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ABSTRACT

One method for accurately georegistering a video sequence from an airborne
platform is to transform the video to the same coordinate system as some
reference imagery that is already georeferenced. This transformation will be
dependent upon the 3D structure within the scene, which is not known a priori.
The current report examines several aspects of the construction of a 3D model
from a video sequence, which may then be used for registration. The topics
examined include: extraction of useful features (points, lines, or planes) from
the images, determination of a sparse 3D model and camera motion model in
cases where data may be missing, a method for estimating the depth at every
pixel within a video frame, and finally an analysis of the errors at each step of
the model construction process.
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Automatic extraction of 3D models from an airborne video
sequence

EXECUTIVE SUMMARY

Information from airborne video can only be exploited when the scene imaged by
the sensor can be associated with a point on the ground. While the video stream may
contain embedded metadata, providing information such as platform position and camera
orientation, this is sufficient to give only a crude geolocation for the imagery. More precise
positioning can be obtained by matching the video imagery against an image (such as from
an aerial survey) which has already been accurately georeferenced. Automatic matching
is hampered due to the fact that the video and the image were likely taken from different
camera positions.

Most existing image registration algorithms assume that the two images to be registered
differ by a simple linear, quadratic, or perspective transformation. Images taken from
different perspectives will also have a dependence on the depth of the scene, which is not
easily parameterised. One method for dealing with this is to automatically construct a 3D
model from the video data, and then reproject it as it would be seen from point of view of
the reference image. This would leave only a simple translation between the images. The
current report describes new and existing methods which may be used for the automatic
extraction of a 3D model from airborne video imagery. An overview of the system, which
uses such a model for the georegistration of video imagery, is the subject of a separate
report [8].

There are three key steps to the construction of a 3D model, as described in this
report. The first is the detection and tracking of features through the video sequence.
Corner detectors have mostly been described previously in DSTO-TR-1759, so this report
has some additional information on a few corner detectors not previously tested, and a
short section on line detection.

The second step in constructing a 3D model is to estimate the camera pose for each
frame and the 3D positions of each of the tracked features. When all points are successfully
tracked over all frames, the factorisation method can be used to estimate all of the required
parameters. This report considers several methods for dealing with the more realistic
case where large amounts of data are missing. The most successful of these seems to
use a robust modification of Tomasi and Kanade’s hallucination algorithm, followed by
iterations of Shum’s method. A factorisation method based on tracked lines, instead of
tracked points, is also mentioned.

The output of the second step is a sparse 3D model. To successfully model the entire
scene, the depth if the scene at each image pixel is required. This report considers several
approaches including segmenting the corner points into facets, and stereo dense matching
algorithms. Dense matching using graph-cuts was by far the most successful of the tested
techniques and produces a model which is expected to be useful for any subsequent 2D
image registration step.

Following the descriptions of how to obtain a 3D model from a video sequence, this
report also describes a framework for quantifying the errors in the construction of the
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model. Simulations of this framework using real airborne video imagery indicate that the
resulting error estimates will be similar to the actual errors.
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1 Introduction

There are a number of difficulties involved in fusing the information from different
sources of imagery. Omne of the major difficulties is in determining which pixel in one
image corresponds to that in the other, or the registration problem. There are a number
of confounding factors such as variations in sensor type and environments, which are mostly
cosmetic factors which do not structurally affect the images. A more difficult problem to
overcome is due to the structure of the scene appearing different due to a difference in
viewpoint of the two platforms. An overview of a system for registering imagery taken
from airborne video against some reference imagery is described by [8]. One of the key
steps of this system is to recover a 3D model of a scene from the video sequence taken
using a moving camera, the structure from motion problem. This report provides more
thorough technical information on some of the steps required to accomplish this, along
with details of alternative methods that have also been considered as a part of this process.

Structure from motion problems have been studied for some time, and the established
methods of solution usually consist of four major steps. The first step is to extract useful
features (points, lines, or planes) from each of the images. Then, each of the features is
tracked throughout the image sequence. Following this, a 3D model and camera motion
model are determined which are consistent with the measured feature positions. Finally,
high level information about the scene (such as the general structure of buildings usually
consisting of plane facets intersecting perpendicularly) is used to refine the model.

Section 2 deals with the first step of the structure from motion process, which is the
detection of features. Detection and tracking corner points were addressed in a previous
report [7], and so have not been covered in depth here. This section gives a quick overview
of the phase congruency detector which was not tested in the previous report. It then
goes on to describe the detection of linear features in the image, and methods for jointly
detecting lines and the points corresponding to the intersection of lines.

From a set of detected and tracked features, it is then required to find the combination
of structure and motion which would be consistent with these measurements. Section 3
describes a number of methods for determining the structure and motion using various
camera models (such as orthographic or perspective) from measurements taken of both
points and lines. Methods for dealing with obscuration and loss of track of features have
also been discussed.

The output of the previous step is a collection of geometric primitives (mostly points
and lines) scattered throughout 3D space. The final step involves interpretation of these
points under the assumption that the object being imaged is a building, or some other
man-made structure. This involves the arrangement of the points and lines into higher
order structures such as planes. This data can then be used to extract textures from the
image and reconstruct views of the scene from camera angles not available in the original
video sequence. All of these topics have been discussed in Section 4 on post-processing.

The final step, 2D registration, is not examined in any detail in this report. It is
touched upon in Section 6, however, which describes a framework in which errors in the
entire video registration process may be automatically estimated. Some conclusions and
recommendations for future work are then summarised in Section 7.
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2 Feature detection

The first step in the processing of the video data is to register between consecutive
frames in the video sequence. The most common way for accomplishing this is feature
detection, where a set of prominent objects are detected in one frame, and matched to
similar looking objects in the next frame. This correspondence will eventually allow 3D
information about the detected objects and camera positions to be extracted.

The types of features detected may also influence the amount of understanding of
the scene. For instance, corner points and edges can indicate the positions of the joins
between two planar facets of a scene, and the identification of planar regions can give the
approximate topology of a scene without even any additional information from other video
frames. Accurate detection of any of these features could theoretically allow wire-frame
models of the scene to be constructed without the necessity for dense matching methods.
Some methods for attempting this are discussed in Section 4. The combination of the
detection methods, and the subsequent post-processing stages have, so far, been of limited
success.

This section describes three types of feature detection. The first is the detection of
corners using the phase congruency detector. A more comprehensive review of other corner
detection methods is described in another report [7]. The second subsection describes the
detection of linear features, and the last subsection describes a method which jointly
detects corners and lines.

2.1 Phase congruency corner detection

The phase congruency detector, described by Kovesi [18], is related to the local energy
detector presented in a previous report [7]. The local one dimensional energy of a point
in an image is given by

F(z,y,00,0) = \/(Geven(‘POa o) * [)2(x,y) + (Goda(po, o) * f)?(x,y)

where Geyen, and Gogq are filters for detecting intensity peaks and edges respectively, g is
an edge orientation and o is a scale parameter. This local energy emphasises step edges,
as well as lines in the image. Venkatesh and Owens [37], have apparently shown that the
local energy can be expressed as

F=P(z,y) Y Ay

n

where the A,, are the amplitudes of the image frequency spectrum and P is the phase
congruency, which is a measure of the consistency of the phase of the Fourier components
of the image at a given point, as given by the equation

Zn An COS(¢n(£7 y) B ¢0)> ]

P(z,y) = max ( s

%0
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where ¢,, is the phase of the nth frequency at the point (z,y). The phase congruency is
a number between zero and one, and will be a measure of the edginess at a point in the
image, which is invariant to intensity scaling. This invariance however also means that it
is very sensitive to image noise. It also produces an artificially high estimate for the phase
congruency when there is only one frequency present. To get around these difficulties,
Kovesi suggested a modified phase congruency given by

Py(z,y) = W(z,y) néax <

0

> max(Ay cos(on(z,y) — ¢o) — T, 0))
> An '

which includes a factor W (z, y) measuring the spread of frequency components, and ignores
those image components below a threshold T' corresponding to the image noise, which can
be automatically estimated from the image.

Like the local energy, the phase congruency can be calculated for a number of ori-
entations. The variation of the phase congruency with angle provides information about
the type and orientation of the feature. In Kovesi’s follow-up paper [19], this variation is
described by second order moments

Myy = Z(Pg(l‘,y,go)COS(gD))Q,

P

Ma:y = Z 2PZ2 (I, Y, (P) COS(QO) sin(gp),
P

Myy = Z(PQ (l‘, Y, 90) Sin(@))z'

From these, the two principal moments and their orientations can be determined. A
corner point may be expected to be edge-like (i.e. have high phase congruency) in more
than one direction, so the smallest of the principal moments may be used as a measure
of the cornerness of a particular point within the image. Similarly, the larger principal
moment would measure how edge-like the point was.

To test the performance of this corner detector, it was applied to 51 frames from an
infra-red video sequence of an aircraft control tower at Parafield, in South Australia, taken
from an airborne MX20 infrared sensor. A set of ground-truth corners were marked for
each of the 51 frames of size 700 x 480, and ROC curves were constructed to measure
the detection characteristics, as described in a previous report [7]. Figure 1 compares
the performance of the phase congruency corner detector with five of the best performing
detectors from previous tests. For the tests, Kovesi’s own MATLAB code was used with
the default parameters. The results show that this method is competitive with the other
good detectors, although it is not consistently better (or worse) than any of the other
detectors in this graph.
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Comparison of performance of the best detectors

0.8

0.7+

0.6~

05

Probability of detection

0.3r-

0.2F K = Standard Harris
= = Local energy based Harris
= Generalised Hough transform
0.1 .:” Covariance tracking based
v 111 Invariant Noble (GA trained)

& Kovesi phase congruency

4 1 1 1 T T |

00 1 2 3 4 5 6

4

Number of false alarms x 10

Figure 1: Comparison of performance of corner detectors

2.2 The FAST corner detector

Another set of corner detectors evaluated here are based on the FAST detector [24],
which has received attention due to its combination of speed and performance. The FAST
detector is listed as a “key corner detector” in a recent comprehensive review of local
features [20].

FAST classifies a central pixel based on a ring (3 pixels radius, 1 pixel wide) of pixels
surrounding it. If there is a consecutive set of N pixels, either larger than or less than the
central pixel intensity by some threshold T, then the central pixel is labelled as a corner.
The original FAST detector [23] used N = 12 and relied on a small manually chosen set
of comparisons to classify corners very quickly, while other values of N relied on a slower
test. In a later paper [24], this was generalised to other values of N by using entropy based
methods to construct a decision tree, followed by evaluating the code on a training image
to prune comparisons that were not needed. The resulting FAST-N detectors classified
in a similar way to the original formulation, but required significantly fewer comparisons.
Using the repeatability of detected corners as a measure of performance, it was found that
FAST-9 was the best of these detectors.

A third, as yet unpublished, paper [25] extends these results further with the FASTER
detector, where the ER stands for Enhanced Repeatability. This is a modification of the
FAST-N detector, where the ring of outer pixels is thickened, and the particular set of
comparisons is determined using simulated annealing to optimise a performance measure
over some training images. The measure to be optimised is a combination of the number
of points detected, the repeatability, and the complexity of the decision tree.

The standard implementation of FAST methods uses a fixed threshold T, and pro-
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ROC curves comparing FAST corner detectors
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Figure 2: Comparison of FAST corner detectors

duces a binary classification at each point. This can be converted into a corner strength
measurement by finding the maximum value of T which still results in a detection at that
point, although this obviously reduces the algorithms’ computational efficiency. Using this
approach, the performance of the above corner detectors was evaluated on the Parafield
airport data set, and the results are shown in Figure 2. The FAST-9 detector was found to
be better than the original FAST in terms of repeatability, and this is also true in terms of
detection performance for the Parafield data. In fact FAST-9, as implemented here with-
out pruning, is the only detector, out of all those tested on this data, that has consistently
performed better than the Harris detector for the entire ROC. For the FASTER algo-
rithm, two different implementations (corresponding to different runs from the simulated
annealing algorithm) were supplied by Edward Rosten. While these implementations were
found to give better repeatability than FAST-9, the repeated points were not necessarily
corner points, and for this data the detection performance was actually reduced.

2.3 Line detection

The previous subsection described several methods for the detection of corners within
an image. These can be tracked between frames to provide 3D information on a set of
points which are relatively useful in describing the scene. Detection of corner points,
compared with other stable points, appears to be fairly difficult. This is largely due to
most characterisations of a corner being on a local scale, where it is relatively likely for
pixels to appear like corners by chance. To reduce this effect, it is necessary to consider
more extended information using features such as lines. This subsection briefly compares
several simple methods for detecting lines. The use of lines for extracting a 3D model of
a scene is described in Subsection 3.4.
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2.3.1 Hough transform detectors

The most frequently used methods for the detection of lines in images utilise the Hough
(or Radon) transform. This transform represents a line in image space, parameterised
by (z,y) = (pcosf + tsinb, psinf — tcos ) for varying ¢, as a single point (p,0). The
detection of bright or dark lines in an image is therefore equivalent to finding maxima or
minima in Hough space. Frequently, however, linear structures in the image are not bright
or dark lines, but edges. The detection of these edges is usually accomplished by edge
enhancement, followed by a Hough transform to detect lines in the resulting edge image.
This approach does not differentiate between edges that are parallel or perpendicular to
a considered edge. A more discriminating approach therefore would be to apply a 1D
edge filter in the p direction to the Hough transform of the original image. This detector,
using the Radial Derivative of the Radon Transform (RDRT) has been successfully used
to find faint trails in SAR imagery [6]. However, application of the same method to
optical imagery failed due to false lines being generated from very short, bright and sharp
edges. Two alternative approaches to RDRT for edge detection in optical imagery are now
described.

Both of the methods suggested here are based on a new Hough measure. Firstly, binary
edge images I/, and I, are calculated in the x and y directions, based on an appropriately
chosen edge threshold T'. The threshold could be automatically selected for each image to
keep some small fixed percentage of pixels. A combined Hough measure is calculated

Htotal (pv 9) = COSQ (Q)Hx(pa 0) + SiHQ(Q)Hy(p, 9)7

where H, and H, are the Hough transforms of the individual edge images. The resulting
measure is similar to the RDRT in that it only considers the edge strength perpendicular
to the considered line segment. Due to the binarisation of the edge images, it is largely
independent of the actual edge strength. The resulting Hough transform is effectively a
measure of the number of edge pixels lying on each line.

Method 1: For a notional line to be classified as part of an actual image line, it must
be statistically different from randomly distributed pixels. The probability of any random
point containing an edge point can be measured, and the number of points on the line
will be binomially distributed (or approximately normal for sufficiently many points).
Therefore a statistical hypothesis test may be applied to detect lines. The strength of the
test chosen is another parameter of the test, but should be relatively independent of the
imagery type.

Having detected one edge, it is not unlikely that others may also be present. These
edges may be drowned out by the presence of the dominant line, so its effect is removed
by zeroing the edge pixels corresponding to the detected line. The hypothesis testing is
repeated until no more lines are detected.

In optical imagery, line segments of interest will usually not span the image, and will
not be of an even size. Therefore, the detection is conducted on overlapping tiles of the
image for a fixed sized window. This process is then repeated for a number of different
scales. Such a multiscale approach had also been considered in the RDRT method, with
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Figure 3: Detection of lines using two Hough transform approaches

some arbitrary factors used to modify the thresholds at the different scales. This is not a
problem in the current method, as the same statistical significance of the test can be used
at all scales.

Method 2: Instead of assessing the scene at multiple scales, it is possible to iteratively
detect the strongest N lines present in the image directly from the Hough transform for
the entire image. The segment of the line which corresponds to the edge of interest can
then be determined by extracting all of the edge pixels in order along the current dominant
line, and applying a median filter to fill in any gaps in the edge. The longest consecutive
run of edge pixels localises the extent of the current detection. These edge pixels are then
removed from the edge image, the Hough transform recalculated (for speed, this is only
done for the small region about the previous detection), and then the process repeated
until the quota of lines has been met.

Figure 3 shows the results from the multiscale Hough transform, and iterative detection
approaches being applied to an image of Parafield airport control tower. In both cases,
the edge threshold was set to 4, and for the iterated detection, the strongest 100 lines were
detected. The first method results might have been improved by using the edge localisation
technique from the second method to limit the detected lines, instead of assuming the line
spanned the entire width of the window. This is especially true at the top of the control
tower.

2.3.2 Burns’ detector

An often used alternative to Hough transform methods for lines detection is the method
of Burns, Hansen and Riseman [4]. This method first finds the set of pixels having an edge
strength higher than some threshold. The orientation of the edge at each point is also
determined. Neighbouring edge pixels that fall into the same orientation quantisation bin
are likely to correspond to the same edge, so they are collected together to form connected
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Figure 4: Detection of lines using Burns’ method

edge curves. Edge curves below a certain size are discarded, and straight lines are fit to the
remaining segments. The end-points of the lines are taken to correspond to the bounding-
box of each of the segmented regions. Figure 4 shows the result of applying the Burns’ line
detector to the Parafield control tower image. The detected lines appear very similar to
those produced by the iterated detection Hough method from the previous subsubsection.
The effect of the parameters (minimum segment size and edge threshold) for the Burns
method, however, seems to have a larger effect on the resulting detections, making tuning
the parameters for a given image more difficult. The first Hough transform method only
has one parameter to be chosen, and for this image appears relatively insensitive to that.
Both Hough methods require significantly more computation than Burns’ method.

2.4 Joint point/line detection

When only local information about a point is available, it is difficult to robustly detect
corners because random variation within the imagery will also produce corner like struc-
tures. The corner points that are of most interest, however, will generally correspond to
the intersection of building edges, at least two of which will be visible in the image. By
detecting lines corresponding to edges concurrently with corner points, it is hoped that
many of the fake corner points will be removed.

An initial implementation which attempts to jointly detect points and lines in an image
is described below:

e Get initial corner points: The corner points are initialised using a standard
detector.

e Get initial line segments: It is assumed that each corner belongs to two or more
line segments, connected to other corners. Therefore, for every corner ¢, the line
to its neighbour j € N; is examined. The edge strength between the corners is
calculated perpendicular to the line, and the average fraction of edge pixels stronger
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than some threshold is taken as the line strength. Each corner point, is assigned two
line segments to neighbouring points, corresponding to the strongest of these lines.

e Iteration: The following is repeated until convergence.

— Update corner positions: By examining the profile of each corner’s con-
necting line segments, it is determined which direction will produce the largest
increase in the strength of its two edges. The corner is then moved one pixel in
this direction.

— Update neighbourhood: All of the feature’s neighbours are re-evaluated to
determine if a stronger edge exists.

— Feature removal: If a point has, mutual links to its neighbours that are in
roughly opposite directions, and have no other line segments to them, then they
are likely to be edge pixels rather than corner points. These are removed, with
the two line segments being merged into a single edge. Similarly, if the segments
from a point are in almost the same direction, one of them is removed, and a
segment to the next strongest neighbour is added.

e Display result: The corner points are plotted, along with all associated line seg-
ments that are above a specified threshold.

Figure 5 shows the result of the above algorithm (with a fairly strict definition of
collinearity) applied to the Parafield airport image. The first image shows the distribution
of the strongest 794 corner pixels, as produced by the Shi-Tomasi detector. The distribu-
tion of features is initially quite haphazard, but after convergence most of the unimportant
areas no longer contain features, and most of the principal lines have been captured to
some extent. Although the initial positions of the features were corners by some measure,
most of the detections have drifted towards lines, which are still probably more corner-like
than some of the original detections.

After 100 iterations of joint point/line detection

100 200 300 400 500 600 700 100 200 300 400 500 600 700

Figure 5: Corner points and associated lines before, and after joint point/line detection
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3 Models for extracting structure and motion

If the same features of an object can be located in every image in a sequence, and a
three-dimensional reconstruction is needed, there are many ways to approach the problem.
A relatively simple group of algorithms for solving these problems is collectively referred
to as factorisation methods. These rely on simplifications of the geometric model of the
problem which allow a set of measurements, arranged into a measurement matrix, to be
decomposed into structure and motion components using a singular value decomposition.
Subsection 3.1 describes the rank 3 factorisation method of Tomasi and Kanade [31] for
solving the structure from motion problem using a scaled orthographic camera model.
This subsection sets up the notation and describes the camera models required for the
following subsections. A more thorough examination of factorisation methods and their
application to more complicated camera models can be found in another report [38].

Factorisation methods require that a set of features have been accurately tracked over
the entire image frame. This assumption is usually false due to obscuration of features and
tracker error. In order to still be able to use factorisation methods with this data, a set of
methods were developed to fill in missing measurements by “hallucinating” or “imputing”
them prior to factorisation. A number of such hallucination algorithms and other methods
for dealing with missing data have been described in Subsection 3.2. This subsection also
provides some numerical comparisons of these methods applied to a standard video data
set. Some related methods are required to be used in cases where a feature is temporarily
obscured, and the tracker picks it up again later as a new and separate track. In this
example, the two tracks should be joined, and a way of automatically accomplishing this
joining is described in Subsection 3.3. Finally, Subsection 3.4 briefly discusses a method
for solving the structure from motion problem where linear features have been tracked,
instead of points.

3.1 Factorisation

Given a set of features (either points, or lines) extracted from a video sequence, in-
formation about the relative position of the camera for each frame, as well as the 3D
positions of the features, can be determined. The method used to estimate these param-
eters will depend on the camera model. Many are available but, to reduce sensitivity to
measurement errors, it is suggested that the simplest model consistent with the data be
used. For modelling structures from airborne video, the scene being imaged will generally
be small compared to the distance from the camera, which means that perspective effects
(such as parallel lines meeting at a vanishing point) will not be significant, and a scaled
orthographic model can be used.

The scaled orthographic model was popularised by Kanade and Tomasi’s rank 3 fac-
torisation algorithm [31] for simultaneously obtaining the camera parameters and the 3D
positions of the tracked points. This method is now described. The scaled orthographic
model describes a set of n point measurements which are tracked over a set of m frames,
and can be represented by a measurement matrix M given by
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where (z;(t),yi(t)) are the coordinates of the ith feature point in the ¢th image. The
matrices R, S, T correspond to the camera, structure and translation matrices. When
all of the entries within the measurement matrix are known, the translation matrix T
(corresponding to the ¢, ,,(t) elements within the expanded matrix) may be removed by
subtracting the centre of mass of the features within each frame. The measurement matrix
M will then have a rank of three. The scaled orthographic assumption implies that the
camera matrix R have its rows [ry,(t), ry(t) ... ,722(t)] and [ry(t), ry,(t) ... .7y (t)] be
orthogonal and of equal length for each frame ¢.

In practice, the measurement matrix will not be known exactly, due to measurement
error. Instead, an estimate M is available, from which the camera and structure matrices
must be determined. The matrix can be written as a Singular Value Decomposition (SVD)
M = UDV7 where U and V are orthogonal matrices and D is a diagonal matrix of singular
values. Assuming the estimated matrix is close to the actual measurement matrix, then
only the first three singular values will be of any significance. Zeroing out the remaining
values to give D’ gives the rank 3 matrix which is closest to the estimated matrix in a least
squares sense. The camera and structure matrices will then correspond to R = UD'Y/2
and S = D'1/2VT,

The parameters T were found using the centre of mass of the corner points, and R and
S which best satisfy equation (1) have been estimated using the SVD. These solutions,
however, are not unique since

M=RS+T=RA1A(S+B)+T-RB

for any invertible matrix A and translation matrix B. In addition to this, the rows of
the camera matrix R do not satisfy the orthogonality requirements. The matrix A can
be chosen to satisfy this constraint, but there still remain ambiguities in the solution,
including an arbitrary rotation, scaling, flipping and translation of the camera and 3D

11
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structure. These ambiguities cannot be resolved without the availability of additional
data.

3.2 Dealing with missing measurements

For a scaled orthographic camera model, the measured positions of the corner points
in each frame will be related to their actual positions in 3D by the relation

M=RS+T

where R is a 2m x 3 sized camera matrix, S is a 3 x n sized structure matrix, and 7T is
a matrix of the translations for each image frame, each value filling a row. In the ideal
case, probably the best method for determining the unknown parameters R,S and 1" is to
use Kanade and Tomasi’s rank 3 factorisation algorithm [31], as described in the previous
subsection. In practical problems, however, many features are not detected in some views.
This could be due to either imperfections in the feature detection and tracking or the
feature becoming occluded. Only using measurements that have been tracked through all
frames severely limits the amount of usable data, and can result in gross errors in the
estimation of the model parameters. Several methods for estimating R,.S and T" when the
measurement matrix M contains missing data are now considered.

3.2.1 Tomasi and Kanade’s algorithm

A number of approaches have been proposed to handle the case where some elements
of the matrix of observations M have missing values. Tomasi and Kanade’s refer to their
original approach for dealing with occlusions as a “hallucination” algorithm. This was
described in an early 1992 Carnegie Mellon University report [33]. It assumed that a
core sub-matrix , of size at least 6 x 3 was available for which all data was known, and
factorisation was used to estimate camera parameters and structures for this subset of
frames and points. If another frame contains more than three features in common with
this submatrix, then

|: MSUb :| - Rsub |: Ssub :| + Te:cta

Mpew—rows Tnew— frame

where T¢;; contains another of the repeated columns, and only 7y —frame is unknown.
This is now an over-determined linear set of equations for the new measurements in
Mpew—row, dd so linear least squares may be used to estimate the 3D position of the
new camera parameters, 7ey— frame; and therefore the missing elements in myew—rows to
give a new and larger filled sub-matrix. A similar process may be used to estimate the
3D coordinates of a new point appearing in at least two of the frames whose camera pa-
rameters are known. Therefore, the measurement sub-matrix may be grown by one row
or column at a time until the matrix is filled.

The propagation of errors through the hallucination process will vary depending on
the choice of initial sub-matrix, and the order in which rows and columns are added.
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Tomasi and Kanade suggest that this should not make much difference although they do
use a greedy method to choose the column or row with the greatest number of existing
measurements at each update. They also suggest that the result should be used to initialise
a steepest descent method for minimising the error between the measurements and values
predicted from the model parameters.

3.2.2 Jacobs’ method

Another frequently considered method for obtaining an initial estimate of the low-rank
factorisation of a matrix is presented by Jacobs [16]. For the structure from motion case,
he considers all pairs of image frames which have k > 4 tracked points in common. For
each pair, a submatrix of filled values using these frames is then extracted. Since the
original measurement matrix can be expressed as

M=RS+T=[R T| m

the 5 x k matrix consisting of the filled sub-matrix, with an added row of ones, will
remain rank 4. After an SVD, the last & — 4 columns of the resulting matrix will be
the null-space n; for the ith pair of image frames. Evidently, the full null-space for the
complete measurement matrix has rank n—4, but due to the missing data, the only vectors
guaranteed to lie in the null-space n; are the ones which have zeros corresponding to the
missing entries.

Once the null spaces n; have been determined for each image pair, they are then
averaged in a sense by combining them into a large matrix N. Since all of the null-spaces
should be orthogonal to the principal values that are of interest, the principal values should
lie in the null-space of the array of null-spaces. Therefore, by applying factorisation to
N, and selecting the three least eigenvalues, the structure matrix S of the original matrix
with missing data can be determined. The camera poses R and translation 7" may then
be determined by a least squares fit to the original measurement data.

3.2.3 Shum’s method

Another method that is frequently used for refining the factors of a matrix with miss-
ing data was given by Shum et al. [30]. The idea here is to iteratively solve for the
camera matrix and translations assuming the structure is correct and then for the struc-
ture assuming that the camera poses are correct. These problems are linear, and only
the measurements in a given frame are dependent on the parameters of the frame. This
means that each iteration can be solved using a large number of small least squares prob-
lems to estimate the structure of each point and the camera parameters of each frame
independently. The greatest difference between this method and iterative factorisation is
that none of the hallucinated data is used in the estimation process. Instead, each of the
measurements is assigned a unit weight if it is present, a zero weight otherwise, and then
the least squares problem is solved for a weighted error. In theory, if it is known that some
of the measurements were more accurate than others, different weights could be used for
these points, but this is not generally used in practice.

13
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3.2.4 Troyanskaya’s method

Structure from motion is not the only application for which it is necessary to deal
with missing measurement data. Troyanskaya et. al. [35] for instance considered missing
values in a DNA micro-array. They considered two methods: a nearest neighbour and
an SVD based imputation method. The nearest neighbour method worked by finding a
measure of closeness between a row with missing data and other rows containing values in
the same columns. The missing data was then imputed by taking a weighted average of
results from the rows or columns for which the data is known. This type of imputation is
not suitable for structure from motion, due to the structure of the missing data, amongst
other reasons.

The second imputation method was an iterative update scheme. Here, a number of
principal rows or columns of the initial matrix are extracted using an SVD. Troyanskaya
et al. suggest about 15 for processing micro-arrays, but it makes sense that the dominant
4 vectors (as used by Chen and Suter [5]) or 3 plus a vector of ones be considered for
structure from motion, where the rank of the true matrix is known. The known data
can be expressed as a linear combination of the principal vectors which can be used for
estimating the missing data.

When 4 vectors are used, the above approach is equivalent to applying factorisation to
the initial estimate to obtain R,S,T and using this to update the missing entries in the
measurement matrix. The process is continued until the solution converges. Chen and
Suter [5] criticised this method because although it always converged, it would frequently
not converge to the correct result. This has been confirmed using a MATLAB implemen-
tation of the algorithm with a set of simulations of tracked points from a cylinder, where
the tracks were initialised and lost according to a Markov probability model. In fact, using
this data, a number of the cases converged to wildly incorrect predictions for the missing
data even though the initial predictions were chosen to be very close to the true values.
Increasing the number of singular values used does not appear to add any stability to the
procedure.

3.2.5 Dealing with outliers

While the previous methods have attempted to make estimation of parameters from
the measurement matrix robust to noise, Huynh et al. [15] have tackled this from a
different angle by reducing the weighting assigned to noisy measurements. This is done by
updating the measurement matrix so that points further than expected from the current
model are moved towards the estimated measurement matrix, and then the process is
repeated. Although Huynh et al. only considered the case where the measurement matrix
was complete, there is no reason the method could not also be applied when there is missing
data. A similar outlier removal method has been applied as a part of the simulations below.

3.2.6 Comparison of methods

This subsection describes the results of some experiments with the standard dinosaur
data set [11] available at http://www.robots.ox.ac.uk/~ vgg/data . Here, a video sequence
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of 36 frames was taken of a toy dinosaur mounted on a turntable, which undergoes a full
rotation over the course of the sequence. Harris corner points were then detected and
tracked between frames, but due to the nature of the sequence there are many occlusions,
and only about ten percent of the measurement matrix is filled. Figure 6 shows a picture of
one frame of the dinosaur sequence, along with trajectories of the tracked points. Although
a scaled orthographic camera model may not be strictly correct for this case, since the
camera is relatively close to the model, it seems to be sufficiently accurate for a reasonable
solution to be obtained. Although the actual coordinates of the individual points are
not known, it is known that each of the points is moving in a circle, and so the feature
measurements should lie on an ellipse.

The test on the dinosaur images measures the performance of various factorisation
algorithms when some data is missing. Prior to applying the algorithms, those points
that were only tracked into three or fewer separate frames were removed, leaving 1516
tracked points from the original 4983. Various methods and combinations of methods for
determining the factors of the matrix were then applied to the data. The fit to the available
measurements were summarised by two numbers: the root mean squared (RMS) error
between the actual measurements and the reprojected model, and the median absolute
error (MAE). The fit to the missing data can also be estimated by observing the trajectory
of a point over the entire sequence, to see how far it deviates from a complete ellipse. In
this case, the comparison was made for the feature point with the longest track, which
appeared in 21 of the 36 frames.

Table 1 and Figure 7 compare the performance of the algorithms mentioned previously.
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Figure 6: Frame 1 of the dinosaur sequence, and the trajectories of tracked points.
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Method RMS error | MAE

Jacobs 9.11 2.94

Tomasi and Kanade 5.90 1.40
Steepest descent 3.46 0.97
Iterated factorisation 2.08 0.45
Iterated least squares 2.07 0.45
Shum’s method (160 iterations) 1.56 0.31
Shum’s method (1000 iterations) 1.54 0.31

Table 1: Comparison of measured and reprojected errors for some factorisation methods

The numbers in the table are obtained by examining the difference between the reprojec-
tions of the models produced by each algorithm, and the original measurements for each
track and frame of the sequence. The figure plots the measurements and reprojections for
an individual point that has been tracked over roughly half of the image frames.

For the implementation of Jacobs method, only successive frames were used to produce
the null-space matrix, otherwise the matrix was too large to factorise in MATLAB. While
Jacobs method seems to work well for small matrices, it requires the factorisation of
matrices much larger than the original, which makes it unsuitable for large amounts of
data. The Tomasi and Kanade algorithms were used as starting points for the remaining
algorithms. Iterated factorisation and least squares are only slightly different in effect, and
in this case returned almost identical results with the latter method being much faster.

Comparison of trajectories of point 684
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Figure 7: Trajectories of the missing data from a tracked point using several methods.
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Shum’s method worked best of those tested. There was still a significant change in the
trajectories between 160 and 1000 iterations (as seen in the figure), despite the fact that
the error decreased only marginally.

Table 2 and Figure 8 test some of the algorithms using an iterative outlier removal
scheme. Here, the algorithm is run and the error between the measurement and reprojected
model are compared. Those measurements with errors more than 4 standard deviations
above the mean are then discarded, and the process repeated. This resulted in a substantial
improvement in the point trajectories, and the MAE in all cases. In several instances the
RMS error increased, which is likely due to the larger difference between the new estimate
and incorrect measurements, which overwhelms the improvement in accuracy on the true
measurements. Shum’s method eventually converged to an almost closed curve, but this
took thousands of iterations.

Method RMS error | MAE | # removed
Tomasi and Kanade 5.26 1.08 104
Steepest descent 3.55 0.88 347
Iterated least squares 2.42 0.26 517
Shum (80 iterations) 2.57 0.21 396
Shum (800 iterations) 2.60 0.19 378

Table 2: Comparison of measured and reprojected errors after outlier removal

Comparison of trajectories of point 684 with outlier removal
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Figure 8: Trajectories of missing data for various methods with outlier removal.
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Table 3 and Figure 9 describe another outlier removal method related to the scheme
in [15]. Basically, instead of using linear least squares with an algorithm, an iterative
weighted least squares can be used to produce a robust estimate (implemented as robustfit
in the MATLAB statistics toolbox). This change has been made to both the Tomasi
and Kanade hallucination algorithm, as well as Shum’s method. Each combination of
robust/non-robust initialisation or refinement is then compared as done previously. In
general, the trajectories from the robust procedures out-performed the non-robust ones.
However, the trajectory for the robust Shen method, when applied to the initial poor
hallucination result, did not converge to a good result despite the low objective error
measure. Instead, it seemed to split the data set into two halves, where there was a good
agreement on the corners tracked in each half individually, but not on points that were in
common to both halves. This suggests that there a small number of measurements that
were important in achieving a correct solution, and these were effectively ignored by the
robust weighting algorithm.

Refinement | Initialisation | RMS error | MAE
None Non-robust 5.26 1.08
None Robust 3.99 0.63

Non-robust | Non-robust 1.56 0.31

Non-robust Robust 1.57 0.30

Robust Non-robust 2.20 0.19
Robust Robust 2.21 0.18

Table 3: Comparison of robust with non-robust initialisation/refinement methods

Using robust or non-robust stages for refining/initialising
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Figure 9: Trajectories of missing data using robust/non-robust estimation.



DSTO-TR~2095

3.3 Track joining

In any given video sequence, there are likely to be some parts of the scene which are
temporarily obscured or missing. Once features in these parts of the scene become visible
again, they may become the start of a new track. To improve the accuracy of the resulting
model, it would be useful to associate the new track with the old one. This has been
implemented in the following naive way:

¢ Hallucinate: Use some sort of hallucination algorithm to fill in all of the missing
elements in the measurement matrix.

e Compare tracks: Each column in the measurement matrix will now correspond to
a different track. Every track should then be compared with every other to determine
whether the two were at any stage measured in the same frame, and whether the
predicted track from one feature was always within some threshold distance of the
measured track of the other sequence. If the second property holds, but not the first,
then the tracks should be joined, and the process repeated until no more consistent
tracks are found.

The above track joining algorithm has been implemented in MATLARB, and applied
to a sequence of tracked points generated using the software package Boujou. A sub-
jective assessment indicated that it joined several of the longer tracks correctly, but no
comprehensive measurements of detection and false match probabilities were made.

3.4 Line based factorisation

The previous factorisation algorithms have concerned measurements of point features.
Quan and Kanade [22] have also extended the use of factorisation to detected line features.
The resulting algorithm, however, is nowhere near as simple as for the line case.

The assumptions used for line based factorisation are as follows:

A group of IV; lines have been measured in each image frame.

e The measurements of the ith line in the ¢th frame are characterised by a direction
u;(t) = (ui(t),vi(t)) and a point on the line a;(¢). The point defined on each line
does not necessarily directly correspond from frame to frame.

The unknown parameters of the ith line are the 3D direction of the line x; and a 3D
translation 1;.

e The camera uses an orthographic projection model.

The first stage in Quan and Kanade’s algorithm is to estimate the camera rotation
matrix and the 3D line directions d; to be consistent with the measured 2D line directions
u;(t). This was solved using only three frames at a time, although how these frames
should be selected from the available frames was not discussed. From the orthographic

19



DSTO-TR-2095

20

assumption, the direction of the ith line in the tth image should satisfy R(t)x; = \;(¢)u;,
so that for three image frames

R u 0 0]]7
R 0 u 0 | = 0.
R// 0 0 u.// _)\”

Since this equation must have a non-trivial solution, then the determinant of the matrix on
the left hand side must be zero. This gives the tensor equation kaulu;ug = (0 where the
measured directions u,u’ and u” are known. There are seven unknowns (plus an overall
scale factor which cannot be determined) in this equation, which means a solution for the
tensor T (which is related to the camera rotation matrices) can be found with data from 7
lines. If all IV; lines are used, the system of equations to be solved becomes overdetermined,
but can still be solved in a least squares sense using an SVD.

Once the tensor T has been obtained, it is still required to find the corresponding
camera rotation matrices R, R’ and R”. There are more degrees of freedom in the camera
matrices than in the tensor T', which means that the camera matrices cannot be uniquely
determined. This problem can be reduced by setting

o 1 0 0 ;a1 payr —az
R_{O 1 0} andR—LQ pas al]'

Quan and Kanade then provide a set of complicated equations relating the unknown pa-
rameters to the tensor T. These provide two possible solutions for the camera matrices.
The paper does not describe how to choose which is the correct solution. Once this is done
however, the camera rotation matrices are still only determined up to an arbitrary projec-
tive transformation. This is because not all of the constraints implied by an orthographic
projection have been applied. Subsection 3.1 described how to enforce the constraint that
the = and y axes in the image plane should also be orthonormal in 3D space, and the same
technique can be used here.

The final step is to find the translations of the lines in 3D so that they are consistent
with the line positions in the images. Having determined the camera rotation matrices,
each line in an image can be extended in the direction of the depth dimension to form an
image plane. The intersection of the three image planes in space should then correspond
to the position of the 3D line.

The above algorithm has been implemented in MATLAB for the Parafield fly-over
sequence used in Section 2. The algorithm didn’t appear to work, so to investigate why,
the simulations given in the Quan and Kanade paper were repeated. The experiment
involved three views of a cube, as shown in the first column of Figure 10. These figures
were extracted from a PDF file of the paper. The end-points of the line segments were
manually marked onto the image, with automatic post-processing (as described in Section
2.4) to align the line segment more closely with the actual edge. The factorisation based
method was then applied to the line measurements. The resulting lines from the pentagon
at the top of the box were then reprojected onto the original images. Since two possible
solutions for the camera matrix are possible, these are shown in the first two diagrams
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Using the first camera matrix solution
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Using the second camera matrix solution
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Figure 10: Numerical results obtained using line based factorisation
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in the second column of Figure 10. The important thing to note from these diagrams is
that the orientations of the reprojected lines seem quite accurate, but the translation is
way off. This indicates that the first part of the algorithm is working as intended, but the
resulting camera matrices are incompatible with the observed line translations.

To test whether the fault with the MATLAB code was the algorithm itself, the camera
matrices were recomputed using a point based factorisation method. These estimates
were then used in the second part of the algorithm to determine the line translations.
The reprojections of the resulting lines from the pentagon are shown in the last diagram
in the second column of Figure 10. This reprojection is much more accurate. Since the
individual components of the line based factorisation appear to be behaving as expected,
it seems as though it is the combined algorithm which is at fault. In summary, line based
factorisation appears to be extremely sensitive to measurement error, despite the results
reported by Quan and Kanade. It is not recommended that linear features be used alone
as part of any factorisation method.

4 Post-processing

The structure from motion stage results in a set of camera poses for each of the image
frames, and a set of points in 3D. When modelling a building, these points and any
connecting lines, are theoretically all that would be necessary to produce a wire-frame
model of the scene. In practice, however, not all of the important vertices will have
been detected and tracked, superfluous points will be tracked, and individual points may
have large errors in their estimated positions. This section describes two methods which
attempt to deal with these problems. Subsection 4.1 attempts to reduce the effect of
inaccurate points by perturbing the points closer to a model with planar facets. Following
this, Subsection 4.2 tries to deal with the problem of superfluous points by segmenting
groups of 3D points into planar regions. Neither method performed well, and are described
mostly for completeness. A better approach seems to involve dense matching, where depth
estimates are computed at every pixel within the image. Dense matching is described in
more detail in Section 5.

4.1 Depth modification

The output of the factorisation method yields sets of points with noisy depth estimates.
Some of this noise can be reduced by using additional knowledge of the structures being
imaged, in this case buildings. Most buildings may be represented by a connected set of
planar facets, and so if one could minimise the error between the existing set of points
and this ideal model, the depth estimates could be improved. Omne such method for
accomplishing this is described here.

The first step in the proposed scheme is to describe a metric for comparing the point
model with the set of plausible building models. So that like is compared with like, the
point model is converted into a surface model using a 2D Delaunay triangulation of the
points as they appeared in one of the images (say, the first image of the sequence). It
is then noted that if the points were to lie on an ideal model that the interior angles of
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Figure 11: Relation between interior angles for the facet model

the triangles should behave in a consistent way at each point. This is shown in Figure 11
where it is easily seen that for a point on the interior of a facet, and for points on an edge,
the sum of the interior angles of the triangles should be 27. This is not correct for true
corners but, in tests on the Parafield data with the Harris corner detector, it is evident
that most of the tracked features are not true corners. Therefore, to produce a more
accurate facet like model, one could modify the depth to locally minimise the following
heuristic cost function

2m

C= Z Z@m —2m s (2)

where 0; ; is the interior angle of the jth triangle with a vertex at point 7, and m is some
positive integer. Of course, the global minimum to this cost will occur when all of the
points lie on a flat plane, but local search techniques will tend to end up in local minima,
which retain linear edges and planar facets, while mostly reducing spikes at the expense
of rounding some corners.

The above function can be minimised using gradient descent or conjugate gradient
methods. Both of these rely on finding the gradient of the function with respect to the
dependent variable (i.e. the depth at each point). This can be calculated using the
notation of Figure 12. It can be seen that when one of the corners is shifted by a small
amount, represented by the vector dn, then
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Figure 12: The effect of changing depth on the interior angles of a triangular segment
Also,

cos(fy + dfs) =~ cosbly — sinbfadbs

from which, dfs/dz can be calculated when dn = [0, 0, dz|, where the z-coordinate corre-
sponds to the depth in the first image frame. The formula for dfs/dz can be obtained by
substituting b for a in the above argument. Also, because 61 + 02 + 03 = 7 regardless of
the point depths, then

o, (o _doy
dz dz dz )’

The gradient of the cost function can then be written as

2m

—1
aC 0, ;
8—%:2m; ;@’JQW ;ij,

which may be evaluated numerically using the above formulae. Using the Fletcher-Reeves
update formula for the conjugate gradient method, the search direction dj in the kth
iteration of the numerical optimisation will be given by

VC(Zk))>2_

dp =VC(z) + Prdi—1, Br = (VC(zk X

One way to ensure convergence is to choose the step size to satisfy the Wolfe conditions,
which state that if the new estimate of the optimum is z;,1 = 2z + axdy, then
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C(zk+1) — Clz)
o,
IVC (zk41)| > ko|VC(21)| Curvature condition

< k1|VC(z1)| Sufficient decrease condition

The processing described above, with m = 2, was applied to a set of points whose 3D
positions were extracted using factorisation. Figure 13 shows before and after views of the
models, seen from an angle where the differences between the models are most apparent.
The two plots appear very similar, although the primary facets of the processed model do
appear to be slightly better defined. The new points may be slightly easier to segment
into plane regions than the previous set, although visually there is not a lot of difference
between them.

4.2 Plane segmentation

The previous subsection described a method for changing the depth estimates so that
the points were approximately aligned into planes. One way to form a dense reconstruction
of these planes is to find which points belong to the same plane, and use this to construct
a facet model of the building. The process of assigning points to planes is referred to here
as plane segmentation.

Two methods for plane segmentation are considered in this subsection. The first is
based on the 3D positions of points in space, while the second is based entirely in the
image domain, and so does not require the use of factorisation.

4.2.1 3D position segmentation

The segmentation algorithm described in this section has the Koepfler algorithm [17] for
image segmentation as its motivation. Like the Koepfler algorithm, the method presented
here aims to minimise a global cost function. This function contains a measure of the
goodness of fit of the model to the data, and a penalty for model complexity which is based
on the Akaike Information Criterion (AIC). To obtain the cost function, it is assumed that
the 3D coordinates of the ith point are (x;,y;,z;) where all of the error is in the depth
coordinate z;. It is also assumed that the error is Gaussian with zero mean and a variance
o2 to be determined later. Then if N points belong to a single plane, the mean square error
in depth between the plane fitting the noisy data and the measurements will be (N —3)o?,
where the value 3 is the number of degrees of freedom in choosing the parameters of the
fitting plane. In the special case where only planes parallel to the ground-plane are to
be detected (i.e. the tops of buildings), the number of degrees of freedom of each plane
is reduced to 1, which should be used here instead of 3. For the current case however, a
suitable cost function to minimise would be

N,
C= i > (2 — 2)* + 307N,

p=1 1€p
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Figure 13: The effect of depth modification on a 3D cloud of corners from the Parafield
sequence

where N, is the number of points and z; is the estimate of the depth of the point ¢ using
the existing facet model. The value of the depth error o2 may be estimated from the
imaging scenario, or may be measured from the 3D points themselves using the formula

1 X

p=1 1Ep

where N; is the number of points assigned to the ith plane.

In order to assign the points to planes so that regions assigned to planes are contin-
uous, a set of region mergings is performed (the coarse segmentation) followed by a fine

26



DSTO-TR~2095

segmentation where individual triangles are swapped between plane areas.

The algorithm starts with an initial segmentation based on a Delaunay triangulation
of the feature points. Here, every triangle corresponds to a separate planar facet. Since
the error between the facet model and the measurements will always be zero in this case, it
is not possible to obtain a useful variance estimate from equation (3) and another suitable
guess should be made, until sufficient planes have been merged to allow a better estimate.
For each plane, both the boundary points and the interior points are stored.
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Figure 14: The original image with triangulation, which have been coloured to indicate
different segmented planar regions.
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The coarse segmentation, or region merging, is accomplished by calculating the effect
on the cost function of merging every plane with every other plane which shares an edge.
The minimisation is performed in a greedy manner by merging the two planes which
give the greatest reduction in the cost function at each iteration, although this will not
necessary lead to a global minimum in the cost. At each merge step, the boundary and
interior points should be updated accordingly.

After the coarse segmentation, a fine segmentation occurs, where the cost of moving
individual points near the edges of two planes from one to the other is calculated. Again,
this point swapping is performed in a greedy fashion. Care should also be taken during
this stage that a swap of a point should not result in points assigned to a plane becoming
disconnected. After the fine segmentation, the process is repeated (coarse followed by fine
segmentations) until no further change can occur to the segmentation without increasing
the cost.

Figure 14 shows the result of applying the above plane segmentation technique to a
3D point cloud extracted from the Parafield fly-over. The top of the control tower has
been reasonably segmented, while the ground-plane has too many segments, and the front
of the building too few, resulting in a fairly poor model of the scene. Somewhat better
segmentation can be achieved by tweaking the noise parameter o, but there seems no
simple method to choose this parameter in an automated way.

4.2.2 Affine transformation segmentation

Segmentation of an image area into planes can also be achieved by examining their
relative motion throughout the image sequence. For an orthographic camera model, the
image coordinates of sets of points on a plane will be related by an affine transformation.
Different planes will correspond to different parameters of the affine transformation, which
enables planes to be distinguished without explicit 3D information. The following is a
method for accomplishing plane segmentation in this way:

e Initialise: Label all tracked points as “unassigned”, which is used to describe points
that do not adequately fit an existing plane.

e Loop 1: While there are still unassigned points, continue doing the following.

— Create a new plane: Randomly assign half of the currently unassigned points
a new plane label.

— Loop 2: Repeat the following relabelling steps until the labelling becomes
stable.

* Plane parameters: Calculates the affine transformation parameters cor-
responding to each plane.

x Relabelling: Each point is relabelled to belong to the same plane as one of
its neighbours, based on the minimum distance to the plane affine transfor-
mations. Requiring a point to be in the same plane as one of its neighbours
prevents isolated badly tracked points from being mislabelled. Points more
than a certain distance from the plane may be labelled “unassigned” if one
of its neighbours is.
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In the above context, two points are defined as neighbours if their share
an edge in the Delaunay triangulation of the points. This definition has a
couple of advantages over the usual Euclidean neighbours. Firstly, if A is a
neighbour of B, then B will also be a neighbour of A. Secondly, where the
points are unevenly distributed, this definition ensures that the neighbours
are more evenly distributed in angle, which helps to ensure scene continuity.

*x Cluster and merge: All of the points assigned to the same plane are
collected together to form clusters. The smallest cluster is merged into the
closest of the other planes, or randomly split into the two closest planes if
there is no consensus as to which is closest.

Figure 15 shows the result of applying eight iterations of the above algorithm to corners
detected in the Parafield airport imagery. Each of the different coloured points indicate the
different planes into which the points have been assigned. The black dots correspond to
the currently unassigned points, and these are mostly clustered to the rear of the building,
which is occluded over part of the sequence. As with the previous plane segmentation
method, the ground plane is fairly well distinguished from the building, but the plane
structure within the building itself is not especially useful. The blue points, for instance,
actually do roughly lie within a plane, and appears to lie in a single cluster as each point in
the region can be connected to any other with only links to neighbouring points belonging
to the same region. In actuality, it consists of points from several different surfaces of the
building, and so it is not a meaningful plane.

100 200 300 400 500 600 700

Figure 15: Corner points automatically merged into separate planes based on affine trans-
formations
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5 Dense matching

The first three sections of this report have described a procedure for extracting a
sparse point model of a scene from a video sequence. The ultimate goal is to obtain a
reprojected image of that scene from an alternative view, for which dense correspondences
are required. The previous section has examined methods for accomplishing this based
only on the sparse corner model. The current section examines related dense matching
stereo techniques for obtaining 3D position estimates for every pixel in the image.

All stereo dense matching algorithms effectively measure optical flow between two
images, with constraints to ensure that the resulting flow is consistent with a static 3D
scene. In particular, points that project to a given image will project along a line in
the second image called an epipolar line (and vice-versa). Any point projecting onto an
epipolar line in one image must project onto a corresponding epipolar line in the other
image. This means that if both images are transformed so that the epipolar lines are
vertical !, and they are scaled identically, then the optical flow must be vertical. The
direction of the epipolar lines can be determined using the camera parameters obtained
whilst obtaining the geolocated sparse model. Since a scaled orthographic model is being
used, the epipolar lines will be parallel, but in the more general case the epipolar lines in
an image will all meet at a single vanishing point. Figure 16 shows two frames from either
end of a short video sequence of the Parafield control tower, which have been rotated so
that the epipolar lines are vertical.

From the two frames in Figure 16, a dense 3D map can be constructed by finding how
far each point in the image has moved between frames. This distance is known as the
disparity. There are many algorithms available in the literature for solving this problem.
Scharstein and Szeliski [27] have evaluated a large number of these using some pairs of
images for which the disparity is known. More recent results on their benchmark data
sets are available at the Middlebury Stereo Vision Page [28]. Although the evaluation
function used by these two references seems consistent with the current application, the

"Most papers on dense matching assume the epipolar lines are horizontal

100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800

Figure 16: Images from the Parafield airport sequence, rotated so that the epipolar lines
are vertical
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test data they use to evaluate the algorithms is quite different in character. For a start,
most of the regions are quite strongly textured, which allows accurate disparity estimates
over large areas of the image. Secondly, their pairs of images are quite close together,
resulting in small maximum values for the disparity, which are assumed known. This
also means that there is little variation in intensity between the two images, allowing fast
and accurate mean absolute difference of intensity metrics to measure the similarity of
image patches. In the current application, the maximum disparity can be quite high,
and will be effectively unknown, increasing the solution search space significantly. After
a brief discussion of VRML in Subsection 5.1, Subsection 5.2 describes a new method
for calculating disparity constraints, which can be applied to improve the solution of
most matching algorithms. The remaining subsections describe the theory behind many
of the dense matching algorithms described in the literature, as well as some attempted
improvements. The Parafield MX20 data described in Section 2 has been used to compare
some of these algorithms, and a more detailed account of this may be found in a separate
DSTO report [9].

5.1 VRML display

VRML (Virtual Reality Mark-up Language) is a popular method for specifying a 3D
scene (or “world”) in a portable and consistent manner. Each world consists of a number
of shapes, which may be collections of geometric primitives. Each shape can have its own
position and orientation, and may be given its own texture, and material type (which
affects how it reflects, refracts or emits light). The models generated in this section
are based on only two camera views and can, in general, be adequately represented by
an elevation model where each (z,y) position in the image can be associated with a
single depth coordinate. In this case, the scene can be represented by a single primitive
“ElevationGrid” which is defined in the following way

#VRML V2.0 utf8
Shape {
appearance Appearance {

material Material {
ambientIntensity O
diffuseColor 1.0 1.0 1.0
emissiveColor 1.0 1.0 1.0

}
texture ImageTexture {
url "im. jpg"
}
}

geometry ElevationGrid {
xDimension 163
zDimension 214
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xSpacing
zSpacing
height [

The above file specifies a single shape according to the VRML 2.0 specification. The
appearance has been chosen so there is no ambient light because small variations in the
surface texture were found to cause large shadows giving an unpleasant crinkly effect.
Instead, the shadows (at least those generated by the VRML) are eliminated by assuming
that the surface of the shape is emitting white light. The shape is also textured using the
file “im.jpg” which is one of the frames used to construct the 3D model. The surface itself
is of type "ElevationGrid’ with the specified dimensions, and the height profile (represented
by dots in the above example) will be an array of numbers describing the height at each
pixel location. The resulting VRML file can be examined on any VRML2.0 compatible
viewer such as “Blaxxun Contract”, which will allow the scene to be tilted, panned and
zoomed to achieve the required view of the model. Most of the 3D models described in
this report are screen shots from this viewer.

5.2 Interpolation

The standard stereo problem can only be solved by making some assumptions about
the disparity map. In some cases, this is implicit (i.e. the object of interest lies completely
within both images). More usual is to specify an upper limit on the disparity. The extra
constraints on the solution generally allow a more accurate solution to be calculated much
more quickly. This is also the reasoning behind hierarchical methods, where a rough
disparity map is calculated at low resolutions, and is refined at higher resolution. Bobick
and Intille [1] go further by choosing pairs of points within the imagery which they know
to be the same (referred to as “ground points”), and choosing the disparity to enforce this.
In our application, a large number of matches (corresponding to tracked corner points)
are available, for which disparities can be calculated. However, a model based on linear
interpolation of the disparity between the corner points will be quite jagged because some
of the points have been poorly tracked. In order to deal with such inaccuracies, some
extra slack in the disparities at these points must be allowed. The suggested heuristic
approach is to use the corner points to adaptively find a likely disparity range for every
point in the image. The likely range changes continuously between pixels, which enforces
some measure of smoothness on the final solution, and can be obtained as follows:

e Triangulate: Construct a triangulation of the tracked corner points in one of the
images. A better result will probably be achievable if the edges of the triangulation
lie along edges in the image, but a standard Delaunay triangulation will do.

e Estimate corner disparity range: Because the corners have been tracked into
the next frame, disparities d; can be easily estimated at these points. Some of these
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may have been poorly tracked, so the largest and smallest disparities of a corner and
its neighbours (corners connected to it by the triangulation) are considered upper
and lower values at the corner. Therefore

Ui =tiet jet dj
is the upper value, and a similar expression gives the lower value. In this expression,
t denotes the points of a triangle, as generated by the above triangulation.

e Interpolate: Linear interpolation can then be used to obtain upper and lower values
for the remaining points inside the triangles.

The above method has been used to generate a range of values for the dynamic pro-
gramming dense matching approach, described in Subsection 5.4.

5.3 Cooperative stereo

An extremely simple way to measure the disparity of a point in the image is to take a
small window around that point in the first image, and compare it to similar windows in
the second image for all feasible disparities. The actual disparity would then correspond to
the most similar match. In practice, this usually results in a great many mismatches, es-
pecially in regions with little discernible texture. To improve the smoothness and physical
consistency of the resulting disparity map, Zitnick and Kanade [40] developed an iterative
approach which they refer to as “cooperative stereo”.

The cooperative stereo approach iteratively relabels points based on evidence both for
and against a pixel having a particular disparity. Initially, a likeness measure Lg(z, vy, d)
is calculated for a pixel at coordinates (z,y) having disparity d. Also defined is Ly, (z,y,d)
which will be the direct evidence at iteration n that a point (x,y) has disparity d. Now the
indirect evidence for a disparity of d at (z,y) will be that neighbouring row and column
pixels are mapped to either the same point, or at least nearby points. This is the local
support function defined by

z+N  y+N d+N

Sn(x,y,d) = Z Z Z L,—1(r,c, D),

r=x—N c=y—N D=d—N

where 2N + 1 is the window size, which was empirically chosen to be N = 1. For the
purposes of this algorithm, the indirect evidence against a disparity of d at coordinates
(z,y) is all of the evidence that a different coordinate is mapped to exactly the same point,
or

Ry (x,y,d) = ZSn(:z:, e y+d—oc).
c#y

Any relabelling should be in favour of points with strong evidence of the correct disparity,
and little evidence against it. The heuristic relabelling, given by
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Sn(z,y,d)

Lofo.nd) = (2224

) LO(Iaya d)a

was chosen. Empirical results on some real images found the best value for o was about 2.
The resulting disparity at each point can be found by choosing the value of d giving the
largest value of L, (x,y,d) at each point. Due to the smoothing terms in the calculation
of Sp, the resulting solution is much smoother than the original. Regions of the image
belonging to occlusions tend to have a much smaller match score at the end, and so
thresholding this quantity allows occlusions to be detected.

Figure 17 shows an example of the cooperative stereo algorithm applied to a white
noise image, which has been shifted using a linearly varying disparity, with some additional
independent white noise. The first figure shows that a number of false matches had been
made based on the original correlation scores alone. After fifteen iterations, most of
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Figure 17: The result of iterating the “cooperative stereo” algorithm applied to a linear
disparity field
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these were removed. Scharstein and Szeliski [27] rank this algorithm somewhere in the
middle of the pack for performance on their ground-truthed imagery. For our problem, the
disparity range tends to be somewhat larger, and the inhibition region defined by R,, did
not adequately constrain the disparity solution. The resulting map was not particularly
suitable for registration purposes. A more detailed examination of the performance of
the cooperative stereo algorithm for airborne imagery can be found as part of a separate
report [9].

5.4 Dynamic programming

The dynamic programming approach [10] was, according to Scharstein and Szeliski,
amongst the worst performing of all algorithms that they tested. However, airborne im-
agery has a number of features that make it in some senses more difficult than the examples
considered by Scharstein and Szeliski. El-Mahassni and Cooke [9] have re-evaluated a num-
ber of these algorithms for airborne video, and found that many of the algorithms either
break down completely, or are very parameter sensitive, and so are unsuited to automated
tasks such as that considered here. The dynamic programming method appears to be a
much more robust solution, and is also a lot faster than many of the competing methods,
which should allow models to be computed in near real time.

The dynamic programming method for calculating disparity makes two basic assump-
tions. The first is that matches between pixels in corresponding epipolar lines (image
columns) define a monotonic mapping. For relatively small baselines, this will generally
be true, depending on the exact geometry of the scene. It is not necessarily fatal if it is
not true, and usually no disparity measure at all (as for an occlusion) would be generated
for the offending region. The second assumption is built into a cost function which is op-
timised over the entire image. The cost consists of a dissimilarity score between matched
pixels and a term which penalises large changes in disparity between neighbouring pixels.
The dissimilarity is given by 1 — ¢? where ¢ is the normalised cross-correlation between
small regions about the matched pixels. This is used here instead of the more common
sum of square or sum of absolute difference of image intensities because it is more robust
to lighting and sensor variation. The discontinuity cost is defined to be zero for no change
in disparity, a small penalty cost C, for each single pixel change in disparity associated
with a sloped surface, with an added cost C, for a discontinuity, which is associated with
an occlusion.

The cost function, described above, does not contain any dependence between epipolar
lines. As a result, monotonic functions which minimise the cost function can be found for
each line separately, although this does tend to produce some streakiness in the disparity
estimate. For a given epipolar line, a length M column of pixels may be matched against
another of length N, and the set of all possible mappings can be represented by paths
through an M x N array.

The optimal function in the above array can be found using dynamic programiming,
as illustrated in Figure 18. Here, the minimum cost path from the left side of the array
to the dark square is being considered. It is assumed that values for the cost have already
been computed for all entries to the left, and the entries immediately above the currently
considered point. Each of the previously computed values also contains a pointer back to
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a previous entry along the minimum cost path. Now due to the monotonicity constraints,
any path through the dark square must have passed through one of the squares on the
stencil shown. If the scene is fairly flat at this point, then the minimum path should
pass through the neighbouring diagonal square, and should not incur a penalty cost. If
the scene has a prominent slope, then the minimum path will pass through one of the
two neighbours, and incurs a slope cost Cs. If there is a discontinuity in the depth due
to an occlusion, then the path will pass through one of the entries on the arms of the
stencil, with a cost C, + C),Ad where C,, C}, are obscuration costs, and Ad is the size of
the discontinuity. The minimum cost path back to the left hand side of the array will now
have

Cshaded = C’match+ ie(sr?el?wil {Cdisc. (Z) + Cz}

where the discontinuity cost Cy;s. is as described. After the array has been filled, the
minimum cost in the final column will be the end point of the minimum path through
the array, and using the pointers to work back through the array will yield the remaining
points on the path. This can then easily be turned into a disparity.
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Figure 18: A graphical depiction of dynamic programming matching for a single epipolar
line

The computation requirement in computing the minimum path in the above array can
be reduced by limiting the paths to some feasible region. When fixed upper and lower
bounds on the disparity are known, the feasible region will be a diagonal band through the
array. Alternatively, upper and lower disparity values may be estimated from the corner
points, as described in Subsection 5.2. In that case, the upper and lower curves of the
feasible region will be piecewise linear.

The above algorithm was applied to the two images in Figure 16, and the results
written into a VRML file. Two views of the VRML model are shown in Figure 19. From
the plan view, the area behind the tower is shown in black because it cannot be seen in the
first image, so no texture information is available here. Also, the 3D position estimates
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Figure 19: Two views of the VRML model produced for the Parafield airport sequence
using dynamic programming

are still a little spiky, especially in the uniform regions near the edge of the image, for
which good disparity estimates are difficult to obtain.

5.5 Graph-cut algorithms

A graph G consists of a number of nodes n and links (or arcs) ! connecting the nodes
together. The maximum flow problem assumes that there is a source and a sink node (s
and f), and that each link [ has a non-negative capacity C(l), which limits the amount of
“flow” that can be carried by that link. The problem is then to find the maximum amount
of flow that the graph can carry from s to f. This problem was first answered by Ford
and Fulkerson [12] in 1956. Their suggested solution was to find a path through the graph
which was not at capacity, increase the flow along this path until it was at capacity, and
then repeat until no further flow can be added. An illustration of this algorithm is shown
in Figure 20.

The Ford and Fulkerson method (with an improvement by Edmonds and Karp) has
a running time of O(nl?). A number of faster methods have since been developed. The
push-relabel methods [13] are considered by a number of sources to be the fastest for most
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ordinary graph problems. Boykov and Kolmogorov [3] have compared the two push-relabel
methods (which they call HPRF and Q_PRF), as well as the Dinic algorithm and a new
method which they claim is faster for certain types of graphs. They state that although
H_PRF is usually considered the faster of the two, Q_PRF seems to be faster for the types
of graphs most frequently encountered in image processing. Since all of the programs used
to obtain the results in this section were coded before reading this paper, the H_.PRF
method was used.

The last diagram of Figure 20 shows the graph at its maximum capacity. Here, every
path from the source to the sink has at least one link that is saturated. In fact, these
saturated links partition the graph in that a node could either receive extra flow from
the source, or contribute extra flow to the sink, but not both (otherwise there would be
a path from source to sink which was not at capacity, and so could accommodate extra
flow). Any such partition of the nodes is referred to as a cut, since the links between nodes
on opposite sides of the partition are effectively cut. The value of the cut is the sum of
the capacities of the cut links. The partition defined by the maximum flow is in fact the
minimum cut between the source and the sink.

The solution to the minimum graph-cuts problem (or the dual maximum flow problem)
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Figure 20: Illustration of the Ford-Fulkerson algorithm applied to a graph



DSTO-TR~2095

has use in dense matching. The first application of this idea to dense matching appears
to have been made by Roy and Cox [26]. They constructed a graph as shown in Figure
21, which they related to the dense matching problem by defining each column of nodes
to correspond to a pixel, and each of the individual nodes to be a particular disparity for
the pixel. A cut between the source and sink would intersect at each column at a position
d(i,7) which would be the estimated disparity at each point in the image.

The links along each column (4, j) were defined to have capacity (Ci, j,d) + Ci, j,d +
1))/2 where C' is a matching cost function, because it was a “heuristic that works quite well
in practice”. They similarly defined the capacity for the links between columns, affecting
the smoothness of the solution, to be k(C'i, j,d)+C(i(+1), j(+1), d)) /2 for some smoothing
constant k. The resulting dense map was apparently comparable to that obtained by
dynamic programming, but removed the streaking between epipolar lines.

Another frequently cited graph-cuts paper is by Boykov, Veksler and Zabih [2] who
related the capacities in the graph cuts problem directly to a global cost function. This
allowed them to set up graphs to minimise a particular energy function. In particular,
suppose a number of elements in some space (such as pixels in a picture, or voxels for a 3D
space) are each to be labelled from a finite set IL, such as a set of disparities. Also suppose
there is an energy functional over all possible labellings, consisting of a match term and a
continuity term, which is to be minimised. This paper solved the problem by considering
points currently labelled as «, 8 € IL and setting up a graph so that the minimum cut

3 (s b) S

C. f

Figure 21: Topology of the graph devised by Roy and Coz
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minimises the energy for these two labels. These o — 3 swaps are then repeated for all
other pairs of labels, which the authors show will eventually lead to the optimal solution.
The advantage of these o — § swaps over solving for all of the labels simultaneously (as in
Roy and Cox [26]) is that a more general form of the energy functional can be minimised.
The disadvantage is generally slower speed, especially when the number of labels is very
high, as is the case for large displacement stereo problems.

An alternative to the Roy and Cox algorithm is now considered. The general topology
of the graph is the same, with each column corresponding to a pixel. Since the minimum
cut corresponds to cuts through links however, it makes more sense for each possible
disparity to correspond to a link in the graph, instead of a node. Also, instead of a fixed
minimum and maximum disparity for the entire image, different values may be used for
each pixel. This will allow the interpolation procedure of Subsection 5.2 to be used as
priors, and reduce the size of the graph to be solved. Alternatively, it would allow the
graph-cuts to be applied hierarchically, with the solution at the lower resolution used to
limit the bounds on the disparity at the higher resolutions.

For the link corresponding to a disparity d for the (i, j)th pixel, the capacity is defined
to be the correlation based match cost C(i, j, d) (in the real implementation, it is multiplied
by 100 and rounded to the nearest integer, since the maximum flow algorithm only uses
integers). This means that if there were no between-column links, the minimum cut would
pass through the links having the best match for each column. The between column links
are responsible for the continuity of the resulting disparity map, and were chosen to have
a capacity k, which can be varied depending on the level of smoothness required. Some
experimentation has found that when the correlation based cost is used, a fixed value of
k can provide robust solutions for a number of images. Finding the minimum cut of this
graph is the equivalent of minimising the energy given by

) i

Ideally, one would like to have a modified energy term for jumps corresponding to
obscuration. Although Boykov et al.’s a — 3 swap formulation would allow this, the extra
computation time and complexity do not justify this approach.

Even using Boykov and Kolmogorov’s code [3] to find the minimum cut in an n-vertex
l-arc graph should take O(nllog(n?/1)) [13]. When each image dimension is N pixels,
the disparity range will be O(N) and so there will be O(N3) vertices in the graph. As
each vertex is connected only to its neighbours, the number of arcs will also be O(N?)
giving a total computation time of O(N®log(/NV)) which is prohibitive even for fairly small
images. To reduce the computational requirements further, a hierarchical approach is
taken. Hornung [14] does this by solving the full problem at a very low resolution, and then
using this estimate to provide bounds on successively more detailed images of the scene.
If the pixel (z,y) is found to have disparity d at the lowest resolution, then just limiting
the disparity of the pixel (2z,2y) in the more detailed image to the range [2d — 1, 2d + 1]
gives poor results [36]. This is because the increased uncertainty within the image plane
at the lower resolution has not been taken into account. Instead the range should be
[2d,in — 1, 2dya0 + 1] where dpip, and dpq, are the minimum and maximum disparities
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Figure 22: Graph-cuts used to solve the toy example for a linear ramp

over the the neighbourhood of the point at the lower resolution. The resulting hierarchical
algorithm should have complexity O(N*log?(N)).

Hornung’s paper [14] also introduces several other novelties, such as the use of an
octagonal grid to model both interior and exterior surfaces of the object, and the use of
a cost function relating to multiple images. Very good results can be achieved without
this, however. Figures 22 and 23 show results obtained using this graph-cuts algorithm.

Figure 23: Two views of the VRML model produced using graph-cuts.
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The first is for the same toy example generated for testing the cooperative algorithm in
Subsection 5.3. It is evident that graph-cuts provided a more accurate disparity map in
this case. The second example shows a 3D model extracted from an HDTV fly-over of
Parafield control tower. This is the best-looking model of the control tower obtained so
far. Although the original imagery is higher resolution than the MX20 data used to test
the dynamic programming, the optical data has larger and more uniform areas than the
MX20 images. As a result, when dynamic programming was applied to this same imagery,
the resulting model was quite poor.

6 Error analysis

The process of registering airborne video to some reference imagery involves feature
detection and tracking, structure from motion with missing data, georeferencing, dense
matching and 2D image registration. This report has provided details on several of these
areas, and a high level overview is available in a separate report [8]. The aim of the
current section is to provide a framework for estimating the accuracy of the resulting
registration, which considers the propagation of errors throughout each stage of processing.
A description of the error estimation methodology is provided in Subsection 6.1. The
quality of the estimated errors in some of the intermediate results have been checked
numerically using an airborne video sequence of Parafield control tower, as described in
Subsection 6.2.

6.1 FError estimation methodology

Figure 24 shows a flow diagram for the complete video registration problem with
arrows, indicating processing methods, connecting measured or calculated quantities and
their associated errors. The errors at the input to the process may be modelled by simple
statistical models, but this becomes less and less appropriate further down the chain as
the results depend more and more on larger scale structure within the image. At the end
of the registration process, there may be a multi-modal distribution where the registration
is either close to correct, or has been lured off by neighbouring similar looking buildings.
This indicates that analytical methods for obtaining error estimates may be infeasible.
Therefore, the approach to error analysis taken here is largely empirical. Another report
[38] considering error analysis is currently in preparation and has some overlap with the
analysis presented here 2.

6.1.1 Errors in feature detection

The errors produced in corner detection and tracking are probably the closest to being
Gaussian i.i.d. noise of any component of the system. The exact distribution of the
localisation error for each corner will be largely imagery dependent. There will also be a
probability of an incorrect track, which will increase when there are neighbouring points
in the image which appear similar in some sense. As there are not any useful models

2Comparing the two versions allows a meta error-analysis



DSTO-TR~2095

Metadata
R+*AR
T+AT
Imager Corner | R*AR, R+ AR,
measurement Factorization
M+AM S +AS, > S+ /S,
Geolocation
T +AT: T#+ATo
Input ‘
D(xy) +AD(x) S s
+
> St AS, > ' '
Dense Reprojection | T+ ATy
matching T+ ATo f
Registration

Figure 24: Flow diagram showing the errors throughout the video registration process

for our background imagery, a pragmatic approach has been taken and the errors are
estimated from the difference between the measurement matrix M and the reprojected
model M, = RS, + T,. A theoretical expression for this error is available under certain
special assumptions. Assume that the scaled orthographic assumption is accurate, the
measurement noise is i.i.d. Gaussian with variance o2, the matrix is completely filled, and
the translation is zero. Chen and Suter [5] showed that in this case, the mean absolute
difference between the actual matrix and the reprojection is

r(m+mn)—r?

E(|Mij — My5]) = o -

(4)

where m X n is the size of the measurement matrix, and 7 is the rank of the measurement
matrix. The r(m+n)—r? in the numerator is the number of degrees of freedom in choosing
the factors (an m x r matrix, an 7 x n matrix, and a set of ambiguities corresponding to
an arbitrary 7 x r matrix). The denominator mn is the total number of measurements in
the complete matrix. They then hypothesised that in the case of incomplete data, when
a fraction p of the measurements is missing, the mn is replaced by pmn. The estimate
suggested here incorporates this factor, and also tries to take into account the ease with
which features are tracked by estimating a separate value of the noise o for each of the
tracked points.

6.1.2 Factorisation and geolocation error

Following the detection and tracking of corner points over multiple frames, the next
step is to estimate the 3D positions of these corner points, and the camera poses. As this
step has no explicit dependence on the imagery, it is the most amenable to a mathematical
treatment of the errors. Some of this analysis is now provided for some simple scene and
camera geometries, along with some explanation of some of the other error effects which
have not yet been modelled. This is then followed by a description of a Monte-Carlo
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method for evaluating the errors in a more realistic scenario. A numerical example showing
the effectiveness of this Monte-Carlo approach is given later in Subsection 6.2.

A Simple Scenario

Consider two parallel line segments of length [ which are perpendicular to the optical
axis of the camera, but lie on a plane containing the optical axis. Suppose the first line is a
distance D from the camera, and appears to be N pixels long in the image (corresponding
to a scaling factor of s = N/I). The second object is D + d from the camera. In this
scenario, there are a number of different types of error associated with extracting 3D
models of the scene. These have been addressed below roughly in order of the scale at
which the errors occur. For instance, the first errors affect every point in the model, while
the last errors will affect the solution only on a feature by feature basis.

Georeference location error: The factorisation and bundle adjustment algorithms dis-
cussed previously may be useful in determining the relative positions of feature points.
They only provide information about the actual position of points in space up to a trans-
lation and rotation. These values must be determined from some other source, such as
meta-data.

Perspective error: This effectively refers to the model error, or the error produced by
using simplifying assumptions about the camera and scene (e.g. the scaled orthographic
assumption) to construct the 3D model. In the scaled orthographic camera model, the
two line segments in the example would appear to be N pixels long. In the more accurate
perspective camera model, the apparent size would be N D /(D+d). The difference between
the camera models will be consistently measurable when it is larger than the pixel size, so
that

> 1.

D+d

Overall scale error: In the scaled orthographic model, there is no way of distinguishing
between the amount of zoom (the ratio of focal length in pixels to target distance in
external units) and the scale of the target. The only way this information can be obtained
is from the associated meta-data. Alternatively, a perspective model could be used, but
here the scale estimate will only prove accurate in situations where there is significant
disagreement between the orthographic and perspective models.

Structure/motion ambiguity: Assuming that the overall scale has been determined,
there is still some difficulty in estimating the scale of the structure in depth. The case
where a second view of the the scene is available is now considered. In practice, many
intermediate frames will also be available, but it is not altogether clear how helpful these
will be. A common assumption is that the errors in the positions of corner points in
different frames are i.i.d Gaussian, and so the error should vary as 1/,/Ny where Ny is



DSTO-TR~2095

the number of frames. However this model is flawed in that it predicts that the resolution
of a static camera viewing a static scene can be improved by collecting frames for long
enough. The model ignores temporal correlation of the errors. Furthermore, if N, is
the number of corner points in the measurement matrix, Equation (4) from Subsection
6.1.1 indicates that the addition of more points is not very helpful. This is because as
N, — 00, the mean absolute difference between the rank-3 measurement matrix and the
model reprojection tends to o4/3/(2N¢), which is independent of the number of points
(Note that m = 2Ny and n = N.). While the addition of further points and frames
probably does improve the error in the resulting model, it may not be by as much as
might be supposed, and consideration of the two frame case will at least provide an upper
error limit.

Suppose that only one other view of the scene is available, where the camera is rotated
in the plane containing the lines and the optical axis by an angle 6, as shown in Figure
25. For the scaled orthographic case, both lines will appear to be the same length, but
with a relative translation (in pixels) of d,,. When there is no relative scaling, this will be
related to the other parameters by the equation

Figure 25: Geometry for determining the depth scale ambiguity

d,l
d= .
N sin 0

(5)

The translation d, will appear exactly the same as if the camera had rotated through
an angle of 62 and the distance between the lines was dtanf/tanfs. Unless meta-data
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for the camera angle is available, the only way to discriminate between the two cases is
to use the change in the length of each line. The camera angle can be estimated from the
changed length N, (scaled to account for image magnification) according to the formula

N,
6 = arccos [ =< | .
arccos (N)

Substituting into equation (5) gives the depth as

B dyl _dr N
~ JN2-NZ2 s /N2—NZ
From this, it can now be determined how the depth d of the scene could change, and still

give estimates consistent with observations of the quantities N, N, and d,.. The allowed
variation in depth may be obtained from the linearised error formula

d

. N
d+ad— LYV N

s /N2 - N2 0d, ON ON,

where

ad N

dd. — s\/NZ—N2
od —N2d,
ON — s(N2 - N2)3/2
od N.Nd,
ON.  s(N2— N2)3/2

The values of N, N. and d, must be measured from the imagery, but due to discretisa-
tion they cannot be known exactly. These values are measured pixel lengths between the
end points of line segments, whose position will be unknown up to half a pixel (or 1/ V2
pixels if the lines appear in the camera images at 45° to the image axes). Therefore, in
the worst case, the errors in the measured pixel distances will be /2 pixels. There may
also be an additional localisation error due to detection and tracking of the corner points,
but this has not been considered here. Also, the discretisation error of N, will be different
if there is any zoom between the initial and final frames. If the objects in the final frame
have been reduced by a known factor « (i.e. increasing o means the lines appear shorter
in the second image), then the resulting depth error will be

diAdmd(&ﬂ(d%Jr%)) (6)

in the worst case when all errors make changes of the same sign. When meta-data is avail-
able, the change in the camera orientation between the initial and final frames need not be
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estimated using factorisation, and the change in depth consistent with the measurements
may be obtained directly from equation (5) to give

V2 | cosf)
+ Ad = 1+ — A .
d+ Ad d( (dr+\sin9| 0 (7)

in the worst case, when all errors make changes of the same sign.

Quantisation error: There are two types of quantisation error which will manifest them-
selves in the final 3D feature model. The first is azimuth error, whose value in radians is
up to half a pixel size divided by the focal length. The second is in depth. Suppose that
the depth scale factor, produced by the structure/motion ambiguity, has been calculated
correctly. Then there will still be errors in calculating the relative depth between two
points due to pixelation error. The actual projected motion of two points differing in
depth d will be dsin . If the last frame is zoomed out by a factor of o compared with the
first frame, then the two points can be resolved only if the relative shift is larger than half
a pixel. Rearranging this gives the minimum resolvable depth to be

B (1+ a)l
~ 2N siné

Centre of mass error: One of the assumptions of the factorisation algorithm is that
the coordinates of the points in the image are known with respect to some fixed point. In
reality, no such point is available, and the centre of mass of the tracked corner points is
used. There will be an error in estimating the position of this point, which will further
lead to an error in the resulting estimated positions. This error is, however, believed to
be very small but difficult to quantify, and so has not been analyzed.

Monte-Carlo Stmulation

The simple scenario just addressed considered two frames, and two points. In practical
cases, a sparsely filled measurement matrix will be available, and the overall model will
combine the results from multiple frames and many tracked points, each of which may
be assigned a different weighting depending on the method used for dealing with the
missing data. The errors in the measurements due to quantisation are also not likely to
be completely independent. For instance, two measurements in consecutive frames (for a
sufficiently high frame rate) will have correlated errors, as will two features that are close
together spatially. For this reason, it is difficult to produce an accurate error measurement
from the simple scenario. One method that has been found to work well is the Monte-Carlo
approach.

The approach shown in Figure 26 produces an estimate for the error in 3D structure
and camera poses as produced by factorisation followed by georeferencing. The georefer-
encing step is required because factorisation produces estimates for the camera poses and
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Figure 26: Flow diagram of the error estimation process

structure that still has ambiguities. For instance, the camera and the scene may both
be given the same overall rotation without affecting the measurements. As a result, ad-
ditional information in the form of metadata is required to produce a correctly oriented
model. This metadata typically contains information about the position and orientation
of the platform and the sensor, from which an estimate for the camera matrix, Ry, can be
obtained for some subset of video frames. The geolocation stage uses linear least squares
to find the mapping which best aligns the matrix R produced from factorisation, with the
metadata Ry, resulting in a correctly oriented set of camera poses R, and 3D feature
positions S,. That is, a matrix T is found so that

RT =Ry, R,=RT S,=T71'$

where the tilde indicates that rows of the matrix, for which meta-data is not available,
has been removed. A more complete description of the use of meta-data in structure from
motion is provided by Whatmough [38].

When the errors in the metadata measurements are well understood, then ARj; can
be determined relatively easily. More generally, these errors may require estimation as
well. This is accomplished here by comparing the metadata with the oriented camera
poses. The error AR is decomposed into a zoom or radial error, which is the root mean
squared difference in the magnitude of the camera parameters, and an angular error which
considers the r.m.s. difference between the theoretical and measured orientations of the
camera, axes.

The factorisation and geolocation stages produce what should be a correctly oriented
set of 3D feature positions within the scene. Having estimated the errors in the feature
measurements and the metadata, some measure for the error in these 3D points may now
be determined. This is done here by producing a hundred new measurement matrices
and metadata camera pose matrices by perturbing the existing measurements. The mea-
surement matrix M is perturbed using i.i.d. Gaussian noise followed by discretisation,
with a different variance for each of the tracked points, as mentioned earlier. Similarly,
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new camera metadata is generated by perturbing the zoom and the angle of the observed
metadata. The factorisation and geolocation steps are then applied to this random data
to generate an ensemble of point clouds, from which the errors in a given 3D feature point
may be determined.

6.1.3 FError in dense matching

The dense matching step uses the estimated camera poses to calculate the disparity
between two widely separated images for every pixel in the image. The suggested method
uses graph-cuts to optimise a global cost function consisting of a match cost between pixels
in each image and a measure of the discontinuity of the scene. As a result of the strong
dependence on the imagery and the scene, for which there are no general models, this
stage does not seem amenable to any form of error analysis. Therefore, a heuristic for
incorporating the error from this stage is to extend the range of the errors in depth until
it encloses the dense match surface.

6.1.4 FError in registration

The final stage of the process is registration. At the moment, work on 2D registration
against reference images and 3D registration against CAD models is still in progress.
Commenting on the errors at this point is therefore perhaps premature. It is expected
that an operator of the system would only really be interested in two errors. The first is
the probability that the match is completely wrong, and the second is that if the match
is correct, what is the likely error in the registration of the points. If 2D registration is
performed using something like a correlation which assigns an overall score to the match, it
should be possible to apply several scaling and rotation perturbations (with size relating
to the error in camera pose) to the dense model and hence calculate the error in the
registration score. The variability of the maximum match score, along with the match
score in the area around the best match position should provide some information about
the error in registration. The likelihood of a complete mismatch would be related to the
number of peaks in the match score that are close to the maximum. Similarly, if the
match is roughly correct, the translation error should be related to the sharpness of the
maximum, as measured by the second derivative of the match score.

6.2 Numerical example

This example tests the ability to estimate errors in estimates for the 3D positions of
points using the Monte-Carlo approach described in the previous subsection. The data
used was extracted from 60 seconds of an HDTV video sequence showing Parafield airport
control tower, in South Australia. An example frame from the sequence is shown in Figure
27a. No usable metadata was available with this particular sequence.

The standard KLT tracker was used to detect and track feature points between the
frames, and then the frames were subsampled to give one frame per second. A total of
2079 features were tracked through at least four of these subsampled frames. Because the
trajectory of the camera with respect to the object was a lot less variable than for the
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Figure 27: a) Image from Parafield sequence, b) Error estimates for the reprojection of
a point, ¢) Histogram of Mahalanobis distances of “ground-truth” from estimate.

dinosaur data, substantially fewer points were lost due to obscuration. 51 of the features
were present in all 60 frames. As a result, the missing data is less of a problem. Missing
data is handled using the robust version of Tomasi-Kanade followed by 100 iterations of
Shum’s method.

When calculating the errors, ground-truth is not currently available for comparison.
Therefore, the original measurements were used to estimate camera poses, structure and
translations R, S and T which were rotated and scaled, and then treated as though they
were the ground-truth. A new measurement matrix M’ was then produced by randomly
removing either the first or last half of each of the feature tracks, provided that the resulting
track appeared in at least 4 of the frames. The estimation and Monte-Carlo simulations
described above were then applied to generate the mean estimate R,, .S, and 1, as well as
a set of noisy estimates, which were all aligned and registered (on a point-by-point basis,
rather than as an image) together. It was expected that the “ground-truth” should lie
within the error ellipses around the mean estimate.

For one of the points tracked over the entire sequence, Figure 27b shows the observed
measurement, the reprojected approximation using all of the known points, the average
estimate based on half of the points, and the cloud of erroneous measurements. As the
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actual measurement lies almost within the cloud of estimates, in this case the error estimate
would be quite accurate. If the error were a Gaussian with parameters estimated from the
Monte-Carlo runs, it would be expected that the average Mahalanobis distance between
the “ground-truth” and the estimates would be 1.18. For this data, the median was
measured to be 1.82 over the entire set of measurements, which means that there is an
under-estimate in the error, but it is close enough to be useful. Figure 27¢ shows a
histogram of the Mahalanobis distance of the 3D point measurements with respect to
the Monte-Carlo simulated estimates. As this is 3D instead of 2D, the expected median
Mahalanobis distance is now 1.53. The observed value is 1.58, indicating that the error
estimate in the structure is better than for the model reprojection.

7 Conclusions

This report has described a number of techniques which have applications to the ex-
traction of a 3D model from a video sequence taken by an airborne sensor. In Section 2,
detectors of feature points and lines were discussed. The FAST corner detector of Rosten
and Drummond [23] was found to give very good detection performance, and its speed
makes it a candidate to replace the Harris detector. Line detectors were also discussed,
however as good performance was not achieved with the line based factorisation described
in Subsection 3.4 these methods have not proved useful in 3D model reconstruction. Pos-
sible uses might be in a factorisation method incorporating both points and lines, but this
requires further study.

Section 3 discussed structure from motion techniques, with an emphasis on methods
for dealing with missing data. A number of methods were tested on the standard dinosaur
data set. Firstly, it was found that Kanade and Tomasi’s hallucination method [31], which
is often used as an initialising step for other algorithms, could be improved significantly
by using a robust least squares fit. This could then be used to initialise Shum’s method
[30], which was the best of the tested methods from the literature.

Section 4 describes several methods for post-processing the 3D point positions pro-
duced by the factorisation step. This included a method for smoothing out errors in the
point positions, and methods for segmenting the detected points into planar regions. None
of these worked particularly well, and were superseded by the dense matching methods
described in Section 5. Stereo dense matching methods use two images, and informa-
tion about the camera geometry to estimate the depth of each pixel within the image.
This largely ignores the detected corner points, and only uses the camera information to
determine pairs of epipolar lines. However, the resulting 3D model using the suggested
graph-cuts method [14] appears sufficiently good for the purposes of video registration.

Finally, Section 6 introduced a framework in which errors in the construction of the
model, and any subsequent registration, can be evaluated. Due to the lack of ground-truth
in the image sequences used, it was not possible to produce an exact error measure with
which to compare the resulting error estimate. However, using simulated ground-truth
based on the measurements indicated that the error estimate for the 3D positions was
fairly reasonable.
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