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Comparative Tracking Performance of the LMS 
and RLS Algorithms for Chirped Narrowband 

Signal Recovery 
Paul C. Wei, Member, IEEE, Jun Han, Student Member, IEEE, James R. Zeidler, Fellow, IEEE, and 

Walter H. Ku, Member, IEEE 

Abstract—This paper studies the comparative tracking per- 
formance of the recursive least squares (RLS) and least mean 
square (LMS) algorithms for time-varying inputs, specifically 
for linearly chirped narrowband input signals in additive white 
Gaussian noise. It is shown that the structural differences in the 
implementation of the LMS and RLS weight updates produce 
regions where the LMS performance exceeds that of the RLS and 
other regions where the converse occurs. These regions are shown 
to be a function of the signal bandwidth and signal-to-noise ratio 
(SNR). LMS is shown to place a notch in the signal band of the 
mean lag filter, thus reducing the lag error and improving the 
tracking performance. For the chirped signal, it is shown that this 
produces smaller tracking error for small SNR. For high SNR, 
there is a region of signal bandwidth for which RLS will provide 
lower error than LMS, but even for these high SNR inputs, LMS 
always provides superior performance for very narrowband 
signals. 

Index Terms—Adaptive filters, autoregressive model, least mean 
square, recursive least squares, tracking. 

I. INTRODUCTION 

THE tracking behavior of adaptive filtering algorithms is a 
fundamental issue in defining their performance in nonsta- 

tionary operating environments. It has been established [l]-[3] 
that adaptive algorithms that exhibit good convergence proper- 
ties in stationary environments do not necessarily provide good 
tracking performance in a nonstationary environment because 
the convergence behavior of an adaptive filter is a transient phe- 
nomenon, whereas the tracking behavior is a steady-state prop- 
erty. 

There are two fundamentally different nonstationary sce- 
narios that have been previously analyzed. The first involves 
a time-varying system where the cross-correlation vector 
between the input signal to the adaptive filter and the desired 
response is time varying; the second involves a nonstationary 

Manuscript received April 6, 2001; revised March 4, 2002. This work was 
supported by the National Science Foundation Industry/University Cooperative 
Research Center on Ultra-High Speed Integrated Circuits and Systems (ICAS) 
at the University of California, San Diego. The associate editor coordinating the 
review of this paper and approving it for publication was Dr. Dennis R. Morgan. 

P. C. Wei, J. Han, and W. H. Ku arc with the Department of Electrical and 
Computer Engineering, University of California, San Diego, La Jolla, CA 
92093-0407 USA. 

J. R. Zeidler is with the Department of Electrical and Computer Engineering, 
University of California, San Diego, La Jolla, CA 92093-0407 USA, and with 
the Space and Naval Warfare Center, San Diego, CA 92152 USA (e-mail: zci- 
dlcr@ccc.ucsd.edu). 

Publisher Item Identifier S 1053-587X(02)05640-4. 

input to the adaptive filter. The first case occurs in system 
identification applications and is analyzed in [1], [2], and [4]. 
The latter case occurs in adaptive equalization, signal recovery, 
and other applications and has been analyzed in [3], [5], and 
[6] for the least mean square (LMS) and the recursive least 
squares (RLS) adaptive algorithms for the specific case of a 
deterministic chirped signal input to an adaptive prediction 
filter. This signal model provides a constant nonstationarity that 
is useful in separating the convergence and tracking behavior. 
The results show that LMS usually provides better tracking 
behavior than exponentially weighted RLS for linearly chirped 
sinusoids in additive white Gaussian noise (AWGN). This 
behavior is because LMS is model independent, whereas RLS 
must employ a model of the data correlation matrix (such as an 
exponential weighting), which may not match the characteris- 
tics of the input signals. It is further shown in [7] that superior 
tracking performance is obtained by RLS if the extended RLS 
(ERLS) algorithm with a time-varying state transition matrix is 
used. For chirped inputs, the ERLS implementation estimates 
the chirp rate from the data and uses it thereafter in the adaptive 
update equations [7]. Nevertheless the exponentially weighted 
RLS algorithm is frequently employed in practical systems 
due to its computational simplicity compared with ERLS and 
because, in many scenarios, an accurate state-space model 
is not available. Consequently, a comparison of the tracking 
performance of the LMS and the exponentially weighted RLS 
algorithm remains an important issue. 

The tracking behavior of the RLS adaptive filter was extended 
to include stochastic narrowband input signals in [8]. The signal 
bandwidth is shown to be an important parameter in optimizing 
the RLS filter performance [8]. This paper extends the analysis 
in [3], [5], [6], and [8] to define the tracking performance of the 
LMS adaptive algorithm for narrowband stochastic input signals 
using the same signal model used in [8]. This will allow the 
comparative performance of the LMS and RLS algorithms to be 
defined for a broader class of input signals and to determine the 
effects of signal bandwidth on the tracking performance. This is 
shown to provide a number of interesting results for the adaptive 
signal recovery application. 

The structural differences in the LMS and RLS weights up- 
dates are shown to produce regions where the LMS performance 
exceeds that of the RLS and vice versa. These regions are func- 
tions of the signal bandwidth and signal-to-noise ratio (SNR). 
LMS is shown to place a notch in the signal band of the mean 
lag filter, thus reducing the lag error and improving the tracking 
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performance. The optimal adaptation constant for both LMS and 
RLS with chirped narrowband inputs is shown to yield a lag 
misadjustment error that is half the noise misadjustment error, 
which is identical to previous results for deterministic inputs 
[3], [5]. This is in contrast to the result obtained for systems 
with time-varying coefficients [4], where optimal tracking oc- 
curs when the lag and noise misadjustment are equal. 

II. LMS ALGORITHM 

In order to facilitate the steady-state tracking performance 
comparison between the LMS and RLS algorithms for a chirped 
narrowband signal in AWGN, the problem introduction, the 
chirped narrowband signal model, the optimum predictor, and 
notations used in this paper will be the same as described in 
[8], where the steady-state tracking performance of the RLS 
algorithm is studied and contrasted with the results in [3], To 
complete the comparisons, we adopt the notational conventions 
in the previous studies [3], [5], [6], and [8]. 

The LMS adaptive one-step forward predictor is summarized 
by the following filter output and weight update equations. The 
filter output is given by 

Vk = Wk _lxk 

and the weight update equation is 

Wk = Wk-! + fixl (dk - yk) 

(1) 

(2) 

The LMS algorithm uses the instantaneous estimate of the input 
correlation (xkxk) and cross correlation (xldk) to update the 
filter weights [2]. 

The LMS weight update equation is used to decompose the 
weight error into a mean and a fluctuation component. The dif- 
ference between the LMS weights and the optimum Wiener 
weights is [5] 

A,_i = Wk_! - W°k. (3) 

The adaptive filter output misadjustment is defined as 

Mk=E\Kr
k_ixk\2. (4) 

The LMS filter weight update equation can be rewritten as 

Wk = [I - iixlxl] Wfc_i + (ixkxk (5) 

where the desired signal dk in this case is equal to xk. Sub- 
tracting Wk+l from both sides yields 

Ak = (I - jtfJaftAfc-i - fk + /ttJeS (6) 

where Tk is the change in the optimum weight vector at succes- 
sive iteration 

and V is the chirp matrix, D is the signal direction vector as 
defined in [8] 

V=diag(tf,*2,...,tf M\ 
(9) 

D = [ft*-1/2, ft2*"22/2,..., n"»-"*/*l7    (io) 

where t! = e?^\ip is the chirp rate, and ft = eJW'°, w0 defines 
the initial center frequency of the spectrum. The predictor error 
when using the optimum weights is 

4=^-myxk. do 

Employing the same assumptions utilized in [5] that xk is a 
sequence of independent vectors, it follows that the optimum 
prediction error e£ is uncorrelated with the input, i.e., 

E{[xk-{WZ)Txk] x*k}=0 (12) 

and thus, the noise and lag weight errors are independent. Since 
the weight error update equation is linear, it can be decomposed 
into the constituent terms 

(13) 

consisting of a noise weight error vector and a lag weight error 
vector with the following update equations: 

***s*n Aj i-i+/^S«S Al! = fl 

Al = [i-M4^]Ai_1-rfc. 
(14) 

(15) 

Similar to the analysis for the RLS algorithm [8], the lag weight 
error can be further decomposed into a mean component £[Aj.] 
and a fluctuation component Ajj. = AJ-. - £[AJJ. It will be 
shown that under the "slow adaptation" condition employed 
in [3] and [5], the misadjustment from the lag fluctuation A'k 

is small compared with the mean lag component. Thus, the 
filter can be viewed as three independent filters, consisting of a 
Wiener filter, noise filter, and lag filter component. The output 
misadjustment therefore consists of the noise, mean lag, and 
lag fluctuation misadjustment 

Mt = £[(£*_!)" ^A^] =Mi+(M'k + M'h) (16) 

where &k is the input autocorrelation matrix, which can be 
written as [8] 

and 

*JE = E [xlxl] = PnV
kVY*k 

V= [I + PK Q(DD")} 

(17) 

(18) 

Tk = WZ+1 - W£ = Vk+1A(W° © D) 

A is a diagonal matrix given by 

(7) where p = Ps/Pn is the input SNR. To make further compar- 
isons, we will now define a normalized adaptation constant for 
the LMS to remove the units of power 

I-V* (8) v = F„(l + p)\i. (19) 
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In the following derivation of the misadjustment, we will as- At steady state (k —» oo), for ip <C ^Pn{\ + p) 
sume the same "slow chirping" and "slow adaptation" assump- 
tion as used in [3] and [5], i.e., Ml wPn [W° © D)" A* {pPnV)~l V(pPnV)~l 

SC:M*<*                                (20) *(*•©£)-SgfV                                                   (29) 
SA : Mv <2. (21) 

where 

, (AW°)H (*x)_1 (AH"') 
A. Noise Misadjustment KLMS - [Pn{l + p)] ——-4        (30) 

ip* 
Since the noise and lag components are uncorrelated, they can 

be evaluated separately. The noise weight error update in (14) is    is tne normalized lag misadjustment of LMS for a chirped 
the same as the stationary results [2], The steady-state (k -» oo)    process. In (30), ** is the autocorrelation matrix of the corre- 
noise misadjustment is sponding stationary input process [8]. Note that KLMS has the 

units of power and is independent of the chirp rate under the 
_      Mv slow chirp condition since the diagonal matrix A is linear with 

2 - Mv respect to %b with elements A;,; » jtpl, I 6 [1,2,... M]. 

wnen C. Lag Fluctuation Misadjustment 
2 

0 < n <   (23)        m this section, it is shown that the misadjustment caused by 
^max the lag fluctuation is small compared with the mean lag misad- 

to assure the convergence in the mean squared sense, where justment. The lag fluctuation misadjustment is given by 
Amax is the largest of all the eigenvalues of the input correla- -,          /Ax7 

tion matrix *J,Ait i = 1,2,.. .,M. By noting that ££i^ = Mh-Tt[9kZh)                          (31) 
Tr(3>£) = MPn(l + p), it can be seen that this condition is wherc 

easily satisfied through the slow adaptation assumption, i.e., 

AU (AU)" (32) pTr(*l) = MMPn(l + p) = Mv « 2. Zk = E 

B. Mean Lag Misadjustment , 
is the lag fluctuation weight correlation matrix, and the lag fluc- 

The lag misadjustment is composed of two parts: the mean     tuation weight is given by 
lag and the lag fluctuation. The mean lag weights E[Al

k] are 
given by the recursion Al

k =Al
k — E [Al

k] 

E [At] = [I - M*f] E [AU] -fk = <* " "^ %-> + » (« " ^ E ^J • 
=v*(i-MP»2>)v-*£[ai_j (33) 

- Vfc(V — I) (W° Q D) . (24)     For the linear chirp model defined above, we can assume that Z^. 
takes the form Zk = 'VkBkV*k. This allows the lag fluctuation 

Letting Qk  = V~(-k+i^E[A'k], the dependence of £[Aj-.] on     misadjustment to be simplified to 
time k can be removed, and the above simplifies to ,, 

M[ = PnTr {VBk}. (34) 

^ Using (33) and the identity in the Appendix, the lag fluctuation 

This is a first-order difference equation with constant coeffi-     wei8ht correlation Zk follows the update equation 

cients. When (I - pPnV)~l exists, Qk converges to a steady- v „ ,A17    . r» ^.a-x 
state value given by „ 

+ p2{*lZk*l + *lTri*ZZk]} 

Q = -(A + pPnV)  lA(W°QD). (26) +p.2E[A'k_i}"**kE[Ak_i]*Z.        (35) 

Using the solution for Qk and solving for E[A'k] gives the mean     Substituting the form Zk = VfcBfcV*fc, then (35) becomes 
lag weight vector in the steady state as 

VBl+1V* = Bk - pPn (BkV + VBk) 
E [A'fc] = - Vk+l (A + pPnV)-1 A (W © D) +li2p2 {VBkV + PTr [2?Bfc]} + tl2pnMikV    (36) 

~ ~ ^Vi+1'P~1 A ^° ® ^ '    (SC)  (2?)    At steady state (fc -* °°)> B^ -» B- A bound of Tr(DB) can 
be obtained by taking the trace and then applying the two-norm 

The lag misadjustment error is given by properties of the correlation matrices to give 

M[ = Tr (E [ALI] " *%E [A< _j) = PnQt^Qk-i- l2^ - p2P2Tr[V\} lr[VB] =p2P?Jr[DBV) 

(28) +p2PnTr[V]M'k.(37) 
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TABLE  I 
SUMMARY OF OPTIMUM NORMALIZED ADAPTATION CONSTANT AND MISADJUSTMENT 

Parameter RLS Algorithm LMS Algorithm 

Normalized adaptation 
constant (fi, v) £ = 1-/1 v = P„(\ + p)M 

*RLS ' *LMS (AW0)"<D'(AW;)/r2 [Pm (1 + p)f (\W0)" (<D')"' (\W0) / y/2 

Misadjustment 
M 2         P1 22 v + — K 

Optimal normalized 
adaptation constant A,= 

( A      2                 > 

[M  I J 

1/3 

V      - apt 
f^2«-LMSy'3 

Optimal misadjustment 
&*Am -JMV^ 

and 

{2 - pPnTr[X>]} Tr[PB] =/*PnTr[Z>B2?] + /tA^.Trp] 

<MPn||2?||Tr[BP] 

+ MTr[D]A<. (38) 

Thus 

A^' = M'k—o = PnTr[DB] < 
fiPnTr[V]Ml 

2 - MPn(Tr[2>] + ||2?|| 

fiPnTr[V]Ml 

-2-2nPnTr[Vy 

The ratio of steady-state lag fluctuation misadjustment versus 
mean lag fluctuation is thus 

AV <      nPnTr[D] 

Ml ~ 2 - 2^iPnlT[V]' 
(39) 

By the "slow adaptation" assumption (21), i.e., ixPnTr[X>] <fC 2, 
the above ratio is much smaller than unity. Thus, the lag fluc- 
tuation can be neglected. This is similar in form to the solution 
for the chirped sinusoid problem [5]. 

D. Optimum Normalized Adaptation Constant 

Using the previous results for the noise and lag misadjust- 
ment, the normalized adaptation constant v defined in (19) can 
be optimized to minimize the filter misadjustment. The total 
misadjustment is given by 

Mv %b2 

2 - Mu v1 (40) 

When v < 1, the misadjustment has the same form as the RLS 
algorithm defined in [8]. Solving for the minimum with respect 
to v, the optimum normalized adaptation constant is 

"opt — 
4'02KLMS 

M£o 

1/3 

(41) 

The optimum misadjustment is 

A^mi„ = -Af£0l/0pt- (42) 

This has the same form as the RLS result derived in [8]. In both 
cases, the lag misadjustment is equal to half the noise misad- 
justment. The main results obtained for the optimal normalized 
adaptation constants and misadjustment noise for the LMS al- 
gorithm obtained above and the RLS algorithm in [8] are sum- 
marized in Table I. It is evident from Table I that the main differ- 
ence in performance between the LMS and RLS algorithms will 
be defined by the differences in KLMS and KRLS- These terms 
define the properties of the weight update structure of each algo- 
rithm. The performance differences that result will be evaluated 
later for the chirped AR1 signal model. 

III. COMPARATIVE TRACKING PERFORMANCE OF THE LMS 
AND RLS ALGORITHMS FOR A CHIRPED AR1 SIGNAL IN NOISE 

To illustrate the performance differences between the LMS 
and RLS algorithms for a chirped nonzero bandwidth signal in 
AWGN, the results obtained previously are applied to a chirped 
AR1 process embedded in AWGN [8]. The AR1 process can be 
used to model many narrowband signals such as binary phase- 
shift keying (BPSK), as discussed in [8] and [9]. 

As shown in [8] for RLS and (6) for LMS, in the ALE config- 
uration, the weight error vector of the LMS and RLS algorithms 
is given by 

(I- 
AR; lRfc_lAfc_i+R: >-ij= xkek -Tk, 

LMS 
RLS 

(43) 

where R^ is the RLS estimate of the input correlation matrix 
using an exponentially weighted estimate with weighting pa- 
rameter A = 1 — ft. The first term summarizes the form of the 
update of the algorithm. The second term gives the adaptation 
noise error. The last term gives the lag error. The major differ- 
ence is that the RLS algorithm decorrelates the input using R^1. 
For the LMS algorithm, however, the weight error update uses 
successive updates to subtract components of the signal from the 
weight error. In the RLS algorithm, assuming that R^. « R^-i, 
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the previous weight is merely scaled. The weight error update 
(43) is general and not specific to a particular signal model. 

The fundamental difference between the LMS and RLS 
algorithms with respect to their tracking performance can be 
described by evaluating the mean weight error vectors of the 
two algorithms. This is obtained by examining the expected 
value of (43). Using the definition of the predictor error in 
(11), the mean of e°k is zero. For the LMS algorithm, the 
steady-state solution to the first-order stochastic difference 
equation is E[Ak] » —(1//»)£?[*J*21-12*. The RLS solution 
was obtained in [8], where it was shown that for the slow chirp 
assumption, R^Rjt-i w I, and the weight difference of the 
RLS algorithm is thus E[Ak] ss -{1/P)fk. The optimum 
weight difference vector Tk is defined by (7); thus, the mean 
weight error vectors for the LMS and RLS algorithms are given 
by 

LMS Filter Response 

E[Ak 

-i.\k+'-(PnV)~1A(W0QD),    LMS 

-±Vk+lA(W°QD), RLS. 
(44) 

The only major difference is the multiplication by V l in the 
LMS mean lag weight. The effect of this on the lag misadjust- 
ment is illustrated by decomposing V as 

V = I + pR^. (45) 

where R, = R © (DDH). Under the slow chirp condition 
(Mip < v), R^. is essentially the normalized correlation matrix 
of a stationary signal with initial frequency ui. 

To illustrate the effects of X>_1 on the filter performance, we 
can expand V using its eigencomponents 

M 

V = I + pYiafuiu
1

i
I (46) 

where {crf,U{}i = 1...M are eigenvalues and associated 
eigenvectors of the signal correlation matrix R^.. Since the 
eigenvectors {u,} are orthonormal 

M 

V~l =1 Si 
P°t 
+ P°! 

2<*I<it       • (47) 

From (47), it is easy to see that the V~x essentially subtracts 
components of the signal from the output. This has the effect of 
putting a notch in the signal band of the mean lag filter, as will 
be illustrated later. 

The differences exhibited by the mean lag in the LMS and 
RLS algorithm defined in (44) are best illustrated by a plot of 
the adaptive filter transfer function. Fig. 1 and [8, Fig. 8], re- 
spectively, plot the components of the filter transfer function 
at three normalized adaptation constants for the LMS and RLS 
algorithms. The normalized adaptation constants are chosen to 
compare the effect of the notch at the optimal normalized adap- 
tation constant i^t defined by (41) and normalized adaptation 
constant of 2^opt and fopt/2. Both the mean filter transfer func- 
tion and the lag filter transfer function are shown. Note that the 
difference in the lag filter transfer function of the LMS and RLS 

p-2 
a = 09 

tu = 0.2n 

y - 5e -05 * 

M. 10 
Mean LMS Filter 

M) H-U0, l0,0.5)no 

Wiener Filter 

LMS   l»-t\. 
LMS   n-21^ 

0.5 u 

t.10.000 

Fig. I.    LMS filter transfer function over time for a chirped ARl process. 

1.3 
Prediction Error vs. Adaptation Constant 

'   \ • 

I  Theory 

\ Chirped 
P-2 
a-0.9 

1.25 GI=0.2K 

V-5C-0S* 
M-10 

1.2 

Jx           \ 

Simulation 

• - Chirped 

o 
Mv « V 

o - Stationary 

i.i 
la 

1.05 •X ./ 
Theory 
Stationary . 

V/V
OP. (vop, = 1.58e-3) 

Fig. 2. Theoretical and experimental output misadjustment of the LMS 
algorithms for a chirped and a stationary ARl input, plotted as a ratio to the 
Wiener MSE. 

algorithms results from the effects of V~l shown in (47). This 
produces a notching effect around the signal spectrum for the 
LMS algorithm that is not present in the RLS algorithm. 

Fig. 2 and [8, Fig. 9], respectively, plot the output misad- 
justment of the LMS and RLS algorithms above their respec- 
tive optimum adaptation constant with parameter values p = 2, 
a = 0.9, u> = 0.2TT, V = 5 x l(r57r, and M = 10 for both 
stationary and chirped input signals. The vertical lines indicate 
the standard deviation (±cr) about the simulated results. It can 
be seen that near the optimum, the experimental results agree 
closely with the analytical results. When u > n>pt, the filter 
tracks the chirped signal with negligible lag error, and the error 
output is predominately noise misadjustment. Consequently, the 
output misadjustments for chirped and stationary ARl inputs 
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Fig. 3. Normalized asymptotic lag misadjustment limM^<„ />iMs/f.. 
versus SNR for a chirped ARI signal with correlation a embedded in white 
noise. Results arc shown for a between 0.1 and 0.99. 

are almost identical. When // < j/opt, the LMS does not track the 
chirped signal well, and the output error caused by the lag mis- 
adjustment dominates the performance. As a consequence, the 
difference between output error for the chirped and stationary 
AR1 inputs increases exponentially as vjvovX. —• 0. The ana- 
lytical results for the region where the slow chirp assumption 
is not valid are obtained numerically. Note that the simulation 
results indicate less misadjustment than the analysis predicts. 
These trends were also observed for the RLS algorithm in [8], 

Additional comparisons between the analytical and simula- 
tion results are provided in [9]. The comparative misadjustment 
of the two algorithms can be plotted by substituting the optimum 
normalized adaptation constants from Table I into the expres- 
sion for M0pi and defining the ratio of the optimal output mis- 
adjustment for the LMS and RLS algorithms 

(A/fmin)RLS 

/ ^LMS \ 

\ KRLS/ 

{(AW°)"V-1 {AW°) 

V   {AW°)" V (AW°) 

1/3 

(48) 

Fig. 3 and [8, Fig. 3], respectively, plot the asymptotic normal- 
ized lag misadjustment parameter K of the LMS and RLS algo- 
rithms normalized by the noise power (Pn) as the filter length 
M —> oo. The normalized lag misadjustment for the two algo- 
rithms is equivalent for o between 0.1 and 0.7, but for a between 
0.9 and 0.999, the differences in performance become apparent. 
Note from [8, Fig. 3] that KRLS increases monotonically as a 
function of SNR, whereas from Fig. 3, KLMS exhibits a non- 
monotonic SNR response for narrowband signals with a > 0.9. 

Fig. 4 plots the ratio of the LMS misadjustment versus the 
RLS misadjustment for an ARI process with M = 2 and 10 at 
various values of a and p, leading to the following observations. 

1) As the signal bandwidth increases (a —» 0), the ratio of 
the misadjustment approaches 1, i.e., in the limit where 

Fig. 4.    Ratio of the LMS excess misadjustment vs. RLS excess misadjustment. 

the signal and noise have the same bandwidth, both algo- 
rithms have the same performance. 

2) For small SNR (approximately p < 10), the LMS al- 
gorithm always has a lower misadjustment. As the input 
SNR increases, however, the RLS algorithm has less error 
for a wide range of signal bandwidths. In all cases, how- 
ever, there is a range of signal bandwidth where LMS 
outperforms RLS as a —> 1. Note also that the range of 
a, where LMS outperforms RLS, becomes smaller as the 
SNR is increased. This property is explained by the dif- 
ferences in the ratios of V and V~l in (46) and (47) as a 
function of p and a. This behavior is confirmed through 
simulations in [9]. 

3) The improvements for LMS become significant as a —> 
1. There is a discontinuity in the analysis for a = 1, and 
the results obtained for a deterministic analysis under this 
condition are indicated by the bars at the a = 1 axis for 
p = 30, 10, 5, and 1 for the cases of M = 2 and M = 10. 

IV. CONCLUSIONS 

The results show that the comparative tracking performance 
of the RLS and LMS algorithms for time-varying inputs such 
as the linear chirp in AWGN is highly dependent on the input 
signal bandwidth and signal-to-noise ratio p. Although both al- 
gorithms converge to the Wiener solution for stationary inputs, 
their performance in a nonstationary input environment can be 
traced back to their update structures. In this paper, the update 
structures of the LMS and RLS algorithms are examined. It is 
shown that the update of the LMS algorithm inherently subtracts 
signal components from the lag misadjustment. For the chirped 
signal, it is shown that this produces smaller tracking error for 
small SNR. In the chirped ARI signal case, the LMS always 
has smaller tracking error when p < 10 dB. For p > 10 dB, 
it was shown that there is a region of signal bandwidths where 
RLS has superior performance, but even for these high SNR in- 
puts, LMS has superior performance for very narrowband sig- 
nals (a —» 1). The range of bandwidths for which LMS out- 
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performs RLS was shown to be a function of p. It was further 
shown that the optimal performance for both the LMS and RLS 
algorithms was achieved by the use of an adaptation constant 
that provided a lag misadjustment of half the noise misadjust- 
ment for a stationary signal of the same properties. For adapta- 
tion constants greater than this optimal value, the output misad- 
justment error has a negligible component due to lag error and 
is dominated by the noise misadjustment term. Consequently, 
the performance of the adaptive filter for an adaptation constant 
greater than the optimum is the same for stationary and chirped 
inputs for both the LMS and RLS algorithms. For an adaptation 
constant less than the optimum, the lag misadjustment begins to 
dominate, and there is a significant difference in performance 
for the stationary and chirped inputs. 

APPENDIX 

In this Appendix, the quantities E[x*kx1h.k_i{Kk_i)'
1 

x%xl\, EixlxlE^i^E^i^Y'xlxl} are evaluated for 
the derivation from (33) to (35). 

The following identity is used in the evaluation: For 
zero-mean Gaussian random vector x and vector y, which can 
be either deterministic or random but, in general, uncorrelated 
with x 

E [x*xTyy"x*xT] = RxRtfRx + RITr(RxRy) 

where Rx = E[x*xT], Ry = E[yyn] for random y,Ky = 
yyH for deterministic y. 

A. Proof 

Applying the above identity, the required quantities are 

, // 

and 

E{XIXIE[AU)E[K-,]H^I} 
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