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ABSTRACT 

The ability to distribute cryptographic keys securely has been a challenge 

for centuries.  The Diffie-Hellman key exchange protocol was the first practical 

solution to the key exchange dilemma.  The Diffie-Hellman protocol allows two 

parties to exchange a secret key over unsecured communication channels 

without meeting in advance.  The secret key can then be used in a symmetric 

encryption application, and the two parties can communicate securely.  However, 

if the key exchange takes place in certain mathematical environments, the 

exchange becomes vulnerable to a specific man-in-the-middle attack, first 

observed by Vanstone [1].  We explore this man-in-the-middle attack, analyze 

countermeasures against the attack, and extend the attack to the multi-party 

setting. 
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I. INTRODUCTION 

The ability to communicate securely has been a challenge for millennia.  

For as long as people have tried to exchange private information, others have 

tried to compromise their privacy.  In the modern communications environment, 

radio frequency communications and worldwide digital networks, such as the 

Internet, compound the problem.  Both are susceptible to eavesdropping, often 

times trivially.  By simply placing an antenna in the region of a radio frequency 

broadcast or tapping a wire anywhere between two nodes on a digital network, 

an uninvited third party can easily gain access to seemingly private 

correspondence.  The field of cryptography—the practice and study of hiding 

information—has made enormous progress combating the eavesdropping threat. 

Cryptography and encryption/decryption methods fall into two broad 

categories: symmetric and public key.  In symmetric cryptography, sometimes 

called classical cryptography, parties share the same encryption/decryption key.  

Therefore, before using a symmetric cryptography system, the users must 

somehow come to an agreement on a key to use.  An obvious problem arises 

when the parties are separated by large distances, which is commonplace in 

today’s worldwide digital communications.  If the parties did not meet prior to 

their separation, how do they agree on the common key to use in their crypto 

system without a secure channel?  They could send a trusted courier to 

exchange keys, but that is not feasible, if time is a critical factor in their 

communication.   

The problem of securely distributing keys used in symmetric ciphers has 

challenged cryptographers for hundreds of years.  If an unauthorized user gains 

access to the key, the cryptographic communication must be considered broken.  

Amazingly, in 1977, Whitfield Diffie and Martin Hellman published a paper in 

which they presented a key exchange protocol that provided the first practical 

solution to this dilemma.  The protocol, named the Diffie-Hellman key exchange 

(or key agreement) protocol in their honor, allows two parties to derive a common 



 

 2

secret key by communications over an unsecured channel, while sharing no 

secret keying material a priori [2].  While Diffie and Hellman have received 

recognition for creating the protocol, it later emerged that the Government 

Communications Headquarters (GCHQ), a British intelligence agency, had 

independently invented a similar protocol a few years before Diffie and Hellman 

published their breakthrough paper. However, the British government classified 

their findings and the results were not released to the public until 1997 [3].   

The Diffie-Hellman protocol relies on the difficulty of solving discrete 

logarithms in finite fields and the related intractability of the Diffie-Hellman 

problem.  Due to the difficulty of solving these mathematical problems, an 

eavesdropper is unable to compute efficiently the secret key with any or all of the 

information intercepted in the open communication channel.  Once the secret key 

has been exchanged successfully between the two parties, they may proceed by 

using the key in their symmetric crypto system. 

Before conducting the key exchange using the Diffie-Hellman protocol, the 

parties must agree on a prime number that defines the mathematical 

environment in which the key exchange will take place.  If the prime number is 

large enough, a brute force attack to find the secret key becomes infeasible.  

However, if the two parties agree on certain prime numbers, an active adversary 

can compromise their communication.  Using number theory, a man-in-the-

middle attack becomes possible if the prime number that defines the environment 

can be broken down into the form of 1p Rq  , where R  is a “small” integer and 

q  is a “large” prime.  If possible, the attacker can then modify the messages 

between the two parties so that they will both derive a key that belongs to a 

subgroup of size R .  If R  is small enough, the attacker can search the keyspace 

in a reasonable amount of time, determine the key the parties agreed to, and 

eavesdrop on their communication. 
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This thesis investigates the Diffie-Hellman protocol and the difficulty of the 

discrete logarithm problem the protocol relies on.  We then analyze the man-in-

middle attack described above by developing an algorithm to conduct the attack, 

estimate the complexity involved in executing the attack, and approximate the 

amount of prime numbers that are vulnerable.  We then consider several 

proposed methods to defend against the attack and demonstrate their 

effectiveness.  Finally, we extend the attack to several multi-party variants of the 

protocol and demonstrate their potential vulnerability. 
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II. BACKGROUND AND REVIEW 

Before beginning a discussion of the Diffie-Hellman protocol and the man-

in-the-middle attack, we investigate and present some basic definitions and 

theorems. This information is available in any standard algebra text, such as 

Fraleigh’s Abstract Algebra [4], or discrete mathematics text, such as Rosen’s 

Discrete Mathematics and Its Applications [5].  It is assumed the reader is 

familiar with common mathematical, logical, and set notation.   

We conclude the chapter with a brief discussion of computational 

complexity and primality testing, which will be useful in our analysis of the man-

in-the-middle attack. 

A. NUMBER THEORY  

If a  and b  are integers and 0a  , we say that a  divides b  if there is an 

integer c  such that b ac .  When a  divides b  we say that a  is a factor of b  and 

that b  is a multiple of a .  The notation a b  denotes a  divides b .  Given two 

integers a  and b , both non-zero, the largest integer d  such that d a  and d b  is 

called the greatest common divisor of a  and b .  The greatest common divisor of 

a  and b  is denoted by gcd( , )a b .  The integers a  and b  are relatively prime, if 

their greatest common divisor is one. 

Every positive integer greater than one is divisible by at least two integers, 

itself and one.  If these are its only factors, we call this integer prime.  A positive 

integer that is greater than one, and not prime, is called composite.  The primes 

are the building blocks of positive integers.  The Fundamental Theorem of 

Arithmetic states that every positive integer greater than one can be written 

uniquely as a product of two of more primes, where the prime factors are written 

in order of nondecreasing size.  Given a positive integer, n , let the prime 

factorization of n  be denoted by 



 

 6

 
1

i

k

i
i

n p



  

In some situations, we care only about the remainder of an integer when it 

is divided by some specified positive integer, denoted by m .  If a  and b  are 

integers, then a  is congruent to b  modulo m  if m  divides a b .  We use the 

notation a b  (mod )m  to indicate that  a  is congruent to b  modulo m .  Note that 

a b  (mod )m  if and only if (mod ) (mod )a m b m .  Also, if n  divides a  then a  is 

congruent to zero modulo n .   

The great French mathematician Pierre de Fermat (1601–1655) 

demonstrated that the congruence  

 1 1pa    (mod )p  

holds when p  is a prime, and this gives us a theorem that will prove crucial in 

our analysis of the man-in-the-middle attack. 

Fermat’s Theorem [4]: If a  and p  is a prime not dividing a , then p  

divides 1 1pa   , that is, 1 1pa    (mod )p .   

Euler gave a generalization of Fermat’s theorem, but we must first define 

Euler’s Totient Function.  Commonly referred to as Euler’s Phi Function, the 

function gives the number of integers less than or equal to n  which are relatively 

prime to n , and is denoted by ( )n .  It is not hard to show that, if 
1

i

k

i
i

n p



 , then  

 
1

1
( ) 1

k

i i

n n
p




 
  

 
  

Euler’s Theorem [4]:  If a  and is relatively prime to n , then ( ) 1na   is 

divisible by n , that is, ( ) 1na   (mod )n .   

In several cases, this thesis will involve systems of linear congruences.  

The Chinese Remainder Theorem [CRT], named after the Chinese heritage of 

problems involving systems of linear congruences, states that when the moduli of 
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a system of linear congruences are pairwise relatively prime, there is a unique 

solution of the system modulo the product of the moduli.   

[CRT] [5]:  Let 1 2, ,..., nm m m  be pairwise relatively prime positive integers and 

1 2, ,..., na a a  arbitrary integers.  Then the system 

1 1

2 2

(mod ),

(mod ),

.

.

.

(mod )n n

x a m

x a m

x a m


 








 

has a unique solution modulo 1 2... nm m m m .  (That is, there is a solution x  with 

0 x m  , and all other solutions are congruent modulo m  to this solution.) 

B. GROUP THEORY 

A group ,G   is a set G , closed under a binary operation  , such that 

the following axioms are satisfied: 

Associativity:  For all , ,a b c G , ( ) ( )a b c a b c      

Identity:  There is an element e  in G  such that for all x G , 

e x x e x    . 

Inverse:  Corresponding to each a G , there is an element 'a  in G  such 

that ' 'a a a a e    .   

A group that also satisfies the commutative property is referred to as an abelian 

(or commutative) group. 

 Commutativity:  For all ,a b G , a b b a   . 

A group G  is said to be a finite group, if the set G  has a finite number of 

elements.  In this case, the number of elements is called the order of G , 

denoted by | |G .  This thesis is interested only in finite groups. 
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If a subset H  of a group G  is closed under the binary operation of G  and 

if H  with the induced operation from G  is itself a group, then H  is a subgroup of 

G .  We shall let H G  or G H  mean that H  is a subgroup of G , and H G  

or G H  shall mean H G  but H G . 

An example of a group is the set of congruence classes of the integers 

modulo n .  Given a positive integer n , we denote a congruence class by 
n

a  

which is the set of all integers congruent to a  modulo n .  The set of congruence 

classes of n  is denoted by 

         0 , 1 ,..., 2 , 1n n n n n
n n    

This set forms a group under addition where      n n n
a b a b    and is denoted 

by ,n  .  We can easily inspect a group using a group table.  Table 1 is a 

group table for 5  under addition.  The elements of 5  are the column and row 

headings,, with the binary operation (addition in this case), in the upper left 

corner. 

 

 

 

 

 

 

Table 1.   Group Table for 5 ,  

If n  is a prime p , then the set   * 0p p p
    forms a group under 

multiplication modulo n .  It is a necessary requirement to remove the zero class 

because zero has no inverse under multiplication.  * ,p  , the multiplicative 

group of the set of congruence classes of prime integers, is the structure we will 

+ 0 1 2 3 4 

0 0 1 2 3 4 

1 1 2 3 4 0 

2 2 3 4 0 1 

3 3 4 0 1 2 

4 4 0 1 2 3 
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be focusing on in this thesis.  The Diffie-Hellman key exchange protocol sets this 

group as the environment for the key agreement.  If we remove the zero element 

from the previous example, we have another group table (Table 2), this time with 

multiplication as the binary operation.  

 

• 1 2 3 4 

1 1 2 3 4 

2 2 4 1 3 

3 3 1 4 2 

4 4 3 2 1 

Table 2.   Group Table for * ,p   

Let G  be a group and let a G .  Then the subgroup  na n  of G  is 

called the cyclic subgroup of G  generated by a , and is denoted by a .  Further, 

a  generates G  if a G .  A group G  is cyclic if there is some element a  in G  

that generates G .   

The group * ,p   is always cyclic.  An important property of cyclic groups 

is that every subgroup of a cyclic group is also cyclic.  Another important property 

of groups in general is the Theorem of Lagrange. 

Lagrange’s Theorem [4]:  Let H  be a subgroup of a finite group G .  

Then the order of H  is a divisor of the order of G . 

This powerful theorem makes the attack we will analyze later possible.  

We know the order of * ,p   is 1p  .  The two properties mentioned above tell 

us that any subgroup of * ,p   will also be cyclic and the order of the subgroup 

will be a divisor of 1p  .   
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C. FIELD THEORY 

A field , ,F   , is a set F  together with two binary operations, which we 

will call addition and multiplication, defined on F  such that the following axioms 

are satisfied: 

Addition:  ,F   is an abelian group.   

Multiplication:  *,F   is an abelian group.   

Distributive:  For all , ,a b c F , ( ) ( ) ( )a b c a b a c      .   

A field F  is said to be a finite field, if the set F  has a finite number of elements.  

If F  is a finite field, then the multiplicative group is cyclic.   

For every prime p  and positive integer n , there is exactly one finite field 

(up to isomorphism) of order np .  This field ( )nGF p  is usually referred to as the 

Galois field of order np .  Oftentimes, the Diffie-Hellman key exchange protocol 

is described using the environment ( )GF p  instead of the group *
p .  In the group 

theory section, we described the notion of a generator of a cyclic group.  In field 

theory, specifically in ( )GF p , the same element that will generate the entire 

multiplicative group is known as a primitive root.  The number of primitive roots of 

a field ( )GF p  is ( ( )) ( 1)p p    . 

D. COMPUTATIONAL COMPLEXITY 

Before the discussion of primality testing, it is important to understand 

what makes one test more efficient than another.  Computational complexity 

involves the study of the efficiency of algorithms based on the time and memory 

space required to solve a problem of a particular size [5].  Usually, complexities 

are expressed using the Big-O notation. 
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Definition [5]:  Let f  and g  be functions from the set of integers or the 

set of real numbers to the set of real numbers.  We say that ( )f x  is ( ( ))O g x  if 

there are constants C  and k  such that  

 ( ) ( )f x C g x  

Whenever x k .  [This is read as “ ( )f x  is big-oh of ( )g x .”] 

This notation is extremely helpful when comparing algorithms, such as the 

primality tests we will discuss.  We will use the Big-O notation as an upper bound 

on the amount of operations a test will require.  In general, the smaller the upper 

bound, the more efficient the test is.  The more efficient the test is, the quicker it 

can complete the required steps of an algorithm and give an answer.  Thus, 

using the Big-O notation, we can often quickly decide which test will finish 

soonest, using fewer resources and less computer time. 

The most commonly used functions in Big-O notation are: 

 21, log , , log , , 2 , !nn n n n n n  

It is shown that each function in the list is smaller than the succeeding 

function as n  grows without bound [5].  Figure 1 demonstrates this fact.  
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Figure 1.   Growth of Functions Used in Big-O Estimates [From 5] 

Notice the vertical axis scale is logarithmic, doubling each unit.  This 

causes the exponential function 2n  to appear as a straight line.   

An algorithm that is Big-O of a constant has constant complexity.  An 

algorithm that is Big-O of a logarithm has logarithmic complexity, and so on.  

Table 3 displays the common terminology used to describe the time complexity 

of algorithm. 
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Complexity                    Terminology 

(1)O                             Constant complexity 

(log )O n                       Logarithmic complexity 

( )O n                             Linear complexity 

( )bO n                           Polynomial complexity 

( )nO b                           Exponential complexity 

( !)O n                            Factorial complexity 

Table 3.   Computational Complexity Terminology [From 5] 

The algorithms we will be concerned with are of polynomial and 

exponential complexity.  The difference between the two can be enormous.  

Polynomial or better complexities are called tractable, because it is assumed 

that given a reasonably-sized input, the algorithm will produce an answer in a 

reasonable amount of time.  On the other hand, exponential complexities or 

worse are called intractable.  This is because an extremely large amount of time 

is usually required to run the algorithm.  However, a polynomial complexity 

algorithm with a very high degree might take longer to run than an exponential 

complexity algorithm with a small base.   

E. PRIMALITY TESTING 

We now turn to a topic of critical importance in our analysis of the man-in-

the-middle attack.  Suppose a large integer is given.  How might we quickly be 

able to tell if the number is prime or composite?  Mathematicians have studied 

this question for millennia, and recently this question has become even more 

important as modern computing power has granted the ability to test theories on 

a scale that was at one point inconceivable.  A primality test is an algorithm for 

determining whether an input number is prime.  Primality tests can be divided 

into two main groups:  deterministic and probabilistic.  Deterministic primality 

tests prove with certainty whether a number is prime or composite.  Probabilistic 

primality tests tell us a number is composite or probably prime.  If a probabilistic 
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method returns the number is composite, the number is definitely composite.  

However, if it returns the number as prime, there is a controllably small chance 

the number is actually composite [6].   

Primality testing is currently a topic of great interest and research and is, 

therefore, very dynamic.  We provide descriptions of several deterministic and 

probabilistic algorithms as background for the reader.  It is by no means a 

comprehensive discussion of every algorithm available.  Rather, we use this 

section as a way to motivate our choice of a primality test for later on when we 

will need to quickly determine if a given number is prime.   

1. Deterministic Primality Tests  

a. Trial Division 

The simplest primality test is trial division.  Trial division is the 

method of sequentially trying test divisors into a number n  so as to partially or 

completely factor n  [6].  We start with the first prime number, 2, and try to divide 

n  by 2.  If 2 divides n , we know n  is composite and can stop.  If 2 does not 

divide n , we try the next prime number, 3.  If 3 divides n , we stop.  If not, we try 

the next prime, and so on.  When we reach a trial divisor that is greater than the 

square root of n , we may stop.  If no prime up to the square root of n  divides n , 

then we declare n  a prime.   

This test is quite computationally intensive.  Let ( )t  be the prime 

counting function, which counts the number of primes t .  Trial division 

requires (in the worst case) about   2

ln

n
n

n
   divisions, if the primes to n  are 

stored in a database, or even 
2

n
 divisions, if the primes are not stored before 

the test starts. 
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b. The n–1 Test 

Trial division can be used to test small numbers for primality, but for 

larger numbers there are better methods [6].  The 1n  test is based on Fermat’s 

little theorem, and suggests that we try to factor 1n , not n .  In 1876, E. Lucas 

turned Fermat’s little theorem into a primality test.   

Lucas’ Theorem [6]:  If ,a n  are integers with 1n  , and  1 1na    (mod )n , 

but ( 1)/n qa   is not congruent to 1, modulo n  for every prime | 1q n  , then n  is 

prime. 

The most difficult step in implementing the Lucas test is finding the 

complete factorization of 1n .  Pocklington strengthened the result by realizing a 

partial factorization would suffice [6].  In particular, say  

1n FR  , and the complete factorization of F  is known.  (1) 

Pocklington’s Theorem:  Suppose (1) holds and 1 1na    (mod )n  and 

( 1)/gcd( 1, ) 1n qa n    for each prime |q F .  Then every prime factor of n  is 

congruent to 1 (mod )F .  (2) 

Corollary (n-1 test):  If (1) and (2) hold and F n , then n  is prime. 

Several results have allowed a smaller value of F .  These include 

work done by Brillhart, Lehmer, Selfridge, Konyagin, and Pomerance [6].   

The Lucas test and variations of it have a running time of about  

 3(log )O n .  The question of finding the “right” base still remains. 

c. Elliptic Curve Primality Proving 

Elliptic Curve Primality Proving (ECPP) is a class of algorithms that 

provide certificates of primality using sophisticated results from the theory of 

elliptic curves.  A detailed description of the background, theory, and 

implementation of the ECPP can be found in Atkin and Morain [7].   



 

 16

ECPP is the fastest known general-purpose primality-testing 

algorithm.  ECPP has a running time of  4(log )O n [7].     

d. The AKS Test 

In August 2002, the Agrawal-Kayal-Saxena (AKS) primality test 

was published in a paper titled “Primes is in P” [8].  The result was highly 

celebrated because of the four properties the test satisfies:   

1) It can be used to verify the primality of any given number.   

2) The maximum running time is polynomial. 

3) The algorithm is deterministic, not probabilistic 

4) The algorithm is not conditional on an unproven hypothesis. 

There are other algorithms that satisfy three of the four properties, 

but AKS is the only known test to satisfy all four.   

The test is based upon the equivalence 

 ( ) ( )n nx a x a    (mod )n  

for a  coprime to n , which is true if and only if n  is prime.  This is a generalization 

of Fermat’s Little Theorem and constitutes a primality test by itself.  However, the 

verification of primality would take exponential time, and thus, requires 

improvement.  The AKS test makes use of a related equivalence 

 ( ) ( )n nx a x a    (mod , 1)rn x  . 

This equivalence can be checked in polynomial time, with the complexity of the 

original algorithm being  12(log )O n . However, recently the complexity has been 

brought down to
  6(log )O n

 
[9].  
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2. Probabilistic Primality Tests  

a. Fermat Primality Test 

Based on Fermat’s Little Theorem, the Fermat Primality Test is a 

probabilistic primality test that is the basis for the Miller-Rabin primality test used 

later on in the thesis.   

Recall that by Fermat’s Little Theorem, if p  is prime and p  does 

not divide a , then 1 1pa    (mod )p .  If we want to test if a given integer n  is 

prime, we compute 1na   (mod )n  for several values of a .  If the result is not 1 for 

some value of a , then n  is composite.  If the result is 1 for many values of a , 

then we can say that n  is probably prime.   

The reason we can only say probably is because the congruence 

1 1na    (mod )n  may hold when n  is composite.  A composite number n  is a 

(Fermat) pseudoprime, if the congruence 1 1na    (mod )n  holds [6].  

Unfortunately, for the Fermat Primality Test, there are infinitely many numbers 

that the test would call probably prime even if every value of a  was computed [6].  

These numbers are the so-called Carmichael numbers and give us reason to 

look for a test that will only give pseudoprimes for a fixed fraction of the bases 

attempted.  The Miller-Rabin test accomplishes this goal.   

b. Miller-Rabin Primality Test 

The Miller-Rabin Primality Test is an efficient probabilistic algorithm 

to test for primality based on the idea of strong pseudoprimes.  Consider an odd 

composite number n  and 1 2sn d    with d  odd.  n  is a strong pseudoprime if 

either 1da   (mod )n  or 2 1
rda     (mod )n  with 0,1,... 1r s  .  The Carmichael 

numbers are Fermat pseudoprimes for every base.  However, a composite 

number can only be a strong pseudoprime to at most one quarter of all bases [6].   
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The algorithm is as follows: 

Choose a random integer [2, 2]a n  .  If 1da   (mod )n  and 

2 1
rda     (mod )n  for all 0,1,... 1r s  , then a  is called a witness and n  is 

composite.  Otherwise, n  is a strong probable prime to base a .  

If 9n   and is odd composite, the probability that the algorithm will 

fail to produce a witness for n  is 1/ 4 .  The probability that we fail to find a 

witness after k  iterations is 1/ 4k  [6].  We can make this probability as small as 

we desire with a large number of iterations.  For instance, if we wanted to ensure 

the probability of calling a composite number a prime is less than 610 , we must 

compute 10 iterations or more.   

As an example, suppose we wanted to determine if the number 341 

is prime.  First we write 2341 1 340 2 85    .  So 2s   and 85d  .  We randomly 

select 38a   and proceed with: 

85mod 38 mod 341 56 1da n     

02 85mod 38 mod341 56 1da n n     

12 170mod 38 mod341 67 1da n n    . 

Since none of the congruences hold, we know 341 is composite.  In 

fact, 341 11 31  .  However, consider 703n   and 3a  .  1703 1 702 2 351    .  

So 1s   and 351d  .  Continuing: 

351mod 3 mod 703 702 1da n     

02 351mod 3 mod 703 702 1da n n     

By the second congruence, 703  is a strong pseudoprime base3 .  If 

we then try 5a  , we get: 

351mod 5 mod 703 438 1da n     

02 351mod 5 mod 703 438 1da n n    . 
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This time neither congruence holds, and we know 703  is a 

composite number.  In fact, 703 19 37  . 

The Miller-Rabin test is very fast and has a complexity of 

 3(log )O n
.  Of course, because it is probabilistic, there is a chance of the test 

returning a number as prime when it is in fact composite.  However, as will be 

demonstrated later, we are very concerned with the speed of the primality test 

and no deterministic test will run fast enough for our purpose.  The Miller-Rabin 

test offers us both speed, as compared to other primality tests, and the ability to 

control the probability of error and will be our tool of choice.   

 



 

 20

THIS PAGE INTENTIONALLY LEFT BLANK 



 

 21

III. DIFFIE-HELLMAN AND THE DISCRETE LOGARITHM 

A. THE DIFFIE-HELLMAN PROTOCOL 

“We stand today on the brink of a revolution in cryptography.”  This was 

the first sentence in a breakthrough paper published in 1977 by Whitfield Diffie 

and Martin E. Hellman.  In the paper, titled New Directions in Cryptography [10], 

the authors introduced the idea of public key cryptography and a key exchange 

protocol that was named in their honor.  The Diffie-Hellman protocol provided the 

first practical solution to the key distribution problem, allowing two parties, never 

having met in advance or shared keying material, to establish a shared secret by 

exchanging messages over an open channel.  The key can then be used to 

encrypt subsequent communications using a symmetric key cipher.  The security 

rests on the intractability of the Diffie-Hellman problem and the related problem of 

computing discrete logarithms [1].  We will call the two parties conducting the key 

exchange “Alice” and “Bob.” 

Protocol steps: 

1. A prime number p  and generator   of * (2 2)p p    are 

selected and published. 

2. Alice chooses a random secret ,1 2,x x p   and sends Bob 

modx p  

 : modxA B p  

3. Bob chooses a random secret ,1 2,y y p    and sends Alice 

mody p  

 : modyB A p  

4. Bob receives x  and computes the shared key as ( ) modx yK p  

5. Alice receives y  and computes the shared key as ( ) mody xK p  



 

 22

Because ( ) ( )y x x y  , Alice and Bob have arrived at the same secret 

key.  Only x , y , and xy  are kept secret.  All other values are sent in the 

clear.  The example below illustrates the procedure.   

1. Alice and Bob agree on 37p   and 2  .   

2. Alice chooses 14x   and sends Bob 1430( 2 mod37) .  

: 30A B  

3. Bob chooses 23y   and sends Alice  235( 2 mod37) . 

: 5B A  

4. Bob receives 30 and computes 2330 mod 37 28  

5. Alice receives 5 and computes 145 mod 37 28  

Alice and Bob have agreed upon 28 as their secret key.   

Figure 2 demonstrates which parties know what information.  The man-in-

the-middle will be called Eve from here on out. 

 

Alice 
Knows Does not Know 

p=37 y=23 

α=2   

x=14   

αx=30   

αy=5   

(αy)x=K=28   

 

 

 

 
 
 
 
 

Figure 2.   Diffie-Hellman Example 

Bob 
Knows Does not Know

p=37 x=14 

α=2   

y=23   

αx=30   

αy=5   

(αx)y=K=28   

Eve 
Knows Does not Know 

p=37 x=14 

α=2 y=23 

αx=30 K=28 

αy=5   
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Obviously, a much larger value of p  is required than used in the example 

to make the key agreement potentially secure.  If the prime number 37  was 

used, Eve could simply try all possible values of 2 mod 37x y .  Because 2  is a 

primitive root modulo 37 , this can take 36  values.  A key space with only 36  

possibilities can be exhausted with ease.  However, if the prime number used is 

large enough, no computing power available today can exhaust the key space.  

For instance, most applications recommend 1024-bit primes [2].  This correlates 

to a number of about 300 digits and makes searching the key space one by one 

infeasible.  Table 4 demonstrates how long it would take a modern personal 

computer (PC) and a super-computer (SC) to exhaust various sizes of key 

spaces.  We assume a PC can search approximately one million ( 610 ) keys per 

second, while a super-computer can search approximately one trillion ( 1210 ) keys 

per second. 

For instance, if a prime of 64 bits was used, it would correlate to a base-

ten number of approximately 19 digits.  The key space would be all the numbers 

1, 2,..., 1p  , which would be on the order of 1910  numbers.  Therefore, a PC would 

take 
19

13
6

10
10

10
  seconds to completely search the entire key space. 

Bits Digits (approximate) PC time 

(approximate) 

SC time 

(approximate) 

64 19 317,098 years 115 days 

128 39 3 x 10^(25) years 3 x 10^(19) years 

256 77 3 x 10^(63) years 3 x 10^(57) years 

512 154 3 x 10^(140) years 3 x 10^(134) years 

1024 308 3 x 10^(294) years 3 x 10^(288) years 

2048 616 3 x 10^(602) years 3 x 10^(596) years 

 

Table 4.   Times to Exhaust a Key Space 
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Considering most applications use prime of 1024 bits or greater, it is 

obviously infeasible to conduct a random search of an entire key space.  Of 

course, one could get lucky and the key could be one of the first numbers 

searched by the computer.  However, as indicated by the enormous times listed 

in the table, it is more likely a random key search would take longer than most 

scientists believe the universe has existed. 

B. THE DISCRETE LOGARITHM 

Eve has more information than just the fact that the key resides in the 

interval (1, 1)p  .  Because the exchange occurs over an open channel, Eve 

knows x  and y  as well.  If (mod )x p   and (mod )y p  , then p , ,  , 

and   are known.  All Eve has to do is solve (mod )x p   for x  or 

(mod )y p   for y .  Once x  or y  are known, Eve simply raises x  to y  or y  

to x  and arrives at the secret key K .  However, if p  is large, solving 

(mod )x p   for x  in general is considered difficult.  The problem of finding x  

in this case is known as the discrete logarithm problem (DLP), often 

abbreviated ( )x L  . 

The difficulty of solving the DLP yields useful cryptosystems.  Diffie-

Hellman key exchange protocol, El Gamal encryption system, and the Digital 

Signature Algorithm all rely on the difficulty of solving the DLP.  However, not all 

public-key crypto systems rely on the difficulty of the DLP.  Another number 

theory problem that yields cryptosystems is the problem of factoring large 

integers.  RSA, considered by many to be the most popular public-key 

cryptography algorithm, relies on the difficulty of factorization for its security.  The 

size of the largest primes for which discrete logs can be computed has usually 

been approximately the same size as the size of largest integers that could be 

factored [11].  In 2005, a 168 digit prime (556 bits) discrete logarithm was 

computed, setting a record at that time.  The record factorization up to then was 

200 digits (663 bits). 
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As discussed above, if p  is small, it is easy to compute discrete logs by 

exhaustive search.  However, when is p  large, this is not feasible.  We will now 

discuss several methods of attacking the DLP.    

1. The Pohlig-Hellman Algorithm 

Pohlig and Hellman introduced the following algorithm in 1978 to solve 

discrete logs when 1p   has only small prime factors [11], [12].   

Suppose 

 1 ir
i

i

p q   

is the factorization of 1p   into primes.  Let rq  be one of the factors.  The idea is 

to compute x (mod )rq  for each ir
iq  and combine them using the Chinese 

Remainder Theorem to find the discrete logarithm.   

Thus, x (mod )rq  is found by writing 2
0 1 2 ...x x x q x q     with 0 1ix q    and 

determining the coefficients 0 1 1, ,..., rx x x  .   

General idea:  Starting with x  , raise both sides to the 
1p

q


 to obtain  

 
2

0 01 2( 1)/ ( 1)/...( 1)/ ( 1)/ 1( )x p q x p qx q x qp q x p q p            (mod )p  

To find 0x , simply look at the powers  

 ( 1)/k p q   (mod )p , 0,1, 2,... 1,k q   

until one of them yields ( 1)/p q  .  Then 0x k .   

An extension of this idea yields the remaining coefficients.  Assume 2 | 1q p  .  Let 

 0 1 2( ...)
1

x q x x q       (mod )p  

Raise both sides to the 
2

1p

q


 power to obtain  

 
2

2 31 2 1 1...( 1)( ...)/ ( 1)/ ( 1)/( 1)/ 1
1 ( )x x qp x x q q x p q x p qp q p              (mod )p . 
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To find 1x , simply look at the powers  

 ( 1)/k p q   (mod )p , 0,1, 2,... 1,k q   

Until one of them yields 
2( 1)/

1
p q  .  Then 1x k .   

If 3 | 1q p  , let 1
2 1

x q    , and raise both sides to the 
3

1p

q


 power and find 2x .  

We can continue this process until we find that 1rq   does not divide 1p  .  We 

have then determined 0 1 1, ... rx x x  , so we know x (mod )rq . 

Repeat this procedure for all prime factors of 1p  .  This yields x (mod )rq  

for each ir
iq  and we combine these using the Chinese Remainder Theorem to 

find x (mod 1)p  .  Since 0 1x p   , this determines x . 

As an example, let us solve 2 3x   (mod101)  for x .  

 2 21 100 2 5p      so 2,5q   

First, we solve 2 3x   2(mod 2 ) .  Let 0 12x x x   2(mod 2 ) .  Then 

 ( 1)/2 503 1p      (mod101)  and ( 1)/2 502 1p      (mod101)  

So 01 ( 1)x    and 0 1x  . 

Continuing, 0 1
1 3 2 3 51 52x         (mod101) . So 

2( 1)/2 25
1 52 1p    (mod101)  

and 11 ( 1)x  .  So 1 0x   and 1 2 0 1x      2(mod 2 ) . 

Next, we solve 2 3x   2(mod5 ) .  Let 0 15x x x   2(mod5 ) .  Then 

 ( 1)/5 203 84p     (mod101)  and ( 1)/5 202 95p     (mod101)  

We make a list,  

 0 1 2 3 495 1;95 95;95 36;95 87;95 84      (mod101) . 

Matching with the list, we see that 0 4x  . 

Continuing, we get 0 4
1 3 2 3 19 57x         .  So 

2( 1)/5 4
1 57 87p    (mod101) . 

We again compare with the above list and see that 395 3  and 1 3x  .  This leads 

to 4 5 3 19x      2(mod5 ) . 
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Now, we combine 1x   2(mod 2 )  and 19x   2(mod5 )  using the Chinese 

Remainder Theorem to find 69x  .  So 692 3  (mod101) . 

It is well known that the time complexity of the Pohlig-Hellman algorithm is 

( )O p  [11]. 

2. Baby Step, Giant Step 

Eve is trying to solve (mod )x p   for x.  The following algorithm was 

developed by Daniel Shanks [11].   

First, choose an integer N  with 2 1N p  . Next, make two lists: 

1.  modj p  for 0 j N   

2.  modNk p   for 0 k N   

Look for a match between the two lists.  If one is found, then j Nk   , 

so j Nk   .  Therefore, x j Nk   and the discrete logarithm is solved.   

The complexity of the baby step, giant step algorithm is also ( )O p , but it 

requires storing approximately p  numbers in memory and is therefore, 

impractical for very large primes, such as 2010 or larger [11]. 

3. The Index Calculus 

Again, Eve is trying to solve (mod )x p   for x .  The idea in the index 

calculus method is similar to the quadratic sieve method of factoring [11].   

The first step is a precomputation step and involves picking a factor base 

and searching for a set of r  linearly independent relations between the factor 

base and the powers of  .  Let B   be a bound and let 1 2, ,..., mp p p  be the primes 

less than B .  This is our factor base.  We then compute k  (mod )p  for r   values 
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of k .  For each number, try to write it as a product of the factor base.  If this is not 

the case, discard k .  However, if iak
ip   (mod )p , then 

 ( )i ik a L p  (mod 1)p  . 

When we obtain enough relations, we can solve for ( )iL p  for each i .   

Next, for random integers s , compute s  (mod )p .  For each such 

number, try to write it as a product of primes less than B .  If we succeed, we 

have ibs
ip   (mod )p , which means 

 ( ) ( )i iL s b L p      (mod 1)p  . 

Using this algorithm, any p  over 200 digits will be difficult to solve, which 

makes the Index Calculus good only for moderate-sized primes [11].  One can 

show that the time complexity of the Index Calculus is 
1/3 2/3(ln ) ( ln )( )c n Cn nO e  for some 

0c  , if implemented by the Number Field Sieve.   

C. THE DIFFIE-HELLMAN PROBLEM 

We described how solving the discrete logarithm easily would allow Eve to 

arrive at the secret key.  There is another problem Eve can solve to arrive at the 

secret key—namely, the Diffie-Hellman Problem.  The Diffie-Hellman Problem 

comes in two flavors, the computational and the decisional.  The Computational 

Diffie-Hellman Problem is defined as follows:  Let p  be a prime and let   be a 

primitive root mod p .  Given (mod )x p  and (mod )y p , find (mod )xy p .  Recall 

that Eve has access to both x  and y  as they are both made public during the 

exchange.  It is not currently known whether or not this problem is easier than 

computing discrete logs [11].  A related problem, known as the Decisional 

Diffie-Hellman Problem, is defined as follows:  Let p  be a prime and let   be a 

primitive root mod p .  Given (mod )x p  and (mod )y p , and 0   (mod )p , 

decide whether or not (mod )xyK p [11].  In other words, if someone offers a 

number to Eve and claims it is K , can Eve decide whether or not that person is 
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telling the truth with the information captured in the open channel?  Like the 

computational Diffie-Hellman problem, the decisional Diffie-Hellman problem has 

yet to be solved.  It is unknown whether a method for solving the decisional 

problem will lead to a solution for the computational problem. 

The methods described for solving discrete logarithms above force 

applications that rely on the difficultly of solving discrete logs to stay away from 

certain primes.  Obviously, the larger the prime used, the better.  Baby-step 

Giant-step and the Index Calculus become infeasible to use when primes are 

larger than 200 digits.  The Pohlig-Hellman algorithm relies on the factorization of 

1p   to consist of only small primes.  If p  does not contain only small primes, 

the algorithm becomes inefficient.  Therefore, the primes chosen when using the 

Diffie-Hellman protocol should contain at least one large prime in the factorization 

of 1p  .  This situation gives rise to the attack we will focus on.  If 1p   contains 

a very large prime, such that 1p Rq   with q  prime and R  a small integer, an 

unauthenticated exchange becomes vulnerable to an active man-in-the-middle 

attack that we will discuss next. 
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IV. MAN-IN-THE-MIDDLE ATTACK 

A. THEORY BEHIND THE ATTACK  

Wiener and van Oorschot [2] noted that, if certain primes are used, a 

potentially fatal protocol attack on the Diffie-Hellman key exchange protocol 

becomes possible.  The idea is based on forcing the parties to agree on a shared 

key that resides in a subgroup of the cyclic group *
p . If the order of the 

subgroup is small enough, an adversary can exhaustively search the subgroup, 

retrieve the secret key, and eavesdrop on the communication of Alice and Bob. 

For instance, consider the case when the prime used for the key 

exchange is of the form 2 1p q  , where q is a prime.  Then, ( 1)/2q p   .    

Claim: ( 1)/2p   is an element of order two. 

Proof: By Fermat’s little theorem, 1 1p    mod p .  So ( 1)/2p  must be +1 or 

-1.  But if ( 1)/2 1p    then   must have order ( 1) / 2p  .  This is a contradiction, 

because   is a primitive root of *
p  and must be of order 1p  .  So ( 1)/2 1p     

and is an element of order two.        

If Alice and Bob respectively send each other unauthenticated messages 

x  and y , an active intruder may substitute ( )x q  for the first, and ( )y q for the 

second.  When Alice receives ( )y q  and computes ( )q y x  and when Bob 

receives ( )x q  and computes ( )q x y , they will arrive at only one of two possible 

values, +1 and -1.  The intruder can then try both possible keys and gain access 

to Alice and Bob’s secret communications.  Obviously, if Alice and Bob 

demonstrate vigilance, they will agree in advance to suspect any key agreement 

that arrives at +1 or -1.   
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We can generalize the situation if Alice and Bob use a prime number of 

the form 1p Rq  , where R  is a small integer and q  is again a large prime. 

Claim:  
( 1)/p R 

is an element of order R .  

Proof:  Raising 
( 1)/p R 

 to consecutive powers, starting with 0, we get: 

( 1)/ 0( ) 1p R   , 
( 1)/ 2( )p R 

, 
( 1)/ 3( )p R 

, …. ,
( 1)/ ( 1)( ) 1p R R p    .   

This produces a list of R  different values. Continuing after R , 

( 1)/ ( 1) ( 1)/ ( 1)/ 1 ( 1)/( ) ( ) ( ) 1 ( )p R R p R R p R p R           , 

( 1)/ ( 2) ( 1)/ ( 1)/ 2 ( 1)/ 2( ) ( ) ( ) 1 ( )p R R p R R p R p R           , ……. , 

( 1)/ ( ) ( 1)/ ( 1)/ ( 1)/( ) ( ) ( ) 1 ( )p R R n p R R p R n p R n            

For n R , the results are in the original list. 

For n R , we can write R n R kR m     with 0 1m R    and ,m k  . 

( 1)/ ( ) ( 1)/ ( ) ( 1)/ ( 1)/ ( 1)/( ) ( ) ( ) ( ) ( )p R R n p R R kR m p R R p R kR p R m               
 

( 1)/ ( 1)/1 1 ( ) ( )k p R m p R m       

Because 0 1m R   , this is in our original list and 
( 1)/p R 

 is of order R .        

So, if the prime Alice and Bob agree to use is of the form 1p Rq  , Eve 

can force them to agree on a key in a subgroup of *
p  of order R  by replacing 

x  and y  with ( )x q  and ( )y q .  Even if Alice and Bob are vigilant, the key can 

take any of R  values and the generalized attack poses a significant threat to an 

unauthenticated key exchange using the Diffie-Hellman protocol. 
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B. CREATING THE ENVIRONMENT 

Eve must force Alice and Bob into a subgroup of small order to conduct 

this attack.  Figure 3 represents a possible algorithm Eve could follow.   

NOTE:  Eve only needs to consider cases when R  is even, because if R  is odd, 

1p

R


, must be even and cannot be prime. Also, if Eve calculates 

1
,

p
m

m


  as 

a non-integer, she can obviously ignore trying any number of the form 
1

,
p

k
km


  

because it will also not be an integer.   
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Figure 3.   Attack Algorithm 

The most important step in creating the environment to conduct the attack 

is searching 

1p

k



 , 2, 4,...,k R , until we find a prime.  We cannot continue the 

attack until we find such a prime.  Obviously, the longer Alice and Bob are kept 

waiting for return correspondence, the more suspicious they will become of 

possible compromise of their communication.  Therefore, we need the fastest 
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possible method to detect primality.  From our discussion in Chapter II, we know 

a probabilistic primality test suits us best.  Specifically, we could use the Miller-

Rabin primality test with complexity  3(log )O n . 

If we are forced to search the entire index k  from 2 k R  , how long 

might this take us?  Recall that we only need try even values of k , and in the 

worst case, we may be forced to try all / 2R  even numbers.  Therefore, the worst 

case scenario in searching for a prime would take 

 
 

   
3

3 32

(log )
( / 2) (log ) (log )

2

R

k

O N
O R N O N   


 

steps, with N  being the input number into the Miller-Rabin primality test.  Thus 

the constant value in the Big-O estimate changes, but the algorithm remains 

bounded by the time it takes to conduct the primality tests. 

As an example, suppose Eve was listening to Alice and Bob agree upon 

the prime number to use for their key exchange to take place in the near future.  

The prime number they choose is 10007p   with a primitive root of 3  .  Eve 

uses the attack algorithm in Figure 4 to attempt to force Alice and Bob to agree to 

a key in a subgroup of *
10007 .   

First, 
1 10006

5003
2 2

p 
   

Next, Eve runs 5003  through the Miller-Rabin primality test and the result 

is prime. 

This situation represents the initial case described above with the prime 

number being of the form 2 1p q  .  Specifically, 10007 2 5003 1   .  Next, Eve 

must intercept the number Alice attempts to send to Bob.  Suppose Alice 

chooses 758x   and attempts to send 758(3 mod10007 4865)x   to Bob. 

: 4865A E  
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Eve intercepts the communication, then takes (4865)x  and raises it to the 

q  power. 

 758 5003( ) (3 ) mod10007x q   

Meanwhile, Eve must also intercept the number Bob is attempting to send 

to Alice.  Suppose Bob chooses 555y   and attempts to send 

555(3 mod10007 1771)y   to Alice. 

 :1771B E  

Eve again intercepts the communication, and takes (1771)y  and raises it 

to the q  power. 

 555 5003( ) (3 ) mod10007y q   

Eve then sends the results to the intended recipients. 

 : 4865 mod10007qE B  

 :1771 mod10007qE A  

Alice and Bob then both finish the key agreement by raising the received 

number to their private keys, x  and y  respectively, and arrive at the same 

number, the “secret” key.   

 ( ) ( )yq x xq y   

As a result of the theory discussed above, without any knowledge of x  or 

y , Eve knows the only possible keys are 1 and 10006 .  Eve must wait for a 

message to be sent between Alice and Bob, try both keys, and figure out which 

one is being used.  She can then eavesdrop, and Alice and Bob’s secret 

communication has been compromised.   

However, as mentioned before, any vigilance on the part of Alice or Bob 

would cause suspicion if the key agreed upon were of the form +1 or -1.   
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Now, suppose the prime number Alice and Bob agreed upon was  

19991p   and 3a  .  Eve must again search for a large prime factor of 1p  . 

First, 
1 19990

9995
2 2

p 
   

Next, Eve would run 9995  through the Miller-Rabin primality test.  

However, because it ends with a five, five must be a factor and it cannot be a 

prime number.   

Continuing,  
1 19990

4997.5
4 4

p 
   is not an integer. 

1 19990
3333.66

6 6

p 
   is not an integer. 

Because 
1

4

p 
 was not an integer, we skip 

1

8

p 
. 

1 19990
1999

10 10

p 
   

Next, Eve runs 1999  through the Miller-Rabin primality test and the result 

is prime. 

Eve has found a large prime factor of 1p  .  This situation resembles the 

generalized attack with a prime of the form 1p Rq  ; in this case 

19991 10 1999 1   .  Intercepting, altering, and retransmitting the messages as 

she did above, Eve again forces Alice and Bob into a subgroup of the original 

cyclic group.  This time, however, there are ten possibilities for the “secret” key. 

 
1 21 1 1

, ,...,

Rp p p

R R R  
       

     
     

 

      1 2 101999 1999 19993 , 3 ,..., 3  

The cyclic subgroup of *
19991  generated by 19993  is of order ten and Alice 

and Bob can only arrive at ten values for their key.  Eve must wait for Alice and 

Bob to communicate with their new key and see which of the ten values Alice 
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and Bob agreed on.  Once a message is intercepted, Eve can pull it offline, 

attempt each possible key, determine the key they agreed upon, and listen in on 

Alice and Bob’s communication. 

C. PRIMES OF THE FORM 1Rq   

For this man-in-the-middle attack to be possible, Alice and Bob must 

agree to choose a prime of the form 1Rq  .  How likely is it, assuming Alice and 

Bob are using random large primes, that the prime they choose will be of the 

correct form?  To answer this question, we must first count the number of primes 

p , such that 1p Rq  .  We can begin with the case where 2R  .  This 

represents the original case in the man-in-the-middle attack, where 2 1p q  .  

These particular prime numbers have their own name.  A prime p  is a so-called 

Sophie Germaine (SG) prime if 2 1p   is also prime.  If we let ( )SG t  be the 

number of SG primes not exceeding t , it can be demonstrated that  

2
( )

(log )SG

t
t O

t


 
  

 
 [13] 

Now, considering the general case, if we fix R , then the number of primes p t  

of the form 1p Rq   is  

2( )(log( / ))

t
O

R t R
 

  
 

 

where ( )t  is Euler’s Phi function [14].  However, in the attack R  can range from 

2 to some bound, say B .  Therefore, we must sum the cases from 2R   to 

R B .  The number of primes p  such that 1p Rq   with q  prime, ranging from 

2 R B   with 1/2B t  is 

2

1

(log ) ( )R B

t
O

t R

 
  

 
  

 
2

log

(log )

t B
O

t

 
  

 
 [14] 
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The prime number theorem states that, if ( )x is the prime counting 

function, then 
( )

lim 1
/ ln( )x

x

x x




 .  Roughly speaking, this tells us that if you 

randomly select a number close to a large number N , the odds of it being prime 

are about 1/ ln( )N .  By the prime number theorem, it follows that 
( )

lim 0
( )

SG

x

x

x




 .  

If we let 1( )Rq t   count the number of primes of the form 1p Rq   not exceeding 

t , it follows that 1( )
lim 0

( )
Rq

x

x

x









 
as well.  This tells us that, as x  gets very large, 

the likelihood that a random prime number is a Sophie Germaine Prime or any 

prime of the form 1Rq   is increasingly unlikely. 

Using the prime number theorem and Big-O estimates above with a 

constant value of one, we can approximate the numbers of primes of different 

forms.  Table 5 lists these approximations using scientific notation.  The R  value 

corresponds to different values for primes of the form 1p Rq  .  The ratios listed 

are:  (primes of the given form) / (total primes). 
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 0-64 bits 64-128 bits 128-256 bits 

Total Primes 4.1583e17 3.8353e36 6.5255e74 

R=2 (S.G) 9.3737e15 
ratio:  .0225 

4.3228e34 
ratio:  .0113 

3.6775e72 
ratio:  .0056 

R=100 4.316e16 
ratio:  .1038 

1.9907e35 
ratio:  .0519 

1.6935e73 
ratio:  .0260 

R=10^4 8.6335e16 
ratio:  .2076 

3.9815e35 
ratio:  .1038 

3.3871e73 
ratio:  .0519 

R=10^6 1.295e17 
ratio:  .3114 

5.9722e35 
ratio:  .1557 

5.0806e73 
ratio:  .0779 

 256-512 bits 512-1024 bits 1024-2048 bits 

Total Primes 3.778e151 2.5327e305 2.2765e613 

R=2 (S.G.) 1.0646e149 
ratio:  .0028 

3.5683e302 
ratio:  .0014 

1.6037e610 
ratio:  .0007 

R=100 4.9024e149 
ratio:  .0130 

1.6433e303 
ratio:  .0065 

7.3853e610 
ratio:  .0032 

R=10^4 9.8049e149 
ratio:  .0260 

3.2865e303 
ratio:  .0130 

1.477e611 
ratio:  .0065 

R=10^6 1.4707e150 
ratio:  .0389 

4.9298e303 
ratio:  .0195 

2.2156e611 
ratio:  .0097 

 

Table 5.   Prime Number Approximations 

The approximations demonstrate the increasing unlikelihood of a random 

prime being of the form 1p Rq  .  Using our approximations, around 64 bits 

over 30% of all primes match the form with a bound of 10^6.  However, when we 

consider primes around 2048 bits, the percentage drops below one.  If we 

increase the bound we can increase the likelihood, but increasing the bound 

forces the attacker to search through more keys to find the correct one.   

D. COUNTERMEASURES AGAINST THE ATTACK 

To prevent this potentially fatal protocol attack, Alice and Bob have 

several options.  The easiest method is to force authentication prior to the key 

exchange.  Another method that prevents the attack is based on creating a prime 

order subgroup before the key exchange takes place.   
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1. Authentication 

The attack we have discussed is not the only man-in-the-middle attack 

Diffie-Hellman is vulnerable to.  The Appendix details another attack, if no 

authentication occurs prior to the key exchange.  To combat these attacks, a 

variation of Diffie-Hellman that ensures authentication can be used.  An example 

of such a variation is the Station-to-Station protocol (STS).  STS is a three-pass 

variation of the basic Diffie-Hellman protocol that allows the establishment of a 

shared secret key between two parties with mutual entity authentication and 

mutual explicit key authentication [1].  The STS employs digital signatures.  A 

digital signature of a message is a number dependent on some secret known 

only to the signer; and, additionally, on the content of the message being signed 

[1].  The STS protocol is frequently employed with the RSA signature scheme. 

To employ an RSA signature scheme, public and private key pairs must 

first be generated. 

RSA signature scheme key generation steps [1]:  

1. Generate two large distinct random primes p  and q , each 

roughly the same size 

2. Compute n pq  and ( 1)( 1)p q      

3. Select a random integer ,1e e   , such that gcd( , ) 1e    

4. Use the extended Euclidean algorithm to compute the unique 

integer ,1d d    such that 1ed   (mod )  

5. The user’s public key is ( , )n e  and the user’s private key is d  

NOTE:  Each user should generate a public and private key 

Now, if a user Alice wants to sign a message m , and a user Bob wants to 

verify the message signature, the remaining steps of the protocol must be 

completed. 
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RSA signature scheme protocol steps [1] 

1. Signature generation 

a. Compute ( )m R m , an integer in the range [0, 1]n   

b. Compute modds m n   

c. Alice’s signature for m  is s . 

2. Signature verification 

a. Obtain Alice’s authentic public key ( , )n e  

b. Compute modem s n  

c. Recover 1( )m R m   

With the knowledge of a digital signature scheme, in particular RSA, we 

can move onto the STS protocol.  If we let E  denote a symmetric encryption 

algorithm, and ( )AS m  denote Alice’s signature on m , the protocol is as follows 

[1]: 

1. Set up 

a. A prime number p  and generator   of * (2 2)p p    are 

selected and published 

b. Alice selects RSA public and private signature keys ( , )A An e , 

and Ad  (Bob selects analogous keys).  Assume each party 

has access to authentic copies of the other’s public key. 

2. Actions 

a. Alice generates a secret random ,1 2x x p    and sends to 

Bob modx p . 

 : modxA B p  (message 1) 
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b. Bob generates a secret random ,1 2y y p   , and 

computes the shared key ( ) modx yk p .  Bob signs the 

concatenation of both exponentials, encrypts this using the 

computed key, and sends to Alice. 

 : mod , ( ( , ))y y x
k BB A a p E S    (message 2) 

c. Alice computes the shared key ( ) mody xk p , decrypts the 

encrypted data, and uses Bob’s public key to verify the 

received value as the signature on the hash of the cleartext 

exponential received and the exponential sent in message 1.  

Upon successful verification, Alice accepts that k  is actually 

shared with Bob, and sends Bob an analogous message. 

 : ( ( , ))x y
k AA B E S    (message 3) 

d. Bob similarly decrypts the received message and verifies 

Alice’s signature therein.  If successful, Bob accepts that k  

is actually shared with Alice. 

The exchanged exponentials are digitally signed and retransmitted during 

the STS protocol.  Therefore, Eve cannot alter the original exponentials without 

triggering a failure during Alice and Bob’s key agreement.  This precludes the 

man-in-the-middle attack we have focused on and defends Alice and Bob’s key 

exchange against several other possible active man-in-the-middle attacks. 

2. Prime Order Subgroups  

Van Oorschot and Wiener [2] noticed the potentially fatal man-in-the-

middle attack and reasoned that restricting computations to prime-order 

subgroups would prevent the attack.  In this case, we will force the prime number 

p  that defines the environment to be of the form 1p Rq  , where R  is a small 
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integer and q  is a large prime.  Now, instead of using a generator   of *
p  as 

our base for exponentiation, we compute ( 1)/p qg    and let g  be our new base.   

 Claim:  The element g  generates a subgroup of order q . 

 Proof:  Suppose g  is of order k q  and so 1kg  .  Then ( 1) / 1p k q    .  But 

/ 1k q   and so ( 1) / ( 1)p k q p    .  This means   is of order ( 1)p  , a 

contradiction because   is a generator of *
p .  Therefore, g  must be of order 

q .  But ( 1) / ( 1) 1q p q q pg       , so g  is of order q  and g  is an subgroup of 

order q .            

By using g  instead of   to conduct the key exchange, Alice and Bob are 

working in a prime order subgroup instead of a group of order 1p  .  The man-in-

the-middle attack we have discussed is based on forcing the parties into a 

subgroup of small order and exhaustively searching the smaller key space.  

However, by Lagrange’s theorem, the order of any subgroup must divide the 

order of the group.  The order of the group generated by g  is q .  Therefore, any 

subgroup must be of order q  or 1, because those are the only divisors of q .  

Thus, the prime order subgroup cannot be divided any further and this man-in-

the-middle attack becomes infeasible.   

The Internet Engineering Task Force (IETF) has adopted the prime order 

subgroup tactic to prevent the type of attack we have focused on.  In particular, 

Request for Comment (RFC) 2631 standardizes the technique for a particular 

Diffie-Hellman variant, based on the American National Standards Institute x9.42 

draft [15]. 

E. EXTENDING THE ATTACK TO THE N-PARTY SETTING 

The Diffie-Hellman protocol we have discussed so far has been limited to 

two parties.  However, protocols have been created that extend the key 

agreement to group communications.  Steiner, Tsudik and Wainer [16] defined a 
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class of natural extensions of Diffie-Hellman to the n-party setting.  These 

protocols, without the countermeasures discussed above, are vulnerable to the 

man-in-the-middle attack we have focused on.  We now move to demonstrate the 

attack on two of the protocols the authors describe. First, we consider the 

protocol the authors name Group Diffie-Hellman version 1 (GDH.1).  In this 

section, to keep with the original notation of [16], we use set notation to mean an 

ordered tuple. 

We call the participants of the n-party key exchange  1 2, ,..., nM M M .  As 

in the two-party case, a prime number p  and a generator   of the group *
pZ  are 

selected and published.  Each member iM  chooses a random secret number 

,0 2i is s p   .  The protocol consists of two stages; upflow and downflow. 

In the upflow stage, each member makes their contribution to the shared 

key.  A member iM  receives a collection of intermediate values, and has the task 

of raising the last in the list of incoming intermediate values to the power of is .  

Then iM  appends the result to the incoming set of values and forwards all to 

1iM  .  As an example, 3M  would receive  1 1 2,s s s   from 2M .  3M  would then 

compute 1 2 3s s s , append the result to the incoming message to create 

 1 2 31 1 2, , s s ss s s    and forward to 4M .   

The upflow stage is completed when nM  calculates 1 2 ... ns s s , which is the 

intended group key, nK .  Once nM  has obtained nK , the downflow stage is 

initiated.  Each member iM  receives i  messages, one to compute nK  and 1i   

to send to 1iM  .  For example, if 4n  , 3M  would receive  4 1 4 1 2 4, ,s s s s s s    from 

4M .  First, 3M  would use the last value to compute 1 2 3 4s s s s
nK  .  Then, the 

remaining values would be raised to 3s  and  4 3 1 4 3,s s s s s   would be sent to 2M .   
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2M  would repeat the procedure, and would send  4 3 2s s s  to 1M .  The downflow 

stage is then completed when 1M  computes 1 2 3 4s s s s
nK  .  GDH.1 is depicted in 

Figure 4. 

 

 

Figure 4.   GDH.1 [From 16] 

The active adversary, Eve, wishes to attack the key agreement forcing the 

n-party to agree on a key in a small subgroup of *
pZ .  Like in the two-party case, if 

possible Eve must first break the prime number p  down into the form 1p Rq   

with q  a large prime and R  a small integer.  Once completed, Eve must then 

intercept and alter two messages to complete the attack.  The first message she 

must intercept is the first message sent, that is,  

 1
1 2 : sM M  . 

With 1s  captured, Eve computes  1 1( )s qsq   and proceeds to send the 

computed number as the message onto 2M .  2M  computes 1 2qs s  and sends 

 1 1 2,qs qs s   to 3M . This continues until the end of the upflow stage, when nM  

computes 1... nqs s
nK  .  Eve has forced nK  to be one of R  values, based on the 

theory of the attack described earlier in the chapter.   
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Next, Eve must intercept the first message sent during the downflow 

stage.  If 4n  , then  

  4 1 4 1 2 4
4 3 : , ,s qs s qs s sM M    . 

NOTE:  Because of the alteration Eve completed in the upflow stage, only the 

first part of the message must be altered. 

Eve simply computes 4qs , replaces the first number with the computation, 

and forwards the message to 3M .  The participants all arrive at 1 2 3 4qs s s s
nK  , and 

the key exchange has been successfully attacked.  However, in this case Eve 

had to capture and alter two very specific messages for the attack to be 

successful.  In the next protocol, Eve has more flexibility. 

Next, we turn our attention to Group Diffie Hellman version 3 (GDH.3).  

GDH.3 reduces the amount of computation each party (except for nM ) must 

complete, which may be very beneficial if the group size is large.  The protocol 

consists of four stages.  The first stage is similar to the upflow stage of GDH.1 in 

which every member contributes to the key.  However, after processing the 

upflow message, 1nM   broadcasts 1 2 1... ns s s   to the entire group as the second 

stage of the process.  In stage three, each iM , except nM  , factors out their 

contribution ( is ) from the broadcasted value and forwards the result to nM .  

After nM  collects all the values from the group, in the last stage nM  raises each 

value to ns  and returns the values to the group.  Now each iM  has 
[1, ],ks k n k i    

and simple raises this value to is  to compute nK .   

For example, if 5n  , the upflow stage completes when 4M  computes 

1 2 3 4s s s s .  Then, in stage 2, this value is broadcasted to the entire group.  In stage 

3, each member other than 5M  factors out their contribution and forwards the 

result to 5M  (i.e. 2M  would send 1 3 4s s s ).  In stage 4, 5M raises each received  

 



 

 48

value to 5s  and returns the value to the sender (i.e. 2M  would receive 1 3 4 5s s s s .  

Lastly, each member raises the received value to their secret number and arrives 

at nK .  Figure 5 depicts GDH.3. 

 

Figure 5.   GDH.3 [From 16] 

It is much easier for Eve to attack GDH.3 than GDH.1.  She needs only to 

intercept and alter one message, and she can choose any of the first 2i   

messages sent in the group.  By raising any one of these messages to q , 1nM   

will inevitably broadcast 1 2 1... nqs s s   to the group.  At this point, each member factors 

out their contribution, and forwards the result to nM  leaving q  in the exponent of 

each message sent.  nM  simply raises each message to ns  and returns each 

message.  Therefore, q  is undisturbed, each member arrives at the same key 

1 2 ... nqs s s
nK  , and Eve has successfully forced the group into a small number of 
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possible values for the key.  However, as mentioned above, if the parties agree 

to use either authentication or prime order subgroups during the key exchange, 

attacks of this sort are prevented. 
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V. RESULTS AND FUTURE WORK 

This thesis investigated and analyzed a particular man-in-the-middle 

attack on the Diffie-Hellman key exchange protocol.  We created an algorithm to 

carry out the attack and demonstrated how it is constrained by the primality test 

used by the attacker.  In particular, if the Miller-Rabin primalty test is used, the 

algorithm’s complexity is  3(log )O N
 with N  being the input prime number.  We 

showed that prime numbers of the form 1p Rq   with R  bounded are common 

with small primes but become increasingly rare as larger numbers are 

considered.  In fact, with low bit primes such as 128 bits, a reasonably-sized R  

will give an attacker a good chance of the prime being of the desired form.  

However, when large primes such as 1024 and 2048 bits are considered, a very 

large value of R  is required to give an attacker a reasonable chance of 

conducting the attack. We demonstrated how two techniques, authentication and 

prime order subgroups, can prevent the attack.  In fact, it appears industry has 

begun to adopt the prime order subgroup technique to defend against the attack.  

Finally, we demonstrated how the attack can be expanded to include a class of 

multi-party Diffie-Hellman variants. 

Possible future efforts include coding and implementing the man-in-the-

middle attack on active communications to test the theory laid out in this thesis.  

It is possible that analyzing the given prime number, capturing the required 

messages, altering those messages, and forwarding the messages to the 

intended recipients will be too time-consuming.  This would obviously alert the 

parties of possible compromise.  In addition, it may be possible to alter the attack 

to compromise communications that are authenticated and render several Diffie-

Hellman variants such as the STS protocol vulnerable.  Other future work may 

include an attempt to defeat the prime order subgroup technique. 
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APPENDIX:  ANOTHER MAN-IN-THE-MIDDLE ATTACK 

This appendix details a possible man-in-the-middle attack on the Diffie-

Hellman key exchange protocol, if no prior authentication occurs [17].   

1) Alice sends her public key to Bob, but Eve intercepts it, and Bob 

never receives the key. 

2) Eve spoofs Alice’s identity and sends over her public key to Bob.  

Bob now thinks that he has Alice’s public key. 

3) Bob sends his public key to Alice, but Eve intercepts it, and Alice 

never receives the key. 

4) Eve spoofs Bob’s identity and sends over her public key to Alice.  

Alice now thinks that she has Bob’s public key. 

5) Alice combines her private key and Eve’s public key and creates 

symmetric key S1. 

6) Eve combines her private key and Alice’s public key and creates 

symmetric key S1. 

7) Bob combines his private key and Eve’s public key and creates 

symmetric key S2. 

8) Eve combines her private key and Bob’s public key and creates 

symmetric key S2. 

9) At this point, Alice and Eve share a symmetric key (S1) and Bob 

and Eve share a different symmetric key (S2).  Alice and Bob think 

they are sharing a key between themselves and do not realize that 

Eve is involved. 

10)  Alice writes a message to Bob, uses her symmetric key (S1) to 

encrypt the message, and sends it. 
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11)  Eve intercepts the message and decrypts it with the symmetric key 

S1, reads or modifies the message and re-encrypts it with 

symmetric key S2, and sends it to Bob. 

12)  Bob takes symmetric key S2 and uses it to decrypt and read the 

message. 

Figure 6 illustrates the attack [17]. 

 

 

 

Figure 6.   Another Man-in-the-Middle Attack 
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