

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

ANALYSIS OF A MAN-IN-THE-MIDDLE ATTACK ON THE
DIFFIE-HELLMAN KEY EXCHANGE PROTOCOL

by

Aaron C. Geary

September 2009

 Thesis Co-Advisors: Pantelimon Stanica
 Valery Kanevsky

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Analysis of a Man-in-the-Middle Attack on the
Diffie-Hellman Key Exchange Protocol
6. AUTHOR(S) Aaron C. Geary

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
 A

13. ABSTRACT (maximum 200 words)

The ability to distribute cryptographic keys securely has been a challenge for centuries. The Diffie-Hellman
key exchange protocol was the first practical solution to the key exchange dilemma. The Diffie-Hellman
protocol allows two parties to exchange a secret key over unsecured communication channels without
meeting in advance. The secret key can then be used in a symmetric encryption application, and the two
parties can communicate securely. However, if the key exchange takes place in certain mathematical
environments, the exchange becomes vulnerable to a specific man-in-the-middle attack, first observed by
Vanstone [1]. We explore this man-in-the-middle attack, analyze countermeasures against the attack, and
extend the attack to the multi-party setting.

15. NUMBER OF
PAGES

75

14. SUBJECT TERMS Cryptography, Diffie-Hellman, Man-in-the-Middle Attack

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

ANALYSIS OF A MAN-IN-THE-MIDDLE ATTACK ON THE DIFFIE-HELLMAN
KEY EXCHANGE PROTOCOL

Aaron C. Geary

Lieutenant, United States Navy
B.S., United States Naval Academy, 2003

Submitted in partial fulfillment of the
requirements for the degrees of

MASTER OF SCIENCE IN APPLIED MATHEMATICS

and

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 2009

Author: Aaron C. Geary

Approved by: Pantelimon Stanica
Thesis Co Advisor

Valery Kanevsky
Thesis Co Advisor

Carlos Borges
Chairman, Department of Applied Mathematics

Dan Boger
Chairman, Department of Information Sciences

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The ability to distribute cryptographic keys securely has been a challenge

for centuries. The Diffie-Hellman key exchange protocol was the first practical

solution to the key exchange dilemma. The Diffie-Hellman protocol allows two

parties to exchange a secret key over unsecured communication channels

without meeting in advance. The secret key can then be used in a symmetric

encryption application, and the two parties can communicate securely. However,

if the key exchange takes place in certain mathematical environments, the

exchange becomes vulnerable to a specific man-in-the-middle attack, first

observed by Vanstone [1]. We explore this man-in-the-middle attack, analyze

countermeasures against the attack, and extend the attack to the multi-party

setting.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

DISCLAIMER

The views expressed in this thesis are those of the author and do not

reflect the official policy or position of the Department of Defense or the U.S.

Government.

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

TABLE OF CONTENTS

I. INTRODUCTION... 1

II. BACKGROUND AND REVIEW .. 5
A. NUMBER THEORY.. 5
B. GROUP THEORY .. 7
C. FIELD THEORY ... 10
D. COMPUTATIONAL COMPLEXITY.. 10
E. PRIMALITY TESTING.. 13

1. Deterministic Primality Tests.. 14
a. Trial Division ... 14
b. The n–1 Test .. 15
c. Elliptic Curve Primality Proving................................. 15
d. The AKS Test... 16

2. Probabilistic Primality Tests... 17
a. Fermat Primality Test.. 17
b. Miller-Rabin Primality Test ... 17

III. DIFFIE-HELLMAN AND THE DISCRETE LOGARITHM.............................. 21
A. THE DIFFIE-HELLMAN PROTOCOL.. 21
B. THE DISCRETE LOGARITHM .. 24

1. The Pohlig-Hellman Algorithm ... 25
2. Baby Step, Giant Step ... 27
3. The Index Calculus .. 27

C. THE DIFFIE-HELLMAN PROBLEM .. 28

IV. MAN-IN-THE-MIDDLE ATTACK .. 31
A. THEORY BEHIND THE ATTACK.. 31
B. CREATING THE ENVIRONMENT ... 33
C. PRIMES OF THE FORM 1Rq  ... 38
D. COUNTERMEASURES AGAINST THE ATTACK............................. 40

1. Authentication.. 41
2. Prime Order Subgroups .. 43

E. EXTENDING THE ATTACK TO THE N-PARTY SETTING 44

V. RESULTS AND FUTURE WORK... 51

APPENDIX: ANOTHER MAN-IN-THE-MIDDLE ATTACK..................................... 53

LIST OF REFERENCES.. 55

INITIAL DISTRIBUTION LIST ... 57

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Growth of Functions Used in Big-O Estimates [From 5] 12
Figure 2. Diffie-Hellman Example .. 22
Figure 3. Attack Algorithm ... 34
Figure 4. GDH.1 [From 16] .. 46
Figure 5. GDH.3 [From 16] .. 48
Figure 6. Another Man-in-the-Middle Attack .. 54

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Group Table for 5 , .. 8

Table 2. Group Table for * ,p  ... 9

Table 3. Computational Complexity Terminology [From 5]............................... 13
Table 4. Times to Exhaust a Key Space .. 23
Table 5. Prime Number Approximations... 40

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGEMENTS

Heartfelt thanks to both of my advisors, Professor P. Stanica of the Math

Department and Professor V. Kanevsky of the Information Sciences Department.

I appreciate their in-depth reading and comments. I also thank Mr. Bard

Mansager, without whom I never would have considered a dual-degree. A

special thanks to Professor Stanica for helping me arrive at a thesis topic, his

continued sharing of expertise in all matters of mathematics, and his never

ending patience with the many ideas I ran by his desk. I could not have written

this without his guidance.

Thanks to my amazing wife, Sandy. Without her love and support, I would

be lost in this life. Lastly, I thank all my friends and family. Without them, all else

is meaningless, even secure exchange of cryptographic keys!

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

The ability to communicate securely has been a challenge for millennia.

For as long as people have tried to exchange private information, others have

tried to compromise their privacy. In the modern communications environment,

radio frequency communications and worldwide digital networks, such as the

Internet, compound the problem. Both are susceptible to eavesdropping, often

times trivially. By simply placing an antenna in the region of a radio frequency

broadcast or tapping a wire anywhere between two nodes on a digital network,

an uninvited third party can easily gain access to seemingly private

correspondence. The field of cryptography—the practice and study of hiding

information—has made enormous progress combating the eavesdropping threat.

Cryptography and encryption/decryption methods fall into two broad

categories: symmetric and public key. In symmetric cryptography, sometimes

called classical cryptography, parties share the same encryption/decryption key.

Therefore, before using a symmetric cryptography system, the users must

somehow come to an agreement on a key to use. An obvious problem arises

when the parties are separated by large distances, which is commonplace in

today’s worldwide digital communications. If the parties did not meet prior to

their separation, how do they agree on the common key to use in their crypto

system without a secure channel? They could send a trusted courier to

exchange keys, but that is not feasible, if time is a critical factor in their

communication.

The problem of securely distributing keys used in symmetric ciphers has

challenged cryptographers for hundreds of years. If an unauthorized user gains

access to the key, the cryptographic communication must be considered broken.

Amazingly, in 1977, Whitfield Diffie and Martin Hellman published a paper in

which they presented a key exchange protocol that provided the first practical

solution to this dilemma. The protocol, named the Diffie-Hellman key exchange

(or key agreement) protocol in their honor, allows two parties to derive a common

 2

secret key by communications over an unsecured channel, while sharing no

secret keying material a priori [2]. While Diffie and Hellman have received

recognition for creating the protocol, it later emerged that the Government

Communications Headquarters (GCHQ), a British intelligence agency, had

independently invented a similar protocol a few years before Diffie and Hellman

published their breakthrough paper. However, the British government classified

their findings and the results were not released to the public until 1997 [3].

The Diffie-Hellman protocol relies on the difficulty of solving discrete

logarithms in finite fields and the related intractability of the Diffie-Hellman

problem. Due to the difficulty of solving these mathematical problems, an

eavesdropper is unable to compute efficiently the secret key with any or all of the

information intercepted in the open communication channel. Once the secret key

has been exchanged successfully between the two parties, they may proceed by

using the key in their symmetric crypto system.

Before conducting the key exchange using the Diffie-Hellman protocol, the

parties must agree on a prime number that defines the mathematical

environment in which the key exchange will take place. If the prime number is

large enough, a brute force attack to find the secret key becomes infeasible.

However, if the two parties agree on certain prime numbers, an active adversary

can compromise their communication. Using number theory, a man-in-the-

middle attack becomes possible if the prime number that defines the environment

can be broken down into the form of 1p Rq  , where R is a “small” integer and

q is a “large” prime. If possible, the attacker can then modify the messages

between the two parties so that they will both derive a key that belongs to a

subgroup of size R . If R is small enough, the attacker can search the keyspace

in a reasonable amount of time, determine the key the parties agreed to, and

eavesdrop on their communication.

 3

This thesis investigates the Diffie-Hellman protocol and the difficulty of the

discrete logarithm problem the protocol relies on. We then analyze the man-in-

middle attack described above by developing an algorithm to conduct the attack,

estimate the complexity involved in executing the attack, and approximate the

amount of prime numbers that are vulnerable. We then consider several

proposed methods to defend against the attack and demonstrate their

effectiveness. Finally, we extend the attack to several multi-party variants of the

protocol and demonstrate their potential vulnerability.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND AND REVIEW

Before beginning a discussion of the Diffie-Hellman protocol and the man-

in-the-middle attack, we investigate and present some basic definitions and

theorems. This information is available in any standard algebra text, such as

Fraleigh’s Abstract Algebra [4], or discrete mathematics text, such as Rosen’s

Discrete Mathematics and Its Applications [5]. It is assumed the reader is

familiar with common mathematical, logical, and set notation.

We conclude the chapter with a brief discussion of computational

complexity and primality testing, which will be useful in our analysis of the man-

in-the-middle attack.

A. NUMBER THEORY

If a and b are integers and 0a  , we say that a divides b if there is an

integer c such that b ac . When a divides b we say that a is a factor of b and

that b is a multiple of a . The notation a b denotes a divides b . Given two

integers a and b , both non-zero, the largest integer d such that d a and d b is

called the greatest common divisor of a and b . The greatest common divisor of

a and b is denoted by gcd(,)a b . The integers a and b are relatively prime, if

their greatest common divisor is one.

Every positive integer greater than one is divisible by at least two integers,

itself and one. If these are its only factors, we call this integer prime. A positive

integer that is greater than one, and not prime, is called composite. The primes

are the building blocks of positive integers. The Fundamental Theorem of

Arithmetic states that every positive integer greater than one can be written

uniquely as a product of two of more primes, where the prime factors are written

in order of nondecreasing size. Given a positive integer, n , let the prime

factorization of n be denoted by

 6

1

i

k

i
i

n p





In some situations, we care only about the remainder of an integer when it

is divided by some specified positive integer, denoted by m . If a and b are

integers, then a is congruent to b modulo m if m divides a b . We use the

notation a b (mod)m to indicate that a is congruent to b modulo m . Note that

a b (mod)m if and only if (mod) (mod)a m b m . Also, if n divides a then a is

congruent to zero modulo n .

The great French mathematician Pierre de Fermat (1601–1655)

demonstrated that the congruence

 1 1pa   (mod)p

holds when p is a prime, and this gives us a theorem that will prove crucial in

our analysis of the man-in-the-middle attack.

Fermat’s Theorem [4]: If a and p is a prime not dividing a , then p

divides 1 1pa   , that is, 1 1pa   (mod)p .

Euler gave a generalization of Fermat’s theorem, but we must first define

Euler’s Totient Function. Commonly referred to as Euler’s Phi Function, the

function gives the number of integers less than or equal to n which are relatively

prime to n , and is denoted by ()n . It is not hard to show that, if
1

i

k

i
i

n p



 , then

1

1
() 1

k

i i

n n
p




 
  

 


Euler’s Theorem [4]: If a and is relatively prime to n , then () 1na  is

divisible by n , that is, () 1na  (mod)n .

In several cases, this thesis will involve systems of linear congruences.

The Chinese Remainder Theorem [CRT], named after the Chinese heritage of

problems involving systems of linear congruences, states that when the moduli of

 7

a system of linear congruences are pairwise relatively prime, there is a unique

solution of the system modulo the product of the moduli.

[CRT] [5]: Let 1 2, ,..., nm m m be pairwise relatively prime positive integers and

1 2, ,..., na a a arbitrary integers. Then the system

1 1

2 2

(mod),

(mod),

.

.

.

(mod)n n

x a m

x a m

x a m


 








has a unique solution modulo 1 2... nm m m m . (That is, there is a solution x with

0 x m  , and all other solutions are congruent modulo m to this solution.)

B. GROUP THEORY

A group ,G  is a set G , closed under a binary operation  , such that

the following axioms are satisfied:

Associativity: For all , ,a b c G , () ()a b c a b c    

Identity: There is an element e in G such that for all x G ,

e x x e x    .

Inverse: Corresponding to each a G , there is an element 'a in G such

that ' 'a a a a e    .

A group that also satisfies the commutative property is referred to as an abelian

(or commutative) group.

 Commutativity: For all ,a b G , a b b a   .

A group G is said to be a finite group, if the set G has a finite number of

elements. In this case, the number of elements is called the order of G ,

denoted by | |G . This thesis is interested only in finite groups.

 8

If a subset H of a group G is closed under the binary operation of G and

if H with the induced operation from G is itself a group, then H is a subgroup of

G . We shall let H G or G H mean that H is a subgroup of G , and H G

or G H shall mean H G but H G .

An example of a group is the set of congruence classes of the integers

modulo n . Given a positive integer n , we denote a congruence class by
n

a

which is the set of all integers congruent to a modulo n . The set of congruence

classes of n is denoted by

         0 , 1 ,..., 2 , 1n n n n n
n n  

This set forms a group under addition where      n n n
a b a b   and is denoted

by ,n  . We can easily inspect a group using a group table. Table 1 is a

group table for 5 under addition. The elements of 5 are the column and row

headings,, with the binary operation (addition in this case), in the upper left

corner.

Table 1. Group Table for 5 ,

If n is a prime p , then the set   * 0p p p
   forms a group under

multiplication modulo n . It is a necessary requirement to remove the zero class

because zero has no inverse under multiplication. * ,p  , the multiplicative

group of the set of congruence classes of prime integers, is the structure we will

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

 9

be focusing on in this thesis. The Diffie-Hellman key exchange protocol sets this

group as the environment for the key agreement. If we remove the zero element

from the previous example, we have another group table (Table 2), this time with

multiplication as the binary operation.

• 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

Table 2. Group Table for * ,p 

Let G be a group and let a G . Then the subgroup  na n of G is

called the cyclic subgroup of G generated by a , and is denoted by a . Further,

a generates G if a G . A group G is cyclic if there is some element a in G

that generates G .

The group * ,p  is always cyclic. An important property of cyclic groups

is that every subgroup of a cyclic group is also cyclic. Another important property

of groups in general is the Theorem of Lagrange.

Lagrange’s Theorem [4]: Let H be a subgroup of a finite group G .

Then the order of H is a divisor of the order of G .

This powerful theorem makes the attack we will analyze later possible.

We know the order of * ,p  is 1p  . The two properties mentioned above tell

us that any subgroup of * ,p  will also be cyclic and the order of the subgroup

will be a divisor of 1p  .

 10

C. FIELD THEORY

A field , ,F   , is a set F together with two binary operations, which we

will call addition and multiplication, defined on F such that the following axioms

are satisfied:

Addition: ,F  is an abelian group.

Multiplication: *,F  is an abelian group.

Distributive: For all , ,a b c F , () () ()a b c a b a c      .

A field F is said to be a finite field, if the set F has a finite number of elements.

If F is a finite field, then the multiplicative group is cyclic.

For every prime p and positive integer n , there is exactly one finite field

(up to isomorphism) of order np . This field ()nGF p is usually referred to as the

Galois field of order np . Oftentimes, the Diffie-Hellman key exchange protocol

is described using the environment ()GF p instead of the group *
p . In the group

theory section, we described the notion of a generator of a cyclic group. In field

theory, specifically in ()GF p , the same element that will generate the entire

multiplicative group is known as a primitive root. The number of primitive roots of

a field ()GF p is (()) (1)p p    .

D. COMPUTATIONAL COMPLEXITY

Before the discussion of primality testing, it is important to understand

what makes one test more efficient than another. Computational complexity

involves the study of the efficiency of algorithms based on the time and memory

space required to solve a problem of a particular size [5]. Usually, complexities

are expressed using the Big-O notation.

 11

Definition [5]: Let f and g be functions from the set of integers or the

set of real numbers to the set of real numbers. We say that ()f x is (())O g x if

there are constants C and k such that

 () ()f x C g x

Whenever x k . [This is read as “ ()f x is big-oh of ()g x .”]

This notation is extremely helpful when comparing algorithms, such as the

primality tests we will discuss. We will use the Big-O notation as an upper bound

on the amount of operations a test will require. In general, the smaller the upper

bound, the more efficient the test is. The more efficient the test is, the quicker it

can complete the required steps of an algorithm and give an answer. Thus,

using the Big-O notation, we can often quickly decide which test will finish

soonest, using fewer resources and less computer time.

The most commonly used functions in Big-O notation are:

 21, log , , log , , 2 , !nn n n n n n

It is shown that each function in the list is smaller than the succeeding

function as n grows without bound [5]. Figure 1 demonstrates this fact.

 12

Figure 1. Growth of Functions Used in Big-O Estimates [From 5]

Notice the vertical axis scale is logarithmic, doubling each unit. This

causes the exponential function 2n to appear as a straight line.

An algorithm that is Big-O of a constant has constant complexity. An

algorithm that is Big-O of a logarithm has logarithmic complexity, and so on.

Table 3 displays the common terminology used to describe the time complexity

of algorithm.

 13

Complexity Terminology

(1)O Constant complexity

(log)O n Logarithmic complexity

()O n Linear complexity

()bO n Polynomial complexity

()nO b Exponential complexity

(!)O n Factorial complexity

Table 3. Computational Complexity Terminology [From 5]

The algorithms we will be concerned with are of polynomial and

exponential complexity. The difference between the two can be enormous.

Polynomial or better complexities are called tractable, because it is assumed

that given a reasonably-sized input, the algorithm will produce an answer in a

reasonable amount of time. On the other hand, exponential complexities or

worse are called intractable. This is because an extremely large amount of time

is usually required to run the algorithm. However, a polynomial complexity

algorithm with a very high degree might take longer to run than an exponential

complexity algorithm with a small base.

E. PRIMALITY TESTING

We now turn to a topic of critical importance in our analysis of the man-in-

the-middle attack. Suppose a large integer is given. How might we quickly be

able to tell if the number is prime or composite? Mathematicians have studied

this question for millennia, and recently this question has become even more

important as modern computing power has granted the ability to test theories on

a scale that was at one point inconceivable. A primality test is an algorithm for

determining whether an input number is prime. Primality tests can be divided

into two main groups: deterministic and probabilistic. Deterministic primality

tests prove with certainty whether a number is prime or composite. Probabilistic

primality tests tell us a number is composite or probably prime. If a probabilistic

 14

method returns the number is composite, the number is definitely composite.

However, if it returns the number as prime, there is a controllably small chance

the number is actually composite [6].

Primality testing is currently a topic of great interest and research and is,

therefore, very dynamic. We provide descriptions of several deterministic and

probabilistic algorithms as background for the reader. It is by no means a

comprehensive discussion of every algorithm available. Rather, we use this

section as a way to motivate our choice of a primality test for later on when we

will need to quickly determine if a given number is prime.

1. Deterministic Primality Tests

a. Trial Division

The simplest primality test is trial division. Trial division is the

method of sequentially trying test divisors into a number n so as to partially or

completely factor n [6]. We start with the first prime number, 2, and try to divide

n by 2. If 2 divides n , we know n is composite and can stop. If 2 does not

divide n , we try the next prime number, 3. If 3 divides n , we stop. If not, we try

the next prime, and so on. When we reach a trial divisor that is greater than the

square root of n , we may stop. If no prime up to the square root of n divides n ,

then we declare n a prime.

This test is quite computationally intensive. Let ()t be the prime

counting function, which counts the number of primes t . Trial division

requires (in the worst case) about   2

ln

n
n

n
  divisions, if the primes to n are

stored in a database, or even
2

n
 divisions, if the primes are not stored before

the test starts.

 15

b. The n–1 Test

Trial division can be used to test small numbers for primality, but for

larger numbers there are better methods [6]. The 1n test is based on Fermat’s

little theorem, and suggests that we try to factor 1n , not n . In 1876, E. Lucas

turned Fermat’s little theorem into a primality test.

Lucas’ Theorem [6]: If ,a n are integers with 1n  , and 1 1na   (mod)n ,

but (1)/n qa  is not congruent to 1, modulo n for every prime | 1q n  , then n is

prime.

The most difficult step in implementing the Lucas test is finding the

complete factorization of 1n . Pocklington strengthened the result by realizing a

partial factorization would suffice [6]. In particular, say

1n FR  , and the complete factorization of F is known. (1)

Pocklington’s Theorem: Suppose (1) holds and 1 1na   (mod)n and

(1)/gcd(1,) 1n qa n   for each prime |q F . Then every prime factor of n is

congruent to 1 (mod)F . (2)

Corollary (n-1 test): If (1) and (2) hold and F n , then n is prime.

Several results have allowed a smaller value of F . These include

work done by Brillhart, Lehmer, Selfridge, Konyagin, and Pomerance [6].

The Lucas test and variations of it have a running time of about

 3(log)O n . The question of finding the “right” base still remains.

c. Elliptic Curve Primality Proving

Elliptic Curve Primality Proving (ECPP) is a class of algorithms that

provide certificates of primality using sophisticated results from the theory of

elliptic curves. A detailed description of the background, theory, and

implementation of the ECPP can be found in Atkin and Morain [7].

 16

ECPP is the fastest known general-purpose primality-testing

algorithm. ECPP has a running time of  4(log)O n [7].

d. The AKS Test

In August 2002, the Agrawal-Kayal-Saxena (AKS) primality test

was published in a paper titled “Primes is in P” [8]. The result was highly

celebrated because of the four properties the test satisfies:

1) It can be used to verify the primality of any given number.

2) The maximum running time is polynomial.

3) The algorithm is deterministic, not probabilistic

4) The algorithm is not conditional on an unproven hypothesis.

There are other algorithms that satisfy three of the four properties,

but AKS is the only known test to satisfy all four.

The test is based upon the equivalence

 () ()n nx a x a   (mod)n

for a coprime to n , which is true if and only if n is prime. This is a generalization

of Fermat’s Little Theorem and constitutes a primality test by itself. However, the

verification of primality would take exponential time, and thus, requires

improvement. The AKS test makes use of a related equivalence

 () ()n nx a x a   (mod , 1)rn x  .

This equivalence can be checked in polynomial time, with the complexity of the

original algorithm being  12(log)O n . However, recently the complexity has been

brought down to
  6(log)O n

[9].

 17

2. Probabilistic Primality Tests

a. Fermat Primality Test

Based on Fermat’s Little Theorem, the Fermat Primality Test is a

probabilistic primality test that is the basis for the Miller-Rabin primality test used

later on in the thesis.

Recall that by Fermat’s Little Theorem, if p is prime and p does

not divide a , then 1 1pa   (mod)p . If we want to test if a given integer n is

prime, we compute 1na  (mod)n for several values of a . If the result is not 1 for

some value of a , then n is composite. If the result is 1 for many values of a ,

then we can say that n is probably prime.

The reason we can only say probably is because the congruence

1 1na   (mod)n may hold when n is composite. A composite number n is a

(Fermat) pseudoprime, if the congruence 1 1na   (mod)n holds [6].

Unfortunately, for the Fermat Primality Test, there are infinitely many numbers

that the test would call probably prime even if every value of a was computed [6].

These numbers are the so-called Carmichael numbers and give us reason to

look for a test that will only give pseudoprimes for a fixed fraction of the bases

attempted. The Miller-Rabin test accomplishes this goal.

b. Miller-Rabin Primality Test

The Miller-Rabin Primality Test is an efficient probabilistic algorithm

to test for primality based on the idea of strong pseudoprimes. Consider an odd

composite number n and 1 2sn d   with d odd. n is a strong pseudoprime if

either 1da  (mod)n or 2 1
rda    (mod)n with 0,1,... 1r s  . The Carmichael

numbers are Fermat pseudoprimes for every base. However, a composite

number can only be a strong pseudoprime to at most one quarter of all bases [6].

 18

The algorithm is as follows:

Choose a random integer [2, 2]a n  . If 1da  (mod)n and

2 1
rda    (mod)n for all 0,1,... 1r s  , then a is called a witness and n is

composite. Otherwise, n is a strong probable prime to base a .

If 9n  and is odd composite, the probability that the algorithm will

fail to produce a witness for n is 1/ 4 . The probability that we fail to find a

witness after k iterations is 1/ 4k [6]. We can make this probability as small as

we desire with a large number of iterations. For instance, if we wanted to ensure

the probability of calling a composite number a prime is less than 610 , we must

compute 10 iterations or more.

As an example, suppose we wanted to determine if the number 341

is prime. First we write 2341 1 340 2 85    . So 2s  and 85d  . We randomly

select 38a  and proceed with:

85mod 38 mod 341 56 1da n   

02 85mod 38 mod341 56 1da n n   

12 170mod 38 mod341 67 1da n n    .

Since none of the congruences hold, we know 341 is composite. In

fact, 341 11 31  . However, consider 703n  and 3a  . 1703 1 702 2 351    .

So 1s  and 351d  . Continuing:

351mod 3 mod 703 702 1da n   

02 351mod 3 mod 703 702 1da n n   

By the second congruence, 703 is a strong pseudoprime base3 . If

we then try 5a  , we get:

351mod 5 mod 703 438 1da n   

02 351mod 5 mod 703 438 1da n n    .

 19

This time neither congruence holds, and we know 703 is a

composite number. In fact, 703 19 37  .

The Miller-Rabin test is very fast and has a complexity of

 3(log)O n
. Of course, because it is probabilistic, there is a chance of the test

returning a number as prime when it is in fact composite. However, as will be

demonstrated later, we are very concerned with the speed of the primality test

and no deterministic test will run fast enough for our purpose. The Miller-Rabin

test offers us both speed, as compared to other primality tests, and the ability to

control the probability of error and will be our tool of choice.

 20

THIS PAGE INTENTIONALLY LEFT BLANK

 21

III. DIFFIE-HELLMAN AND THE DISCRETE LOGARITHM

A. THE DIFFIE-HELLMAN PROTOCOL

“We stand today on the brink of a revolution in cryptography.” This was

the first sentence in a breakthrough paper published in 1977 by Whitfield Diffie

and Martin E. Hellman. In the paper, titled New Directions in Cryptography [10],

the authors introduced the idea of public key cryptography and a key exchange

protocol that was named in their honor. The Diffie-Hellman protocol provided the

first practical solution to the key distribution problem, allowing two parties, never

having met in advance or shared keying material, to establish a shared secret by

exchanging messages over an open channel. The key can then be used to

encrypt subsequent communications using a symmetric key cipher. The security

rests on the intractability of the Diffie-Hellman problem and the related problem of

computing discrete logarithms [1]. We will call the two parties conducting the key

exchange “Alice” and “Bob.”

Protocol steps:

1. A prime number p and generator  of * (2 2)p p   are

selected and published.

2. Alice chooses a random secret ,1 2,x x p   and sends Bob

modx p

 : modxA B p

3. Bob chooses a random secret ,1 2,y y p   and sends Alice

mody p

 : modyB A p

4. Bob receives x and computes the shared key as () modx yK p

5. Alice receives y and computes the shared key as () mody xK p

 22

Because () ()y x x y  , Alice and Bob have arrived at the same secret

key. Only x , y , and xy are kept secret. All other values are sent in the

clear. The example below illustrates the procedure.

1. Alice and Bob agree on 37p  and 2  .

2. Alice chooses 14x  and sends Bob 1430(2 mod37) .

: 30A B

3. Bob chooses 23y  and sends Alice 235(2 mod37) .

: 5B A

4. Bob receives 30 and computes 2330 mod 37 28

5. Alice receives 5 and computes 145 mod 37 28

Alice and Bob have agreed upon 28 as their secret key.

Figure 2 demonstrates which parties know what information. The man-in-

the-middle will be called Eve from here on out.

Alice
Knows Does not Know

p=37 y=23

α=2

x=14

αx=30

αy=5

(αy)x=K=28

Figure 2. Diffie-Hellman Example

Bob
Knows Does not Know

p=37 x=14

α=2

y=23

αx=30

αy=5

(αx)y=K=28

Eve
Knows Does not Know

p=37 x=14

α=2 y=23

αx=30 K=28

αy=5

 23

Obviously, a much larger value of p is required than used in the example

to make the key agreement potentially secure. If the prime number 37 was

used, Eve could simply try all possible values of 2 mod 37x y . Because 2 is a

primitive root modulo 37 , this can take 36 values. A key space with only 36

possibilities can be exhausted with ease. However, if the prime number used is

large enough, no computing power available today can exhaust the key space.

For instance, most applications recommend 1024-bit primes [2]. This correlates

to a number of about 300 digits and makes searching the key space one by one

infeasible. Table 4 demonstrates how long it would take a modern personal

computer (PC) and a super-computer (SC) to exhaust various sizes of key

spaces. We assume a PC can search approximately one million (610) keys per

second, while a super-computer can search approximately one trillion (1210) keys

per second.

For instance, if a prime of 64 bits was used, it would correlate to a base-

ten number of approximately 19 digits. The key space would be all the numbers

1, 2,..., 1p  , which would be on the order of 1910 numbers. Therefore, a PC would

take
19

13
6

10
10

10
 seconds to completely search the entire key space.

Bits Digits (approximate) PC time

(approximate)

SC time

(approximate)

64 19 317,098 years 115 days

128 39 3 x 10^(25) years 3 x 10^(19) years

256 77 3 x 10^(63) years 3 x 10^(57) years

512 154 3 x 10^(140) years 3 x 10^(134) years

1024 308 3 x 10^(294) years 3 x 10^(288) years

2048 616 3 x 10^(602) years 3 x 10^(596) years

Table 4. Times to Exhaust a Key Space

 24

Considering most applications use prime of 1024 bits or greater, it is

obviously infeasible to conduct a random search of an entire key space. Of

course, one could get lucky and the key could be one of the first numbers

searched by the computer. However, as indicated by the enormous times listed

in the table, it is more likely a random key search would take longer than most

scientists believe the universe has existed.

B. THE DISCRETE LOGARITHM

Eve has more information than just the fact that the key resides in the

interval (1, 1)p  . Because the exchange occurs over an open channel, Eve

knows x and y as well. If (mod)x p  and (mod)y p  , then p , ,  ,

and  are known. All Eve has to do is solve (mod)x p  for x or

(mod)y p  for y . Once x or y are known, Eve simply raises x to y or y

to x and arrives at the secret key K . However, if p is large, solving

(mod)x p  for x in general is considered difficult. The problem of finding x

in this case is known as the discrete logarithm problem (DLP), often

abbreviated ()x L  .

The difficulty of solving the DLP yields useful cryptosystems. Diffie-

Hellman key exchange protocol, El Gamal encryption system, and the Digital

Signature Algorithm all rely on the difficulty of solving the DLP. However, not all

public-key crypto systems rely on the difficulty of the DLP. Another number

theory problem that yields cryptosystems is the problem of factoring large

integers. RSA, considered by many to be the most popular public-key

cryptography algorithm, relies on the difficulty of factorization for its security. The

size of the largest primes for which discrete logs can be computed has usually

been approximately the same size as the size of largest integers that could be

factored [11]. In 2005, a 168 digit prime (556 bits) discrete logarithm was

computed, setting a record at that time. The record factorization up to then was

200 digits (663 bits).

 25

As discussed above, if p is small, it is easy to compute discrete logs by

exhaustive search. However, when is p large, this is not feasible. We will now

discuss several methods of attacking the DLP.

1. The Pohlig-Hellman Algorithm

Pohlig and Hellman introduced the following algorithm in 1978 to solve

discrete logs when 1p  has only small prime factors [11], [12].

Suppose

 1 ir
i

i

p q 

is the factorization of 1p  into primes. Let rq be one of the factors. The idea is

to compute x (mod)rq for each ir
iq and combine them using the Chinese

Remainder Theorem to find the discrete logarithm.

Thus, x (mod)rq is found by writing 2
0 1 2 ...x x x q x q    with 0 1ix q   and

determining the coefficients 0 1 1, ,..., rx x x  .

General idea: Starting with x  , raise both sides to the
1p

q


 to obtain

2

0 01 2(1)/ (1)/...(1)/ (1)/ 1()x p q x p qx q x qp q x p q p           (mod)p

To find 0x , simply look at the powers

 (1)/k p q  (mod)p , 0,1, 2,... 1,k q 

until one of them yields (1)/p q  . Then 0x k .

An extension of this idea yields the remaining coefficients. Assume 2 | 1q p  . Let

 0 1 2(...)
1

x q x x q      (mod)p

Raise both sides to the
2

1p

q


 power to obtain

2

2 31 2 1 1...(1)(...)/ (1)/ (1)/(1)/ 1
1 ()x x qp x x q q x p q x p qp q p             (mod)p .

 26

To find 1x , simply look at the powers

 (1)/k p q  (mod)p , 0,1, 2,... 1,k q 

Until one of them yields
2(1)/

1
p q  . Then 1x k .

If 3 | 1q p  , let 1
2 1

x q    , and raise both sides to the
3

1p

q


 power and find 2x .

We can continue this process until we find that 1rq  does not divide 1p  . We

have then determined 0 1 1, ... rx x x  , so we know x (mod)rq .

Repeat this procedure for all prime factors of 1p  . This yields x (mod)rq

for each ir
iq and we combine these using the Chinese Remainder Theorem to

find x (mod 1)p  . Since 0 1x p   , this determines x .

As an example, let us solve 2 3x  (mod101) for x .

 2 21 100 2 5p     so 2,5q 

First, we solve 2 3x  2(mod 2) . Let 0 12x x x  2(mod 2) . Then

 (1)/2 503 1p     (mod101) and (1)/2 502 1p     (mod101)

So 01 (1)x   and 0 1x  .

Continuing, 0 1
1 3 2 3 51 52x         (mod101) . So

2(1)/2 25
1 52 1p    (mod101)

and 11 (1)x  . So 1 0x  and 1 2 0 1x     2(mod 2) .

Next, we solve 2 3x  2(mod5) . Let 0 15x x x  2(mod5) . Then

 (1)/5 203 84p    (mod101) and (1)/5 202 95p    (mod101)

We make a list,

 0 1 2 3 495 1;95 95;95 36;95 87;95 84     (mod101) .

Matching with the list, we see that 0 4x  .

Continuing, we get 0 4
1 3 2 3 19 57x         . So

2(1)/5 4
1 57 87p    (mod101) .

We again compare with the above list and see that 395 3 and 1 3x  . This leads

to 4 5 3 19x     2(mod5) .

 27

Now, we combine 1x  2(mod 2) and 19x  2(mod5) using the Chinese

Remainder Theorem to find 69x  . So 692 3 (mod101) .

It is well known that the time complexity of the Pohlig-Hellman algorithm is

()O p [11].

2. Baby Step, Giant Step

Eve is trying to solve (mod)x p  for x. The following algorithm was

developed by Daniel Shanks [11].

First, choose an integer N with 2 1N p  . Next, make two lists:

1. modj p for 0 j N 

2. modNk p  for 0 k N 

Look for a match between the two lists. If one is found, then j Nk   ,

so j Nk   . Therefore, x j Nk  and the discrete logarithm is solved.

The complexity of the baby step, giant step algorithm is also ()O p , but it

requires storing approximately p numbers in memory and is therefore,

impractical for very large primes, such as 2010 or larger [11].

3. The Index Calculus

Again, Eve is trying to solve (mod)x p  for x . The idea in the index

calculus method is similar to the quadratic sieve method of factoring [11].

The first step is a precomputation step and involves picking a factor base

and searching for a set of r linearly independent relations between the factor

base and the powers of  . Let B be a bound and let 1 2, ,..., mp p p be the primes

less than B . This is our factor base. We then compute k (mod)p for r values

 28

of k . For each number, try to write it as a product of the factor base. If this is not

the case, discard k . However, if iak
ip  (mod)p , then

 ()i ik a L p (mod 1)p  .

When we obtain enough relations, we can solve for ()iL p for each i .

Next, for random integers s , compute s (mod)p . For each such

number, try to write it as a product of primes less than B . If we succeed, we

have ibs
ip  (mod)p , which means

 () ()i iL s b L p     (mod 1)p  .

Using this algorithm, any p over 200 digits will be difficult to solve, which

makes the Index Calculus good only for moderate-sized primes [11]. One can

show that the time complexity of the Index Calculus is
1/3 2/3(ln) (ln)()c n Cn nO e for some

0c  , if implemented by the Number Field Sieve.

C. THE DIFFIE-HELLMAN PROBLEM

We described how solving the discrete logarithm easily would allow Eve to

arrive at the secret key. There is another problem Eve can solve to arrive at the

secret key—namely, the Diffie-Hellman Problem. The Diffie-Hellman Problem

comes in two flavors, the computational and the decisional. The Computational

Diffie-Hellman Problem is defined as follows: Let p be a prime and let  be a

primitive root mod p . Given (mod)x p and (mod)y p , find (mod)xy p . Recall

that Eve has access to both x and y as they are both made public during the

exchange. It is not currently known whether or not this problem is easier than

computing discrete logs [11]. A related problem, known as the Decisional

Diffie-Hellman Problem, is defined as follows: Let p be a prime and let  be a

primitive root mod p . Given (mod)x p and (mod)y p , and 0  (mod)p ,

decide whether or not (mod)xyK p [11]. In other words, if someone offers a

number to Eve and claims it is K , can Eve decide whether or not that person is

 29

telling the truth with the information captured in the open channel? Like the

computational Diffie-Hellman problem, the decisional Diffie-Hellman problem has

yet to be solved. It is unknown whether a method for solving the decisional

problem will lead to a solution for the computational problem.

The methods described for solving discrete logarithms above force

applications that rely on the difficultly of solving discrete logs to stay away from

certain primes. Obviously, the larger the prime used, the better. Baby-step

Giant-step and the Index Calculus become infeasible to use when primes are

larger than 200 digits. The Pohlig-Hellman algorithm relies on the factorization of

1p  to consist of only small primes. If p does not contain only small primes,

the algorithm becomes inefficient. Therefore, the primes chosen when using the

Diffie-Hellman protocol should contain at least one large prime in the factorization

of 1p  . This situation gives rise to the attack we will focus on. If 1p  contains

a very large prime, such that 1p Rq  with q prime and R a small integer, an

unauthenticated exchange becomes vulnerable to an active man-in-the-middle

attack that we will discuss next.

 30

THIS PAGE INTENTIONALLY LEFT BLANK

 31

IV. MAN-IN-THE-MIDDLE ATTACK

A. THEORY BEHIND THE ATTACK

Wiener and van Oorschot [2] noted that, if certain primes are used, a

potentially fatal protocol attack on the Diffie-Hellman key exchange protocol

becomes possible. The idea is based on forcing the parties to agree on a shared

key that resides in a subgroup of the cyclic group *
p . If the order of the

subgroup is small enough, an adversary can exhaustively search the subgroup,

retrieve the secret key, and eavesdrop on the communication of Alice and Bob.

For instance, consider the case when the prime used for the key

exchange is of the form 2 1p q  , where q is a prime. Then, (1)/2q p   .

Claim: (1)/2p  is an element of order two.

Proof: By Fermat’s little theorem, 1 1p   mod p . So (1)/2p  must be +1 or

-1. But if (1)/2 1p   then  must have order (1) / 2p  . This is a contradiction,

because  is a primitive root of *
p and must be of order 1p  . So (1)/2 1p   

and is an element of order two.

If Alice and Bob respectively send each other unauthenticated messages

x and y , an active intruder may substitute ()x q for the first, and ()y q for the

second. When Alice receives ()y q and computes ()q y x and when Bob

receives ()x q and computes ()q x y , they will arrive at only one of two possible

values, +1 and -1. The intruder can then try both possible keys and gain access

to Alice and Bob’s secret communications. Obviously, if Alice and Bob

demonstrate vigilance, they will agree in advance to suspect any key agreement

that arrives at +1 or -1.

 32

We can generalize the situation if Alice and Bob use a prime number of

the form 1p Rq  , where R is a small integer and q is again a large prime.

Claim:
(1)/p R 

is an element of order R .

Proof: Raising
(1)/p R 

 to consecutive powers, starting with 0, we get:

(1)/ 0() 1p R   ,
(1)/ 2()p R 

,
(1)/ 3()p R 

, …. ,
(1)/ (1)() 1p R R p    .

This produces a list of R different values. Continuing after R ,

(1)/ (1) (1)/ (1)/ 1 (1)/() () () 1 ()p R R p R R p R p R           ,

(1)/ (2) (1)/ (1)/ 2 (1)/ 2() () () 1 ()p R R p R R p R p R           , ……. ,

(1)/ () (1)/ (1)/ (1)/() () () 1 ()p R R n p R R p R n p R n          

For n R , the results are in the original list.

For n R , we can write R n R kR m    with 0 1m R   and ,m k  .

(1)/ () (1)/ () (1)/ (1)/ (1)/() () () () ()p R R n p R R kR m p R R p R kR p R m               

(1)/ (1)/1 1 () ()k p R m p R m     

Because 0 1m R   , this is in our original list and
(1)/p R 

 is of order R .

So, if the prime Alice and Bob agree to use is of the form 1p Rq  , Eve

can force them to agree on a key in a subgroup of *
p of order R by replacing

x and y with ()x q and ()y q . Even if Alice and Bob are vigilant, the key can

take any of R values and the generalized attack poses a significant threat to an

unauthenticated key exchange using the Diffie-Hellman protocol.

 33

B. CREATING THE ENVIRONMENT

Eve must force Alice and Bob into a subgroup of small order to conduct

this attack. Figure 3 represents a possible algorithm Eve could follow.

NOTE: Eve only needs to consider cases when R is even, because if R is odd,

1p

R


, must be even and cannot be prime. Also, if Eve calculates

1
,

p
m

m


 as

a non-integer, she can obviously ignore trying any number of the form
1

,
p

k
km




because it will also not be an integer.

 34

Figure 3. Attack Algorithm

The most important step in creating the environment to conduct the attack

is searching

1p

k



 , 2, 4,...,k R , until we find a prime. We cannot continue the

attack until we find such a prime. Obviously, the longer Alice and Bob are kept

waiting for return correspondence, the more suspicious they will become of

possible compromise of their communication. Therefore, we need the fastest

 35

possible method to detect primality. From our discussion in Chapter II, we know

a probabilistic primality test suits us best. Specifically, we could use the Miller-

Rabin primality test with complexity  3(log)O n .

If we are forced to search the entire index k from 2 k R  , how long

might this take us? Recall that we only need try even values of k , and in the

worst case, we may be forced to try all / 2R even numbers. Therefore, the worst

case scenario in searching for a prime would take

 

   
3

3 32

(log)
(/ 2) (log) (log)

2

R

k

O N
O R N O N   



steps, with N being the input number into the Miller-Rabin primality test. Thus

the constant value in the Big-O estimate changes, but the algorithm remains

bounded by the time it takes to conduct the primality tests.

As an example, suppose Eve was listening to Alice and Bob agree upon

the prime number to use for their key exchange to take place in the near future.

The prime number they choose is 10007p  with a primitive root of 3  . Eve

uses the attack algorithm in Figure 4 to attempt to force Alice and Bob to agree to

a key in a subgroup of *
10007 .

First,
1 10006

5003
2 2

p 
 

Next, Eve runs 5003 through the Miller-Rabin primality test and the result

is prime.

This situation represents the initial case described above with the prime

number being of the form 2 1p q  . Specifically, 10007 2 5003 1   . Next, Eve

must intercept the number Alice attempts to send to Bob. Suppose Alice

chooses 758x  and attempts to send 758(3 mod10007 4865)x  to Bob.

: 4865A E

 36

Eve intercepts the communication, then takes (4865)x and raises it to the

q power.

 758 5003() (3) mod10007x q 

Meanwhile, Eve must also intercept the number Bob is attempting to send

to Alice. Suppose Bob chooses 555y  and attempts to send

555(3 mod10007 1771)y  to Alice.

 :1771B E

Eve again intercepts the communication, and takes (1771)y and raises it

to the q power.

 555 5003() (3) mod10007y q 

Eve then sends the results to the intended recipients.

 : 4865 mod10007qE B

 :1771 mod10007qE A

Alice and Bob then both finish the key agreement by raising the received

number to their private keys, x and y respectively, and arrive at the same

number, the “secret” key.

 () ()yq x xq y 

As a result of the theory discussed above, without any knowledge of x or

y , Eve knows the only possible keys are 1 and 10006 . Eve must wait for a

message to be sent between Alice and Bob, try both keys, and figure out which

one is being used. She can then eavesdrop, and Alice and Bob’s secret

communication has been compromised.

However, as mentioned before, any vigilance on the part of Alice or Bob

would cause suspicion if the key agreed upon were of the form +1 or -1.

 37

Now, suppose the prime number Alice and Bob agreed upon was

19991p  and 3a  . Eve must again search for a large prime factor of 1p  .

First,
1 19990

9995
2 2

p 
 

Next, Eve would run 9995 through the Miller-Rabin primality test.

However, because it ends with a five, five must be a factor and it cannot be a

prime number.

Continuing,
1 19990

4997.5
4 4

p 
  is not an integer.

1 19990
3333.66

6 6

p 
  is not an integer.

Because
1

4

p 
 was not an integer, we skip

1

8

p 
.

1 19990
1999

10 10

p 
 

Next, Eve runs 1999 through the Miller-Rabin primality test and the result

is prime.

Eve has found a large prime factor of 1p  . This situation resembles the

generalized attack with a prime of the form 1p Rq  ; in this case

19991 10 1999 1   . Intercepting, altering, and retransmitting the messages as

she did above, Eve again forces Alice and Bob into a subgroup of the original

cyclic group. This time, however, there are ten possibilities for the “secret” key.

1 21 1 1

, ,...,

Rp p p

R R R  
       

     
     

      1 2 101999 1999 19993 , 3 ,..., 3

The cyclic subgroup of *
19991 generated by 19993 is of order ten and Alice

and Bob can only arrive at ten values for their key. Eve must wait for Alice and

Bob to communicate with their new key and see which of the ten values Alice

 38

and Bob agreed on. Once a message is intercepted, Eve can pull it offline,

attempt each possible key, determine the key they agreed upon, and listen in on

Alice and Bob’s communication.

C. PRIMES OF THE FORM 1Rq 

For this man-in-the-middle attack to be possible, Alice and Bob must

agree to choose a prime of the form 1Rq  . How likely is it, assuming Alice and

Bob are using random large primes, that the prime they choose will be of the

correct form? To answer this question, we must first count the number of primes

p , such that 1p Rq  . We can begin with the case where 2R  . This

represents the original case in the man-in-the-middle attack, where 2 1p q  .

These particular prime numbers have their own name. A prime p is a so-called

Sophie Germaine (SG) prime if 2 1p  is also prime. If we let ()SG t be the

number of SG primes not exceeding t , it can be demonstrated that

2
()

(log)SG

t
t O

t


 
  

 
 [13]

Now, considering the general case, if we fix R , then the number of primes p t

of the form 1p Rq  is

2()(log(/))

t
O

R t R
 

  
 

where ()t is Euler’s Phi function [14]. However, in the attack R can range from

2 to some bound, say B . Therefore, we must sum the cases from 2R  to

R B . The number of primes p such that 1p Rq  with q prime, ranging from

2 R B  with 1/2B t is

2

1

(log) ()R B

t
O

t R

 
  

 


2

log

(log)

t B
O

t

 
  

 
 [14]

 39

The prime number theorem states that, if ()x is the prime counting

function, then
()

lim 1
/ ln()x

x

x x




 . Roughly speaking, this tells us that if you

randomly select a number close to a large number N , the odds of it being prime

are about 1/ ln()N . By the prime number theorem, it follows that
()

lim 0
()

SG

x

x

x




 .

If we let 1()Rq t  count the number of primes of the form 1p Rq  not exceeding

t , it follows that 1()
lim 0

()
Rq

x

x

x









as well. This tells us that, as x gets very large,

the likelihood that a random prime number is a Sophie Germaine Prime or any

prime of the form 1Rq  is increasingly unlikely.

Using the prime number theorem and Big-O estimates above with a

constant value of one, we can approximate the numbers of primes of different

forms. Table 5 lists these approximations using scientific notation. The R value

corresponds to different values for primes of the form 1p Rq  . The ratios listed

are: (primes of the given form) / (total primes).

 40

 0-64 bits 64-128 bits 128-256 bits

Total Primes 4.1583e17 3.8353e36 6.5255e74

R=2 (S.G) 9.3737e15
ratio: .0225

4.3228e34
ratio: .0113

3.6775e72
ratio: .0056

R=100 4.316e16
ratio: .1038

1.9907e35
ratio: .0519

1.6935e73
ratio: .0260

R=10^4 8.6335e16
ratio: .2076

3.9815e35
ratio: .1038

3.3871e73
ratio: .0519

R=10^6 1.295e17
ratio: .3114

5.9722e35
ratio: .1557

5.0806e73
ratio: .0779

 256-512 bits 512-1024 bits 1024-2048 bits

Total Primes 3.778e151 2.5327e305 2.2765e613

R=2 (S.G.) 1.0646e149
ratio: .0028

3.5683e302
ratio: .0014

1.6037e610
ratio: .0007

R=100 4.9024e149
ratio: .0130

1.6433e303
ratio: .0065

7.3853e610
ratio: .0032

R=10^4 9.8049e149
ratio: .0260

3.2865e303
ratio: .0130

1.477e611
ratio: .0065

R=10^6 1.4707e150
ratio: .0389

4.9298e303
ratio: .0195

2.2156e611
ratio: .0097

Table 5. Prime Number Approximations

The approximations demonstrate the increasing unlikelihood of a random

prime being of the form 1p Rq  . Using our approximations, around 64 bits

over 30% of all primes match the form with a bound of 10^6. However, when we

consider primes around 2048 bits, the percentage drops below one. If we

increase the bound we can increase the likelihood, but increasing the bound

forces the attacker to search through more keys to find the correct one.

D. COUNTERMEASURES AGAINST THE ATTACK

To prevent this potentially fatal protocol attack, Alice and Bob have

several options. The easiest method is to force authentication prior to the key

exchange. Another method that prevents the attack is based on creating a prime

order subgroup before the key exchange takes place.

 41

1. Authentication

The attack we have discussed is not the only man-in-the-middle attack

Diffie-Hellman is vulnerable to. The Appendix details another attack, if no

authentication occurs prior to the key exchange. To combat these attacks, a

variation of Diffie-Hellman that ensures authentication can be used. An example

of such a variation is the Station-to-Station protocol (STS). STS is a three-pass

variation of the basic Diffie-Hellman protocol that allows the establishment of a

shared secret key between two parties with mutual entity authentication and

mutual explicit key authentication [1]. The STS employs digital signatures. A

digital signature of a message is a number dependent on some secret known

only to the signer; and, additionally, on the content of the message being signed

[1]. The STS protocol is frequently employed with the RSA signature scheme.

To employ an RSA signature scheme, public and private key pairs must

first be generated.

RSA signature scheme key generation steps [1]:

1. Generate two large distinct random primes p and q , each

roughly the same size

2. Compute n pq and (1)(1)p q   

3. Select a random integer ,1e e   , such that gcd(,) 1e  

4. Use the extended Euclidean algorithm to compute the unique

integer ,1d d   such that 1ed  (mod)

5. The user’s public key is (,)n e and the user’s private key is d

NOTE: Each user should generate a public and private key

Now, if a user Alice wants to sign a message m , and a user Bob wants to

verify the message signature, the remaining steps of the protocol must be

completed.

 42

RSA signature scheme protocol steps [1]

1. Signature generation

a. Compute ()m R m , an integer in the range [0, 1]n 

b. Compute modds m n 

c. Alice’s signature for m is s .

2. Signature verification

a. Obtain Alice’s authentic public key (,)n e

b. Compute modem s n

c. Recover 1()m R m 

With the knowledge of a digital signature scheme, in particular RSA, we

can move onto the STS protocol. If we let E denote a symmetric encryption

algorithm, and ()AS m denote Alice’s signature on m , the protocol is as follows

[1]:

1. Set up

a. A prime number p and generator  of * (2 2)p p   are

selected and published

b. Alice selects RSA public and private signature keys (,)A An e ,

and Ad (Bob selects analogous keys). Assume each party

has access to authentic copies of the other’s public key.

2. Actions

a. Alice generates a secret random ,1 2x x p   and sends to

Bob modx p .

 : modxA B p (message 1)

 43

b. Bob generates a secret random ,1 2y y p   , and

computes the shared key () modx yk p . Bob signs the

concatenation of both exponentials, encrypts this using the

computed key, and sends to Alice.

 : mod , ((,))y y x
k BB A a p E S   (message 2)

c. Alice computes the shared key () mody xk p , decrypts the

encrypted data, and uses Bob’s public key to verify the

received value as the signature on the hash of the cleartext

exponential received and the exponential sent in message 1.

Upon successful verification, Alice accepts that k is actually

shared with Bob, and sends Bob an analogous message.

 : ((,))x y
k AA B E S   (message 3)

d. Bob similarly decrypts the received message and verifies

Alice’s signature therein. If successful, Bob accepts that k

is actually shared with Alice.

The exchanged exponentials are digitally signed and retransmitted during

the STS protocol. Therefore, Eve cannot alter the original exponentials without

triggering a failure during Alice and Bob’s key agreement. This precludes the

man-in-the-middle attack we have focused on and defends Alice and Bob’s key

exchange against several other possible active man-in-the-middle attacks.

2. Prime Order Subgroups

Van Oorschot and Wiener [2] noticed the potentially fatal man-in-the-

middle attack and reasoned that restricting computations to prime-order

subgroups would prevent the attack. In this case, we will force the prime number

p that defines the environment to be of the form 1p Rq  , where R is a small

 44

integer and q is a large prime. Now, instead of using a generator  of *
p as

our base for exponentiation, we compute (1)/p qg   and let g be our new base.

 Claim: The element g generates a subgroup of order q .

 Proof: Suppose g is of order k q and so 1kg  . Then (1) / 1p k q    . But

/ 1k q  and so (1) / (1)p k q p    . This means  is of order (1)p  , a

contradiction because  is a generator of *
p . Therefore, g must be of order

q . But (1) / (1) 1q p q q pg       , so g is of order q and g is an subgroup of

order q .

By using g instead of  to conduct the key exchange, Alice and Bob are

working in a prime order subgroup instead of a group of order 1p  . The man-in-

the-middle attack we have discussed is based on forcing the parties into a

subgroup of small order and exhaustively searching the smaller key space.

However, by Lagrange’s theorem, the order of any subgroup must divide the

order of the group. The order of the group generated by g is q . Therefore, any

subgroup must be of order q or 1, because those are the only divisors of q .

Thus, the prime order subgroup cannot be divided any further and this man-in-

the-middle attack becomes infeasible.

The Internet Engineering Task Force (IETF) has adopted the prime order

subgroup tactic to prevent the type of attack we have focused on. In particular,

Request for Comment (RFC) 2631 standardizes the technique for a particular

Diffie-Hellman variant, based on the American National Standards Institute x9.42

draft [15].

E. EXTENDING THE ATTACK TO THE N-PARTY SETTING

The Diffie-Hellman protocol we have discussed so far has been limited to

two parties. However, protocols have been created that extend the key

agreement to group communications. Steiner, Tsudik and Wainer [16] defined a

 45

class of natural extensions of Diffie-Hellman to the n-party setting. These

protocols, without the countermeasures discussed above, are vulnerable to the

man-in-the-middle attack we have focused on. We now move to demonstrate the

attack on two of the protocols the authors describe. First, we consider the

protocol the authors name Group Diffie-Hellman version 1 (GDH.1). In this

section, to keep with the original notation of [16], we use set notation to mean an

ordered tuple.

We call the participants of the n-party key exchange  1 2, ,..., nM M M . As

in the two-party case, a prime number p and a generator  of the group *
pZ are

selected and published. Each member iM chooses a random secret number

,0 2i is s p   . The protocol consists of two stages; upflow and downflow.

In the upflow stage, each member makes their contribution to the shared

key. A member iM receives a collection of intermediate values, and has the task

of raising the last in the list of incoming intermediate values to the power of is .

Then iM appends the result to the incoming set of values and forwards all to

1iM  . As an example, 3M would receive  1 1 2,s s s  from 2M . 3M would then

compute 1 2 3s s s , append the result to the incoming message to create

 1 2 31 1 2, , s s ss s s   and forward to 4M .

The upflow stage is completed when nM calculates 1 2 ... ns s s , which is the

intended group key, nK . Once nM has obtained nK , the downflow stage is

initiated. Each member iM receives i messages, one to compute nK and 1i 

to send to 1iM  . For example, if 4n  , 3M would receive  4 1 4 1 2 4, ,s s s s s s   from

4M . First, 3M would use the last value to compute 1 2 3 4s s s s
nK  . Then, the

remaining values would be raised to 3s and  4 3 1 4 3,s s s s s  would be sent to 2M .

 46

2M would repeat the procedure, and would send  4 3 2s s s to 1M . The downflow

stage is then completed when 1M computes 1 2 3 4s s s s
nK  . GDH.1 is depicted in

Figure 4.

Figure 4. GDH.1 [From 16]

The active adversary, Eve, wishes to attack the key agreement forcing the

n-party to agree on a key in a small subgroup of *
pZ . Like in the two-party case, if

possible Eve must first break the prime number p down into the form 1p Rq 

with q a large prime and R a small integer. Once completed, Eve must then

intercept and alter two messages to complete the attack. The first message she

must intercept is the first message sent, that is,

 1
1 2 : sM M  .

With 1s captured, Eve computes 1 1()s qsq  and proceeds to send the

computed number as the message onto 2M . 2M computes 1 2qs s and sends

 1 1 2,qs qs s  to 3M . This continues until the end of the upflow stage, when nM

computes 1... nqs s
nK  . Eve has forced nK to be one of R values, based on the

theory of the attack described earlier in the chapter.

 47

Next, Eve must intercept the first message sent during the downflow

stage. If 4n  , then

  4 1 4 1 2 4
4 3 : , ,s qs s qs s sM M    .

NOTE: Because of the alteration Eve completed in the upflow stage, only the

first part of the message must be altered.

Eve simply computes 4qs , replaces the first number with the computation,

and forwards the message to 3M . The participants all arrive at 1 2 3 4qs s s s
nK  , and

the key exchange has been successfully attacked. However, in this case Eve

had to capture and alter two very specific messages for the attack to be

successful. In the next protocol, Eve has more flexibility.

Next, we turn our attention to Group Diffie Hellman version 3 (GDH.3).

GDH.3 reduces the amount of computation each party (except for nM) must

complete, which may be very beneficial if the group size is large. The protocol

consists of four stages. The first stage is similar to the upflow stage of GDH.1 in

which every member contributes to the key. However, after processing the

upflow message, 1nM  broadcasts 1 2 1... ns s s  to the entire group as the second

stage of the process. In stage three, each iM , except nM , factors out their

contribution (is) from the broadcasted value and forwards the result to nM .

After nM collects all the values from the group, in the last stage nM raises each

value to ns and returns the values to the group. Now each iM has
[1,],ks k n k i  

and simple raises this value to is to compute nK .

For example, if 5n  , the upflow stage completes when 4M computes

1 2 3 4s s s s . Then, in stage 2, this value is broadcasted to the entire group. In stage

3, each member other than 5M factors out their contribution and forwards the

result to 5M (i.e. 2M would send 1 3 4s s s). In stage 4, 5M raises each received

 48

value to 5s and returns the value to the sender (i.e. 2M would receive 1 3 4 5s s s s .

Lastly, each member raises the received value to their secret number and arrives

at nK . Figure 5 depicts GDH.3.

Figure 5. GDH.3 [From 16]

It is much easier for Eve to attack GDH.3 than GDH.1. She needs only to

intercept and alter one message, and she can choose any of the first 2i 

messages sent in the group. By raising any one of these messages to q , 1nM 

will inevitably broadcast 1 2 1... nqs s s  to the group. At this point, each member factors

out their contribution, and forwards the result to nM leaving q in the exponent of

each message sent. nM simply raises each message to ns and returns each

message. Therefore, q is undisturbed, each member arrives at the same key

1 2 ... nqs s s
nK  , and Eve has successfully forced the group into a small number of

 49

possible values for the key. However, as mentioned above, if the parties agree

to use either authentication or prime order subgroups during the key exchange,

attacks of this sort are prevented.

 50

THIS PAGE INTENTIONALLY LEFT BLANK

 51

V. RESULTS AND FUTURE WORK

This thesis investigated and analyzed a particular man-in-the-middle

attack on the Diffie-Hellman key exchange protocol. We created an algorithm to

carry out the attack and demonstrated how it is constrained by the primality test

used by the attacker. In particular, if the Miller-Rabin primalty test is used, the

algorithm’s complexity is  3(log)O N
 with N being the input prime number. We

showed that prime numbers of the form 1p Rq  with R bounded are common

with small primes but become increasingly rare as larger numbers are

considered. In fact, with low bit primes such as 128 bits, a reasonably-sized R

will give an attacker a good chance of the prime being of the desired form.

However, when large primes such as 1024 and 2048 bits are considered, a very

large value of R is required to give an attacker a reasonable chance of

conducting the attack. We demonstrated how two techniques, authentication and

prime order subgroups, can prevent the attack. In fact, it appears industry has

begun to adopt the prime order subgroup technique to defend against the attack.

Finally, we demonstrated how the attack can be expanded to include a class of

multi-party Diffie-Hellman variants.

Possible future efforts include coding and implementing the man-in-the-

middle attack on active communications to test the theory laid out in this thesis.

It is possible that analyzing the given prime number, capturing the required

messages, altering those messages, and forwarding the messages to the

intended recipients will be too time-consuming. This would obviously alert the

parties of possible compromise. In addition, it may be possible to alter the attack

to compromise communications that are authenticated and render several Diffie-

Hellman variants such as the STS protocol vulnerable. Other future work may

include an attempt to defeat the prime order subgroup technique.

 52

THIS PAGE INTENTIONALLY LEFT BLANK

 53

APPENDIX: ANOTHER MAN-IN-THE-MIDDLE ATTACK

This appendix details a possible man-in-the-middle attack on the Diffie-

Hellman key exchange protocol, if no prior authentication occurs [17].

1) Alice sends her public key to Bob, but Eve intercepts it, and Bob

never receives the key.

2) Eve spoofs Alice’s identity and sends over her public key to Bob.

Bob now thinks that he has Alice’s public key.

3) Bob sends his public key to Alice, but Eve intercepts it, and Alice

never receives the key.

4) Eve spoofs Bob’s identity and sends over her public key to Alice.

Alice now thinks that she has Bob’s public key.

5) Alice combines her private key and Eve’s public key and creates

symmetric key S1.

6) Eve combines her private key and Alice’s public key and creates

symmetric key S1.

7) Bob combines his private key and Eve’s public key and creates

symmetric key S2.

8) Eve combines her private key and Bob’s public key and creates

symmetric key S2.

9) At this point, Alice and Eve share a symmetric key (S1) and Bob

and Eve share a different symmetric key (S2). Alice and Bob think

they are sharing a key between themselves and do not realize that

Eve is involved.

10) Alice writes a message to Bob, uses her symmetric key (S1) to

encrypt the message, and sends it.

 54

11) Eve intercepts the message and decrypts it with the symmetric key

S1, reads or modifies the message and re-encrypts it with

symmetric key S2, and sends it to Bob.

12) Bob takes symmetric key S2 and uses it to decrypt and read the

message.

Figure 6 illustrates the attack [17].

Figure 6. Another Man-in-the-Middle Attack

 55

LIST OF REFERENCES

 [1] A. J. Menezes, P. C. van Oorshot, and S. A Vanstone, Handbook of
Applied Cryptography. CRC Press, New York, New York, 1997.

[2] P. C. van Oorschot and M. J. Wiener, On Diffie-Hellman Key Agreement
with Short Exponents. EUROCRYPT’96, LNCS 1070, Springer-Verlag,
1996, pp. 332–343.

[3] S. Singh, The Code Book. Doubleday, 1999.

[4] J. B. Fraleigh, A First Course in Abstract Algebra. Addison-Wesley, San
Francisco, CA, 7th Edition, 2002.

[5] K. H. Rosen, Discrete Mathematics and Its Applications. McGraw Hill,
San Francisco, CA, 6th Edition, 2007.

[6] R. Crandall and C. Pomerance, Prime Numbers: A Computational
Perspective. Springer, New York, NY, 2001.

[7] A. L. Atkin and F. Morain, Elliptic Curves and Primality Proving. Res.
Rep. 1256, INRIA, June 1990.

[8] M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P. Annals of Mathematics
160. 2004.

[9] C. Pomerance and H.W. Lenstra, Primality testing with Gaussian periods,
preprint.

[10] W. Diffie and M. E. Hellman, New Directions in Cryptography. IEEE IT-
22, 1976, pp. 644–654.

[11] W. Trappe and L. Washington, Introduction to Cryptography with Coding
Theory. Pearson, Upper Saddle River, NJ, 2nd Edition, 2006.

[12] S. Pohlig and M. Hellman, An Improved Algorithm for Computing
Logarithms over GF(p) and its Cryptographic Significance. IEEE
Transactions on Information Theory, 24, 1978, pp. 106–110.

[13] T. Agoh, On Sophie Germain Primes. Tatra Mt. Math. Publ. 20, 2000.

[14] P. Stanica, private communication, 2009.

[15] Internet Engineering Task Force (IETF) Request for Comment (RFC)
2631, June 1999.

 56

[16] M. Steiner, G. Tsudik, and Mi. Waidner, Diffie-Hellman Key Distribution
Extended to Group Communication. 3rd ACM Conference on Computer
and Communications Security. March 14–16 1996, New Delhi, India.

[17] S. Harris, All In One CISSP. McGraw-Hill, San Francisco, CA, 2005.

 57

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

