5-1

A Multi-Agent Approach for Complex System Design

Iréne Degirmenciyan-Cartault
Dassault Aviation, 78, quai Marcel Dassault Cedex 300 92552 St Cloud Cedex France

irene.degirmenciyan @dassault-aviation.fr

Abstract: Multi-agent systems that arose from research in Distributed Artificial Intelligence are now
considered as a new paradigm to design and model complex systems. The design of complex systems seems to
be more intuitive with cognitive agents because the designer works at a high level of abstraction where the
agent is an important granularity entity with aspects of calculation, reasoning and control which make it quasi
autonomous. After a brief overview of the required notions to understand the multi-agent systems' domain, we
describe the JACK agent-oriented environment on top of which we are developing the SCALA environment
that provides a multiagent-based methodology and tool for the design of complex systems. In SCALA, the
global behaviour (i.e. its goal) of the system is modelled through a functional approach based on the definition
of a graph of dependencies between the basic behaviours (i.e. tasks to accomplish to achieve a goal). The
definition of this graph provides the necessary knowledge to manage cooperation between the agents and to
plan reactively their activities when new events occur and when they have to reorganise themselves.

1. Introduction

Multi-agent systems that arose from research in Distributed Artificial Intelligence are now considered as a
new paradigm to design and model complex systems. Those systems are used for several well-known reasons:
their ability to run in unpredictable or less predictable environments, to react to unknown events, to reason, to
cooperate, to learn and to be pro-active. The design of complex systems seems to be more intuitive with
cognitive agents because the designer works at a high level of abstraction where the agent is an important
granularity entity with aspects of calculation, reasoning and control which make it quasi autonomous. Then
the distribution of the control on the agents gives the system more robustness, efficiency and a better reactivity
thanks to sophisticated coordination mechanisms. Agent-oriented programming addresses the need for
software systems to exhibit rational, human-like behaviour in their respective problem domains. Traditional
software systems make it difficult to model rational behaviour, and often programs written in these systems
experience limitations, especially when attempting to operate in real time environment.

The aim of this paper is not to present the entire domain of research on multi-agent systems, but to point out
characteristics that seem to be relevant for the design of complex systems. So, in section 2 we overview the
required major notions to understand the multi-agent systems' domain. In section 3 we describe an example of
the JACK agent-oriented environment on top of which we develop the SCALA project that provides a
multiagent-based methodology and a tool for the design of complex system (section 4). Then, we expose in
section 5 the perspectives of this work to extend it to time constraints.

2. Multi-agent Systems

In this part, we introduce the notion of agent and the advantages to adopt such a technology of programming.

2.1. Definitions

Although there is no consensus on the agent definition, we can assume that an agent is a computer system that
is situated in some environment, and that is capable of autonomous action in this environment in order to meet
its designed objective [WOO 95].

Paper presented at the RTO AVT Course on “Intelligent Systems for Aeronautics”,
held in Rhode-Saint-Genése, Belgium, 13-17 May 2002, and published in RTO-EN-022.

Report Documentation Page

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it

does not display a currently valid OMB control number.

1. REPORT DATE
01 JUN 2003

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLE AND SUBTITLE

A Multi-Agent Approach for Complex System Design

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

S5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Dassault Aviation, 78, quai Marcel Dassault Cedex 300 92552 St Cloud

Cedex France

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001519. RTO-EN-022

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

17. LIMITATION OF
ABSTRACT

Uuu

18. NUMBER 19a. NAME OF
OF PAGES RESPONSIBLE PERSON

14

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

5-2

The notion of autonomy means that agents have control both over their own internal state, and over their
behaviour. They act without the intervention of humans or other systems.

To define the notion of intelligent agent, the notion of flexibility is added. Intelligent agents can be
characterised by their ability to carry on flexible autonomous action [JEN 98], i.e. they present:

e Reactivity: intelligent agents are able to perceive their environment, and respond in a timely fashion to
changes that occur in it to satisfy their design objectives;

e Pro-activeness: intelligent agents are able to exhibit goal-directed behaviour by taking the initiative in
order to satisfy their design objectives;

e Social ability: are capable of interacting with other agents (and possibly humans) in order to satisfy their
design objectives.

In a dynamic and uncertain environment, these characteristics are not easy to obtain. The agents have to
continually respond to their environment to reactively take into account its changes, while maintaining their
goals. The difficulty for an agent is to deal simultaneously with these two aspects. The agents thus have to
attempt to achieve their goals, but not in a blindly fashion. They continually have to perceive the environment
and be ready to quickly react to new situations. The carried on goal can be questioned, or some changes in the
environment can impact the way to achieve it, etc.

The last important point is social ability. Agents have to negotiate or cooperate with others to achieve shared
goal. This social ability includes the possibility to define organisational structure where agents hold roles and
obey to social rules. The multi-agent approach specially focuses on these aspects.

A multi-agent system is a distributed system composed by several agents interacting with each other's. A
multi-agent can be characterised by the following points as reminded in [BRIOT 01]:

e FEach agent has limited information or capabilities;
e There is no global control of the multi-agent system;
e The data are decentralised;

e The calculation is asynchronous.

Multi-agent systems have the traditional advantages of the distributed and concurrent problem solving, such as
modularity, computation time (parallelism) and reliability (due to the redundancy of resources and
capabilities). Multi-agent systems are also interested in developing sophisticated interaction mechanisms, such
as cooperation, coordination and negotiation.

2.2. Agents versus objects

When one considers only the relative properties of agents and objects, one can have difficulties to see the
added value of agents. Indeed objects are computational entities that encapsulate some states, are able to
perform actions (methods), and communicate with other objects through message passing. Yet there are
significant differences between agents and objects [WOO 99]:

The principle of encapsulation is the idea that objects can have control over their own states, i.e. they exhibit a
certain autonomy over their states. But an object does not exhibit control over its behaviour. A method m of an
object is executed by this object when another object invokes it. The object that performs the action (method
m) has no control over this invocation. The decision lies with the object that invokes the method. In the agent
case, we do not think of invocation, but in requesting actions. The decision lies with the agent that receives the
request. The agents have the control over the decision to execute an action or not.

Although one can integrate flexible (reactive, pro-active, social) autonomous behaviour in object-oriented
programs, this kind of behaviour is not inherent to the object philosophy, and this means to implement agents’
behaviour in an object-oriented language.

Another important distinction is that agents have each their own thread of control, whereas there is only one in
an object-oriented program. Even if we take into account the concept of concurrency that arrives in object-

5-3

oriented languages, such as the multi-threading in Java, it does not capture the idea of autonomous entities. A
multi-agent system is inherently multi-threaded.

3. JACK: An agent infrastructure [HOW 01]

A host of environments support the development of multi-agent applications each presenting different
characteristics. An effort of standardisation is led by the FIPA (Foundation for Intelligent and Physical
Agent).

In this section, we are describing one of them, the agent-oriented language JACK software, on which lies our
work presented in section 4. JACK is an agent-oriented development environment build on top of Java. It
addresses the need for software systems to exhibit rational, human-like behaviour in their respective problem
domains. The agents used in JACK are intelligent agents. They model reasoning behaviour according to the
theoretical Belief Desire Intention (BDI) model of Artificial Intelligence developed by Rao and Georgeff
[RAO 95]. More precisely, following the BDI model the JACK agents are autonomous entities that have goals
to achieve thanks to events to which they are sensitive. To determine the way to achieve a goal, the agents
have plans. Each plan describes the way the agent has to react to cope with a given situation. Consequently, an
agent attempt to achieve a goal (its desire) using the relevant plan (its intention) that it will have determined in
analysing its knowledge (its beliefs) on the external environment.

So, a JACK agent can exhibit reasoning behaviour under both pro-active (goal directed) and reactive (event
driven) stimuli. Each agent has:

e A set of beliefs about the world;
e A et of events that it will respond to;
e A set of goals that it may arise to achieve;

e A set of plans that describe how it can handle the goals or events that may arise.
Let us now detail JACK specific classes [JAR 01]:
The Agent class

The Agent class embodies all the functionality associated with a JACK intelligent agent. It allows to define
the behaviour of an agent, its capabilities, the type of messages and events to which it is sensitive and the
plans it uses to achieve its goals. Each JACK agent is associated to an independent execution process (a Java
thread).

In general, the definition of this class needs to include the following conceptual statements:
e Knowledge Bases which the agent can use and refer to

e FEvents (both internal and external) that the agent is prepared to handle
e Plans that the agent can execute
e FEvents the agent can post internally (to be handled by other plans)
e FEvents the agent can send externally to other agents.
The Database Class

The Database class implements the main data storage device that agents use. Each database class describes a
set of beliefs that the agent can have. It represents these beliefs in a first order, tuple-based relational database
system. The logical consistency of the belief this database contains is automatically maintained. Hence, for
example, if an agent adds a belief that contradicts a belief it already has, the database class detects this and
automatically ejects the old belief. The database class is not the only way that an agent can represent
information. Agents can also include ordinary members and other data storage structures that have been
implemented in Java.

5.4

The Event class

Events motivate an agent to take action. There are a number of event types in JACK, each with different uses.
These different event types help model.
e Internal stimuli; essentially events that an agent sends to itself. These internal events are integral to
the ongoing execution of an agent and the reasoning that it undertakes.
e External stimuli, such as messages from other agents, or percepts that an agents receives from its
environment.
e Motivations that the agent may have, such as goals that the agent is committed to achieving.

Events are the origin of all activity within an agent-oriented system. Whenever an event occurs, an agent
initiates a task to handle it. This task can be thought of as a thread of activity within the agent. This task
causes the agent to choose between the plans it has available, executing a selected plan or plan set (depending
on the event processing model chosen) until it succeeds or fails. If plan execution succeeds, then the event that
initiated it is said to have succeeded. If plan execution fails, on the other hand, there are two options. Under
normal event handling the event is said to have failed after the first instance of plan failure. Under BDI event
handling, a number of plans can be selected for execution and these are attempted in turn, in order to try to
achieve successful plan execution. If the set of chosen plans is exhausted, then the event is said to have failed.
There are a number of event classes in the JACK Agent Language, each representing different types of
motivation to act.

One of the important aspects of the BDI reasoning model at a conceptual level is that it models goal-directed
behaviour in agents, rather than plan-directed behaviour. That is, an agent commits to the desired outcome, not
the method chosen to achieve it. When using the BDI reasoning model, an agent does not simply react to
incoming information, but sets itself a goal that it then tries to achieve. Rather than distracting an agent from
its goal, incoming events are added to an agents knowledge base and can then subtly influence its behaviour.

The key difference between normal events and BDI events is how an agent selects plans for execution. With
normal events, the agent selects the first applicable plan instance for a given event and executes that plan
instance only. The handling of BDI events is more complex and powerful. An agent can assemble a plan set
for a given event, apply sophisticated heuristics for plan choice and act intelligently on plan failure. At least
one of the following characteristics applies to each type of BDI event under the BDI model:

e Meta-level reasoning : it allows precise control over how an agent chooses a plan for execution from the
set of applicable plans. Whenever there is more than one applicable plan instance for a given BDI event, a
special event is posted within the agent. By choosing to handle this event an agent can implement meta-
level reasoning. If the meta-level reasoning plan fails and does not select a plan for execution, then the
default plan selection method is invoked.

® Reconsidering alternative plans on plan failure : if a course of action (plan) fails, an agent can try a
number of other courses of action by attempting any number of applicable plans to achieve the goal that
has been set.

® Re-calculating the applicable plan set : after that the previous selected plan has failed, an agent may select
an alternative plan: it either keeps track of the plan instances that were initially applicable and select
another member of this set; or it re-computes which plan instances are applicable and select one from the
new set, excluding plan instances that have already failed.

Additionally it is possible to further control BDI behaviour by setting behaviour attributes.
The Plan class

The Plan class describes a sequence of actions that an agent can take when an event occurs. Whenever an
event is posted and the agent adopts a task to handle it, the first thing that the agent does is to try to find a plan
to handle the event. Plans are similar to methods and functions from more conventional programming
languages. Each plan is capable of handling a single event. An agent may further discriminate between plans
that declare they handle an event by determining whether a plan is relevant by using specific JACK methods
that can be assimilated to a filter.

5-5

The Capability Class

The capability concept is a means of structuring reasoning elements of agents into clusters that implement
selected reasoning capabilities. This technique simplifies agent system design, allows code reuse and
encapsulation of agent functionality. Capabilities represent functional aspects of an agent that can be plugged
in as required. This capability as component approach allows an agent system architect to build up a library of
capabilities over time. These components can then be used to add selected functionality to an agent. Events,
databases, plans, Java code and other capabilities can all be combined to make a capability.

4. SCALA: A methodology and a tool to design complex systems

At Dassault Aviation, we work on a project named SCALA (Cooperative System of Software Autonomous
Agent) developed on top of the JACK agent-oriented software presented in section 3. SCALA aims at
showing the interest of the multi-agent approach for modelling and designing complex systems, where several
entities have to cooperate to achieve joint goals. SCALA provides a tool and a methodology that enable the
designer to build at a high-level of abstraction the behaviour of a multi-agent systems.

The global behaviour of the system (i.e. its goals) is modelled through a functional approach based on the
definition of the graph of dependencies between basic behaviours, i.e. the tasks to be accomplished by the
agents of the system.

4.1. The objectives

The major objectives carried out in the SCALA project are:

e To provide a tool to prototype multi-agent systems (MAS) in proposing a methodology of design based on
the functional requirements;

e To make easier the modelling and the design of such systems thanks to a high level abstraction language;
e To simulate different types of organisation and communication protocols between agents;
e To constitute and provide libraries of reusable mechanisms and protocols;

e To propose tools to support the design of the system and to monitor the behaviour of the system
(individual and collective behaviour).

In next section, we are focusing on the methodology proposed in SCALA to assist the design of complex
systems.

4.2. A methodology to develop complex systems

This methodology is based on a functional approach enabling designers to elaborate and model the whole
behaviour of the multi-agent system. This methodology is composed of 8 steps:

Definition of the graph of functional dependencies;

Definition of the sub-graphs (and the goals associated);

Identification of the expected relevant events;

Description of the elementary behaviours or tasks to be accomplished by the agents;
Definition of the agents;

Definition of the group of agents;

Choice of the social organisations;

® NN R LN

Choice of the cooperation protocols.

5-6

Now, we are going to detail the different points of this methodology and briefly describe the functioning of
SCALA through a given type of application: the simulation of air combat missions. This presentation allows
us to point out several limitations that we are attempting to overcome in the second part of the presented
study.

4.3. The graph of functional dependencies

The graph of dependencies enables the designer to model at a high level of abstraction the behaviour of the
multi-agent system. This graph is constituted by one or more distinct graphs composed of tasks or basic
behaviours that have to be accomplished by the agents of the system, and the constraints between them. The
definition of the graph provides the necessary knowledge to manage the cooperation between the agents.
Different types of the control either centralised or distributed, can be built depending on which agent(s)
own(s) this knowledge. At this stage, tasks are not allocated yet to the agents. The assignment is made
dynamically (see § 4.11) according to the current situation and the available resources (agents are assimilated
to resources through their skills). Thus we give the agents a certain freedom of action that makes the system
more reactive and allows to avoid some failures such as the use of non-available resources. We have a
proscriptive approach that constrains the behaviours rather a directed one. For example, according to the
constraints on a task, an agent can attempt to ask another agent for help or performs another task which does
not requires the help of another agent .

The graph of dependencies is in fact, at a given level of abstraction, a decomposition of the global behaviour
of the system, close to a decomposition of a problem into sub-tasks, and including the different possible
alternatives for each sub-goal. In that way, the SCALA agents' behaviour is task-oriented.

Furthermore, we will see, in § 4.7 that each task is associated to several JACK plans, that specify the different
methods to accomplish a same task. By default, i.e. without specific associated constraints, each task of the
graph has to be achieved by a single agent.

Let us now detail the constraints between tasks. They are defined by links or connectors expressing notions of
synchronism (at the beginning or at the end of several tasks), exclusion (the execution of one task inhibits
others’), refinement (several methods can be invoked to execute a task) and abstraction (a task is composed of
others). Another type of constraint is about the number of agents required to perform a same task.

The link of precedence:

This link shows that Task Y cannot be executed before
Task X. A task may have several links of precedence and
may also be the predecessor of several tasks.

The connector of temporal synchronisation //: /@\

This connector implies that Task X and Task Y begin
synchronously. Task X Task Y

Task X ——P| TaskY

It is also possible to define that N agents have to execute the same task
concurrently. It is the case for the following example where N agents have N
to begin Task Z synchronously.

Task Z

The connector of temporal synchronisation //end:

This connector implies a synchronisation of termination.
Task X and Y must end at the same instant, or N agents
have to end their task at the same instant.

Remark: To realise this connector, the graph must bring
the notion of delays on tasks. But it could be applied
easily in case of interruptible tasks.

The link of decomposition:

The decomposition may be considered as a refinement.

Task X (abstracted Task) is composed of two sub-tasks Y and
Z. The execution of Y and Z is necessary to validate Task X.
The execution of Y and Z is possible only when the
predecessors of X have been realised.

The connector OR:

This connector represents the concept of exclusion
between tasks. The execution of one of the tasks will

5-7

Task X

Task Y

Task Zn

Task X

Task Y

Task Z

prevent the execution of the other linked tasks.

Task X

Task Y

In this example, the activation of Task X will inhibit Task Y one. The choice of the branch is context

dependant.

The connector Ty:

This connector implies that the task must be executed N times but with no
constraints on the executors. So a single, or many agents may execute N

times Task X.

Constraints of allocation:

This connector means Task X must be done by N agents but with no)

constraints of synchronisation.

When all the agents of the group have to
execute this task, the N is replaced by a star

—»

Task X N

Task X

*

or group_name
or condition on the number of agents

(*). This permits to leave the constraint on the

number of agents. —>

Task X

—>

But one can also precise if a group has to do

this task: group_name or you can put conditions on the number of agent that has to do the task:
*>2 (this condition means that at least two agents of the group have to do the task).

5-8

Series:

A series of tasks must be executed by the same agent — 1 pf TaskX ——p| TaskY ——p
or the same group of agents. ! !

In this example, task X and Y must be executed bya =~ c---moommimeme
same agent.

Those all connectors can be merged to express more sophisticated constraints between tasks.

4.4. The definition of the sub-graphs (goals)

The sub-graphs represent partial graphs of the graph of functional dependencies. Each sub-graph is associated
to a goal that replies to a particular event. For example, "To intercept a threat" is one of the possible goals to
be achieved by the patrol if the event "New contact on the radar" occurs. This goal is associated to a sub-
graph (a set of tasks and connectors) depicting the functional possible procedures the agents have to carry out
to achieve it.

4.5. The expected relevant events

The agents of the system have sometimes to reorganise themselves to achieve goals. The goals are generally
fulfilled by one agent or a group of agents. The agents take into account new events that can be interactively
provided by the designer during the simulation (for example the on-line creation of a new threat) coming
either from environment changes, or from messages between agents. A new event implies that the agents have
to cope with a new sub-graph. All the difficulty lies in the management of the new goals. Each event is
characterised by a degree of priority which allows the agent to select the most urgent to treat. The algorithm
concerned is developed in fig. 6. To model the system, the designer specifies the different events to which the
agents are sensitive. The designer has to specify the "event/goal" pairs.

Now, let us present our scenario to illustrate the methodology of SCALA and model the behaviour of the
designed multi-agent system.

4.6. An interception scenario

@ Section
*

In the scenario, four aircraft fly as a division on a close-air support Take off
mission. A division is composed of two sections, each containing two
aircraft. Close-air support missions involve substantial communication *

and coordination to ensure the success of the mission. We are
interested to a high level of coordination, i.e. on the goal to achieve and
actions to perform. Command and control are provided by an airborne fjg. 1: Sub-graph "CAP"
radar plane (in the friend area) and a number of forward air controllers

(AC), friend forces on the enemy ground. We are following this

scenario over the steps of SCALA’s methodology.

CAP

[g; > (*22)
The division’s pre-briefed goal is "'Bomb Target 1''. The aircraft take Guided flight
off from the carrier and rendezvous at a pre-briefed location to join into
formation. The rendezvous is necessary to coordinate group flight l
because we assume that only two planes (a section) can launch /\@(*)
simultaneously. According to the formalism defined in SCALA, this Enter combat
can be modelled by the sub-graph (fig.1). The star (*) means that all area
the sections of the group defined by the designer have to take off. This
implies no conditions on the number of aircraft involved in the mission l .
(it is specified via the agents definition) but only the (functional) way
they have to take off. This generic approach of specifying behaviour Bomb target

fig. 2: Sub-graph ""Bomb Target"

5-9

ensure the re-usability of the graphs. The second task "CAP" (Control Air Patrol) expresses, in the same way,
that all the planes have to join at a pre-briefed point.

While flying their route, the lead of the division checks in with the air controllers any changes in routing and
the permission to enter the combat area. Once the AC verifies the mission, visually acquires the planes, and
determines they can bomb the target without endangering friendly forces, the AC gives the final permission to
drop their ordnance. Then, they exit the area and fly back on their egress route. The constraints (//) and (* 2 2)
express that the task "Guided flight" has to be accomplished simultaneously by a group composed of at least
two aircraft. This task is monitored by the airborne radar plane. All the agents of the related group must
synchronously begin the task “Enter combat area”. Then, all the agents, who carry a bomb, have to drop it (not
necessarily at the same time). We do not have to precise on this graph that the last task is to return to the base
because it is the task by default: it is a "home state" automatically executed. The global plan is the
concatenation of these two sub-graphs (fig. 1 & fig. 2). In this step of the modelling, the designer has to define
the “event/goal” pairs: "Order to bomb the target / Bomb the target". We further expose a complete
scenario with new events occurring during the simulation.

The next step is to define the local behaviours, i.e. the different tasks.

4.7. Definition of the tasks
The tasks have some notable properties that we are describing here.
A set of methods

Each task is associated to a set of methods. A task is in fact a sub-goal that can be achieved by different
manners. For instance, several tactics lead to the same result, but their use is context-dependent and an agent
have to decide which of them apply according to its skills or to the availability of other agents in the case of a
team-tactics. (Remark: this functionality is directly available in JACK with the meta reasoning of the agents
based on sophisticated heuristics for the selection of the relevant plans).

Interruptible tasks

The tasks can be interruptible or not interruptible. The interruptible tasks have the capability to stop their
execution and then to resume it or to definitely abandon it.

For example, a task can be interrupted when an event implies the interruption of the current method (same
remark than below). In the related scenario, the "Guided Flight" task is interrupted to let the agents enter in
the combat area when they arrive close to this zone and when they had received the permission from the AC.
Furthermore, the execution of a task is submitted to constraints clustered in pre and post conditions.

Pre and Post conditions

Those notions are linked to the perception of the agent or its knowledge. The pre-conditions specify the
conditions to execute a task but also the way. In fact, several manners can exist to achieve a task. Those pre-
conditions can be assimilated to a filter for the choice of the relevant method.

The post-conditions describe the changes of the resources after the execution of the task. For example, if a
missile is launched, the number of missiles must decrease in the knowledge base of the concerned agent.
According to our scenario, the pre-conditions on the task "Enter combat area" are to get the permission from
the AC. For the task "Bomb the target", the planes have to wait for the permission and to be sure of the target
to bomb.

Number of agents

It is the necessary number of agents required to execute the task. This information is very important to initiate
cooperation between agents.

Skills and level of specialisation

Here are defined the necessary skills and level of specialisation required to execute the task. These
characteristics also enable the cooperation between agents, while considered as complementary resources for
the system.

4.8. A recursive groups definition

The groups in SCALA are defined via the following way:
The type of the group,

The members (type: agent or group, and number),
The roles composing the group,

Group Goal: the current global goal of the group,
The sub-groups: the groups inside the group,

The meta group: the group which it belongs,

The type of organisation,

The type of cooperation

name: Group2, \

type: Section,

members: Two Aircraft,

roles: 1 Leader, 1 Wingman,

Group Goal: To destroy the bandit
Sub-groups: none,

Meta group: Group 1,

Organisation: Hierarchical,
Cooperation: Delegation /

name: Groupl, \

type: Division,

members: 2 Sections,

roles: 1 escort, 1 Bomber,
Sub-groups: 2 Group2,

Group goal: To destroy the bandit
Meta group: none,

Organisation: Hierarchical,
Cooperation: Delegation /

o)
eeeeeeee)

fig. 3: A recursive groups definition

This notion of group enables the designer to create sophisticated mechanisms of cooperation between agents
belonging to a group and even between groups. An example of teams modelling for tactical aircraft simulation
can be found in [TID 98].

In our scenario, the division is composed of two sections. And recursively, the section is composed of two
aircraft. The organisation is hierarchical and the cooperation is based on delegation. One can assume the
leaders of the two groups take joint decision by consulting together, the organisation of Group 1 then becomes
a community, but the cooperation mechanism makes essentially intervene the leaders.

4.9. The definition of the agents

In SCALA, a generic structure of agents is defined and specialised by the designer for a given application. It is
decomposed in two levels:

The agent itself:

e Skills and the relevant level of specialisation,

e Resources: physical resources of the agent,

e Events: to which the agent is sensitive,

e Current goal.

The agent in its group:

e Group(s): the group(s) it belongs,

e Current role(s): the role(s) it holds in each group(s),

e Possible role(s): the other role(s) it can eventually take in each group,

e Communication Protocol: the protocols of cooperation with the other members of the group.

4.10. The social organisations and the communication protocols

The organisations define the internal relations inside the groups. Given an organisation, the agents can have
different roles depending on the situation. These roles can be dynamically assigned. For the moment, we
distinguish two types of organisations: hierarchical and community. The organisation can also evolve (under
certain conditions) during the simulation depending of the current topology of the graph and of the predefined
mechanisms (a hierarchical structure is fit to treat a task naturally decomposed into sub-tasks).

The communication protocols depend on the type of the organisations. For instance, in a hierarchical
organisation, the agent which holds a manager role can delegate a task or a set of tasks to another agent or to a
group via a simple point-to-point message sending. Whereas in a community, a network is built between
several agents to dynamically exchange their tasks or collaborate for their execution. An example of such
mechanism is the Contract Net protocol, which have been implemented in SCALA.

4.11. The simulation process ''event to plans''

Each new relevant event that occurs during the

simulation triggers a new instance of the related | EVent

sub-graphs. The sub-graphs tasks are dynamically X Agent 1

distributed to some agents according to their skills, Plan 1

roles and resources. The distribution process (fig. Agent 3
4) depends on the organisation type of the group to Distribution of the Plan 3
which belong the sensitive agents. The sub-graphs graph over the agents -

(a multi-agent plan) are split into mono agent plans FPlan)]

(lists of partially ordered tasks) as a network of

dependencies between the activities of agents. Agent 2 Plan 4
Those dependencies are a representation of the Agent 4
constraints of the graph. Thus, the agents

coordinate their activities while taking into account fig.4: Network of dependencies

these dependencies and environment changes.
The SCALA Grapher

Numerous applications can be modelled. To define these applications, we developed a tool to easily design the
graphs of dependencies that are associated to an event name, and also build a library of reusable behaviours
(the Event/goals pairs). SCALA automatically interprets them and generate the code of the simulation. Only
the real contents of the tasks have to be implemented for each application, the mechanisms providing the
strategies of cooperation lie on the information entered by the designer through the steps of the methodology.
In SCALA, the reasoning part (including coordination between agents) is entirely independent of the basic
behaviours.

The activities' scheduler

Another tool to monitor the mission is a scheduler diagram that represents the activities of the agents. On this
diagram can be seen the multi-agent behaviour: the evolution of the simulation, the coordination between
agents, the arrival of new events.

5. Perspectives

This first approach in SCALA encounters certain limits: the lack of temporal aspects necessary to meet the
simulation requirements. Those limits could be critical factors. In addition, we are interested to explore
reactive planning in order to manage the environment dynamic (arrival of new goals or events). Consequently,
SCALA is extended to take into account time constraints when new events occur. It is also a critical factor
when agents have to hold temporal objectives. Furthermore, it is obvious that the behaviour of a group of
agent will depend on the available time they have to react.

One of the domains of application of SCALA is tactical aircraft simulation. This domain is characterised by a
highly dynamic (unpredictable) and uncertain environment, that implies for the agents to plan reactively when
new events occur and sometimes to reorganise themselves. But, the agents have also to respect time
constraints in the execution of their tasks and so, the reorganisation and coordination of their activities have to
take into account this constraints. Thus the work in progress attempts to extend the graph of dependencies by
the notion of time in the tasks, and time constraints on the goals of the agents. These constraints can be
assimilated to temporal objectives that are critical factors to achieve successfully the mission. Our approach is
real-time execution driven.

6. Conclusion

Through the experience of the use of JACK and the development of SCALA, we have seen that the agent-
oriented programming fits to the development of complex system evolving in dynamic environments. The
high level of abstraction of the agent approach makes easier the modelling of complex systems, especially the
modelling of distributed applications, where the entities (the agents) have to perform tasks autonomously and
to interact with others. The designer can focus on sophisticated mechanisms such as coordination and
cooperation between the components of the system without getting tangled up in the development of
communications for messages sending, or other low-level developments such as multi-threads, etc.

Furthermore this approach allows to easily separating reasoning from actions, and so improves the reusability
of the implemented behaviours. In the case of aerial missions simulations, the advantage of such programming
is to make reasoning and physical models completely independent. It makes simpler the addition of new
behaviours and introduces flexibility in the system. New events can easily be taken into account and managed
by the system. These aspects are very interesting for designing systems submerged in a real world (in
simulation or in reality), when flexibility, reactivity and adaptation are crucial (responses of new events).
Interactivity with human users of the system is also facilitated.

SCALA project proposes a functional approach to design complex systems and provides a tool to rapidly
setting up simulations. The designer has to model the global behaviour of the system as a graph supporting
functional constraints. The connectors represented in the graph of dependencies of SCALA enable an easier
coordination and organisation of the agents driven by their activities. Another important contribution in the
design of complex systems is the fact that different behaviours can be easily obtained by only modifying the
links and connectors in the graph of dependencies of SCALA and simulated without new compilations. New
behaviours are thus specified at a high-level of modelling and then directly interpreted by SCALA to generate
the code of the related simulation.

An interesting application of our work is the domain of tactical aircraft simulation, to rapidly prototype
tactical behaviours of well-known aircraft or new ones.

Acknowledgements

The author would like to thank Frédéric MARC who works on the related project in the frameworks on his
PhD. on Computer Science at LIPN (Laboratory of Computer Science of PARIS 13) and Dassault-Aviation.

References

[BRIOT 01] BRIOT J.-P., DEMAZEAU Y., "Principes et architectures des syst¢emes multi-agent", Edited by
Hermes, pp. 17-70, 2001.

[HOW 01] HOWDEN N., RONNQUIST R., HODGSON A. and LUCAS A., "JACK Intelligent Agents™
Summary of an Agent Infrastructure”, 5" Conference on Autonomous Agent, 2001.

[JAR 01] JARVIS J., MAISANO P, "Jack Intelligent AgentSTM User Guide", Release 3.1, Agent Oriented
Software Pty. Ltd, Mars 2001.

[JEN 98] JENNINGS N. R.,WOOLDRIDGE M., SYCARA K., "A roadmap of agent research and
development", Int. Journal of Autonomous Agents and Multi-Agent Systems, vol. 1, n°1, pp. 7-38, 1998.

[RAO 95] RAO A. S., GEORGEFF M. P., "Modeling rational agents within a BDI architecture", In J. Allen,
R. Fikes, and E. Sandewall, editors, Proceedings of the Second International Conference on Principles of
Knowledge Representation and Reasoning, pp. 473-484. Morgan Kaufman Publishers, San Mateo, 1991.

[TID 98] TIDHAR G., HEINZE C., SELVESTREL M., "Flying Together: Modelling Air Mission Teams",
Applied intelligence, vol. 8, pp. 195-218, 1998.

[WOO 95] WOOLDRIDGE M., JENNINGS N. R., "Intelligent Agents: Theory and practise”, The Knowledge
Engineering Review, 10(2):115-152, 1995.

[WOO 99] WOOLDRIDGE M., "Intelligent Agents", In Multiagent System: A Modern Approach to
Distributed Artificial Intelligence, Edited by WEISS G., pp. 27-77, 1999.

This page has been deliberately left blank

Page intentionnellement blanche

	Table of Contents
	Table of Contents

