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Comparative Tracking Performance of the LMS
and RLS Algorithms for Chirped Narrowband
Signal Recovery

Paul C. Wei, Member, IEEE, Jun Han, Student Member, IEEE, James R. Zeidler, Fellow, IEEE, and
Walter H. Ku, Member, IEEE

Abstract—This paper studies the eomparative traeking per-
formanee of the recursive least squares (RLS) and least mean
square (LMS) algorithms for time-varying inputs, speeifieally
for linearly chirped narrowband input signals in additive white
Gaussian noise. It is shown that the structural differenees in the
implementation of the LMS and RLS weight updates produce
regions where the LMS performanee exeeeds that of the RLS and
other regions where the eonverse oeeurs. These regions are shown
to be a funetion of the signal bandwidth and signal-to-noise ratio
(SNR). LMS is shown to plaece a noteh in the signal band of the
mean lag filter, thus redueing the lag error and improving the
tracking performance. For the chirped signal, it is shown that this
produees smaller tracking error for small SNR. For high SNR,
there is a region of signal bandwidth for whieh RLS will provide
lower error than LMS, but even for these high SNR inputs, LMS
always provides superior performanee for very narrowband
signals.

Index Terms—Adaptive filters, autoregressive model, least mean
square, recursive least squares, tracking.

I. INTRODUCTION

HE tracking behavior of adaptive filtering algorithms is a

fundamental issue in defining their performance in nonsta-
tionary opcrating environments. It has bcen established [1]-{3]
that adaptive algorithms that exhibit good convergence proper-
ties in stationary cnvironments do not necessarily provide good
tracking pcrformance in a nonstationary environment because
the convergence behavior of an adaptive filter is a transient phe-
nomenon, whereas the tracking bchavior is a steady-state prop-
crty.

There are two fundamentally different nonstationary sce-
narios that have been previously analyzed. The first involves
a timc-varying system where the cross-correlation vector
between the input signal to the adaptive filter and the desired
response is timc varying; thc second involves a nonstationary
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input to the adaptive filter. The first case occurs in systcm
identification applications and is analyzed in [1], [2], and [4].
The latter case occurs in adaptive equalization, signal recovery,
and other applications and has been analyzed in [3], [5], and
[6] for thc lcast mean square (LMS) and the rccursive least
squares (RLS) adaptive algorithms for the spccifie case of a
deterministic chirped signal input to an adaptivc prediction
filter. This signal model provides a constant nonstationarity that
is uscful in separating thc convergence and tracking behavior.
The results show that LMS usually provides bcttcr tracking
behavior than exponentially wcighted RLS for lincarly chirped
sinusoids in additive white Gaussian noise (AWGN). This
behavior is because LMS is model independcnt, whereas RLS
must employ a model of the data correlation matrix (such as an
exponential weighting), which may not match the characteris-
tics of the input signals. 1t is further shown in [7] that superior
tracking pcrformance is obtained by RLS if the extended RLS
(ERLS) algorithm with a time-varying state transition matrix is
used. For chirped inputs, the ERLS implementation cstimatcs
the chirp rate from the data and uses it thereafter in the adaptive
update equations [7]. Ncvertheless the exponcntially weighted
RLS algorithm is frcquently employed in practical systcms
due to its computational simplicity compared with ERLS and
bccause, in many secnarios, an accurate state-spacc model
is not availablc. Consequently, a comparison of the tracking
performance of the LMS and the exponentially wcighted RLS
algorithm remains an important issuc.

The tracking behavior of thc RLS adaptive filter was cxtended
to include stochastic narrowband input signals in [8]. The signal
bandwidth is shown to be an important parameter in optimizing
thc RLS filtcr performanee [8]. This paper extends the analysis
in [3], [5], [6], and [8] to define the tracking pcrformance of the
LMS adaptive algorithm for narrowband stochastic input signals
using the same signal model used in [8]. This will allow the
comparative performancc of the LMS and RLS algorithms to be
defined for a broader class of input signals and to determinc the
effects of signal bandwidth on the tracking performance. This is
shown to provide a number of interesting results for thc adaptive
signal recovery application.

The structural differences in the LMS and RLS wcights up-
dates arc shown to producc regions where the LMS pcrformance
exceeds that of the RLS and vice versa. These regions arc func-
tions of the signal bandwidth and signal-to-noise ratio (SNR).
LMS is shown to place a notch in the signal band of the mean
lag filter, thus reducing the lag error and improving the tracking
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performance. The optimal adaptation constant for both LMS and
RLS with chirped narrowband inputs is shown to yield a lag
misadjustment error that is half the noise misadjustment error,
whieh is identical to previous results for deterministie inputs
[31, [S]. This is in eontrast to the result obtained for systems
with time-varying eoefficients [4], where optimal tracking oe-
eurs when the lag and noise misadjustment are equal.

II. LMS ALGORITHM

In order to facilitate the steady-state tracking performance
comparison between the LMS and RLS algorithms for a chirped
narrowband signal in AWGN, the problem introduction, the
chirped narrowband signal model, the optimum predictor, and
notations used in this paper will be the same as described in
[8], where the steady-state tracking performance of the RLS
algorithm is studied and eontrasted with the results in [3]. To
complete the comparisons, we adopt the notational conventions
in the previous studies [3], [5], [6], and [8].

The LMS adaptive one-step forward predictor 1s summarized
by the following filter output and weight update equations. The
filter output is given by

u = Wi_ %k (N
and the weight update equation is
ﬁ"k = "Vk—l + /.l,:fi. (dk = y;..) 5 (2)

The LMS algorithm uses the instantaneous estimate of the input
correlation (a‘:,‘ca'ckT.) and eross correlation (Z;dx) to update the
filter weights [2].

The LMS weight update equation is used to deecompose the
weight error into a mean and a fluctuation component. The dif-
ference between the LMS weights and the optimum Wiener
weights is [5]

Ay =Wy — Wg. 3)
The adaptive filter output misadjustment is defined as
Mi=E|aT_ 5|’ )
The LMS filter weight update equation ean be rewritten as
Wi = L= pZzi Wi-1 + pzian ()

where the desired signal dj in this ease is equal to zx. Sub-
tracting W7, | from both sides yields

A = (I - pz}71 )Ar—1 — Ty + uzies, (6)

where T} is the change in the optimum weight vector at sueces-
sive iteration

T = W, — W = VMIA(W 0 D) @)
A is a diagonal matrix given by

A=1I-V* ®)
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and V is thc chirp matrix, D is the signal direetion veetor as
defined in [8]

V =diag (¥, ¥?,...,¥") 9)

2 T
e [Q\I/‘l/2,322l11_2 /"-’,...,Q“\Ir-“”/?] (10)

where U = ¥ 4 is the chirp rate, and © = ¢/“°, w defines
the initial eenter frequeney of the speetrum. The predietor error
when using the optimum weights is
ONE
& =z — (W2) 2. (11)
Employing thc same assumptions utilized in [5] that T, is a
sequenee of independent veetors, it follows that the optimum
prediction error ¢, is uncorrelated with the input, i.e.,

E { [a:k e (W,‘:)T.Ek] f;.} =0

and thus, the noise and lag weight errors are independent. Sinee
the weight error update equation is lincar, it can be deeomposed
into the constituent terms

(12)

Ay = Af + 4}, (13)

consisting of a noise weight error vector and a lag weight error
veetor with the following update equations:

AR = [I - p2328] Ap_y + pZhed
A = [I- pz3zt) Ak_y - Ti.

(14)
(15)

Similar to the analysis for the RLS algorithm [8], the lag weight
error can be further decomposed into a mean component E[A}]
and a fluetuation component A}, = Al — E[AL]. It will be
shown that under the “slow adaptation™ eondition employed
in [3] and [5], the misadjustment from the lag fluetuation A’k
is small compared with the mean lag eomponent. Thus, the
filter ean be viewed as three independent filters, eonsisting of a
Wiener filter, noise filter, and lag filter component. The output
misadjustment therefore consists of the noise, mean lag, and
lag fluetuation misadjustment

M= B [(Bimr) " ®iducs] = Mg+ (M + A1) (16)

where @ is the input autocorrelation matrix, which ean be
written as [8]

o] = E [z3.31] = P.V*DV** (17)

and

D= [1+ R0 (DD")] (18)
where p = P, /P, is the input SNR. To make further eompar-
isons, we will now define a normalized adaptation eonstant for
the LMS to remove the units of power

v=F.(1+p)p. (19)
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In the following derivation of the misadjustment, we will as-
sume the same “slow ehirping” and “slow adaptation” assump-
tion as used in [3] and [5], i.e.,

SC: My «p
SA . Mv «2.

(20)
(21

A. Noise Misadjustment

Sinee the noise and lag components are uneorrelated, they can
be evaluated separately. The noise weight error update in (14) is
the same as the stationary results [2]. The steady-state (k — o)
noise misadjustment is

Mv

M=

€o (22)

when

O< < (23)

/\max

to assure the eonvergenee in the mean squared sense, where
Amax 1s the largest of all the eigenvalues of the input eorrela-
tion matrix ®3, A;, 2 = 1,2,..., M. By noting that Zf\__{l A=
Tr(®%) = MP,.(1+ p), it ean be seen that this condition is
casily satisfied through the slow adaptation assumption, i.c.,
pTr(P5) = pMP(1+p) = Mv £ 2.

B. Mean Lag Misadjustment

The lag misadjustment is eomposed of two parts: the mean
lag and the lag fluctuation. The mean lag weights E[A}] are
given by the recursion

E[AY) =~ n@f) E[A}_,] - T
=V* (1 -uP,D)VFE[A]_)]

-V¥v-)(W°oD). (24)

Letting Q = V~(*+UE[Al], the dependence of E[A}] on
time k can be removed, and the above simplifies to

Qr=V*(I-pP.D)Quoy —(I-V*) (W@ D). (25)

This is a first-order differenee equation with constant eoeffi-
cients. When (I — uP,, D)~ ! exists, () converges to a steady-
state value given by

Q=-(A+uPD)'A(W°@D). (26)

Using the solution for (. and solving for E[A!] gives the mean
lag weight vector in the steady state as

E[A}] =- V¥ (A +puP D) A(W° 0 D)
1

~— “—J;V"'“D“A(W"@D). (SC) 27

The lag misadjustment error is given by

M, = Tr (E [aL_]" #zE [Ag_l]) = P.QY \DQi_;.
(28)
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At steady state (k — o0), for ¢ < pl,(1 4 p)

M =P, (W o D) A* (nP. D) D(uP, D)

A (W° 0 D) =52y 29
where
AW (@)1 (AW
Kims = [Pa(1 4 p))? ( I G ) (30)

'f'/ )2

is the normalized lag misadjustment of LMS for a ehirped
proeess. In (30), % is the autoeorrelation matrix of the corre-
sponding stationary input proeess [8]. Note that s has the
units of power and is independent of the ehirp rate under the
slow chirp condition since the diagonal matrix A is linecar with
respect to ¢ with elements A;; = j¢l, 1 € [1,2,... M].

C. Lag Fluctuation Misadjustment

In this section, it is shown that the misadjustment caused by
the lag fluetuation is small ecompared with the mean lag misad-
justment. The lag fluctuation misadjustment is given by

M = Tr(®Z) 3D

where

%y = E [A;_l (A’H)"] (32)

is the lag fluctuation weight correlation matrix, and the lag fluc-
tuation weight is given by
AL =AL — E[AL]
=(I- [Lf:i.f;{) Al s (®F — .i,t:i{) E [Ai_l] :
(33)
For the linear ehirp model defined above, we ean assume that Z;,

takes the form Z;, = V¥B.V**. This allows the lag fluetuation
misadjustment to be simplified to

M. = P, Tr{DBy}. (34)

Using (33) and the identity in the Appendix, the lag fluetuation
weight correlation Zj follows the update equation
Zk+1 =7 — I (@fzk ~+ Zkéf)
+ 12 {PEZBE + BETr [DEZ1))
R H s
+W2E (A BRE[AL_ ] ®E. B9
Substituting the form Z; = V¥Bi V** then (35) becomes

VBk+1v* =By — ub, (BkD + DBk)
+1? P2 {DByD + DTr [DBy]} + 1’ P, MLD.  (36)
At steady state (k — o0), Bx — B. A bound of Tr(DB) can
be obtained by taking the trace and then applying the two-norm
properties of the eorrelation matriecs to give
{2uP, = 12 PFTe[D]} Te[DB] =12 P2 Tt[DBD)]
+ 12 P, Te[DJML. (37)
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TABLE 1
SUMMARY OF OPTIMUM NORMALIZED ADAPTATION CONSTANT AND MISADJUSTMENT
Parameter RLS Algorlthm LMS Algorithm
Normalized adaptation
constant ( B,v) B=1-4 v=P(+p)u
Kius » Kives AW O (AW y? | [B(1+ 0T AW,)" (@) (AW,)/y’
Misadjustment EM v’ EM
M -—°2—ﬂ+—ﬂ—2-l(m_s ——2 V+7KLMS
Optimal normalized 2 13 2 113
adaptation constant B = W Kes Vo Ay Kiws
(ﬂW‘ Vaon ) o o
Optimal misadjustment 3 3
Mnin ZéoMﬂop( Zé\MVnpt
and The optimum misadjustment is
3
{2 — P, Tt[D]} Te[DB] =1 P, T DBD] 4 p M, Tr[D] Main = 5 MEobop. (42)

<pP||D|| T [BD)
+ pTe[D| M. (38)

Thus

P, Te[D|M'

P (Te[D] + D)
" pP, Te[DJM!

=2 —2uP,Tt[D]

M =M, = P, T{DB] S

The ratio of steady-state lag fluctuation misadjustment versus
mean lag fluctuation is thus

M uP,Tr[D] (39
M= 2 2uPTe[D] )
By the “slow adaptation” assumption (21), i.e., 2P, Tr[D] < 2,
the above ratio is much smaller than unity. Thus, the lag fluc-
tuation can be neglected. This is similar in form to the solution
for the chirped sinusoid problem [5].

D. Optimum Normalized Adaptation Constant

Using the previous results for the noise and lag misadjust-
ment, the normalized adaptation constant v defined in (19) can
be optimized to minimize the filter misadjustment. The total
misadjustment is given by

My
2—Mv

1'/ )2

M= &o —7 RLMS: (40)

When v < 1, the misadjustment has the same form as the RLS
algorithm dcfincd in [8]. Solving for the minimum with respect
to v, the optimum normalized adaptation constant is

- ( )‘”.

4 Kims
Yoot =\ Talg,

(41)

This has the same form as the RLS result derived in [8]. In both
cases, the lag misadjustment is cqual to half the noise misad-
Justment. The main results obtained for the optimal normalized
adaptation constants and misadjustment noise for the LMS al-
gorithm obtained above and the RLS algorithm in [8] are sum-
marized in Table I. It is evident from Table I that the main diffcr-
ence in performanee between the LMS and RLS algorithms will
be defined by the differences in x1ps and kris. These terms
define the properties of the weight update structure of each algo-
rithm. The performance differcnccs that result will be evaluated
later for the chirped AR1 signal model.

I1I. COMPARATIVE TRACKING PERFORMANCE OF THE LMS
AND RLS ALGORITHMS FOR A CHIRPED AR1 SIGNAL IN NOISE

To illustrate the performance differences between the LMS
and RLS algorithms for a chirped nonzero bandwidth signal in
AWGN, the results obtained previously are applied to a ehirped
ARI process embedded in AWGN [8]. The AR process ean be
used to model many narrowband signals such as binary phase-
shift keying (BPSK), as discussed in [8] and [9].

As shown in [8] for RLS and (6) for LMS, in thc ALE config-
uration, the weight error vector of thc LMS and RLS algorithms
is given by

{

where Ry, is the RLS estimatc of the input correlation matrix
using an exponentially weighted estimatc with weighting pa-
rameter A = 1 — /3. The first term summarizes thc form of thc
update of the algorithm. The sccond term gives the adaptation
noise error. The last term gives the lag error. The major differ-
enee isthat the RLS algorithm deeorrelates the input using R;l .
For the LMS algorithm, however, the weight error update uses
suecessive updates to subtract componcnts of the signal from thc
weight error. In thc RLS algorithm, assuming that Ry, = Ry._1,

(I = /Lizf;{) Ak—l + pxyey — Tk, LMS
AR 'Ri— Apoy +Ry'zhe — Th, RLS

Big= (43)
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the previous weight is merely scaled. The weight error update
(43) is general and not specific to a particular signal model.
The fundamental difference between the LMS and RLS
algorithms with respeet to their tracking performance can be
described by evaluating the mean weight error vectors of the
two algorithms. This is obtained by examining the expected
value of (43). Using thc definition of the predictor error in
(11), the mean of ¢j, is zero. For the LMS algorithm, the
steady-state solution to the first-order stochastic difference
equation is E[Ax] & —(1/p)E[z}2] )~ T The RLS solution
was obtained in [8], where it was shown that for the slow chirp
assumption, R 'Ry_; ~ I, and the weight difference of the
RLS algorithm is thus E[A;] ~ —(1/8)T. The optimum
weight difference veetor T;. is defined by (7); thus, thc mean
weight error vectors for the LMS and RLS algorithms are given

by

ElAL] m -Livk (P, D) A(W°@ D), LMS
[An] = —Lyaey (WD), RLS.
’ (44)
The only major difference is the multiplication by D! in the
LMS mcan lag weight. The effect of this on the lag misadjust-
ment is illustrated by deeomposing D as

D=1+ pRs (45)

where R, = R ® (DD/). Under the slow chirp condition
(M1 < v), R, is essentially the normalized correlation matrix
of a stationary signal with initial frequency w.

To illustrate the effects of D! on the filter performance, we
can expand D using its eigencomponents

M
D=I+p)_ oful (46)

i=1
where {0? u;}i = 1...M are ecigenvalues and associated

eigenvectors of the signal correlation matrix R... Since the
eigenvectors {i;} arc orthonormal

M [10'2
Dl=1I- Ll 47
i=1 1 + pa? ' ( )

From (47), it is easy to see that the D~! essentially subtracts
components of the signal from the output. This has the effect of
putting a notch in the signal band of the mean lag filter, as will
be illustrated later.

The differences exhibited by the mean lag in the LMS and
RLS algorithm defincd in (44) are best illustrated by a plot of
the adaptive filter transfer function. Fig. 1 and [8, Fig. 8], re-
spectively, plot thc components of the filter transfer function
at three normalized adaptation constants for the LMS and RLS
algorithms. The normalized adaptation constants are chosen to
compare the cffect of the noteh at the optimal normalized adap-
tation constant v, defined by (41) and normalized adaptation
constant of 21/, and vp¢ /2. Both the mean filter transfer fune-
tion and the lag filter transfer funetion are shown. Note that the
difference in the lag filter transfer function of the LMS and RLS

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 7, JULY 2002

LMS Filter Response
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04F
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[
Fig. I. LMS filter transfer function over time for a chirped AR| process.
. Prediction Error vs. Adaptation Constant
1.3 T
Theory H p=2
Chicped a=09
1.25[ w=02x
y=5e-05x
M=10
121 " 1
My <<v
° ¥ Simulation
=g bix * -Chirped
= 1.15 -C rpe
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10° 10
v/ Vo (Vo = 1.58¢-3)

Fig. 2. Theorctical and cxpcrimenial oulput misadjustment of the LMS
algorithms for a chirped and a stationary ARI input, plolted as a ratio to the
Wicner MSE.

algorithms results from the effects of D=1 shown in (47). This
produees a notching effect around the signal speetrum for the
LMS algorithm that is not present in the RLS algorithm.

Fig. 2 and [8, Fig. 9], respectively, plot the output misad-
justment of the LMS and RLS algorithms above their respee-
tive optimum adaptation constant with parameter values p = 2,
@ =09 w=02r1% =5x 10"z, and M = 10 for both
stationary and chirped input signals. The vertical lines indicate
the standard deviation (£0) about the simulated results. It can
be seen that ncar the optimum, the experimental results agree
closely with the analytical results. When v > 1, the filter
tracks the chirped signal with negligible lag crror, and the error
output is predominately noise misadjustment. Consequently, the
output misadjustments for chirped and stationary AR1 inputs
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5 10 15 20

-20 -15 =10 -5

]
SNR (d8)

Fig. 3. Normalized asymptotic lag misadjustment limas oo Krms/ P
versus SNR for a chirped AR signal with correlation o ecmbedded in white
noise. Results are shown for « between 0.1 and 0.99.

are almost identical. When v < /g, the LMS does not track the
chirped signal well, and the output error causcd by the lag mis-
adjustment dominates the performance. As a consequence, the
differenee between output error for the ehirped and stationary
ARI inputs increases exponentially as v/vope — 0. The ana-
lytical results for the region where the slow chirp assumption
is not valid are obtained numerically. Note that the simulation
results indicate less misadjustment than the analysis predicts.
These trends were also observed for the RLS algorithm in [&].

Additional comparisons between the analytical and simula-
tion results are provided in [9]. The comparative misadjustment
of the two algorithms can be plotted by substituting the optimum
normalized adaptation constants from Table I into the expres-
sion for Mg, and defining the ratio of the optimal output mis-
adjustment for the LMS and RLS algorithms

_(H'LMS)US

KRLS

_ (@) o aw)
'< (Av'vv)"mAWo)) e

(Mmin)LMS
(Mmin)RLS

Fig. 3 and [8, Fig. 3], respectively, plot the asymptotic normal-
ized lag misadjustment parameter x of the LMS and RLS algo-
rithms normalized by the noise power (F,,) as the filter length
M — oo. The normalized lag misadjustment for the two algo-
rithms is equivalent for o between 0.1 and 0.7, but for v between
0.9 and 0.999, the differences in performance become apparent.
Note from [8, Fig. 3] that krLs increases monotonically as a
function of SNR, whereas from Fig. 3, kp.ms exhibits a non-
monotonic SNR response for narrowband signals with o > 0.9.
Fig. 4 plots the ratio of the LMS misadjustment vcrsus the
RLS misadjustment for an AR process with M = 2 and 10 at
various values of  and p, leading to thc following observations.
1) As thc signal bandwidth incrcases (@ — 0), the ratio of
the misadjustment approachcs I, i.e., in the limit whcre
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Fig.4. Ratio of thc LMS cxcess misadjustment vs. RLS excess misadjustment.

the signal and noisc have the same bandwidth, both algo-
rithms have the same pcrformance.

2) For small SNR (approximately p < 10), the LMS al-
gorithm always has a lower misadjustment. As the input
SNR increases, however, thc RLS algorithm has less error
for a wide range of signal bandwidths. 1n all eases, how-
ever, there is a range of signal bandwidth where LMS
outperforms RLS as &« — 1. Note also that the range of
a, where LMS outperforms RLS, becomes smaller as the
SNR is increased. This property is explained by the dif-
ferences in the ratios of D and D! in (46) and (47) as a
function of p and «. This behavior is confirmed through
simulations in [9].

3) The improvements for LMS bccome significant as c« —
1. There 1s a discontinuity in the analysis for « = 1, and
the results obtaincd for a deterministic analysis undcr this
condition are indicatcd by the bars at the a = 1 axis for
p =30,10,5,and | for the eases of M = 2and M = 10.

1V. CONCLUSIONS

The results show that the eomparative tracking pcrformanee
of the RLS and LMS algorithms for time-varying inputs such
as the linear chirp in AWGN is highly dependent on the input
signal bandwidth and signal-to-noise ratio p. Although both al-
gorithms converge to the Wicner solution for stationary inputs,
their performance in a nonstationary input environment can be
traced back to their update structures. In this paper, the update
structures of the LMS and RLS algorithms are examincd. 1t is
shown that the updatc of the LMS algorithm inherently subtracts
signal components from the lag misadjustment. For the chirped
signal, it is shown that this produces smaller tracking error for
small SNR. In the chirped ARI signal case, the LMS always
has smaller tracking error when p < 10 dB. For p > 10 dB,
it was shown that there is a region of signal bandwidths where
RLS has superior performancc, but even for these high SNR in-
puts, LMS has superior performance for very narrowband sig-
nals (&« — 1). The range of bandwidths for which LMS out-
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performs RLS was shown to be a function of p. It was further
shown that the optimal performance for both the LMS and RLS
algorithms was achieved by the use of an adaptation eonstant
that provided a lag misadjustment of half the noise misadjust-
ment for a stationary signal of the same properties. For adapta-
tion eonstants greater than this optimal value, the output misad-
justment error has a negligible component duc to lag error and
is dominated by the noise misadjustment term. Consequently,
the performance of the adaptive filter for an adaptation constant
greater than the optimum is the same for stationary and chirped
inputs for both the LMS and RLS algorithms. For an adaptation
constant less than the optimum, the lag misadjustment begins to
dominate, and there is a significant difference in performance
for the stationary and chirped inputs.

APPENDIX

In this Appendix, the quantities E[zpzTAL_ (A} _)¥
£377), E{z;aT E[AL_|)E[A)_ )" 21 } are evaluated for
the derivation from (33) to (35).

The following identity is used in the cvaluation: For
zero-mean Gaussian random veetor Z and veetor %, which ean
be cither deterministie or random but, in general, uncorrelated
with

E [z*zTg5" z*2T] = R,R, R, + R.Tr(R:R,)

where R, = E[z*z7], R, = Elyy"] for random 4, R, =
gg*! for deterministie 7.

A. Proof

10] éiij,yy”jan
M M )
U;; = Z Z (I“;rr)ik (yyll)kz (fiiT)lj
k=1 1l=1
M M
EU4] 233 E[(g5"),) E @)} @), @) @]
kA=41 l:—jl
=2 > El@"),]
k=1 =1

{El@; @) E[@); @)
+£[(2); (@),] E[@); @]}
M M

=3 > El@; @] E[09"),] £ [@; @]

k=1 1l=1

M M
+3° Y EB[@); @), £ [(55") 4] E @) @]
k=1 1=1
M M
= Z Z (Ra)ix (Ry)yy (RI)Ij + (R‘I)ij Tr(R:Ry)
k=1 1l=1
= (RzRsz)ij + (R.Tr (RzRy)),;.
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Applying the above identity, the required quantities are

- o 11
E [fz.ch.Ai._l (&) fzf{]
and
E {i;i{E (B[] & i;.i{.}
=®IE [Aw-y] E[Bro1]" @3
+ FE [Ak—l]” ‘I’fE [Ak—l] ‘I’f
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