that signals data is ready to be sent and 

the equipment is ready to receive [1].  However, those mechanisms are not used in the 

current design because the link is assumed to be ready, as triggered by running the 

program itself on the PC side and an explicit trigger on the FPGA side. 

The signal operates between +/- 5V, with +5 being 0 and -5 being 1.  When the 

line is idle, a 1 is asserted on RxD.  When the transmission starts, the Start Bit of 0 is 

asserted.  Then a set of data bits are transmitted, with the least significant bit first.  When 

the data bits have finished transmitting, a Stop Bit of 1 is asserted, effectively idling the 

line.  When the next set of data is ready for transmission, the Start Bit is asserted again 

and the pattern repeats [1].  The number of bits used for the data and the stop bits can 

vary.  For this thesis, the number of data bits was set to 8 and the number of stop bits was 

set to 1.  Later, the stop bits were padded so the period of each data word is a power of 2, 

for a total period of 16 bits. 

To connect to the PC, a USB to RS-232 converter was used.  The converter 

changed the physical connection of a female DB-9 connector to a Type A USB plug.  The 

driver on the PC then converted the USB connection into a Virtual Communications Port, 

which made the USB connect look like a serial port for all other applications on the PC.  

This choice was made because RS-232 connectors are being phased out by PC 

manufactures and it was desired that the data be comparable regardless of future 

equipment.  The adaptor effectively only changed the physical connection of the device, 

with all other aspects of the setup working exactly as if the RS-232 cable was directly 

connected to the serial port on the PC. 

The USB standard first came out in 1996 with USB 2.0 coming out in 2000 [2].  

The purpose of the standard was to standardize connectors and simplify software 
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development.  The original USB 1.0 standard could support data flow speed of 1.5 Mbps, 

with USB 1.1 supporting 12 Mbps and USB 2.0 supporting 480Mbps.  However, due to 

the additional frames inserted to synchronize data flow, the maximum effective transfer 

rate is 320 Mbps [2].  For this thesis, the mode of operation was set to USB 1.1 by the 

FIFO chip, with a maximum transfer rate of 1 Mbyte per second [11].  USB devices 

require individual drivers to operate since each device communicates differently.  These 

drivers were included as dynamic link libraries, or just libraries.  Only the libraries were 

needed to make the device functional, however, to develop new programs for the device, 

the header file that specifies the function prototypes in the libraries were also needed.  

This way, the compiler will know what functions the library provides as well as the input 

and output data types it expects. 

D. RELATED WORK 

Several existing projects aim to achieve the same goal as this thesis.  However, 

some are incomplete while others focused on the very base of the USB protocol.  Other 

solutions consist of using the native USB port on the FPGA, but the risk of vendor lock is 

high.  Other solutions assume the data have already loaded into the FIFO, and focus on 

how to program the PC to extract the data from the FIFO. 

One prepackaged solution is the SRC-6 reconfigurable computer.  It has two 

Virtex user programmable FPGAs and one controller FPGA that facilitates 

communications from the computer to the FPGA.  External data can be connected to the 

FPGA and data stored on the onboard memory banks.  Programming the SRC-6 could be 

done entirely in C, without the need of hardware description languages such as Verilog or 

Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL).  

The data transfer between the onboard memory and the PC operates at a standard 800 

Mbits per second with up to 1400 Mbits per second with appropriate parallelization [3].  

However, the scale of the SRC-6 would be prohibitive in simple embedded applications, 

and its size and cost would be excessive in this case. 

Various experiments were setup in the past to read data from the FPGA to the PC.  

One such experiment transferred images from an FPGA to the PC using an USB chip 



 4

similar to this thesis [4].  In that project, image data captured by a camera was sent to the 

PC via a USB transfer module similar to this thesis.  In that approach, a state machine 

was used to control data transfer.  Another similar project used 4 data acquisition boards 

and achieved 20Mbytes per second transfer rate [14].  However, they focused on getting 

the data to the FGPA and did not go into the details of transferring the data from the 

FPGA to the PC.  These two previous works serves as excellent alternatives to this thesis, 

however, the solution developed here are much simpler.  There is another project which 

also facilitates FPGA to USB transfer [5], but it is still in the beginning stages of being 

implemented.  These projects are excellent alternatives to what is developed in this thesis.  

However, the programming languages used such as C++ and Python are not as integrated 

for numerical applications in ways Matlab and Simulink is.  These projects tend to focus 

on the lower level of the USB protocol and require extensive knowledge in the USB 

protocol to maintain. 

Other types of FPGAs are also available with existing USB interfaces, such as the 

Heron RTG001 [6], Orange Tree Zest product line [7], and the Opal Kelly XEM 3010 

[8].  These projects take the other extreme and bypass all low level programming and 

present the user with a premade interface.  However, the potential for vendor lock is high.  

Should a feature be needed in the future that is not within the capability of that vendor, 

solutions developed from a generic board will not be compatible. 

Another solution is to use a USB FIFO chip as a translation device from the 

FPGA to the PC.  Future Technology Devices International (FTDI) makes one such chip.  

However, there are no known designs that will produce the wave patterns required to 

drive the chip.  This is understandable because FTDI cannot produce a solution for every 

possible FGPA to drive its device.  However, the waveforms are straightforward in the 

datasheet [13].  Resources provided from FTDI focused on reading the data from the chip 

vice getting data into the chip.  Most of the effort in this thesis is to develop a model that 

will give the expected signals to the FIFO so that it will relay that data to the PC. 

For the PC side programming, there are examples from FTDI and third parties in 

various languages and platforms.  The most common one was written in C/C++ [9].  The 

example provided in the Linux driver, written in C, servers as a model to this thesis. 
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However, the choice for numerical analysis of the data is Matlab and there would 

be additional complexity to acquire the data and analyze the data from two different 

programs.  Furthermore, future modifications to the acquisition program would require 

the same development environment.  Matlab presents a standard and integrated 

development environment compatible with the numerical nature of future applications. 

Although Matlab provides support to call shared library functions, there are no 

available Matlab solutions to work with the FTDI chip.  The translation from working C 

code to Matlab is a straightforward process, but there are issues that have to be overcome 

due to the platform difference that will be discussed in Chapter II.  

Similar solutions exist for the RS-232 case.  One such case uses RS-232 

communications to transfer data from a digital potentiometer [15].  In that project, the 

work is similarly divided between a circuitry part and a PC side program side.  However, 

the solution used a fixed circuit for a particular potentiometer, which would not be 

effective for data acquisition, where the board needs to be flexible to take input in a 

potential of different formats. 

Lastly, Singh and Conrad have developed RS-232, USB, and Ethernet solutions 

[16].  In their work, the RS-232 solution achieved a transfer rate of 57.6 kbps and the 

USB solution achieved 200 kbps.  Like some previous projects, this thesis also focuses on 

the PC side programming vice the programming on the hardware.  However, all these 

previous efforts demonstrated the viability of FGPA to PC data transfer and provided 

significant insights for this thesis. 

E. THESIS ORGANIZATION 

The rest of this thesis will cover the systems designed to accomplish the transfer 

of data from a FPGA to a PC.  Chapter II presents three designs on the FGPA and two 

programs on the PC to accomplish the task.  Chapter III presents the results of the designs 

and the data rates achieved.  Chapter IV analyzes the results and offers explanations on 

some unexpected parts of the results.  Chapter V summarizes the results of this thesis and 

presents follow on topics. 
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II. DESIGN 

A. OVERALL ENVIRONMENT 

This thesis starts with data stored in the Block RAM (BRAM) of the FPGA.  The 

FPGA is then programmed to off load the data to the PC, either directly via the onboard 

RS-232 interface, or via another USB FIFO chip to transmit via USB.  The PC listens for 

data on its USB port, either directly in the case of the USB design or via a RS-232/USB 

adaptor in the RS-232 design.  When the user triggers the FPGA, it begins sending data.  

When the data in the BRAM have been transferred, the line goes idle, waiting for the next 

trigger. For the test case, an array of 16384 8-bit positive integers were used. 

The setup for transferring data via RS-232 is shown in Figure 1.  Data from the 

BRAM in the FPGA is sent directly to the RS-232 received data port on pin 2.  A model 

is developed for the FPGA to send the data in the correct sequence and time.  A program 

is also written on the PC to receive the data and store it in PC memory correctly. 

The setup for transferring data via USB is shown in Figure 2.  Data from the 

BRAM in the FPGA is sent to the parallel-USB FIFO module via one of its expansion 

slots, and the FIFO module then send the data to the PC via USB.  The FIFO sends the 

data it receives to the PC via its USB drivers to send the data to the PC.  However, a 

model still had to be developed to send data correctly from the FPGA to the FIFO.  Two 

methods were used.  The first used purely timing, where data was sent at a fixed period.  

The second used feedback on the TXE pin to send data immediately once the chip is 

ready.  Similarly a program also had to be written to receive the data from the FIFO 

correctly to the PC. 

The FPGA used was a Xilinx Spartan-3 for development work and the model was 

later transferred to an Opal Kelley 3050–1500 to be integrated with a voltage sensor.  The 

Opal Kelley board uses the Spartan-3 on the backend so only minor changes were 

necessary [8].  The Spartan contains all the components needed for this thesis including 

one megabyte of RAM, a 50 MHz clock, a RS-232 port, and expansion slots to connect to 
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other devices.  For the test, 16384 8-bit words were used.  The board has 1 Megabyte of 

memory in the form of 32 256-kbit memory arrays, theoretically supporting up to 

1024000 8-bit words [10].  However, not all memory is available to the user and the 

maximum data length available was 24576 words.  The FPGA also provided a push 

button that served as a trigger for development purposes.  In an actual application, it 

would be replaced with either an external source or a software trigger. 

 

Figure 1.   RS-232 data transfer diagram. 

 

Figure 2.   USB data transfer diagram. 

One thing that is missing on the FPGA is a USB port, which is overcome by using 

the FIFO chip.  The FIFO chip used was a FTDI UM245R which was initially connected 

to a breadboard but later permanently mounted with the FPGA.  It receives data on its 8 

data pins and writes to the PC via its USB port at a maximum rate of 8 Mbps [11].  The 

data is initially stored in the USB transfer buffer when it is initially transferred to the PC.  

It is then copied to the read buffer and assigned to a variable.  The bus powered 
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configuration is used for development work to avoid extra power circuitry.  However for 

production, self powered mode is used to isolate power requirements to the hardware 

itself. 

For the development work, Simulink with System Generator was used to create 

the HDL netlist.  This is then fed into ISE to be compiled into the hardware bitmap.  For 

the PC side, Matlab with its support for shared libraries was used to read from the RS-

232 port on the FPGA or the USB FIFO chip. 

B. USB FPGA DESIGN USING A FIXED WRITE PERIOD 

The overall design is shown in Figure 3.  Once triggered, the timing counter 

effectively produces a 50 MHz / 29 = 98 KHz clock for the rest of the program.  The 

values from the counter are used to set the WR pins and to enable the BRAM address 

counter.  The stop trigger compares the current BRAM address value to the previous 

BRAM address value, and if it detects that the maximum address have been reached, it 

disables the timing counter, which in turn disables the address counter, and switches the 

data pin to idle.  Details of each component are described below and the complete model 

is included in Appendix C. 

1. Start Trigger 

Without a start trigger, data will flow when the FPGA is first programmed 

without due regard to whether the PC is ready to receive the data, or whether the data on 

the FPGA is valid.  A trigger mechanism is therefore needed to explicitly flag the FPGA 

that data is indeed ready to be transmitted.  There are three way to implement the trigger, 

a hardware trigger, a software trigger or an external signal. 

A hardware trigger is a physical piece of hardware which can be used to explicitly 

flag the FPGA to start transmitting.  It is implemented on a push button onboard the 

FPGA.  Because the contact time of the pushbutton is much longer than one clock cycle, 

an edge detector mechanism is set up to detect the falling edge of the button press.  

However, due to switch bouncing, there could be multiple edges for one button press.  To 

debounce the switch, the edge detector is used to drive an 8-bit debouncing counter 
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initially set to 0.  When the button is pressed, the debouncing counter increments, which 

enable the timing counter.  Even if the button bounces and multiple falling edges cause 

multiple increments in the debouncing counter, the output is still nonzero, effectively 

debounces the pushbutton.  Because an 8-bit counter was used as the debouncing counter, 

the switch could bounce up to 28=256 times without error. 

 

Figure 3.   Block Diagram of overall USB design. 

A software trigger replaces the pushbutton on the FPGA with a signal from the 

software interface on the PC.  This has the advantage that the operator does not have to 

be in the same location as the FPGA, especially if the FPGA is in a dangerous location, 

such as where high voltage is present.  This also has the added advantage of putting the 

entire interface in one location, on the PC. 

The external trigger removes the user from triggering the flow directly.  Instead of 

manually entering the trigger signal via a pushbutton, it listens for the signal from another 

device.  This is the most realistic scenario in that the BRAM will be written first from 

another device before being transmitted to the PC.  Under the previous two trigger types, 

the user will need to know when the data is ready to be sent.  Under this type of trigger, 

the flow from the device to the PC will be automatic and without explicit user 
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intervention.  However, additional handshaking will need to take place between the 

devices to make sure the FPGA is triggered only when it is ready. 

Regardless of the type, the data flow is controlled by a start trigger and a stop 

trigger. 

2. Timing Counter 

The timing counter is effectively a clock divider.  For this design, a 9-bit free 

running counter was used with an initial value of 128.  In this setup, the counter is 

commanded by the clock which runs at 50 MHz on the FPGA, and competes its counting 

period every 29 = 512 clock cycles.  This effectively produces a 50 MHz / 512 = 97 KHz 

clock.  If a specific frequency is desired, a count limited counter can be used.  For 

example, if the frequency was desired to be 100 KHz, the count limit of 50 MHz / 100 

KHz = 500 should be set. 

If the value of the counter is less than or equal to 3, the WR pin on the FIFO chip 

is set to high.  When it returns to low, it signals the FIFO that the value specified on the 

data pins should be read into the USB transfer buffer.  The value of 3 is chose to regulate 

the WR pulse width.  The minimal width is specified by the manufacturer to be 50 ns 

[11].  By choosing  3, 4 values in the timing counter are less than or greater than 3 (0, 1, 

2, 3), producing a pulse width of 4/50 MHz = 80 ns. 

The timing counter value is also compared to another value to enable the BRAM 

address counter.  When the timing counter reaches this value, the BRAM address counter 

is enabled.  This value also serves to delay the increment of the BRAM address counter 

until after the WR pin transitions, so the value does not change when the WR pin is 

active.  Note that the BRAM address counter will only be enabled when the timing 

counter equals to the value.  Therefore, it will only be enabled for one clock cycle per 

write cycle, and hence incrementing the BRAM address by only one per write cycle.  

This value could be anything after the WR pulse value (3 from the above paragraph) and 

the upper limit of the counter.  A value of 32 was chosen so it is sufficiently different 

from the WR pulse.  Finally, a value greater than 32 was set as the initial value of the 
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timing counter.  This way, the counter does not set the WR pin to high due to initial 

conditions and increment the BRAM address counter before enabling the WR pin. 

3. BRAM Address Counter 

The BRAM address counter is a count limited counter with values ranging from 0 

to the data length minus one.  It is only incremented when the timing counter sends it the 

enabling signal.  Because the enabling signal only last one clock period long, the BRAM 

address counter is only incremented once.  The value of the counter is then given to the 

BRAM, which in turn output the value in memory.  Since the value is an 8-bit integer, the 

value is sliced into their individual bits and sent to their respective data pins on the FIFO. 

4. Stop Trigger 

The stop trigger stops the data flow once the data set have been sent by comparing 

the current BRAM address to the previous BRAM address.  If the current address is 

greater than or equal to the previous address, the BRAM counter is operating normally, 

and the WR pin is set to the output from the timing counter comparison described in 

section 2.B.2.  However if the current address is less than the previous address, it means 

that the BRAM address counter have passed it maximum value and has returned to 0.  In 

this case, the output of the WR pin is set to low, signaling that no data is to be sent.  The 

timing counter, the debouncing counter in the start trigger, and the BRAM counter are all 

reset to their initial values.  The timing counter is reset to set the WR pin to low and 

disable the BRAM counter from continuing.  The debouncing counter is reset to disable 

the timing counter from producing WR pulses, until the start trigger is triggered again.  

Lastly, the BRAM counter is reset to 0, the starting point for the next data set. 

C. USB DESIGN USING TXE FEEDBACK 

By using the TXE pin on the FIFO, the WR pulse is only triggered when the PC is 

ready to receive data.  In this way, the FIFO transfer at the maximum possible rate 

without accidental writes when the PC is not ready.  The overall design is shown in 

Figure 4.  The start and stop trigger is similar to the previous model.  The TXE pin is 
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used to trigger a counter that will generate the WR pulse, which will in turn advance the 

BRAM address counter.  The complete design is included in Appendix D. 

 

Figure 4.   Block diagram of USB design using the TXE pin to regulate data flow. 

1. Start Trigger 

The start trigger is the same as in the previous model.  However, in addition to 

enabling the WR generator as in the case before, its output is also used to determine the 

output of the select line of the multiplexer that determines the WR pin, and  enable the 

BRAM address counter.  These additional comparisons are necessary in this model in 

order to avoid the signal from the TXE pin continuously driving the rest of the circuit.  

The start trigger in this design disables that driving mechanism until the user triggers the 

data transfer. 

2. WR Pulse Generator 

The WR pulse generator produces a pulse on the WR pin when it senses that the 

TXE pin is low.  If the TXE pin is high, hence data is not ready to be transferred, it 

disables the counter that generates the WR pulse and continuously resets the counter to 0, 



 14

producing an idle signal on the WR pin.  When the TXE pin goes low, signaling data is 

ready to be written, it disables the reset and, after one clock cycle, enables a 3 bit WR 

generator counter.  The delay is inserted so that the WR pin will not trigger while TXE is 

transitioning.  If the WR generator counter value is between 1 and 3 inclusive, then the 

WR pin will go high.  This allows the WR pulse to be 3 clock periods long (3*20=60 ns), 

similar to the previous case and within manufacture’s specifications.  Unlike the previous 

case, the BRAM address counter is enabled immediately after the falling edge of the WR 

pulse.  This was done because the TXE pin resets the counter used to generator the WR 

pulse.  From the results in Chapter III, the TXE goes back to high fairly quickly after the 

falling edge of the WR pulse.  If a value much greater than 4 was used as the trigger to 

the BRAM address counter, the TXE pin will reset the WR counter value before that 

threshold value is reached, and the BRAM address counter will never advance.  The 

concern over the BRAM address counter incrementing during write turned out to be not 

an issue, since the manufacture allows for the data pins to be changed immediately after 

the WR pulse [11]. 

3. BRAM Address Counter and Stop Trigger 

The BRAM address counter and the stop trigger functioned similarly to the 

previous model.  The BRAM address counter is enabled one clock cycle after the WR 

pulse goes low, when the WR pulse generator counter equals to 4.  The index of the data 

is compared to its previous index and if the counter has counted to its max and returned 

to its initial value, the start trigger is disabled and the WR pin is set to low, signifying no 

additional data is present.  The debounce counter is also reset, ready for the next data set. 

D. USB PC PROGRAM 

The program for the PC in the USB version uses libraries and header files 

provided by FTDI.  The library provides functions such as read and write which 

interfaces between the hardware and user programs.  The user programs then use those 

and other programming functions to accomplish a task, in this case, reading the data from 

BRAM and storing it in PC memory.  The program is the same for both versions of the 
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FPGA model.  This is because the PC program simply monitors the data buffer in PC 

memory and copies it to a variable.  The actual transfer of data is done via the FPGA and 

the USB driver. 

The program could be written in a wide array of languages.  However, due to its 

numerical abilities for future applications, Matlab is chosen for this thesis.  Porting from 

C to Matlab was rather straightforward due to Matlab’s support for external libraries.  

However, some modifications had to be made. 

The data types used in the original C program had to be recasted to allow Matlab 

to read purely numerical data [12].  For example, the initial header files specify the 

handle and data as void pointers.  However, Matlab cannot deal with void pointers, so the 

data type had to be specified as integer pointers.  Also, the data type for the actual data 

was initially declared as 8-bit pointers.  However, Matlab treats them as strings made up 

of characters instead of unsigned integers.  Because of this, Matlab looks for a null 

termination character in the end of transmission that never arrives.  Therefore, the data 

type was redefined to be a 32-bit word and, once read into the PC, was recasted into an 8-

bit quantity.  In the end, the handle, along with the actual data buffer, had to be redefined 

to 32 bit integers, which are read correctly.  These changes are included in Appendix F. 

The program is divided into three parts, initialization, transfer, and closing.  The 

complete program is included in Appendix E.  During initialization, the data length is 

defined and the library functions are loaded.  The program also defines a handle that 

specifies the device.  The USB port connected to that device, as specified by the handle, 

is then opened.  The existing queue is also purged of any leftover data, which is useful if 

there are stray bits such as when the FPGA is configured for the first time. 

Once initialization is complete, the program tells the user that it is ready to 

receive data and asks the user to trigger the FPGA.  During the transfer stage, the 

program continuously polls the read buffer until it is filled with the expected number of 

data packets.  The expected number of data points specified on the PC program has to 

match the number of data points sent by the FPGA exactly.  If the expected number is 

higher than the actual number sent, the PC program keeps waiting for the data 
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indefinitely.  If the number is lower than amount sent, data is lost and the extra data 

corrupts the next read cycle.  After the read buffer is filled, the data is assigned to a 

variable via the FT_Read function.  The data variable is then typecasted back to 8-bit 

quantities and saved.  Lastly the port is closed. 

To measure the transfer time, the tic and toc commands from Matlab are used 

to signal the start and end of the transfer measurement.  The measurement begins when 

the data is first detected in the read buffer, and the measurement ends after the queue 

reaches the expected size.  However, the queue does not get filled one word at a time, but 

rather in packets of 4000 words at a time.  Taken into account the two control words for 

every 62 data words, the timing actually starts after the first 3968 data words are read into 

the read buffer.  Therefore, the time measured is not the time it took to read 16384 words, 

but 16384-3968 = 12416 words. 

It is interesting to note that two commands are needed to read the data.  The read 

buffer needed to be polled to make sure the correct amount of data is in the queue, and 

the read command is sent to read the data.  When the status of the queue is read, the 

amount shown is the number of data words in the read buffer, which has already been 

transferred to the PC.  The actual read command simply assigns those values to a local 

variable. 

E. RS-232 FPGA DESIGN 

The overall RS-232 design on the FPGA is shown in Figure 5.  In this situation, 

the start trigger resets the counter to start the next write cycle, while the stop trigger 

serves to enable and disable the counter for the current write cycle.  The counter is a 

14+4+1=19-bit counter with the 4 least significant bits to control the transmission of a 

single word, the 5th to the 18th bits are use to address the BRAM, and the last bit as 

overflow.  The stop trigger compares the current value to the maximum value of 

24+14=262144, and switches the output to the transmit pin on the RS-232 port to either 

valid data during transmission or the idle signal when the data have finished transmitting.  

The details are described below with the complete schematic included in Appendix A. 
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Figure 5.   Block diagram for overall RS-232 design. 

1. Start Trigger 

The start trigger in this design is similar to the start trigger in the USB design, in 

that it uses a hardware pushbutton as well.  In this, the trailing edge of the push button is 

detect and is sent directly to the reset port of the counter.  This signal serves to reset the 

value of the counter to 0, which causes the stop trigger to enable the counter again.  Note 

that in this model, debouncing was not implemented and turns out to be not an issue. 

2. Counter 

The counter used is a free running 4+14+1=19-bit counter with a period 

calculated from the desired baud rate.  The last 4 bits are used to index individual bits to 

be transmitted, the middle 14 bits to index the word to be transmitted, and the MSB for 

overflow when the counter stops at 218.  The 4 least significant bits are used as a select 

line to a multiplexer that have the start bit as the first data line, 8 data lines, and 7 idle 

lines.  As the index of the counter increases, the 4 least significant bits step through the  
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lines of the mux and produces a proper RS-232 waveform.  Seven idle bits are used so the 

whole sequence will fit inside 16 bits, and also was meant to allow the line a chance to 

resync after each word. 

The next 14 bits in the counter were used to address the BRAM.  Because the 

least significant 4 bits were used to control the transmission of each data word, the 

address of the data is guaranteed to remain constant for the duration of the transmission.  

When the least significant 4 bits overflow on to the 5th bit, the BRAM address is 

effectively incremented.  This will continue until all 14 bits are true, signifying the last 

data point. 

After all the data are transmitted, the most significant bit is set to 1, with all other 

bits set to 0.  This value will trigger the stop trigger, which will disable the counter.  It is 

important to note the additional bit is necessary, because without it, the counter returns to 

zero and the stopping condition will never be satisfied. 

The counter period is chosen to match the bit period for a given baud rate.  For 

38400 bps, the FPGA clock period should be scaled by a scaling factor of 50MHz/38400 

= 1302.  However, that scaling factor produced an incorrect bit period as measured on the 

oscilloscope.  The scaling factor was empirically determined to be 1355. 

3. Stop Trigger 

The stop trigger compares the output of the counter to 218+1.  When this value is 

reached, all the data have been transmitted and the counter is disabled.  The stop trigger 

also switches the output from the normal output to an explicit idle signal.  In future 

implementations the fixed final value could be replaced with a variable value read from a 

PC, which is an advantage over the USB design where the final value is specified in the 

counter itself. 

F. RS-232 PC SIDE PROGRAMMING 

The program on the PC is similar to the USB version.  No additional drivers are 

needed because Matlab have built in functions to interface with the serial driver in the 
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operating system.  The serial port is defined, configured, opened, read, and closed.  Three 

important configuration parameters are the baud rate, data length and timeout.  The baud 

rate had to be defined so that the serial driver knows how long each bit pulse is.  This is 

especially important because if the baud rate is incorrect, one bit transmitted on the 

FPGA could be interpreted as 2 bits on the PC.  The data length is needed to be specified 

so Matlab will know when to stop listening on the port and write the data transferred to 

memory.  Lastly, a timeout long enough needed to be specified to ensure the data have 

enough time to get transferred before the command times out.  This was especially 

important during the diagnostic stage, where low data rates lead to transfer times that 

exceeded the default timeout.  The completed program is provided in Appendix B. 

G. SIMULATION 

To simulate the expected waveforms, the start trigger connection was removed in 

both designs.  This way, the simulation would run despite the fact that the hardware 

trigger could not be activated in the software simulation.  In the USB design, a constant 

true was connected to the timing counter, and in the RS-232 case, the reset port 

connected to the start trigger was removed.  The data was then also sent to the workspace 

in a structured array with time.  The simulation was not done for the USB with TXE 

feedback because whether or not the chip is ready to receive the data cannot be 

determined beforehand.  In other words, a button press triggering the debounce counter 

can be simulated in software, but a TXE waveform can not be simulated. 

H. CURRENT LIMITATIONS 

Currently, the data size per word is limited to 8 bits for both designs.  For the RS-

232 design, this is because there are only a maximum of 8 data bits per frame.  For the 

USB case, this is because the FIFO has only 8 pins, so each transmission is limited to 8 

bits.  To overcome this, two memory locations could be used to store one word of data, 

and the values added on the PC. 

Another limitation is that the data are treated as integers.  This is because the data 

type is declared as integers in the library header file.  However, using the same technique 
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to overcome the 8-bit data limit above, 3 bits could be used to denote the decimal point 

position while the other 13 bits are used to signify the value. 

Also, the data are currently treated as positive quantities.   Currently, when a 

negative value is encountered, the data is casted into zero.  This limitation comes from 

the shared library type definition for the data that it is expecting.  Since the data is 

declared as an unsigned quantity in the library itself, either the library have to be 

recompiled, taking all other dependencies into consideration, or advanced type casting 

will have to be implemented. 

The data length currently is fixed at compilation.  This means the FPGA has to be 

reprogrammed when the data length changes.  This could be fixed in concept by 

allocating another set of BRAM for run time parameters.  The value of the data length 

could be read during run time and fed into the comparator to determine whether all of the 

data have finished transferring. 

I. CHAPTER SUMMARY 

This chapter explained the design parameters for the Simulink model and the 

Matlab programs.  The next chapter will provide results obtained with these designs. 
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III. RESULTS 

A. PERFORMANCE 

To test the performance of the system, 16384 8-bit integers were used to initialize 

the memory.  The data points were chosen to be a half sine wave with amplitude of 100 

to prevent negative values while at the same time scale the data so they can be 

represented by integers.  By choosing a dataset that varies from point to point, a word 

transmitted out of turn cannot be seen as a correct transmission.  For example, if a 

uniform data set was used, a lag of one data word is seen as a single transmit error, 

whereas in this case, all subsequent words are detected as out of turn. 

When operating correctly, the system returns the data with no errors as plotted in 

Figure 6.  The staircase in the plot comes from the 8-bit quantization error.  The transfer 

timer is started when the read buffer is non-zero and ended when the expected number of 

data words is received.  The amount of data transferred during this time is then the 

difference between the entire transfer size (16384) and the initial non-zero read buffer 

size.  The transfer rate is the amount of data divided by the time elapsed. 

The throughput for a RS-232 connection is set during initial connection.  The 

average throughput is calculated by dividing the number of bits transferred by the amount 

of time of the transfer.  The number of bits is set to 214 data words multiplied by 16 bits 

per word, made up of 8 bits of data, 1 start bit, 1 stop bit, and 6 idle bits.  The RS-232 

waveform is plotted in Figure 7, with the expected 26 ms bit period. 

The maximum transfer speed obtained via RS-232 with no errors was 36.9 kbps 

with a theoretical rate of 38.4 kbps (Table 1).  By further increasing the data rate to 57.6 

kbps, transmission errors were present (Figure 8).  From the pattern of the errors, a loss 

of synchronization is likely to be the cause of the errors.  The bits could be lagging in a 

manner that the 1’s in the data are considered to be the terminating character.  This would 

repeat until the data stream is lagged back to the corrected sequence.  Note that the 
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additional 6 idle bits at the end of the sequence did not help to prevent errors in mid 

sequence.  This will be discussed in Chapter IV. 

 

Figure 6.   Data Received under correct operations.  The error scale is on the right with 0 
error for all data points.  This was the case for RS-232 at 38.4 kbps,  

USB with 9-bit timing counter, and USB with TXE feedback. 

Trial # First nonzero 
buffer size 

Buffer size before 
timer 

Transfer Rate 
(kbits/sec) 

1 17 17 36.835 
2 67 67 36.862 
3 23 23 36.855 

Mean -- -- 36.851 
Theoretical -- -- 38.400 

Table 1.   RS-232 transfer times at 38400 baud. 
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Figure 7.   Simulated and actual RS-232 waveform at 38400 baud. 

 

 

Figure 8.   RS-232 data transfer at 57600 baud.  Error scale is on the right. 
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The waveform of the fixed period USB transfer is plotted in Figure 9.  The 

leading and trailing edges of the pulses are measured from the greatest overshot point and 

the results are summarized in Table 2.   The pulse width of the WR pulse is 80 ns, which 

matches the design of 4 clock cycles with 20 ns per clock period.  Similarly, the width of 

the BRAM counter is 20 ns, matching one clock cycle in the design.  Lastly, the time 

between the when WR goes low and when the BRAM counter is enabled is 560 ns.  This 

matches the designed delay between the falling edge of WR (4 clock cycle from the 

beginning of the timing counter) and the enabling of the BRAM address counter (at 32 

clock cycles from the beginning of the timing counter), giving a delay of (32-4)*20 ns = 

560 ns. 

 Leading Edge Trailing Edge 

WR Pulse 17.93 us 18.01 us 

BRAM Counter Enable 18.57 us 18.59 us 

Table 2.   Timing information for USB waveform. 

 

Figure 9.   Simulated and actual waveforms for WR and BRAM address enable pins  
for fixed period USB transfer. 
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The theoretical USB transfer speed is calculated below for a 9-bit counter.  

Without the timing counter, 8 bits of data would be sent to the FIFO at each clock FPGA 

clock period of 20 ns.  This would yield a theoretical transfer speed of: 

 
Data per clock cycle

Max Data Rate
Clock period


 (1) 

 
8 bits

400 Mbps
20 ns

  (2) 

However, this is not attainable because the FIFO chip is only rated to transfer at a 

data rate of 8 Mbps.  The timing counter is designed specifically to slow down the 

transfer rate caculated in equations (1) and (2) by enabling the WR pin only once every 2n 

cycles, where n is the bit width of the counter.  For the 9-bit timing counter, the data rate 

is theoretically 

 
Max data rate

Data Rate
Counts per write cycle

  (3) 

 

 
9

400 Mbps
781.25 Kbps

2
  (4) 

The start timer was initiated after data is detected in the read buffer, and 

terminated when the read buffer reaches the expected number of data points.  The read 

command simply assigns the data in the queue, already on the PC, to a variable, so there 

is no need to include the read operation as a part of the transfer time. 

Because the FIFO reads the data in blocks of 4k bytes, 4k words are already 

transferred to the PC by the time the timer starts [13].  This is shown in Table 3, where 

the data size before transfer is always the same, 3968 bytes.  This makes sense because 2 

control bytes are sent for every 62 data bytes, so a 4k bytes transfer would contain 3968 

bytes of data.  Because the fast transfer speed, additional data will flow between the time 

the first data packets are detected, and when the timer starts counting.  However, due to 

the burst nature of the traffic, the queue will always fill up to a fixed size and pause while 

the next block is transferred.  Therefore, the transfer rate is 

 
Data length - Initial Buffer Size

8 bits per word = Transfer Rate
Transfer time

 (5) 
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Using equation (5) with 16384 as the data length, 3968 as the initial buffer size 

and the measured transfer times, the results in Table 3 were obtained.  The theoretical 

value in the table is obtained from equation (3) and (4). 

The performance of the chip operated below the expect speed in both cases.  The 

average speed was 702.6 kbps, about 10% below the expected value.  This is due to the 

last block of data not being 3968 words long.  When the data first arrives in the PC, it is 

queued in the USB transfer buffer.  When the USB transfer buffer reaches 3968 data 

words, it is appended to the read buffer.  When the last 512 words are transferred to the 

USB transfer buffer, the PC waits for it to fill to 3968 words before appending it to the 

read buffer.  Only after a timeout period, does the driver realize there are no more data to 

be transferred and appends the data to the read buffer.  When the program is timed from 

the read buffer being 3968 words long to 15872 words long, the transfer speed increases 

to 781.9 kbps, slightly over the theoretical speed due to the resolution of the timer. 

Errors in the transfer were present when the timing counter was reduced to 8 bits, 

as shown in Figure 10 and Table 4.  Note that the position of the errors were around 4000 

and 16000, the time when the driver was busy copying data from the transfer buffer to the 

read buffer. 

Trial # First non 
zero buffer 
size 

Buffer size 
before timer 
start 

Transfer Rate for 
16384 words 
(kbits/sec) 

Transfer Rate for 
15872 words 
(kbits/sec) 

1 2728 3968 704.385  780.012 
2 814 3968 704.424 781.812 
3 1219 3968 699.034 781.959 

Mean -- -- 702.614 (781.93) 781.93 
Theoretical -- -- 781.25 781.25 

Table 3.   USB transfer times using 9-bit timing counter. 
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Figure 10.   USB data transfer using 8-bit counter.  Error scale is on the right with an 
average of 249 words in error. 

 

Trial # Transfer Time (sec) Transfer Rate 
(kbits/sec) 

Errors 

1 0.125189 1047 288 (1.76%) 
2 0.127032 1032 204 (1.25%) 
3 0.126959 1032 256 (1.56%) 

Mean 0.126393 1037 249 (1.52%) 
Theoretical 0.087381 1500 0 

Table 4.   USB transfer times using 8-bit counter. 

By using the TXE pin to regulate data flow, a transfer rate of 3.2 Mbps without 

error was achieved.  The TXE and WR waveforms are plotted in Figure 11.  The WR 

pulse is 60 ns in duration as expected, with 500 ns to 600 ns between pulses.  As was the 

case above, when the data is packaged in three blocks of 3968 words, a transfer rate of 

6.7 Mbps was reached (Table 5).  The increase in data rate was more significant in this 

case because the waiting time for the last 512 words now make up for a significant 
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amount of total transfer time.  The time it takes to transfer the last 512 words was 

obtained by subtracting the time it takes to transfer the three block 3968 words from the 

total time. 

 Total time = Time to transfer 1st 3x3968 words + time to transfer last 512 words  (6) 
  

 
(11904 512)*8 11904*8

Overall transfer rate Transfer rate without last 512 words
t


   (7) 

 

 

Figure 11.   Signal using the TXE pin on the FIFO to control data flow. 

Substituting 703 kbps for the overall rate and 782 kbps for the block transfer rate 

(Table 3) into equation (7), the waiting time for the last 512 words was calculated to be 

0.020 seconds for the design with fixed write period.  Similarly substituting 3.1 Mbps for 

the overall rate and 6.7 for the block transfer rate (Table 5), a t of 0.017 seconds was 

obtained for the design with TXE feedback.  The time spent waiting for additional data 

before timing out was consistent in both designs.  
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B. RESOURCES USED 

More resources are used on the FPGA for the USB design because additional 

logic is required to trigger the WR bit on the FIFO at the correct time (Table 6).  The RS-

232 design is simpler because there is no such data flow control required and control bits 

are simply passed along the output sequentially with the data bits.  The complexity of the 

FIFO itself does not lead to more resources used directly.  Should it be completely 

integrated on the FPGA, the design would still be similar.  This is evident in that the 

onboard RS-232 interface does not reduce the complexity of the RS-232 design.  Should 

there be an external RS-232 chip, the output gateway would simply change pin 

assignments and the complexity of the RS-232 design would remain the same.  Note that 

the difference in resources taken in the various designs are insignificant compared to the 

performance difference.  Although the design is more complex for the USB FGPA 

models, the performance and reliability of the USB design out weights such complexities.  

Although the USB with TXE feedback model appears more complex, it was implemented 

with fewer resources on the FPGA.  Again, the cost resources taken for a better design 

was insignificant compared to the performance increase. 

Trial First non zero 
buffer size 

Buffer size 
before timer 
start 

Transfer Rate for 
16384 words 
(kbits/sec) 

Transfer Rate for 
15872 words 
(kbits/sec) 

1 3968 3968 3147.454 6795.345 
2 3968 3968 3162.001 6805.266 
3 3968 3968 3195.331 6636.264 

Mean -- -- 3168.262 6745.625 
Theoretical -- -- 8000.000 8000.000 

Table 5.   USB Transfer times using TXE pin. 

 RS-232 USB (Fix WR period) USB (TXE Feedback)
# of flip flops 45 55 47 
# of LUTs 18 27 26 
# of slices 35 42 37 

Table 6.   Resources used. 
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C. CHAPTER SUMMARY 

This chapter presents the results obtain from the three designs.  The next chapter 

will analyze the significance of these results. 
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IV. ANALYSIS 

The USB solution outperforms the RS-232 solution as expected with slightly 

more logical resources used.  The fastest possible speed between the FPGA and the PC 

with the USB protocol is specified by the manufacture at 8 Mbps, whereas the fastest 

possible RS-232 supported by Matlab is 256 kbps, about 32 times slower.  In this thesis, 

3.17 Mbps USB transfer and 36.9 kbps RS-232 transfer were achieved.  Both speeds 

exceeded the 32 kbps requirement for a dual 16-bit, 10k data point transfer every 10 

seconds in the original specifications.  However, to take into account the time that the 

data need to be written into memory and other overhead, the RS-232 solution could be 

impractical whereas the USB solution remains viable. 

The RS-232 matches its theoretical performance within (38400-36851) / 38400 = 

4.0%.  The RS-232 method requires reconfiguring every time the baud rate changes.  The 

rate of transfer is controlled by the frequency of timer, which needed to be specified at 

compile time.  The value of the frequency was also determined empirically.  For the 

38400 bps, the theoretical scaling factor should be 50 MHz / 38400 = 1295.  However, 

the scaling factor was determined empirically be 1355 by measuring the bit period on the 

oscilloscope.  This discrepancy between the theoretic scaling factor and its actual value 

leads to more time spent designing the circuit, compared to the USB design where the 

rates are auto negotiated based on the frequency of the control counter and does not need 

to be calculated before compilation. 

The 6 idle bits in the RS-232 model adds 6/16 = 37.5% overhead to the 

communications channel.  It is interesting to note that as shown in the 57.6k transfer case, 

the extra padding at the end does not provide extra syncing functionality.  The data in the 

middle of the set contained transfer errors despite the fact that the extra idle time in 

between words intended to reset the line.  This is due to the fact that the extra padding 

bits are seen as data once the initial bit is lagged.  For example if the 1 in brackets in the 

string 1111_0101010[1]01_111 is interpreted as two 1’s, then the extra idle signals will 
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simply be interpreted as a part of the next data word.  Therefore, syncing the line after 

every bit was not effective as shown, especially with 37.5% performance penalty. 

For the USB case, error occurs when an eight bit counter was used to try to 

achieve the transfer speed to 1.56 Mbps.  This is because the FIFO was not ready to 

receive data while the driver is copying data to the read buffer.  This can be seen in 

Figure 10, where the error occurs at multiple of 4000.  At slower data rates, errors are not 

present because the driver can carry out the copy operation before the FPGA issues 

another WR enable.  For the 9-bit counter, the successive WR pulses comes in periods of 

every 20*29= 10.24 us, where as for an 8-bit counter, the WR pulses comes in periods of 

every 20*28= 5.12 us.  Therefore, the USB driver needs a minimum of 5.12 us to write 

the data, but not more than 10.24 us.  However, the errors due to the driver being busy 

does not propagated after the driver is free.  This is because the WR pulse and the data 

are sent separately.  Even if a stray WR signal is sent when the data was not ready to be 

read, once the FIFO is ready again, the previous errors does not impact the current 

transmission.  This is shown in Figure 10, where once the buffer is copied, the data 

continue to transfer correctly.  This is a main advantage over the RS-232 design, where 

one error bit will continually propagate and causes subsequent errors 

There is no error encountered when using the TXE pin to regulate the transfer, 

and the transfer rate is the maximum possible.  The overall data rate is highly dependent 

on whether the data size is a multiple of 3968.  With 0.2 seconds of time out length, it 

will be faster to pad the data to 3968 blocks and use an extra 0.066 seconds to transfer the 

whole block when the TXE pin is used.  When the TXE pin is not used, padding the 

results will result in an additional 0.57 seconds of transfer time, exceeding the 0.2 

seconds of timeout.  Therefore, not only is using the TXE pin result in an average of 4.5 

times faster performance, but have the potential to be faster by 8.6 times with the correct 

data structure. 

With TXE feedback, the FPGA transfers the data at approximately 8 bits every 

600 ns (Figure 11), with a theoretical data rate of 13.3 Mbps.  Although slowdowns could 

occur in other parts of the transfer, the majority of the slow down comes from the PC 

processing the buffer in software, which restrict the transfer rate to the 8 Mbps specified 
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by the manufacture.  To further speed up the transfer, the overhead in the Matlab library 

function calls can be eliminated by using C.  However, the complexity of doing so does 

not justify the last bit of performance increase for current applications. 

For the resources used, The main source of the increased logic comes from the 

fact that the USB design have to trigger WR signals to the FIFO in addition to handling 

the data transfer.  In the RS-232 case, the control signals are incorporated into the data as 

start and stop bits.  Once the correct rate is determined, the control signals are treated just 

as ordinary data.  In the USB case, the data and control signals reside on separate 

physical pins, so the timing between the two have to be coordinated within the logic.  

This is readily apparent when the RS-232 design could be implemented using one counter 

where the USB design required two counters to handle the control signals correctly.   

This chapter explained why errors are present in the transfer rates.  The next 

chapter will present conclusions and future work. 
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V. CONCLUSIONS 

A. GENERAL COMMENTS 

Using RS-232 would not be a viable solution for high speed data transfers.  For 

example, to off load data from a digital sensor, the transfer rate of 32 kbps was barely 

accomplished with an actual transfer rate of 36.9 kbps.  Although it could still be feasible 

by cropping off the extra syncing bit, the USB solution has already been demonstrated to 

be a viable option at 3.17 Mbps.  In addition, the speed using the USB method was 

achieved without the need to match the expected transfer rate on the PC side with the bit 

period on the FPGA.  This also eliminated the need to measure the period of the 

waveform on an oscilloscope to empirically determine the period of the counter needed to 

control the RS-232 data transfer.  In the end, the solution developed here is easy to use 

and maintain, without risking proprietary vendor lock. 

B. ALTERNATIVE SOLUTIONS 

Alternatives also exist from the solution built in this thesis.  Simulink with 

System Generator and ISE were used to program the FPGA to send the data.  On the 

receiver end, Matlab was used to program the PC to read the data.  This choice is made 

for ease of maintenance.  A software peripheral core could also be built with XPS which 

would automate the output from memory to the PC via C style print commands [17].  

This would eliminate the timing requirements in the design but the end product will be 

limited to RS-232 communications only, since the program can only output to UARTs 

such as the serial port.  Also, the FPGA could be programmed from scratch in a HDL 

such as VHDL or Verilog, but would require substantially more time to code, debug, and 

maintain. 

More choices are available for the program on the PC to read the data, 

programming on the PC is more mature than programming on the FPGA.  There are 

various projects posted by the FTDI to work with the FIFO, including popular languages 

such as the various forms of C, LabView, Python, and Perl [9].  One disadvantage of 
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these is that a software development environment would need to be installed explicitly 

for this purpose with no real added benefit.  One exception is code written in C and 

compiled with a light compiler.  This removes the need for Matlab for reading the data 

and replaces it with a much smaller C compiler.  This is demonstrated to be successful 

under Linux.  However, due to the way the operating system handles integers, a valid 

USB handle cannot be obtained under Windows.  Also, due to currently available 

platforms, dedicating one Linux machine for just data acquisition is not logistically 

viable. 

Also, complete bundled solutions exist [6], [7], [8].  These had the benefit of 

working out of the box with commercially available support.  However, direct licensing 

costs and restrictions on future development makes it unattractive for academic 

development work.  However, there are also solutions which provide a USB connector 

directly on the FPGA and the necessary header files and libraries without the restrictive 

licensing that could be used. 

Lastly, different protocols could be used to transfer the data, such as Ethernet 

[16].  Currently, 100Mbps Ethernet connections are available on FPGAs which could 

increase the throughput.  However, this would require the data to be sent over the LAN, 

which could be slower depending on network activity.  Gigabit Ethernet could also 

greatly boost transfer speed.  However, with the advent of USB 3.0, which has a 

throughput of 5 Gbps, USB once again will be the most optimal for data transfer [18]. 

C. FUTURE WORK 

For the RS-232 model, performance could be increased by discarding the 6 idle 

bits.  This would increase performance with no additional errors.  To provide better 

synchronization, either RTS/CTS hardware handshakes or XON/XOFF software signals 

could be used to control the flow of data.  This is similar to using the TXE pin in the USB 

case. 

For the dataset themselves, mechanisms can be setup to accept 16-bit negative 

float point numbers.  Depending on the data source, multiple encoding schemes could be 

used to convert real numbers into integers. 
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For better functionality, a software and external trigger can be developed to 

remove the operator from the vicinity of the board.  This would eliminate the operator 

having to come in contact with a high voltage power supply and also pave the way to 

sending a variable word length as another parameter.   

D. ADDITIONAL APPLICATIONS 

The original motivation for this thesis was to offload test data from digital sensors 

to a PC.  However, the applications developed in this thesis are generally applicable.  

Future projects will only need to write data to the BRAM and provide a trigger signal for 

the data to be stored on the PC and analyzed with a much wider set of tools, such as 

Matlab, than available on the FPGA. 

Possibilities also exist for bidirectional communications where the PC can send 

signals to the FPGA to control another set of hardware.  Especially with the ease of RS-

232 programming, low data rate applications such as remote control for digital sensors, 

automated homes, and electric ships can be developed with the same ground work.  For 

high data rates, this thesis could be used for testing data storage applications. 

This thesis provides the low level interface to the memory available on an FPGA.  

Higher level protocols and applications can use this to manipulate data with the variety of 

functions available on the PC via Matlab.  Graphical user interfaces could also be refined 

to be more user friendly.  Since the model was developed in Simulink, it is portable 

across multiple FGPA vendors with modifications to the pin assignment, as was done 

when porting from the Spartan development board to the Opal Kelly board.  With the 

lower level communications accomplished, higher level applications can be built on top 

to support a wide array of applications. 
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APPENDIX A. RS-232 DESIGN 
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APPENDIX B. MATLAB PROGRAM FOR RS-232 

lim=2^14; 
s=serial('COM3', 'BaudRate', 38400); 
s.InputBufferSize=lim; 
s.Timeout=60; 
fopen(s); 
 
buff=0; 
while (buff == 0) 
    buff=s.BytesAvailable; 
end 
buff 
buff1=s.BytesAvailable 
tic; 
while (s.BytesAvailable < lim) 
end 
dt=toc; 
  
m=fread(s, lim); 
xfer_rate=(lim-buff)*16/dt 
  
pause(5); 
if (s.BytesAvailable > 0) 
    y=fread(s, s.BytesAvailable); 
end 
  
fclose(s); 
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APPENDIX C. USB DESIGN USING A FIXED WRITE PERIOD 
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APPENDIX D. USB DESIGN USING TXE FEEDBACK 
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APPENDIX E. MATLAB PROGRAM FOR USB 

buff_size=2^14; 
  
loadlibrary('lib/ftd2xx.dll', 'include/ftd2xxM.h'); 
  
h=libpointer('uint32Ptr', uint32(0)); 
  
disp('opening'); 
s=calllib('ftd2xx', 'FT_Open', 0, h); 
if (s ~= 0) 
    disp('open error'); 
    return; 
end 
  
disp('set baud rate'); 
s=calllib('ftd2xx', 'FT_SetBaudRate', h, 9600); 
if (s ~= 0) 
    disp('set baud rate error'); 
    return; 
end 
  
s=calllib('ftd2xx', 'FT_Purge', h, 1); 
  
dwRxSize=0; 
pdwRxSize=libpointer('uint32Ptr', dwRxSize); 
  
v=0; u=0; w=0; r=0; t=0; 
pu=libpointer('uint32Ptr', u); 
pw=libpointer('uint32Ptr', w); 
pr=libpointer('uint32Ptr', r); 
pt=libpointer('uint32Ptr', t); 
  
  
dwBytesRead=0; 
pdwBytesRead=libpointer('uint32Ptr', dwBytesRead); 
  
disp('get queue status'); 
disp('press button'); 
buff=0; 
sz=[]; 
tic; 
while (buff == 0) 
    s=calllib('ftd2xx', 'FT_GetQueueStatus', h, pdwRxSize); 
    buff=pdwRxSize.Value; 
    sz(end+1)=buff; 
end 
  
buff 
tic; 
s=calllib('ftd2xx', 'FT_GetQueueStatus', h, pdwRxSize); 
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buff1=pdwRxSize.Value 
  
while ((pdwRxSize.Value < buff_size) && s == 0) 
    s=calllib('ftd2xx', 'FT_GetQueueStatus', h, pdwRxSize); 
end 
dt=toc; 
xfer_rate=(buff_size-buff1)*8/dt 
  
pcBufRead=75*ones(1, pdwRxSize.Value/4); 
ppcBufRead=libpointer('uint32Ptr', pcBufRead); 
  
data=70*ones(1, pdwRxSize.Value/4); 
pdata=libpointer('uint32Ptr', data); 
  
% [v, pu, pw, pr, pt]=calllib('ftd2xx', 'FT_GetStatus', h, pr, pt, pu) 
% [u, pr, pdata, pt]=calllib('ftd2xx', 'FT_Read', h, ppcBufRead, pw, 
pdwBytesRead); 
  
disp('reading'); 
[u, pr, pdata, pt]=calllib('ftd2xx', 'FT_Read', h, ppcBufRead, 
pdwRxSize.Value, pdwBytesRead); 
if (s~=0) 
    disp('read error'); 
    return; 
end 
  
z=typecast(uint32(pdata), 'int8'); 
disp('closing'); 
s=calllib('ftd2xx', 'FT_Close', h); 
  
unloadlibrary('ftd2xx'); 
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APPENDIX F. MODIFIED FTD2XX.H 

Added:  #include "WinTypes.h" 
 
Changed: typedef PVOID FT_HANDLE; to 

typedef DWORD *FT_HANDLE; 
 

Change: LPVOID lpBuffer,   to 
LPDWORD lpBuffer,   in function 
FT_Read 
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