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ABSTRACT 

 

Nurse rostering is the assignment of specific nurses to specific shifts for a future 

scheduling period. The work schedule that is created is called a roster. The reconstruction 

of a disrupted roster is called rerostering. When solving the rostering and rerostering 

problems there are two considerations: the organization’s costs and the nurses’ 

preferences.  Traditional solution methods, often based on integer programs (IP), have 

two short comings; first, they rely on one objective function to represent both the 

organization’s and nurses’ goals; second, rostering requires either the complete resolving 

of the rostering problem or a new solution method to fix the roster.  We propose three 

agent-based auction heuristics, Competitive Nurse Rostering (CNR), an extension called 

CNR-Iterated Local Search (CNR-ILS), and an extension of CNR-ILS called CNR-

Rerostering (CNRR).  These heuristics are the first nurse rostering methods that model 

each nurse’s preferences in separate objective functions. The heuristics are the first 

competitive agent-based rostering and rerostering methods. They uniquely separate the 

organizational cost and nurse preference problems by constraining the preference 

problem’s solutions space to alternate cost optimal solutions. CNRR is the first rostering 

solution that can reroster nurses. When tested in a real hospital, CNR and CNR-ILS 

solved the rostering problem 99% faster than the hospital’s rostering method and an IP 

solution from the literature. Nurses consistently favored the solutions from CNR-ILS 

compared to those from CNR, the IP and the hospital. CNRR finds solutions to the 

rerostering problem over 90% of the time. Less than one sixth of the solutions had a 

serious impact to nurse preferences.  
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CHAPTER 1 NURSE ROSTERING AND REROSTERING – A PRIMER 
1.0 OVERVIEW 

This Dissertation proposes a set of three related nurse rostering algorithms designed 

to improve the perception of fairness in nurse scheduling called Competitive Nurse 

Rostering (CNR), Competitive Nurse Rostering with Iterated Local Search (CNR-ILS), 

and Competitive Nurse Rostering and Rerostering (CNRR). Traditionally nurse 

scheduling is comprised of three phases: forecasting overall staff demand, minimal 

demand covering, and staff rostering. Currently throughout these phases individual nurse 

preferences are taken into consideration. The CNR algorithms are different, the mimic 

actual nurse behavior and isolate the preference models that are used by nurses to 

evaluate their final schedules. 

This document is broken down into five chapters. This first chapter discusses the 

motivation for improving nurse scheduling techniques, presents an overview of the nurse 

scheduling literature, gives a high level discussion about the CNR series of algorithms, 

and highlights the original contribution. The second chapter discusses the detailed 

implementation of the CNR algorithm. The third chapter presents the details of the CNR-

ILS algorithm. The fourth chapter details the CNRR algorithm. The second, third and 

fourth chapters include analysis of each algorithm’s performance during experimentation. 

1.1 INTRODUCTION 

Hospitals spend more capital on personnel than anything other part of the budget 

(Ozcan 2005). Not surprisingly the reduction of staffing has been a major focus of past 

scheduling research. The ongoing nurse shortage is forcing this focus to change.  
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The nursing corps plays an integral role in our healthcare system; the care they 

provide consumes nearly 25% - 33% of a hospital’s budget (Welton 2006).  To support 

this part of the healthcare system we need to provide adequate recruitment and effective 

retention (Tierney 2003). The three key factors feeding the nurse shortage are the number 

of nurses leaving the industry, an aging general population requiring more care and, an 

aging labor pool (Buchan 2006 and Johnson 2006).  Implementing better nurse 

scheduling methods will help mitigate the problems causing the nursing shortage.  

 The schedules of nurses affect job satisfaction and influence recruitment. Recent 

surveys have shown that a nurse’s work hours and schedules are among the top reasons 

for job dissatisfaction (McIntosh 2006). Introducing proper scheduling practices can 

improve turnover and absenteeism rates (Ozcan 2005). This paper outlines a new 

scheduling technique that focuses on improving the perceptions of fairness in nurse 

scheduling. 

1.2 PROBLEM DEFINITION 

Nurse scheduling can be broken down to three distinct phases: the determination 

of staff demand requirements, the creation of shifts to satisfy demand, and the rostering 

of nurses to shifts. Each of these steps has a distinct focus.  

Before hiring nurses, a hospital needs to forecast the number of patients that will 

need treatment. Using this forecast, managers can base the demand for nurses upon 

nurse-patient ratios. Although these ratios are usually derived from hospital policy the 

issue of staffing numbers has received enough attention that states have begun to legislate 

nurse-patient ratios. For example California passed Assembly Bill 394 in 1999 mandating 
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the State Department of Health issue minimum nurse-staffing ratios for hospitals, the first 

state to do so.  

Nurse staffing levels can be modeled in a number of ways using a patient census 

and patient acuity. An example model uses the current shift to predict what will be 

required in future shifts (Siferd and Benton 1994). The model is formulated as follows: 

)1.1()(* 111111 −−−−−− +−= ttttttt YbDdARA  

Here A is the total acuity of all patients in the unit in terms of the number of 

nurses needed. R is the rate of acuity change during a period. D is the number of 

discharges and d is the mean acuity of discharged patients. Y is the number of 

admissions, and b is the mean acuity of admissions. Thus the acuity of the next period is 

a function of the acuity of the prior, the acuity of those discharged, the acuity of those 

admitted and the change in acuity of those remaining. 

Once a hospital ward has determined its’ nursing demand, shifts must be 

developed that include enough nurses to cover that demand. Traditionally this was 

accomplished using various set covering models. A typical set covering model is an 

integer program that minimizes the cost of overages while meeting manning 

requirements. The problem can be formulized as follows:  
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Where xi is the number of nurses assigned to schedule i, aij is a binary value indicating 

whether schedule i includes time period j, and bj is the demand for nurses during period j. 
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 The final step of the nurse scheduling problem is rostering. Rostering is the 

assignment of nurses to specific shifts.  Preferences are usually accounted for during the 

rostering phase. The following is an example of a rostering formulation with preference 

considerations: 

}1,0{

)5.1(
:

)4.1(

∈

∀≥∑

∑∑

ij

jij

ijij

x

jbx
st

xcMin

 

Where xij is a binary variable indicating that nurse i is assigned to shift j and cij is a cost 

penalty associated with nurse i working shift j. While similar to the set covering model 

for demand satisfaction this simple preference rostering model would have far more 

variables. The research in this dissertation focuses on this final step of the scheduling 

problem – rostering. And, in the case of schedule disruptions, the rebuilding of existing 

rosters called rerostering. 

1.3 EXISTING STAFF SCHEDULING LITERATURE 

This section gives a historical overview of the evolution of the staff scheduling 

literature. Following the general overview we focus specifically on research handling the 

rerostering problem and nurse preferences. A tablature outline of the research covered in 

this section can be found in Appendix A.  

Many studies have been performed on the staffing problem. While this research 

covers many varying themes, the majority focus on staffing demand satisfaction and staff 

rostering. The associated columns of Table A-2 in Appendix A clearly shows this trend. 

This demand satisfaction and rostering is normally done by tour scheduling. A tour is the 
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combination of two problems: that assignment of staff to a given shift in a day and the 

assignment of days-off. The majority of research applicable to nurse scheduling can be 

considered tour scheduling.  Tour scheduling literature has evolved since the 1970’s. First 

there was a striving for tractability and then an increase in problem complexity as 

computing power improved.  

Early solutions to the staff scheduling problem were more constrained than the 

solutions in recent literature. For example Warner (1972), Abernathy (1972), and Trived 

(1976) employed staff scheduling models that tried to minimize costs by allocating staff 

to specific wards or stations. They did not assign shifts and days-off (tours), for 

individuals but simply allocated staff. Miller (1976) and Warner (1976) present some 

early work that assigns specific individuals to tours on smaller problem sizes.  

Increasing the complexity of work tours, Segal (1972) proposed a model for 

scheduling operators that included placement of rest breaks in the tour. Unrelated to 

Segal’s paper, Gentzler et. al. (1977) tried to develop what they claimed to be the first 

quantitative model to determine the affect of work breaks on productivity. Their model 

was quickly adjusted by Bechtold (1979) which started an increase in tour scheduling 

literature that investigated the relationships between work-rest cycles. 

 In the 1980’s Morris and Showalter (1983) openly shunned the day-off only and 

shift scheduling only models in favor of tour scheduling (the combination of both) 

showing that a simple rounding of the LP relaxation often performs close to optimal. 

Bailey (1985) agreed that the shift and days-off scheduling problems were obviously 

related and favored the tour scheduling model. He demonstrated its use for scheduling 

tours with shifts having variable starting times.   
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To handle the complexity of the tour scheduling model Glover and McMillan 

(1986) developed a tour heuristic designed to solve more general problems. They 

reported results that came within 98-99% of optimal for problems with over one million 

variables. Bechtold (1988) presented a multi-objective model for what he termed 

“implicit” optimality, or optimal for a model including only essential variables. He then 

demonstrated a heuristic that solves the problem within 3%-8% of optimality.  Okada and 

Okada (1988 and 1988) and Baxter and Mosby (1988) developed computer routines 

focusing on speeding up manual scheduling procedures without guaranteeing optimal 

results. 

Focusing even more on computing, Ozkarahan and Bailey (1988) developed an IP 

driven tour scheduling module designed to operate within a scheduling software system. 

Ozkarahan (1989) then extended this research to present a model for a complete 

scheduling software system. This is one of the earliest research efforts to fully integrate 

state-of-the-art tour scheduling techniques into software systems.  

 While others were pushing for and developing tour models, Bechtold et. al. (1984 

and 1988) continued research in rest break scheduling.  These papers focused on 

maximizing worker output by controlling work rate decaying over a work period by 

scheduling multiple break periods. The first model addresses limitations of earlier work-

rest models and used a linear work performance decay assumption. The second paper 

extended this research to assume exponential work-rate decay.  

 In the 1990’s there is more research into better scheduling formulations, 

heuristics, schedule constrained algorithms and evolutionary algorithms (EAs). In the 

early 1990’s several heuristics are presented that use boutique algorithms or LP 
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relaxations (Loucks and Jacobs 1991, Easton and Rossin 1991, Franz and Miller 1993, 

Thompson 1993, Bechtold and Brusco 1994, Brusco and Johns 1996, Brusco and Jacobs 

1998). Working sets were commonly used to simplify the solution space for the tour 

scheduling problem (Easton and Rossin 1991, Bechtold and Brusco 1994, Bechtold and 

Brusco 1995). Working sets limit the number of schedules to be considered before 

attempting to solve the problem. Another means to simplify solving the tour scheduling 

problem is to constrain the problem to specific schedule types. Hung (1991, 1993, 1994, 

1994, 1994), Hung and Emmons (1993) and Burns and Narasimhan (1999) present a set 

of algorithms that develop schedules based on three-day work weeks, four-day work 

weeks, and flexible or rotating combinations of both.  

 In the mid 1990’s the development of heuristics for tour scheduling problems 

changed. Brusco and Jacobs (1995) and Thompson (1996) present two simulated 

annealing heuristics heralding the arrival of evolutionary algorithms in the tour 

scheduling literature. In the late 90’s Dowsland (1998) and Easton and Mansour (1999) 

respectively presented a tabu-search and genetic algorithm. The majority of tour 

scheduling heuristics now will use EAs. 

 Focusing on faster and better optimal solutions, Millar and Kiragu (1998) 

presented a network formulation for the tour problem that combined work days into 

consecutive sets called stints. They contended their formulation allowed for easier 

inclusion of various constraints than in traditional formulations. Brusco and Jacobs 

(1998) took a more direct approach and improved the set covering formulations by 

developing a method to remove redundant columns. This method reduced the column 

number in their experiments by as much as 56%.  Brusco (1998) further improved the 
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general set covering formulation by showing that his use of the dual all integer cutting 

plane could result in significant run time improvement.  

 Bechtold (1991) and Bechtold and Thompson (1993) extend earlier research in 

work-rest cycles to include models for the placement of fixed duration rest periods for 

individuals and flexible duration rest periods for groups. Bechtold’s research on rest 

periods is finally merged with the general tour scheduling literature in an integer program 

(Bechtold and Jacobs 1990) and later extended by Thompson (1995).  

 Okada (1992) extended his logic programming research by publishing a 

generalized tour scheduling software program.  Ozkarahan (1991) also presented a plan 

for a decision support system to aid schedulers in developing nurse rosters. Other 

scheduling systems were proposed by Lauer et. al. (1994), Randhawa and Sitompul 

(1993), and Chen and Yeung (1992). 

 With increasing computing power, the tour scheduling literature tackles an 

increase in problem complexity. Bard and Purnomo (2005) present an IP based heuristic 

model for staffing that is designed to be solved every 24hrs to account for demand 

variations from shift to shift. Wright et. al. (2006) adapts the staff scheduling and 

planning model of Abernathy et. al. (1973) to handle a larger set of considerations 

including overtime, multiple nurse types, varying shift lengths, nurse-patient ratios for 

each nurse type, patient arrival rates, patient service rates, and time dependent violations 

of staffing ratios. Bard (2004, 2004) and Qi and Bard (2006) published a set of literature 

on scheduling mail handlers at the U.S. Postal Service (USPS). This series of research 

include two complex IP models one of which includes two worker levels, rest breaks, 

partial shift assignments, various staff costs, full time workers, and part time workers.  

 



 9

With increased reliance on computer technology new techniques emerge in tour 

literature such as artificial intelligence (AI). Winstanley (2004) developed an agent-based 

rostering framework that breaks down the scheduling problem into subcomponents. 

Allowing for better decomposition and focus on solving pieces of the problem. Fung et. 

al. (2005) presents a complete guided search solution that combines a tree based search 

solver and a simplex solver. Beddoe and Petrovic (2006) use a case based reasoning 

(CBR) approach that stores solutions to past rostering problems and utilizes that 

knowledge to solve similar current problems.  

The use of EAs becomes popular in tour literature, including the research of 

Ferland et. al. (2001), Dias et. al. (2003), Dowsland and Thompson (2000), Aickelin and 

Dowsland (2000), Kawanaka et. al. (2003), and Jan et. al. (2000). As the use of EAs was 

developed new methodologies are designed to better solve the tour problem were 

presented. Aickelin and Dowsland (2004) demonstrate a fast and flexible indirect genetic 

algorithm (GA) that encodes the problem formulation and then performs the GA’s 

evolution on the encoded version of the population. Aickelin and White (2004) develop a 

method for comparing and fine tuning scheduling algorithm performance. Gutjahr and 

Rauner (2007) present an ant colony optimization (ACO) algorithm to try and better 

handle the highly constrained nature of the nurse scheduling problem. 

 While the state of tour scheduling literature has evolved, there are still areas that 

are lacking. The two areas focused on in our research are the perception of fairness when 

considering nurse preferences and the rerostering of nurses. Table A-2 indicates many 

research efforts that have tried to account for staff preference considerations.  
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 The most common method for handling staff preferences is to apply a penalty 

coefficient for violations of an individual’s requests (Miller et. al. 1976, Ozkarahan 1991, 

Franz and Miller 1993, Dowsland 1998, Dowsland and Thompson 2000, Aickelin and 

Dowsland 2000, Ikegami and Niwa 2003, Kawana et. al. 2003, Aickelin and White 2004, 

Aickelin and Dowsland 2004, Belien and Demeulemeester 2006, Gutjahr and Rauner 

2007). This can be applied directly to the entire work schedule sequence or individual 

days. One of the earliest preference models to use penalty coefficients is Warner’s (1976) 

paper that allowed each nurse to allocate 50 penalty points to represent aversions to 

certain schedule characteristics.  

Another common method is to consider those schedule characteristics that are 

preferred by the entire nurse staff (rather than individual preferences) and to develop 

constraints that either completely enforce those characteristics or weigh them with 

penalties. These schedule characteristics may include the number of consecutive 

workdays, the number of consecutive days off, and the number of days worked (Azaiez 

and Al Sharif 2005, Bard and Purnomo 2005, Bard and Purnomo 2007, Gutjahr and 

Rauner 2007).  

Since it is often difficult to determine and compare the weights assigned to the 

preferences of different nurses some authors rely on a count of the total preference 

violations. Accordingly, Chen and Yeung 1992, Wright et. al. (2006), and Dias et. al. 

(2003) tried to minimize the total number of preference violations in a final staff roster. 

Feeling that this total count metric does not ensure nurses are treated fairly, Bard and 

Purnomo (2005) introduced a variation that uses an exponential weighting based 

categorical preferences. 
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 Preferences can be considered in other ways as well. Winstanley (2004) assumed 

that when a request for a day off was granted it became a hard constraint. Bard and 

Purnomo (2005) and Miller et. al. (1976) introduced ways to ensure parity from one 

scheduling period to the next. Okada and Okada (1988) used a logic programming 

method to assign preferences based on a predefined rule set.  

The rerostering problem is common in the airline and railroad industry. In these 

sectors disruptions to planned schedules are common due to weather, construction and 

accidents. The research in these areas deal with replacing passenger travel itineraries and 

the redeployment of aircraft and crews (Thengvall et. al. 2000,  Rosenberger et. al. 2003, 

Yu et. al. 2003, Bratu and Barnhart 2006, Huisman 2007). Schedule recovery research is 

also in the service sector and focuses on maintaining minimum service rates by 

rescheduling staff (Easton and Goodale 2005). While these problems are related to the 

nurse rerostering problem, they are too different to be directly applicable. 

The first nurse rerostering research was published by Moz and Vaz Pato in 2003. 

In this paper the authors model the rerostering problem as a multi-commodity flow 

network. Their goal is the minimizing the total number of disruptions to the initial roster. 

Their research was extended to include two more multi-commodity flow models (Moz 

and Vaz Pato 2004) and a GA approach (Moz and Vaz Pato 2007). Hattori et. al. (2005) 

published the only other nurse rerostering solution we found. Their solution is based on 

dynamic constraint satisfaction. 
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1.4 EXISTING AGENT-BASED SCHEDULING LITERATURE 

This section gives a brief summary of how agent-based programming methods 

have been used in the past scheduling research. The focus of this section is on agent-

based scheduling methods and does not include other applications of agent software. 

Agent scheduling methods have been used for a variety of scheduling problems 

including transportation scheduling (Fischer 1996), meeting scheduling (Chun, 

2003)(BenHassine and Ho, 2007), staff scheduling (Winstanley, 2004), project 

scheduling (Knotts et. al. 2000)(Confessore et. al. 2007), and manufacturing and 

production scheduling (Shen 2002, 2006).  

Agent-based methods represent an alternative to traditional centralized artificial 

intelligence methods such as Genetic Algorithms (GAs), and neural networks (Shen et. 

al. 2006). Unlike these traditional AI solutions, agent systems decentralize problem 

solving. Agent systems have several advantages over centralized AI solutions to include, 

the natural ability to parallelize computation, agents can be attributed to actual devices or 

persons to realize real-time rescheduling, and agents can integrate other solution methods 

to help with problem solving (Shen 2002).  

Both Winstanley (2004) and BenHassine and Ho (2004) cited the intuitively 

distributed nature of personnel scheduling as a motivator for selecting an agent-based 

approach. We chose an agent-based approach when conducting our research to leverage 

the same natural problem distribution. Furthermore using an agent system allows us to 

develop a real-time system that not only rosters but rerosters nurses. 
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1.5 KEY PAPERS 

 There are three papers that are key to our research. The first was published by 

Jonathan Bard and Hadi Purnomo in 2005 and is titled “Preference Scheduling for Nurses 

Using Column Generation.” In this paper Bard presents an algorithm that mixes self-

scheduling with traditional IP methodologies.  The goal is to minimize float nurses and 

costs while producing good schedules that account for nurse preferences. 

 Bard’s algorithm starts with a desired schedule based on nurse sign-ups. He 

requires that nurses sign-up for the shifts they prefer and then uses the resulting roster as 

a staring point. The key to his algorithm is getting from that starting point to a feasible 

roster. The algorithm is a six step process that utilizes column generation as a means to 

minimize the cost of a final schedule. Bard’s cost coefficient is a function of both 

requests and preference violations.  

 Bard’s paper is important to our research because he focuses on the perception of 

fairness or how the nurse’s feel about the schedule. While Bard presents a complex 

solution methodology, we will focus our discussion on how he implements a max 

violation constraint and an exponential cost coefficient.  

The max violation constraint is designed to prevent nurses from getting routinely 

bad schedules. Nurses that continually have high numbers of their preferences violated, 

compared to other nurses, will feel like they are being treated unfairly. To minimize this 

effect the max violation constraint seeks to balance good and bad schedules from one 

scheduling period to the next.  
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The max violation constraint essentially limits the number of preference 

violations that can be included in a nurse’s schedule based on the number of violations in 

the previous schedule.  To do this the following maximum_violations_algorithm is 

applied: 

 

Step 1: Compute the average and standard deviation of the preference violations 

in the previous scheduling period. If this is the first period than set Vi
Max= ∞. 
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In equations 1.6 and 1.7, |N| is the total number of nurses, and vi
old is the number 

of violations for nurse i. 

 

Step 2: For all nurses i∈N if vi
old

 is more than one standard deviation over the 

average than Vi
max is altered by equation 1.8. 

⎣ ⎦ )8.1(),1max( σ−≤ vV Max
i  

 

This constraint drops the maximum number of preference violations for an 

individual nurse who had a bad schedule with many violations. This ensures that a bad 

schedule will be followed by a good one. 

Additionally, Bard introduces an exponential penalty coefficient. This coefficient 

penalizes violations of an individual nurse’s preferences based on the significance 

 



 15

category of the preferences being violated. This helps ensure a balance of preference 

violations as well as avoiding the complexities of directly weighting individual 

preferences. Bard thought that dissatisfaction increased non-linearly depending on the 

severity category.  

)9.1(2)( 1−= v
ij vC  

Equation 1.9 is Bard’s cost coefficient for penalizing preference violations. In this 

equation v is the category a violated preference is in. Categories included one (simple), 

two (serious), three (severe), and four (extreme). Various types of preference violations 

were assigned to these categories to simplify the cost weighting of those violations. 

 Like most preference scheduling papers, Bard assumes that a preference for one 

day off is independent from another day off. That is, the penalty for not having day 1 off 

is C1 and the penalty for having day 2 off is C2. Often times a nurse will request two 

consecutive days off that are not independent. Thus the penalty for having to work day 1, 

day 2 or both is C12. To solve this problem we will use an idea from the next key paper. 

In 1998 Millar and Kiragu published a paper entitled “Cyclic and Non-Cyclic 

Scheduling of 12h Shift Nurses by Network Programming.”  This paper approaches the 

problem of shift scheduling in a unique way. Rather than focusing on individual days 

Millar uses network programming to account for sequences of consecutive days on or off. 

These sequences are called stints.  

With the nurses working 12 hour shifts they can only work either the day or night 

shift each day. The 12 hour shift helps simplify the stint concept by allowing each day to 

have only one of three values – day, night, and off. Millar assumes that nurses cannot 

work more than 4 days in a row or 3 nights in a row and cannot work back-to-back shifts. 
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Nurses also may not have more than 4 consecutive days off. Thus a stint would be 

defined as a sequence of consecutive work days or off days. The stints available under 

these scheduling rules are laid out in Figure 1-1. 

 

Figure 1-1: Millar proposes 17 possible sequences of days off and of days on. These 

sequences called stints are then used to develop a network programming model for the 

nurse scheduling problem. 

 

Using the stints as nodes in a network Millar formulates two mathematical 

models: one for non-cyclical schedules and one for cyclical schedules. In the interest of 

brevity we will discuss the non-cyclic model only.  This model has two terms, one for the 

cost of the schedule and one for the day/night balance of the schedule.   

∑∑ ∑+
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Equation 1.10 is Millar’s objective function. Here each nurse, k, is assigned to an 

arc, a, in the network. The stints they work are defined by the arc’s starting node. The 

cost associated with employing each nurse to work a given stint is Cka. The Z term is the 
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imbalance of more night than day shifts. This formulation does not account for 

preferences or fairness beyond the balancing of night and day shifts.  

While there are a number of constraints in addition to the objective function, the 

important part of Millar’s paper that we will borrow for our research is the stint concept. 

Nurses often request multiple days off in a row. This can be a simple desire for a 

prolonged break or a calculated effort to plan a multi-day event. In this latter case the 

stint concept becomes valuable. Using stints we can apply preference considerations to a 

block of days rather than just one day or shift.  

The third key paper is Moz and Vaz Pato’s “An Integer Multicommodity Flow 

Model Applied to the Rerostering of Nurse Schedules.” Unlike the first two key papers, 

this focuses on the rerostering problem. To solve this problem Moz sets a 

multicommodity flow model using an IP formulation.  

Moz defines optimal as the solution that requires the least number of changes to 

the current roster.  To solve for this optima, Moz’s formulation has an objective function 

with one term, cost. Equation 1.11 is a simplification of Moz’s formulation that is more 

readable.  
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This formulation is similar to Millar’s in that the assignment of nurses to shifts is 

done via the arc of a network. In equation 1.11, is a binary variable indicating 

whether nurse v is assigned arc a between a shift on day d and a shift on day d+1. is 

the cost associated with an arc assignment. Critical to the behavior of this objective 

function is how Moz defines the cost coefficient. 
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This cost coefficient counts the changes in a schedule. The goal is to have as few 

changes in the schedule as possible. While Moz’s solution works in some cases we do not 

agree with her definition of optimal.  When considering preferences Moz’s model may 

regard better solutions to be too disruptive. It is possible for a situation to arise where the 

best solution results in more preference satisfactions but a greater number of schedule 

disruptions. In this case Moz’s optimal definition is incorrect. More properly stated, the 

optimal solution is the one that results in the least negative disruption to the nurses. 

1.6 PROPOSED SOLUTION 

Winstanley published the only agent based nurse scheduling paper we found 

(Winstanley, 2004). Winstanley recognized that both an agent framework and the nurse 

scheduling problem is naturally distributed. Using distributed intelligent agents in a 

cooperative framework accurately models the reality that each nurse and the organization 

has their own set of goals. In a related problem, BenHassine and Ho cite the intuitively 

distributed characteristics of personnel scheduling as a motivating factor for their agent-

based meeting scheduling system (BenHassine and Ho, 2007).  

Like the aforementioned agent based solutions, we propose a series of agent based 

nurse rostering algorithms to model the intuitive distribution of the problem. Any 

algorithm in this series is called a Competitive Nurse Rostering Algorithm (CNRA). The 

set of CNRAs include Competitve Nurse Rostering (CNR), Competitive Nurse Rostering 
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with Iterated Local Search (CNR-ILS) and Competitive Nurse Rostering and Rerostering 

(CNRR). 

Traditionally the organizational cost minimization problem is solved using a tour 

scheduling IP to satisfy nurse demand predictions. Often authors will include preferences 

in this model as either “soft” constraints or as additional costs in a single cost coefficient. 

This results in a complex tour scheduling model that is focused on costs and preferences. 

This centralized dual focus lacks flexibility and inadequately handled preferences. 

When using a CNRA a simple tour scheduling cost model is solved to develop a 

solution that is within an organization’s staffing cost tolerance. This minimal cost roster 

is used as an input to a CNRA. The CNRAs uses this input in an agent-based simulation 

to search for alternate optimal cost solutions that better satisfy nurse preferences. As 

agent-based solutions CNRAs afford the nurse rostering problem the advantages 

discussed in Section 1.4 and improves the handling of nurse preferences. 

The purpose of the CNRA method is to develop better mathematical models of 

how nurses perceive preferences. This will allow for the production of rosters that are 

perceived as more fair by the nursing staff. To do this CNRA uses only one mathematical 

formulation, the preference utility function of the nurses. This preference function is 

programmed into agents representing each individual nurse in a competitive simulation. 

The manning constraints are programmed into the decision logic of the agent simulation 

and will enforce feasibility by approving or disapproving any changes to the set of shift 

assignments. 

The CNRAs detailed in this dissertation consider three factors for nurse 

preferences: informal request-offs (ROs), preferred sequence length of days off, and 
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preference for specific days-of-the week (DOW) off. ROs are days the nurses request off 

but do not want to take vacation days for. The granting of ROs are not guaranteed. 

Preferred sequence lengths allow nurses to indicate whether they like schedules that tend 

to have two, three, or four days off in a row.  

The three CNRA algorithms presented in this dissertation are related. The first, 

CNR, uses an auction to trade work shifts between nurses. The second, CNR-ILS, 

extends CNR to include an ILS that explores dual feasible solutions by using staffing 

slack to move work shifts within each nurse’s schedule. The third, CNRR, extends CNR-

ILS to handle the rerostering problem. All three algorithms focus on nurse preferences. 

 

Figure 1-2: The CNRA agent model simplifies the nurse tour problem by decomposition. 

The CNRA model uses a simple tour assignment model to minimize the cost problem. 
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CNRAs take advantage of the existence of multiple rostering solutions that are cost 

optimal to develop a roster using an agent simulation. CNRAs avoid using the state-of-

the art tour preference models that require highly constrained mathematical formulations. 

In this figure the CNRA represented is the CNRR algorithm which is the final product of 

this dissertation. The CNRR algorithm avoids the use of two complex mathematical 

models by implementing one simple mathematical model and one agent simulation. 

 
The flow of the CNRA paradigm is depicted in Figure 1-2. In this figure the 

algorithm depicted is the CNRR algorithm, the last and most encompassing of the 

CNRAs. Both the CNR and CNR-ILS algorithms would not include the rerostering 

section in Figure 1-2. CNR would also not include the ILS Framework in the Preference 

Rostering section.  

 

1.7 ORIGINAL CONTRIBUTION 

The original contribution of the research in this dissertation is presented by 

algorithm in Table 1-1. In this table each contribution is described and which algorithm is 

involved in that contribution is highlighted. 

 

Table 1-1: This table depicts which CNRA algorithm is responsible for which original 

contribution. Since CNR-ILS is an extension of CNR and CNRR is an extension of CNR-

ILS the contributions of earlier algorithms are still present in the later algorithms. 

Contribution CNR 
(Chapter 2)

CNR-ILS 
(Chapter 3) 

CNRR 
(Chapter 4) 
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Contribution CNR 
(Chapter 2)

CNR-ILS 
(Chapter 3) 

CNRR 
(Chapter 4) 

Unique Rostering Methodology: CNRAs 
implement an agent-based model where 
rosters are developed through competition. 
There are no attempts in the literature to 
model the nurse rostering problem in a 
competitive agent based fashion. 

X   

Isolate Nurse Preference Models: 
CNRAs use a separate utility function to 
model the preferences of each nurse being 
rostered.  

X   
Separates the Organizational Cost 
Model and the Nurse Preference Model: 
CNRAs focus on maintaining cost 
feasibility while focusing on preference 
improvement 

X   

Deliberately Searches Dual Optimal 
Solutions: Some CNRAs perform a local 
search of dual feasible solutions to find 
alternate optimal cost solutions that better 
satisfy nurse preferences. 

 X  

Unique Distributed ILS: The ILS 
framework in some CNRAs is designed to 
be an iteration of smaller distributed ILSs. 

 X  
Unique Rerostering Methodology: No 
other system has been published that can 
both roster and reroster nurses. 
Furthermore, no agent-based nurse 
rerostering solution has been published. 

  X 

Considers Two Rerostering Optimality 
Definitions: When rerostering, solutions 
are restricted to those that minimize the 
number of shift assignments that have been 
changed. These solutions are found while 
focusing on minimizing the negative 
impact to nurse preferences. 

  X 
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CHAPTER 2  COMPETITIVE NURSE ROSTERING 
 

CNR is designed to model a phenomenon often seen in shift work – shift trading. 

When a nurse wants a day off that is not in their schedule she will often solicit other 

nurses to trade shifts. CNR automates this process in a computer system designed to 

improve simple rosters with respect to nurse preferences. CNR starts with an initial roster 

that is feasible and is treated as if it is minimally staffed. The implementation of CNR 

described in this paper is designed for the Mike O’Callaghan Federal Hospital’s Air 

Force Medical Surgical Unit (MOFH-AFMSU). MOFH-AFMSU rosters its nurses to 12-

hr day and night shifts. All the nurses in the ward are Registered Nurses (RNs) trained in-

house to one of three levels: level one nurses include new nurses who still require 

supervision, level two includes nurses that are no longer new to the unit but have not yet 

been cleared for charge nurse duty, level three nurses are cleared for charge nurse duty. 

Charge nurses are responsible for all nursing activity in the ward for the shift they are 

assigned and must be present at all times.  

The algorithm relies on two types of software agents: an Auction Control Agent 

(ACA) and Nurse Broker Agents (BAs). The ACA is responsible for soliciting sales, 

soliciting bids, ensuring the feasibility of staffing numbers, and determining algorithm 

termination. The BAs are responsible for modeling the preferences of the nurses they 

represent, deciding which shifts to sell, deciding which sales to bid on, and ensuring their 

individual schedules are feasible.  

 



 24

All work shifts are traded as stints, a concept introduced by Millar and Kiragu in 

1998. They define a stint as a series of consecutive work or off day shifts. The stints 

available in this implementation of CNR are detailed in Table 2-1. 

 

Table 2-1: This table lists Millar and Kiragu's (1998) stints as they are adapted to the 

manning rules at Mike O’Callaghan Federal Hospital. D indicates a day shift assignment, 

N a night shift assignment and O indicates a day off. Thus DDN is a stint of three 

consecutive days where a nurse works two day shifts followed by a night shift.  

OFF DUTY STINTS ON DUTY STINTS 
O 
OO 
OOO 
OOOO 

D N DN 
DD NN DDN 
DDD NNN   

 

2.1 THE AUCTION CONTROL AGENT  

The ACA is responsible for controlling the flow of the CNR algorithm.  During 

the initialization of the CNR algorithm the ACA initializes control variables and receives 

information on the required demand levels for each shift. Once the ACA is initialized it 

reads the nurse roster from a data file. Using this initial roster, the ACA creates the data 

elements that store the current staffing levels in the initial roster and creates the BAs that 

are required to represent all the nurses in the roster.  A sequence list in the ACA 

maintains the BAs in a specific order determined by the order of the nurses in the initial 

roster. Finally the ACA passes initializing information to the BAs.  

The ACA is composed of two major datasets: the demand picture and the current 

auction offer. The demand picture is stored in four arrays, two for each the day and night 

shifts. The day shift arrays are depicted in Figure 2-1. The four arrays consist of four sets 
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of variables: the minimal day shift staffing (Drj), the day shift’s current staffing (Adrj), the 

minimal night shift staffing (Nrj), and the night shift’s current staffing (Anrj). In these 

variables r is the training level from the set of the three in-house nurse training levels and 

j is the day of the scheduling period from the set of days in the scheduling period (J). 

Thus Drj is the minimum number of nurses trained to level r that are required to work day 

j. Nurses of lower training levels can be substituted by nurses of higher training levels. 

 

Figure 2-1:  This represents the day shift demand picture arrays for a one week period. 

Each shift traded in the CNR algorithm must satisfy the minimal demand requirements 

for every day of the scheduling period (j) and every nurse level (r). In this figure Drj is 

the minimal number of nurses trained to at least level r that are required to work the day 

shift on day  j. Adrj is the current total number of nurses at level r assigned to the day 

shift on day j of the scheduling period. 

 

The auction offer is a collection of stints; one stint is the set of shifts being 

auctioned off, called the sale item, the other stints are stored in a list called the currency. 

All the stints in the auction offer are on-duty stints. By using this auction offer format 

nurse broker agents are trading workdays. The auction offer is depicted in Figure 2-2. 
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Figure 2-2: The auction offer is used to pass the stint that is for sale (the sale item) to the 

bidding BAs. The auction offer contains a sorted list of stints (currency list) that the 

selling BA is willing to take in trade for the sale item. The currency list is sorted from 

best to worst so that trading the stint at the top of the list for the sale item will improve 

the seller’s schedule the most.  

 

The auction offer’s currency list is used to determine the highest bid in the 

auction. When developing the auction offer the selling BA will place every stint that they 

are willing to accept in trade for the sale item into the currency list. The currency list is 

then sorted so that the trade that will result in the greatest improvement to the selling 

nurse’s schedule is listed first. The bid highest up on the list is awarded with a sale.  

Aside from initialization, the ACA has four major functions: soliciting bids, 

soliciting sales, closing sales, and closing the auction. The ACA runs a sequential 

auction. In this auction, sales are solicited from one BA at a time. At its completion a new 

sale is solicited from the next BA. To control the sequence of the auction the ACA tracks 

the sequence of all the BAs in a list. Sequencing instills the CNR algorithm with a 

hierarchy present in the workplace. This hierarchy allows the model to give nurses with 
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more seniority the ability to attempt sales first when most nurses will still have shifts to 

trade.  

When soliciting a sale the ACA passes an empty auction offer to the solicited BA. 

After the BA returns the auction offer to the ACA there are two tasks that the ACA must 

perform: first, it must verify there is a valid sale item; second, if there is a sale item, it 

must check the staffing demand associated with that sale item. To verify that a valid 

auction offer was returned the ACA will receive a control flag from the BA indicating if 

the BA has a stint to sell. If the flag returns false then the ACA will solicit a sale from the 

next nurse in the sequence.  

When the ACA receives a valid auction offer it prescreens the bidders to help 

ensure that nursing demand levels are maintained. To do this the ACA checks the training 

level of the selling nurse and the current staffing. During this check the ACA looks for 

the following conditions in the demand picture: 

 

1) Adrj > Drj or Anrj > Nrj where r is the selling nurse’s level and for all j in 

the set of days in the sale item. 

2) Adrj = Drj or Anrj = Nrj where r is the selling nurse’s level and for all j in 

the set of days in the sale item. 

 

The first condition indicates that there are more nurses of the selling nurses 

training level than are required. This does not mean that there are more nurses working 

than are needed. For example, a shift that requires five nurses and only one of those 

nurses is required to be a level three nurse may have five nurses working and two are 
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level three nurses. In this case there is a surplus of one level three nurse. When there is a 

surplus of nurses at a specific training level and one of those nurses is attempting to sell 

shifts at auction, the ACA will open the auction up to nurses of all levels. 

The second condition indicates that the shifts being sold have the minimum 

number of nurses assigned that are trained to at least the same level as the selling nurse. 

Under this condition the ACA opens the auction up to only those bidding nurses that are 

trained to at least the same level as the selling nurse. This ensures that the nurse that is no 

longer working those shifts is replaced by a nurse that is trained to at least the same level. 

 After obtaining an auction offer the ACA opens the auction up to bids from the 

nurses that are feasible after checking demand conditions. These bidding nurses are 

approached by the ACA in the order they appear in the sequence list. In this list, the 

selling nurse is always first. The first potential bidding nurse is second. When soliciting a 

bid, the ACA will supply the bidding nurse with the auction offer and the index of the 

current highest bid in the currency list. The BA will indicate if they are bidding, if they 

are bidding they will the include index of their bid in the currency list.  

Once a bid is received the ACA must perform another check of the demand 

picture. This check is exactly the same as the check performed after soliciting a sale 

except that it is performed on the bid, not on the sale item. If the bid should fail the 

demand check the ACA will solicit the same nurse again for a new bid.  

 After the first pass through the sequence of bidding nurses, the ACA will check to 

see if there is a highest bid. If there is a highest bid, the ACA will solicit new bids from 

all the bidding nurses except the nurse that placed the current highest bid. These new bids 

 



 29

must be higher than the current highest bid. This process will be repeated until a pass 

through the sequence of bidding nurses results in no change to the highest bid.  

Once the bidding has ended the ACA will inform the bidding and selling BAs and 

the BAs will then update their schedules. The ACA will also adjust the demand picture as 

necessary. After the sale is closed the ACA will move the selling nurse to the end of the 

nurse sequence and the next nurse will become the new selling nurse. The ACA’s auction 

control algorithm is presented in pseudo code in Figure 2-3. 

 
Figure 2-3: This figure depicts the ACA auction control algorithm in pseudo code 
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2.2 THE NURSE BROKER AGENTS 
The broker agents (BAs) contain the decision logic that is used to model each 

nurse. They are responsible for generating auction offers, generating bids, and ensuring 

the feasibility of their individual schedules. The BAs are created by the ACA and receive 

their initialization information from the ACA and data files.  

 The BA contains two major data structures: their preference information and a 

pair of lists called the give and take lists. Nurse preference information is stored as a 

single data structure. It contains preferences for requests off (ROs), preferences for 

having specific days of the week (DOW) off, and preferences for the length of off-duty 

stints. The preference data structure is represented in Figure 2-4. These preferences are 

obtained from surveying the nurses prior to developing a roster using the survey in 

Appendix A. While preferences for ROs change from roster to roster, preferences for 

DOW and the length of off-duty stints tend to change less frequently. As a result we 

considered surveying and inputting preferences for DOW and off-duty stints less often or 

only when a nurse requested it. In practice we surveyed and inputted all the preference 

values before developing each roster. This was done because the point values assigned 

for each preference are evaluated relative to each other and while a nurse may desire 

three days off in a row in every roster, the relative rating of these preferences may 

change. 
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Figure 2-4: The nurse broker agent (BA) stores a nurse’s preference information in a set 

of arrays. CNR includes nurse preferences for requested stints off (Rk), specific days of 

the week off (Pd) and for preferred number of days off in a row (Qe). These preferences 

are used in each BA to represent each nurse’s utility function. In this figure there are 

three ROs, the first is from day 1-2, the second is day 7, and the third is day 20. The 

fourth RO has no start or end day, this indicates that no fourth request was made. 

Using the preference weights from Figure 2-4, the BA represents a nurse’s schedule 

utility function as follows: 
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In Equation 2.1, K is the set of request offs {1, 2, 3, 4}, D is the set of days of the 

week, L is the set of off duty stint lengths {2, 3, 4}. Rk is the weight of the nurse’s 
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preference to have their kth RO off. Xk is a binary variable indicating whether the nurse 

has their kth RO off. Pd is the weight of the nurse’s preference to have the dth day of the 

week off and Nd is the number of days of the week d that the nurse has off. w is an 

adjustment factor for each day of week. This adjustment factor is discussed later. Qe is 

the weight of the nurse’s preference to have a schedule that focuses on having e days off 

in a row. Se is the number of times the nurse has e days off in a row. The preference 

weights for off stints of length e are adjusted by an adjustment factor Ae.  

The adjustment factor Ae, is used to ensure that shorter stints are not favored. For 

example a 28-day schedule can have seven two-day off stints or only three four-day off 

stints. Thus if a nurse indicates that they prefer two-day stints with a weighting of 10 

points and four-day stints with 20 points having seven two-day stints is worth 70 points 

and three four-day stints is worth only 60 points. Our adjustment factor resolves this 

problem. The adjustment factor is defined as the reciprocal of the maximum number of 

off duty stints a scheduling period can have of a specific length. For a 28-day period there 

can be seven two-day stints, four three-day stints and three four-day stints. The 

adjustment factors for these stints are 1/7, 1/4, and 1/3 respectively. With the adjustment 

factor, the third term represents the degree to which the current schedule focuses on 

having stints of length e off. The days-of-the-week (DOW) term also includes an 

adjustment factor (w) to represent the degree to which the schedule focuses on having a 

given DOW off. w is set to 1/4 for a 28 day scheduling period.  

The adjustment factors also play an important role in helping to ensure that ROs 

are granted greater importance than other schedule characteristics. At MOFH-AFMSU 

the nurses all expect to have their ROs granted before any other preferences are 
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considered. The adjustment factors reduce the potential for a single stint or DOW 

interfering with the algorithms drive to obtain ROs.  

In addition to the preference inputs in the utility function (Equation 2.1) the BA 

adds on two penalties: one for single days off and one for unbalanced schedules. An 

unbalanced schedule is one that has a large majority of the work shifts in either the first 

or second half of the scheduling period. These penalties are preset within the algorithm 

and not solicited from the nurses as preferences. We chose not to solicit the nurses for 

preferences with respect to single days off and schedule balance to simplify the 

preference solicitation process. Since theses schedule characteristics are considered 

negatives, removing them from the set of inputs required from the nurses simplified the 

preference surveys (discussed later) to only the preferences a nurse may want to have. 

While we used a present penalty term to simplify our surveys, there is no algorithmic 

reason these penalties cannot be surveyed from the nurses. The penalty terms are added 

to the schedule utility function as follows: 
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Equation 2.2 is the penalty term that accounts for on-off-on work patterns. The dj 

variable indicates a single day off at day j in the schedule period. The cost coefficient 

(C1) is set prior to runtime. Equation 2.3 is the balance penalty term that ensures 

schedules are not too unbalanced or heavily skewed with workdays in the first or second 

half of the scheduling period. The bj variable is a binary variable indicating that there are 
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five work days in a six day stretch beginning at day j in the scheduling period. The cost 

coefficient (C2) is set prior to runtime. This balancing penalty helps discourage the 

concentration of work shifts and therefore helps spread or balance a nurse’s workload 

over the entire scheduling period. 

The give and take lists represent the potential bids and sales a BA can be involved 

in. Each are derived by the BA from its current schedule. The give list represents every 

work stint that the BA has available to trade. The take list represents every work stint that 

can fill the BA’s current days off. Figure 2-5 is an example of a seven day schedule’s 

give and take lists. 

 

Figure 2-5: This figure represents the give and take lists derived from the seven day 

schedule at the top. The give list is built by taking every stint that can be permutated from 

the work days that the nurse is scheduled to work. The take list is derived by creating 

every work stint that can fill the off days of the nurse’s schedule. 
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After producing the give and take lists each BA will filter their take list to help the 

agent achieve its goals. When filtering their take list, the agents will remove all the stints 

that conflict with any RO. A stint is considered in conflict with an RO when it contains at 

least one shift on a day that is part of a RO. This filtering mechanism ensures that a BA 

will never agree to a trade that takes on work for any day that is part of a RO. This helps 

improve the ability of BAs to achieve their ROs, particularly when the ROs are multiple 

day stints. 

Using its preference data structure and the give and take lists, each BA performs 

two key functions: creation of auction offers and bidding on auction offers. When the 

ACA solicits a BA for an auction offer the BA develops both the sale item and the 

auction offer’s currency.  To select a stint to auction off, the BA selects the stint in its 

give list located at the index stored in an internal tracking flag. To correctly develop 

auction items the BA must maintain the give list and its index tracking flag.  

Since the index of the give list is used to decide which stints to try and sell first, 

the BA maintains the list in a specified order. This order is dependent on the weights 

assigned to each stint in the list. The weight for each stint is produced by adding the 

preference weights of all the DOWs in the stint with a weighting for all partial or 

complete ROs that may be part of the stint. The preference weight for each RO will be 

added proportionally to the amount of overlap the stint has with the RO. For example, if 

the stint includes one of three days of a RO then 1/3 of the RO’s preference weight will 

be added to the give stint weight. 

An index tracking flag indicates which stint should be auctioned off from the give 

list. This tracking flag identifies the first (best) stint in the list that has not yet been 
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offered for sale. To indicate failures, the tracking flag is incremented by one every time 

the BA fails to sell a stint. When the BA’s schedule changes by either a successful 

auction or by a successful bid, the BA must update the give and take lists. When the BA 

updates its give and take lists, the index tracking flag is reset to zero. The BA auction sale 

algorithm is depicted in Figure 2-6.  

 

 

Figure 2-6: This figure depicts the Broker Agent's sale control algorithm in pseudo code. 
 

When the ACA solicits a BA for a bid, the BA must determine if it can add the 

sale item to its schedule and if there is a stint in the seller’s currency list that would result 

in a valid bid. A valid bid requires that the bidder’s resulting schedule is both feasible and 

that the constraint defined by Equation 4 is not violated. In this constraint U(Xh) is the 

utility of a schedule resulting from a hypothetical trade and U(Xc) is the utility of the 

current schedule. B is the bid threshold. This threshold controls the likelihood for trades 
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to take place in the CNR auction framework. The use of a positive bid threshold will 

allow for trades that hurt a nurse’s schedule. A positive bid threshold can be used to 

mimic goodwill. An example of goodwill is when a nurse trades shifts with another nurse 

as a favor; these trades may burden one nurse and benefit the other. 

)4.2()()( ch XUBXU ≥+  

A BA can bid on the sale item only if it is not already scheduled to work any of 

the days included in the sale item. Once this determination is made the BA can try and 

develop a feasible bid. When determining its bid, a BA compares its give list to the 

currency list. Through this comparison the BA can filter out the stints that cannot be 

offered for the sale item. The BA can offer only those stints in the currency list that 

exactly match a stint in its give list. No matches indicate that the BA is not working any 

stints that the auctioning BA is willing to take in exchange for the sale item.   

After comparing the currency and give lists the bidding BA performs hypothetical 

trades using the sale item and the remaining stints in the give list. When performing these 

hypothetical trades the BA filters out trades that result in infeasible schedules and notes 

the schedule improvement for all feasible trades. The BA further filters the feasible bids 

using the threshold criteria defined in Equation 2.4. The resulting stints are the set of 

valid bids. From this set the BA will select the stint that results in the greatest schedule 

improvement that is higher in the currency list than the current highest bid. The index of 

the current highest bid is passed to the BA when the ACA solicits a bid. The bid 

algorithm is shown in Figure 2-7. 

 

 



 38

 

Figure 2-7: This figure depicts the Broker Agent's bid generation algorithm in pseudo 

code. 
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Figure 2-8: This figure depicts the whole CNR algorithm. Actions in the right dashed 

rectangle are performed by the BA while those in the left are performed by the ACA.  

 

The ACA and BAs are used in the CNR algorithm to form a sequential auction 

framework for the trading of nurse shifts. Figure 2-8 presents a high level view of ACA-

BA interactions.  

 

2.3 CNR AUCTION CONVERGENCE  

 The CNR auction can be terminated by the ACA when either the schedule 

converges on a point when no stints can be sold or the maximum number of algorithm 

iterations has been reached. The algorithm has reached the maximum number of 
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iterations once it has solicited a sale from every BA 250 times. We selected 250 as the 

maximum number for two reasons: first, when the algorithm was setup to guarantee 

convergence, it always converged before the 250 iterations when there are 20 nurses; 

second, using more than 250 iterations resulted in large amounts of cycling when the 

algorithm was not going to converge. Cycling is the repetitive trading of a stint between 

two nurses. These observations are valid only for the 28-day schedules with 20 nurses 

that we experimented with. If there are N nurses, each iteration affords each nurse N 

opportunities to trade shifts. As a result the number of required iterations is not sensitive 

to the number of nurses. In contrast, the number of required iterations is sensitive to the 

number of days in the scheduling period. Increasing the length of the scheduling period 

increases the number of shifts each nurse can trade. This increases the potential number 

of trades and requires more algorithmic iterations. As a rule of thumb, the maximum 

number of iterations required increases linearly with the problem size in days. This linear 

effect assumes that the density of nurse preference considerations are constant (adding 

more days means each nurse may have more ROs).  

 Convergence is determined by two tracking flags for each BA. The first flag, Gi, 

corresponds to the total number of stints in a BA’s give list where i is the index of the BA 

in the ACA’s sequence list. The second flag, AGi, is the index of the last stint that the ith 

BA attempted to sell from its give list. Since BAs attempt to sell stints from their give 

lists sequentially, the ACA will only solicit a BA for a sale when Gi>AGi. Whenever a 

BA trades shifts with another BA by either selling or bidding, the BA will create a new 

give list based on its new schedule. Whenever this happens the ACA will reset Gi and 
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AGi for the BAs involved in the trade. When AGi≥Gi for all the BAs in the auction, the 

ACA considers the auction converged and will terminate the auction. 

Convergence is dependent on the bid threshold, B, used in Equation 2.4 and is not 

always guaranteed. BAs are designed to sell stints only when the resulting trade improves 

the utility of its schedule. Bidding is more flexible than selling. When bidding on stints, B 

controls the characteristics of the nurse utility functions. If B ≤ 0 then the BAs will bid on 

a stint only when the trade results in a schedule that has a utility that is at least as high as 

the utility of the current schedule. This characteristic implies a utility function that is 

strictly increasing. In this case the algorithm will eventually converge, provided the 

maximum number of iterations is high enough. If B > 0 then a BA can place bids that will 

result in schedules that are worse than its current schedule. When the threshold is 

positive, the utility functions are not strictly increasing and convergence is not 

guaranteed. 

2.4 MOTIVATING CASE STUDY 

The experiments in this study were conducted in accordance with the staffing 

rules at Mike O’Callaghan Federal Hospital’s Air Force Medical-Surgical Unit (MOFH-

AFMSU). The MOFH-AFMSU is a 24 X 7 inpatient facility with approximately 20 

registered nurses (RNs). In the MOFH-AFMSU the staffing rules are detailed in 

Appendix B. 

Testing of the CNR algorithm was done in two phases, the first phase is algorithm 

tuning and the second phase is survey comparisons on real world scenarios. The first 

phase is designed to determine the optimal settings for the CNR algorithm. The second 

phase is to survey the impressions of the nurses at MOFH-AFMSU of the CNR algorithm 
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compared to their current by-hand scheduling method currently in use. The CNR 

algorithm is implemented in C++, developed using Microsoft Visual Studio 2005, and 

run on an 1.4GHz Intel Centrino with 512MB RAM in debug mode. 

2.4.1. CNR ALGORITHM TUNING 

The first phase of testing is setup as a half factorial experimental design with 

twenty repetitions. The design tests the effects of required shift demand (D), the bid 

threshold (B), the single day off penalty (C1), and the balance penalty (C2). The factorial 

setup is depicted in Table 2-2. 

 

Table 2-2: The half factorial design for CNR includes four variables.  Three of these 

variables are algorithm settings including the bid threshold (B), and single dayoff (C1) 

and balancing (C2) penalties. The fourth variable, the demand variable, (D) is a product 

of the environment in which CNR is delpoyed . D indicates how many nurses are 

required for each shift.  

 
D B C1 C2 
4 10 10 5 
3 0 10 5 
3 10 0 5 
4 0 0 5 
3 10 10 0 
4 0 10 0 
4 10 0 0 
3 0 0 0 

 

While the half factorial reduces the number of experiments that need to be 

performed it does have a problem with confounding. In this experiment the two factor 
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interactions are confounded. The confounded two factor interactions are depicted in 

Table 2-3.  

 

Table 2-3: This table depicts the two factor interactions that are inherent in the half 

factorial design used in our experiments.  

 
Interaction Confounding Interaction 
D*C1 B*C2 
D* B C1*C2 
D*C2 B*C1 

 

The experiments for the half factorial design were set up to schedule 20 nurses to 

a 28-day period with 10 nurses assigned to the day shift and 10 assigned to the night shift. 

The nurse preferences were generated randomly with input from the MOFH-AFMSU 

scheduling team. This random generation produced nurse preferences that were 

considered realistic by the scheduling team with respect to weekend preferences, off-stint 

preferences, and the number of request offs (ROs) per nurse.  

The initial rosters for these experiments are standardized with each nurse working 

14 days where every workday is followed by an off day. Half of the night and day shift 

nurses start their schedules on a work day while the other half start on an off day. An 

example initial roster is represented in Figure 2-9. None of the schedules in these random 

experiments consider vacation days or additional duty days.  
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Figure 2-9: The initial schedules for the testing of the CNR algorithm were all designed 

to follow an on-off-on pattern. This type of initial schedule was easy to develop by hand 

and easy to adapt for real world tests in the MOFH-AFMSU 

 

After running each experiment in the half factorial design on 20 sets of 

preferences from each nurse, the effects of each variable was determined with respect to 

five responses: algorithm runtime, the number of on-off-on work patterns, average 

percentage of ROs granted per nurse, the average utility of the nurses, and the average 

number of trades each nurse is involved in. Equation 2.5 represents the effects of various 

algorithm inputs on the algorithm runtime (RT). Equation 2.6 represents the effects on 

the average number of on-off-on patterns per nurse called “single offs” (SO). Equation 

2.7 represents the effects on the average ratio of request offs that were met per nurse 

(PRO). Equation 2.8 represents the effects on the average utility of all the nurses. 

Equation 2.9 represents the effects on the average number of stint trades (T) each nurse is 

involved in. 
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All the factors included in these equations are statistically significant with p-

values less that 0.05. The logarithmic transformations seen in Equations 2.5 and 2.9 were 

performed to ensure that the residuals fit the normal probability plot and satisfied the 

linear regression assumption of constant variance.  

Since we do not have control over the required shift demand levels we ignored 

interaction terms where D was included. After performing our DOE we set the algorithm 

to the following settings: B = 10, C1 = 10, C2 = 5. Setting C1 = 10 was considered 

important. When C1=0 the resulting schedules had too many on-off-on patterns. The 

MOFH-AFMSU considers more than an occasional on-off-on pattern unacceptable.  

With C1 > 0 it is important to properly set B. Having a B≥C1 ensures that while the 

algorithm considers on-off-on patterns a negative, it will not be prevented from making 

some trades as a result of the penalty. When the bid threshold is high enough to overcome 

the single day off penalty the number of trades per nurse more than tripled. This 

increased trade activity increased runtime but greatly increased the final utility values. 

When we set B=0 and C1=10 the solutions were achieved quickly. Unfortunately the 

algorithm was not willing to make trades where a single day off was the result. This 
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limited the algorithm’s ability to move effectively through the solution space and 

produced schedules that were not very good.  

The balance penalty (C2) was created and included at the behest of the nurses. 

While the large majority of nurses are not upset by having the occasional on-off-on 

pattern, they do resent heavy work periods such as on-on-off-on-on-on patterns citing the 

wear from frequent 12-hr work shifts. 

2.4.2 COMPARATIVE METHODS 

Using the settings determined by the half factorial design, the next phase of 

testing compares the CNR algorithm to the by-hand scheduling method in use at the 

MOFH-AFMSU. To compare these two methods, nurses in the unit were surveyed twice 

each month over a four month period. The first survey collected nurse preferences and is 

presented in Appendix A. This survey was adapted from the survey used by Warner in his 

mathematical model that collected nurse aversions (Warner, 1976). Our adaptation 

collects nurse desires. 

The second survey collected each nurse’s impression of the schedules developed 

by the CNR algorithm and by the by-hand method using a Likert scale. This scale, shown 

in Figure 2-10, is an 11 point scale anchored at -5, 0, and 5. These point values 

correspond to “Very Dissatisfied”, “Indifferent,” and “Very Satisfied” respectively. After 

schedules were developed using the CNR and the by-hand method, the nurses were 

presented the two schedules in a blind random order and asked to rate each one. This 

ensured the nurses were rating the schedules without knowledge of the schedule’s source. 
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Figure 2-10: This figure depicts the Likert Scale used to survey MOFH-AFMSU nurse 

impressions of the schedules developed by the models under test. 

2.5 RESULTS AND DISCUSSION 

 When properly tuned, the CNR algorithm performs well over the 20 random 

experimental instances. Table 4 lists the general performance characteristics of the 

algorithm. This table includes the average and standard deviation of each metric over all 

the nurses in each run.  The standard deviations are reported as a measure of consistency 

and fairness. Fairness is measured as variability of the algorithm’s performance from 

nurse to nurse. For example a roster that grant’s an average of 90% of the request offs 

would be unfair if a few nurses had no requests granted while the rest had every request 

granted. 

 

Table 2-4: This table presents the performance characteristics of the CNR algorithm over 

20 experimental runs where the demand for level three nurses is one per shift. The data 

points include the average for all nurses per run and the standard deviation for all nurses 

per run. The bottom row is the average of the data points in its respective column. In this 

table all runs had 20 nurses, 10 on night shift and 10 on day shift. 
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Run 
Avg 
Num 
Trades 

Std Dev 
Trades 

Avg Num   
On-Off-
On 
Patterns 

Std Dev 
On-Off-
On 
Patterns 

Avg 
Ratio of 
ROs 
Granted 

Std Dev 
Ratio of 
ROs 
Granted 

Run 
Time 
(Second
s) 

1 35.7 19.47 0.2 0.52 1 0 36 
2 41.2 34.7 0.5 1 0.95 0.15 35 
3 53.7 39.7 0.65 0.88 0.98 11 35 
4 31.6 15.9 0.35 0.59 0.93 0.24 34 
5 94.1 118.04 0.3 0.57 1 0 43 
6 35.2 13.63 0.1 0.31 0.98 0.11 37 
7 32.3 18.42 0.3 0.57 1 0 32 
8 62.1 71.09 0.3 0.66 1 0 39 
9 64.7 78.11 0.45 0.69 0.98 0.11 41 
10 41 21.54 0.35 0.59 0.9 0.26 36 
11 47.9 20.26 0.4 0.6 1 0 41 
12 30.4 12.46 0.65 0.88 0.98 0.07 34 
13 34.4 15.58 0.4 0.68 1 0 35 
14 53.7 31.5 0.35 0.59 1 0 40 
15 39.6 13.2 0.4 0.6 0.93 0.23 39 
16 47 37.97 0.2 0.55 0.98 0.11 35 
17 43.8 32.09 0.35 0.59 0.98 0.11 36 
18 45 20.4 0.3 0.57 0.9 0.31 38 
19 46.6 46.12 0.6 0.75 0.9 0.26 37 
20 34.2 26.21 0.4 0.6 0.95 0.15 30 
Over 
All 
Runs 

45.71 15 0.38 0.64 0.97 0.11 36 

 

The first metric presented in Table 2-4 is the number of trades the nurses are 

involved in. Since this number includes both bids and sales, dividing the number in half 

gives the number of actual sales that the auction performed. The number of trades is a 

measure of the algorithm’s activity. More trades generally means that the algorithm 

experienced more movement through the solution space. More trades are not always a 

positive. Run 5 in Table 2-4 is an example of more trades actually being a negative. In 

this run the average and standard deviation is unusually high. This is an indication of 

cycling. Since the algorithm allows for bids that reduce schedule utility, a situation can 

arise where two BAs trade a stint back and forth until the algorithm reaches its maximum 
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number of iterations. This cycling artificially increases the total number of trades for the 

BAs involved. The resulting inequity drives up the standard deviation. 

The next metric in Table 2-4 is the number of on-off-on patterns. This pattern is 

considered a negative. The number of single days off shown in Table 4 is considered 

acceptable by the scheduling team at MOFH-AFMSU. Higher standard deviations 

indicate unequal distribution of on-off-on patterns amongst the nurses. If this distribution 

is too uneven, rosters may be viewed as unfair.   

The next metric is the average ratio of ROs granted. The CNR algorithm failed to 

satisfy only one RO during the four months of testing at MOFH. In the random tests, the 

algorithm failed to satisfy ROs in most of the experimental runs. This difference can be 

attributed to the weighting of ROs in the two experiments. While the random experiments 

were designed to mimic the number of ROs in a scheduling period, it has a greater spread 

of weights than the tests at MOFH-AFMSU. At MOFH-AFMSU, nurses tend to use the 

highest weights they can for their ROs. In the random experimental runs some of the ROs 

may have small preference weights. These small weights are the cause of many 

unsatisfied ROs.  

The random experiments were designed to that at least two-thirds of the nurses 

have ROs. Any nurse that does not have a RO is considered to have all their ROs granted. 

In all 20 random experiments at least 18 of the 20 nurses had all their ROs granted. 

Values in the high 0.90’s usually indicate one or two ROs were unsatisfied. Values in the 

lower 0.90’s may indicate anywhere from 1-8 ROs that were unsatisfied. These lower 

values usually indicate that the ROs that were unsatisfied are from nurses who only had 

one or two ROs.  
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The standard deviation of the ratio of ROs granted is reported as a fairness metric. 

Higher standard deviations indicate that some nurses are not having any ROs granted 

while others are having all of their ROs granted. This may lead nurses to perceive the 

rosters as unfair. 

Table 2-5 presents the performance information for the CNR algorithm when the 

number of nurses is reduced from five per shift to four per shift. Two nurses were 

removed randomly from working both the night and day shifts. With fewer nurses there 

are fewer potential trades. This hindered the algorithm’s potential to move through the 

solution space and reduced the performance on all metrics reported in that Table.  

 

Table 2-5: This table presents the performance characteristics of the CNR algorithm as 

the average of each metric over 20 experimental runs where the demand for level three 

nurses is one per shift. In this table all the runs had 16 nurses, 8 on night shift and 8 on 

day shift. 

Avg 
Num 

Trades 

Std Dev 
Trades 

Avg Num   
On-Off-

On 
Patterns 

Std Dev 
On-Off-

On 
Patterns 

Avg 
Ratio of 

ROs 
Granted 

Std Dev 
Ratio of 

ROs 
Granted 

Run 
Time 

(Seconds)

40.3 38.6 0.95 1.28 0.91 0.24 25.1 
 

Table 2-6 compares the nurse utility values when there are 20 versus 16 nurses. 

The values are for the same 16 nurses that were in both the four per shift and five per 

shift random experiments.  As expected, the difference in utility is statistically 

significant. This indicates that performance with respect to utility degrades when the 

number of nurses decreases.  
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Table 2-6: This table presents the average difference in utility values for all nurses over 

all runs of the CNR algorithm when there is 20 nurses and 16 nurses. The difference is 

calculated as the 20 nurse case minus the 16 nurse case. Only the 16 nurses used in the 16 

case are considered from the 20 nurse case. This difference is significant with a p-value 

of 0.00. 

Average Utility Difference for CNR 
With 20 and 16 Nurses 

P-Value for Equality of Means Test 

8.16 0.00 
 

Testing of the CNR algorithm at Mike O’Callaghan Federal Hospital was 

performed over four months. The results of nurse satisfaction ratings are shown in Table 

2-7. Unlike CNR, the MOFH-AFMSU’s by-hand method can leverage shifts where more 

nurses are assigned to work than is required. Even with this advantage, the MOFH-

AFMU’s rostering method could not outperform CNR. This result shows that the CNR 

method is competitive with respect to final roster quality.  In addition, the runtime of the 

CNR algorithm produces a schedule in less than one minute. This runtime is small 

enough to be practical if applied in a real word system. By contrast, the by-hand method 

usually takes the MOFH-AFMSU scheduling team at least six hours. 

 

Table 2-7: This table presents how the CNR and MOFH By-Hand methods performance 

in nurse satisfaction surveys. While the CNR method appears to be out performed, the 

test on equality of means cannot distinguish between the two methods. 

 CNR MOFH-AFMSU By-Hand 
Average Rating 1.2 1.7 
Rating Standard Deviation 3.1 2.8 
Percent of Responses that are Negative 33% 25% 
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P-Value Test Of Equality 0.4 
 

While our test results are promising, there are concerns with the surveying 

process. The ratings of each schedule are framed within the context of the other 

schedules. Often we saw situations where the first schedule rated by a nurse was later 

changed after the nurse rated the second schedule. This is evidence that a schedule’s 

rating was framed by the nurse’s perception of the other schedules they were rating. Thus 

a nurse may be unsatisfied with a good schedule because she prefers the other schedule 

she is asked to rate. We attribute this to a sense of regret, the nurse knows she could have 

had the better schedule and therefore is compelled to dislike a schedule that, when taken 

in isolation, would have been satisfactory to her. 

Another concern is the tendency for discrepancies between a nurse’s rating and 

their stated preferences. Occasionally nurses would rate schedules in a fashion that 

seemed nonsensical when considering their stated preferences. Nurse may rate schedules 

that gave them everything they asked for with a negative value or rate schedules that gave 

them more of what they asked for lower than a schedule that gave them less of what they 

asked for. We attribute this to three causes. First, nurses are rating schedules 

approximately two weeks after they submitted their preferences and those preferences 

may have changed. Second, the magnitude of the two penalties (balance and on-off-on 

patterns) was the same for all the nurses. As a result the impact of these penalties in the 

utility functions may not be inline with the perceptions of each individual nurse. Third, 

surveying perceptions and preferences is inherently inexact and is affected by bounded 

rationality. 
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 The CNR algorithm is a heuristic. CNR produces good rosters but does not 

guarantee that the output roster is Pareto-efficient with respect to preferences.   

Furthermore the performance with respect to organizational cost is dependent on the 

input roster; if the input roster is not cost minimal, than the roster produced by CNR may 

not be Pareto-efficient with respect to costs. This problem can be mitigated by altering 

CNR’s handling of costs by including a roster cost function. This would allow the 

algorithm to measure the impact of any shift trade on roster costs. The auction can than 

limit any trades to those that either reduce roster cost or are cost neutral. 

Overall the nurses at MOFH-AFMSU were pleased with the results of the CNR 

algorithm. While it is obvious the CNR improves the time it takes to produce a roster by-

hand by over 99%, this improvement is not remarkable considering other existing 

heuristic solutions. What is important is that CNR can be easily extended to take 

advantage of the potential benefits of agent-based scheduling approaches. As an agent 

system, CNR can distribute computational requirements over several computer systems, 

include other solution methods at various points in of the rostering problem, and act as a 

real-time scheduling system.  These benefits are not normally present in traditional 

centralized heuristic solutions and give CNR greater flexibility. Especially notable is that 

ability to act as a real-time scheduling system has tremendous potential for solving 

problems related to rostering, namely rerostering.  
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CHAPTER 3  ADDING AN ITERATED LOCAL SEARCH 
 

The principle shortcoming of our CNR implementation is that it has no way of 

taking advantage of staffing demand slack. To solve this problem we use a framework of 

iterated local searches (ILS) to improve the final CNR solution. Our ILS framework 

works within the Auction Control Agent (ACA) and the Broker Agents (BA) of the CNR 

auction. The principle function of the ILS framework is to allow individual BAs to alter 

their schedules by moving work stints through stint swapping. A work stint is any series 

of consecutive days where a nurse is working a shift. An off stint is any series of 

consecutive days where a nurse is not working. The stint concept is adapted from Millar 

and Kiragu’s network programming model (1998) and was adapted for our CNR 

algorithm.  

The ILS framework allows a BA to select a work stint in its schedule and swap it 

with an off stint in another part of its schedule. For example, if a BA’s schedule includes 

three consecutive day shifts starting on day four the BA may elect to swap the stint with a 

three day off stint starting on day seven. After the swap the BA will have an off stint 

starting on day four and a work stint starting on day seven. 

3.1 AUCTION CONTROL AGENT ILS 

 The ILS framework operates a small control segment in the ACA (ACA-C) and a 

small ILS in each BA (BA-ILS). The ACA-C is responsible for controlling the ILS 

framework’s convergence and for converting the final demand picture from the CNR 

auction into a staffing slack picture. Convergence is controlled through a set of variables 

that track the number of consecutive BA-ILSs that failed to find feasible schedule 
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improvements. Schedule improvement is measured using the utility function from 

Chapter 2 in Equation 2.1. Once every BA-ILS fails to find an improvement in 

succession, the ACA-C considers the ILS framework to be converged. A high-level 

summary of the ILS framework and how it is implemented in the CNR agents is depicted 

in Figure 3-1.  

 

Figure 3-1: Depiction of how the parts of the BA and ACA interact with the new ILS 

framework. The ILS framework is constituted by additions to the existing auction control 

and broker agents. The 8 steps are as follows: 

1. Seed the ILS control with the broker sequence and the final demand picture from 

the auction. 
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2. The ILS control instructs the BA to perform its ILS functions given the current 

slack picture. 

3. The BA imports its preference structures from the auction to the ILS. 

4. The BA uses its give and take lists to find the best possible stint swap.  

5. The BA updates its schedule if needed. 

6. The BA updates its give and take lists if needed. 

7. The ACA-C updates its slack picture based on the BA’s ILS results. 

8. If the ILS framework has converged the ACA-C will use the slack picture to 

update the ACA’s demand picture. If the framework has not converged the ACA-

C will initiate step 2 for the next BA. 

 

The staffing slack picture is stored in a set of two arrays, one for night shift slack 

and one for day shift slack. The slack picture, depicted in Figure 3-2, lets the ACA-C 

inform the BA-ILS functions of how many extra nurses of each training level are working 

each shift. 
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Figure 3-2: A representation of how the ACA-C stores the staffing slack picture. Each 

array contains the number of extra nurses of each level assigned to each day. One array is 

for the day shift and the second for the night shift. 

 

The slack picture contains a set of variables that indicate extra nursing staff. SDrj 

is the staffing slack of level r nurses during the day shift of day j. SNrj is the staffing slack 

of level r nurses during the night shift of day j. The ILS uses these slack variables to 

control how it manipulates the existing nurse schedules so that they remain feasible.  

When the BA-ILS is searching for a stint swap, staffing slack must be verified in 

the shifts that comprise the stint that the BA wants to have off. To verify that there is 

slack the BA-ILS must ensure that there are more than enough nurses at every training 

level working every shift in the stint. To do this the constraints in Equation 3.1 must be 

satisfied. 

)1.3('0 leveltrainingsnursecurrentrSDandSN rjrj ≤∀≥  
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The Algorithm for the ACA-C has three parts. First the slack picture is produced, 

second the BA-ILS functions are run, and third the results are integrated back into the 

primary ACA data structures for final output. The whole ACA-C algorithm is shown in 

pseudo code in Figure 3-3.  

 

Figure 3-3: The ACA-C algorithm in pseudo code. 
 

3.2 BROKER AGENT ILS 

The BA-ILS runs as an extension of the BA. This allows it to have access to the 

BA’s schedule and its preference data structures from the CNR auction. The preference 

data is used to determine what schedule manipulations are most advantageous to each 

nurse. With access to the BA’s data, the BA-ILS works to alter the schedule by producing 

pair-wise stint swaps within schedule of the BA.  

  The BA-ILS algorithm uses the BA’s give and take lists to search for stints to 

swap. The BA-ILS will only swap two stints when the swap produces schedules with 

higher utility values. This property of the BA-ILS ensures that the utility functions are 

strictly increasing in value and guarantees the whole ILS framework will converge. Of 
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course, since this is a heuristic method, there is no guarantee of global optimality. The 

BA-ILS algorithm is shown in Figure 3-4 in pseudo code.  

 

 

Figure 3-4: The BA-ILS algorithm in pseudo code. 
 

The BA-ILS is designed to find and perform only one pair wise stint swap. This is 

an intentional design that allows the ACA-C code segment to give fair treatment to each 

BA. The ACA-C calls each BA-ILS sequentially until every BA-ILS consecutively fails 

to perform a swap. The fact that each BA-ILS performs only one swap at a time ensures 

that each BA is treated equally. 

3.3 EXPERIMENTS 

The CNR-ILS algorithm was tested based on nurse rostering at the Mike 

O’Callaghan Federal Hospital’s Air Force Medical Surgical Unit (MOFH-AFMSU). This 
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inpatient ward has 20 registered nurses (RNs) who work in 12-hour shifts around the 

clock. The MOFH-AFMS ward manning rules are detailed in Appendix B. 

CNR with the ILS framework (CNR-ILS) was tested on the same 20 random 

experimental runs and with the same settings used in Chapter 2. The performance of 

CNR-ILS is then compared to both the performance of the CNR auction without the ILS 

and the performance of an integer program (IP) adapted from Azaiez and Al Sharif 

(2005). This IP program was selected because it handles preferences in a relatively 

common manner. While there are other many other mathematical programs that we could 

have used, the Azaiez and Al Sharif model is representative of them and competitive 

computationally. 

Let us turn our attention now to the performance characteristics of the original 

CNR model, the CNR-ILS model, and the IP model. We will measure the quality of the 

solutions produced three ways: the number of on-off-on patterns, the percentage of ROs 

satisfied, and the utility function values for each nurse. We will also compare the 

runtimes of the CNR and CNR-ILS models (both are orders of magnitude superior to the 

IP).  

The way nurse preferences are handled in our comparison warrants some 

discussion. Our adaptation of Azaiez and Al Sharif’s IP model considers fewer nurse 

preferences than our CNR and CNR-ILS models, but is pretty accurate overall. The IP 

includes ROs, balanced weekends off, and on-off-on patterns. The IP also includes the 

constraints necessary to satisfy MOFH-AFMSU manning rules. Table 3-1 is a 

comparison of how the three models consider nurse preferences. Unlike the IP, the CNR 
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and CNR-ILS models handles weekends differently and considers off stints of various 

lengths.  This flexibility of CNR-based methods compared to IP is one of its advantages.  

 

Table 3-1: Comparison of how the IP model, the CNR model, and CNR-ILS model 

handle various schedule preferences for the individual nurses. 

CNR and CNR-ILS Models IP Model 
Nurses can indicate a preference for 
either weekends or weekdays off 

Nurses must have at least half the 
weekends off 

Nurses can request up to four days off Nurses can request up to four days off 
On-off-on patterns are penalized On-off-on patterns are penalized 
Nurses can indicate a preferred 
number of consecutive days off 

 

Working 5 days out of any 6 is 
penalized 

 

 

The 20 experimental runs using the adapted Azaiez and Al Sharif IP model were 

are solved on a 1.4GHz Centrino computer using COIN-CBC. Each IP developed for 20 

nurses and a 28 day schedule includes 1120 integer variables and 560 continuous 

variables. The mathematical formulation is represented in equations 3-14.  

( ) )3.3(1∑ ∑∑
∈ ∈∈

++
Ii Ii

ij
Jj

ijijijij dCXNPXDPMin  

The objective function in Equation 3.3 includes a term for the preference impact 

of nurse i working either a night shift or day shift on day j. In this term Pij is the 

preference impact of nurse i working on day j. The last term is a penalty for any on-off-

on patterns in the schedule. The dij variable indicates that nurse i's schedule has an on-off-

on pattern at the jth day. I is the set of nurses and J is the set of days in the scheduling 

period. The decision variables are constrained as follows: 
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The first five constraints (below) enforce workload requirements for the 

individual nurses. Equation 3.4 ensures that a nurse does not work more than 3 

consecutive days. Equation 3.5 ensures that a nurse cannot have more than 4 consecutive 

days off. Equation 3.6 and 3.7 ensure that no nurse will work back-to-back shifts. 

Equation 8 ensures each nurse works their required number of shifts as indicated by 

variable Wi. 
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Equations 3.9-3.12 are staffing constraints. Equations 3.16 and 3.17 ensure that 

the required numbers of nurses are assigned to each day and night shift. Equations 3.18 

and 3.19 ensure that the required numbers of level 3 nurses are assigned to each day and 

night shift.  
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Equation 3.13 governs workloads for individual nurses around periods of vacation 

time. In this equation Vik is the set of days surrounding vacation period k for nurse i. This 

set includes the two days preceding and two days following the vacation period. K is the 

set of vacation periods for a given nurse in the scheduling period. This constraint ensures 

that a nurse can only have off three of the four days surrounding a vacation.  

( ) )13.3(,,0 IiKkXNXD
ikVj

ijij ∈∀∈∀>+∑
∈

 

The final constraint in Equation 3.14 ensures that every nurse has at least half of 

the weekend days off. EJ is the set of weekend days in the scheduling period. In this IP, 

the maximum number of weekend days a nurse can work is set to four because the 

scheduling periods at MOFH-AFMSU are 28 days long and include eight weekend days. 

Weekends for the night shift are Friday and Saturday nights. 

( ) )14.3(,4 IiXNXD
JEj

ijij ∈∀≤+∑
∈

 

The three models (CNR, CNR-ILS and IP) are also compared to the current by-

hand solution used at the Mike O’Callaghan Federal Hospital Air Force Medical Surgical 

Unit (MOFH-AFMSU).  The study was performed in a double blind format. The nurses 

were presented four schedules each month in a random order. The source of each 

schedule, CNR, CNR-ILS, IP or by-hand method, were not divulged to the nurses. The 

comparisons included four months of testing over four 28-day scheduling periods. 

Each month the nurses filled out a questionnaire to survey their preferences with 

respect to off duty stint lengths, weekends or weekdays off, and specific informal 

requests off (ROs). We then developed four schedules using CNR, CNR-ILS, the IP, and 

the MOFH-AFMSU by-hand method. The nurses were asked to rate each schedule with 
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respect to their level of satisfaction. Satisfaction levels were surveyed using an 11 point 

Likert scale anchored at -5 = very dissatisfied, 0 = indifferent, and 5 = very satisfied. The 

formats for the nurse satisfaction survey and the preference questionnaire are presented 

with the original CNR research [4].  

The CNR and CNR-ILS algorithms started with an initial roster where each nurse 

is scheduled to work a 28 day period of alternating on and off days. Half the nurses start 

their schedules with an off day and half with an on day. This initial roster has five nurses 

scheduled to work each shift on each day.    

3.4 RESULTS 

 The CNR-ILS algorithm performed very well over the 20 random experimental 

runs. Table 3-2 presents the key performance characteristics of the algorithm where there 

are 20 nurses, 10 of whom are assigned to the day shift and 10 to the night shift. In this 

table the minimum demand for nurses is four per shift. Table 3-3 represents the data for 

the IP model over the same 20 runs with a demand of four nurses per shift. Table 3-4 

represents the data for CNR-ILS where the demand is three nurses per shift. 

 

Table 3-2: Performance characteristics of the CNR-ILS algorithm over 20 experimental 

runs where the demand for nurses is four per shift. The data points include the average 

for all nurses per run and the standard deviation for all nurses per run. The last row is the 

average of the data points in its respective column. 

Run 

Avg. 
Num      
On-Off-
On 
Patterns 

Std. Dev. 
On-Off-
On 
Patterns 

Avg. 
Ratio of 
ROs 
Granted 

Std. 
Dev. 
Ratio of 
ROs 
Granted

Run 
Time 
(Seconds) 

1 0 0 1 0 37 
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Run 

Avg. 
Num      
On-Off-
On 
Patterns 

Std. Dev. 
On-Off-
On 
Patterns 

Avg. 
Ratio of 
ROs 
Granted 

Std. 
Dev. 
Ratio of 
ROs 
Granted

Run 
Time 
(Seconds) 

2 0 0 1 0 36 
3 0.15 0.37 1 0 36 
4 0 0 0.95 0.22 36 
5 0 0 1 0 44 
6 0 0 1 0 38 
7 0 0 1 0 33 
8 0 0 1 0 40 
9 0.05 0.22 1 0 42 
10 0.05 0.22 0.93 0.24 37 
11 0.1 0.31 1 0 42 
12 0.15 0.49 0.98 0.07 35 
13 0.05 0.22 1 0 36 
14 0 0 1 0 42 
15 0.05 0.22 1 0 40 
16 0.05 0.22 1 0 36 
17 0 0 0.98 0.11 37 
18 0 0 0.9 0.31 39 
19 0.05 0.22 0.93 0.24 38 
20 0 0 0.98 0.11 31 
Over 
All Runs 0.04 0.13 0.98 0.07 37.8 

 

CNR-ILS leverages the staffing demand slack for each shift and produces better 

results than CNR alone. The CNR-ILS framework significantly improves our original 

CNR algorithm with respect to the number of on-off-on patterns but not the average ratio 

of ROs satisfied. Running the ILS framework adds only 1-2 seconds to the runtime of the 

CNR algorithm. 

Adding the ILS to the CNR algorithm reduced the average number of on-off-on 

patterns by 90% over the 20 random experimental runs. The standard deviation of the on-

off-on patterns was reduced by 80%. A reduced standard deviation assures us that we are 

not getting erratic solutions.  It is no guarantee of optimum, but an assurance 
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nevertheless.  When the nursing demand is reduced to three nurses per shift from four 

nurses per shift the reduction in on-off-on patterns was 95% and the standard deviation 

was 87%. These improvements are reflected in a p-value of 0.00 on the equality of means 

at 95% confidence. 

The improvements were not as large for the mean ratio of ROs satisfied per run. 

CNR-ILS had a satisfaction rate 1% higher than CNR and the standard deviation was 

36% less when there are four nurses required per shift. When there we only three nurses 

required per shift the satisfaction rate was 2% higher and the standard deviation was 45% 

less. This indicates that the CNR-ILS algorithm was more consistent in granting ROs 

compared to the CNR algorithm. A test on the equality of means returned a p-value of 

0.07 which does not indicate a statistical difference in the means.  

 

Table 3-3: Performance characteristics of the IP model over 20 experimental runs where 

the demand for nurses is four per shift. The data points include the average for all nurses 

per run and the standard deviation for all nurses per run. The last row is the average of 

the data points in its respective column. The runtime for this model is on the order of 

hours to days. 

Run 

Avg. 
Num      

On-Off-
On 

Patterns 

Std. Dev. 
On-Off-

On 
Patterns 

Avg. 
Ratio of 

ROs 
Granted 

Std. 
Dev. 

Ratio of 
ROs 

Granted
1 0 0 1 0 
2 0 0 0.98 0.11 
3 0 0 0.98 0.11 
4 0 0 0.95 0.22 
5 0 0 1 0 
6 0 0 0.98 0.11 
7 0 0 1 0 
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Run 

Avg. 
Num      

On-Off-
On 

Patterns 

Std. Dev. 
On-Off-

On 
Patterns 

Avg. 
Ratio of 

ROs 
Granted 

Std. 
Dev. 

Ratio of 
ROs 

Granted
8 0 0 1 0 
9 0 0 0.95 0.15 
10 0.05 0.22 1 0 
11 0.05 0.22 1 0 
12 0.1 0.45 0.95 0.22 
13 0.05 0.22 1 0 
14 0 0 1 0 
15 0 0 1 0 
16 0.05 0.22 1 0 
17 0 0 1 0 
18 0 0 1 0 
19 0.05 0.22 0.95 0.22 
20 0 0 1 0 

Over 
All Runs 0.02 0.08 0.99 0.06 

 

The CNR-ILS algorithm performs comparably to the IP model with respect to the 

ratio of ROs granted and the number of on-off-on patterns at the 95% confidence level. 

The run time of the IP model is on the order of hours rather than seconds. 

The difference between the mean ratio of ROs granted per run by the IP model 

and the CNR-ILS model is not statistically significant. A test of equality returns a p-value 

of 0.29. The IP was a 1% improvement over the CNR-ILS algorithm with respect to the 

mean. The difference in the standard deviation of the IP was a 14% improvement over the 

CNR-ILS algorithm. The IP model’s mean ratio of ROs satisfied was statistically 

different from the original CNR model with a p-value of 0.02. 

When compared to the IP, the CNR-ILS algorithm shows an increase in the 

average number of on-off-on patterns per run of 50% and an increase in the standard 

deviation of 38%. Because of the small number of on-off-on patterns allowed by both 
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algorithms, the difference in the means is not statistically significant. A test of equality 

returns a p-value of 0.06.  

 The ILS algorithm in the CNR-ILS framework ensures the utility functions are 

strictly increasing. As a result, CNR-ILS favors an improved outcome when minimum 

staffing demand is reduced. With any reduction in staffing demand the algorithm is 

afforded more flexibility and has a larger solution space. The key benchmarks for the 

CNR-ILS with a demand of three nurses per shift are shown in Table 3-4. When the 

staffing demand is reduced to three nurses per shift for the CNR-ILS model there is not a 

statistical improvement with respect to the mean ratio of ROs granted and the mean 

number of on-off-on patterns per run. The p-values for the tests of equality are 0.07 and 

0.09 respectively. 

 

Table 3-4: Performance characteristics of the CNR-ILS algorithm over 20 experimental 

runs where the demand for nurses is three per shift. The data points include the average 

for all nurses per run and the standard deviation for all nurses per run. The last row is the 

average of the data points in its respective column. 

Run 

Avg. 
Num      

On-Off-
On 

Patterns 

Std. Dev. 
On-Off-

On 
Patterns 

Avg. 
Ratio of 

ROs 
Granted 

Std Dev 
Ratio of 

ROs 
Granted

Run 
Time 

(Seconds) 

1 0 0 1 0 37 
2 0 0 1 0 37 
3 0 0 1 0 37 
4 0 0 0.95 0.22 36 
5 0 0 1 0 45 
6 0 0 1 0 38 
7 0 0 1 0 34 
8 0 0 1 0 40 
9 0 0 1 0 42 
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Run 

Avg. 
Num      

On-Off-
On 

Patterns 

Std. Dev. 
On-Off-

On 
Patterns 

Avg. 
Ratio of 

ROs 
Granted 

Std Dev 
Ratio of 

ROs 
Granted

Run 
Time 

(Seconds) 

10 0.05 0.22 0.95 0.22 40 
11 0.05 0.22 1 0 43 
12 0.1 0.45 1 0 34 
13 0.05 0.22 1 0 36 
14 0 0 1 0 41 
15 0 0 1 0 40 
16 0.05 0.22 1 0 37 
17 0 0 0.98 0.11 37 
18 0 0 0.9 0.31 39 
19 0.05 0.22 0.95 0.22 39 
20 0 0 0.98 0.11 32 

Over 
All Runs 0.02 0.08 0.99 0.07 38.2 

 

The utility values for each nurse were compared in a pair wise manner. Tests were 

performed over each experimental run and over all the observations from all 20 runs. 

Table 3-5 lists the upper and lower bounds of the 95% confidence intervals for the 

average difference in the utility values for each nurse from the CNR and the IP 

algorithms, the CNR-ILS and IP algorithms and the CNR-ILS algorithm when staffing 

demand is three and four nurses per shift. In Table 3-5 any confidence interval that 

includes zero is bolded. These bolded confidence intervals indicate no statistical evidence 

that the average difference in the utility values is not zero. 

 

Table 3-5: Confidence intervals on the difference of the utility values for the nurses in 

each run and for all the runs at the 95% level. The entries in bold include zero and are not 

statistically different. The differences used to develop these confidence intervals are 
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defined by taking the utility values from the model on the left of the column title and 

subtracting the utility values of the model on the right. 

 CNR - IP CNR-ILS - IP 
CNR-ILS 

(Demand = 3) – 
CNR-ILS 

Run Lower Upper Lower Upper Lower Upper 
1 -1.35 -0.28 3.33 4.19 0.69 1.01 
2 -6.37 -3.16 5 5.73 0.74 1.07 
3 -7.77 -4.88 3.26 4.58 1.73 2.31 
4 -4.32 -2.12 4.46 5.45 0.67 0.88 
5 -0.9 0.51 4.07 4.92 0.5 0.8 
6 -0.23 1.74 5.25 5.86 0.29 0.42 
7 -1.28 0.58 4.94 5.84 0.43 0.68 
8 -1.06 0.14 3.84 4.86 0.54 0.91 
9 -4.91 -3.07 2.68 3.6 1.38 2 
10 -4.38 -2.1 3.02 4.02 1.03 1.49 
11 -4.17 -2.58 2.06 3.01 0.61 1.11 
12 -6.16 -4.09 1.24 2.73 1.78 2.99 
13 -2.94 -1.64 3.41 4.12 0.3 0.46 
14 -1.2 -0.06 4.7 5.36 0.41 0.58 
15 -5.19 -3.29 4.75 5.81 0.66 1.01 
16 -5.3 -2.93 2.47 3.35 0.88 1.28 
17 -1.56 -0.03 4.32 5.69 0.63 0.85 
18 -5.4 -3.71 0.57 1.9 0.1 0.17 
19 -9.95 -7.14 -1.21 0.79 3.19 4.86 
20 -5.78 -3.8 3.64 5.07 0.52 0.72 

Over 
All Runs -4.05 -2.06 3.27 4.38 0.78 1.35 

 

 When comparing the original CNR algorithm to the IP it is not surprising that the 

difference in the utility values is significant. The original CNR algorithm assumes 

minimal manning and therefore has a reduced solution space. When the ILS is added to 

create the CNR-ILS algorithm the difference compared to the IP is again statistically 

significant, however, the CNR-ILS algorithm provides the better utility values. The 

reason this heuristic can outperform an IP solved to optimality is that the heuristic is 
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capable of easily considering a larger set of preferences. In this study the CNR-ILS 

algorithm included the preferred length of off-duty stints.  

 From the perspective of the users, CNR-ILS outperformed CNR, the IP, and the 

MOFH-AFMSU by-hand methods in our double blind study. Table 3-6 reports the key 

survey metrics for all four scheduling methods. The first metric is the percentage of nurse 

ratings that indicated dissatisfaction. The next five metrics are the average nurse ratings 

where -5 = Very Dissatisfied and 5 = Very Satisfied. The final 5 metrics are the standard 

deviation of the nurse ratings. 

 

Table 3-6: Comparison of the four scheduling methods with respect to nurse satisfaction 

ratings. These rating were obtained via a double blind study over four months.  

 CNR CNR-ILS IP MOFH 
% Rating That Are Negative 33% 10% 21% 25% 

Avg. Rating Month 1 0.7 3.45 1.7 2.9 
Avg. Rating Month 2 0.71 2.5 1.79 1.36 
Avg. Rating Month 3 2.64 3.27 1.64 1 
Avg. Rating Month 4 1 2.08 1.23 1.85 

Avg. Rating All Months 1.23 2.76 1.58 1.73 
Rating Std Dev Month 1 3.59 1.07 3.33 3.03 
Rating Std Dev Month 2 2.81 1.91 2.78 2.65 
Rating Std Dev Month 3 3.11 2 1.75 2.49 
Rating Std Dev Month 4 2.68 2.33 3.22 2.91 

Rating Std Dev All Months 3.03 1.94 2.76 2.77 
 

 Table 3-6 shows that CNR has fewer bad ratings, less variation in the level of 

nurse satisfaction, and a higher average rating. These results indicate that CNR is more 

consistent and fairer than the other three methods. CNR, the IP and the by-hand method 

perform comparably to each other with higher standard deviations, more negative ratings 
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and lower averages. The averages of these three methods all fall with in a 0.5 point range 

while CNR-ILS is 1.03 points over that range. 

 The results from Table 3-6 are supported by the Paired T-Test results in Table 

3-7. Table 3-7 shows that CNR, the IP, and the by-hand method are not statistically 

different with α=0.05.  Only CNR-ILS stands out from all the models in the double blind 

study. CNR-ILS’ average ratings are statistically higher than the other three methods.  

 

Table 3-7: The p-values from a paired two-tailed equality of means test. This test was 

performed on nurse satisfaction ratings from all four test months. The results show the 

CNR-ILS is prefered to the other three methods and that CNR is comparable to the 

MOFH by-hand method and the IP method. 

 P-Value 
CNR-ILS ≠ CNR 0.002 

CNR-ILS ≠ IP 0.017 
CNR-ILS ≠ MOFH 0.033 

MOFH ≠ CNR 0.393 
MOFH ≠ IP 0.756 
IP ≠ CNR 0.519 

 

 Figure 3-5 graphically represents the monthly average ratings for all four 

scheduling methods. This figure highlights the second and fourth month because the 

staffing levels during those two months were abnormal. During the second month staffing 

was unusually low due to training assignments and vacations. During this month there 

was a drop in the average ratings.  
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Figure 3-5: Depiction of the average satisfaction ratings for the four scheduling methods 

over the test months. Month two and four are circled as examples of an unusually hard 

and unusually easy staffing month respectively. In month two several nurses where not 

available resulting in reduced available staffing numbers. In month four several new 

nurses joined the MOFH-AFMSU to replace the some departing nurses. Since the 

departing nurses had not left yet the available staffing numbers where unusually high. 

 

 During the fourth month staffing was unusually high. The MOFH-AFMSU 

received several new nurses that were supposed to replace several departing nurses. 

During this month the departing nurses had not yet left the unit. As a result both the new 

nurses and the departing nurses were available during this scheduling period. The high 

level of available staffing made the scheduling problem for the last month easier. This 

easier problem resulted in smaller differentiation between the schedules used in the 
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double blind study. As a result the average ratings for the four methods were closer and 

as a group lower. 

 The fourth month highlights one of the problems inherent in surveying nurse 

satisfaction over several schedules every month – framing. When rating each schedule 

the nurses cannot forget schedules they already rated and they therefore rate each 

schedule within the context of the other three. Several times this framing effect was 

evident in nurse satisfaction surveys. For example in one survey a nurse rated the first 

schedule a 2 then after rating the second schedule a 2 the nurse crossed out the first rating 

and re-rated the first schedule a 1. By the end of the survey the rating for the first 

schedule was changed from 2 to -1. 

3.5 DISSCUSSION 

While CNR-ILS is a good heuristic, it can be extended or improved in several 

ways. First, the CNR auction can be improved to include bids that are not the same size 

as the sale item. For example if a nurse wants to sell a three day work stint another can 

bid with three one-day work stints or a two-day and a one-day work stint. This would 

increase the algorithm’s flexibility to move through the solution space.  

Second, the auction mechanism can be altered to handle staffing slack. This can 

be done by hybridizing the ILS stint swapping mechanism and the auction mechanism. In 

this hybridized auction a nurse could sell a three-day work stint by trading it for a two 

day work stint and swapping the remaining one-day work stint with a one-day off stint 

from somewhere else in the selling nurse’s schedule.  

 Third, the development of a specific cost minimization model to use as input to 

the CNR-ILS algorithm could be valuable. While CNR-ILS was tested for four months 
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and did perform well we did not address the positive or negative effects of using different 

input rosters.  
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CHAPTER 4  COMPETITVE NURSE REROSTERING 
   

The rerostering of nurses occurs when there is a disruption to a roster that requires 

its modification. This study applies disruptions to rosters produced by CNR-ILS. Each 

disruption is to a single nurse’s schedule and renders that nurse unavailable for up to 

three consecutive days.   

CNR-ILS uses a work shift trading mechanism that relied on the swapping of 

work stints between different nurses. While this mechanism has been shown to work well 

for rostering nurses, a new more flexible trading mechanism is used for rerostering. In 

this new trading mechanism the selling nurse still sells a single work stint. However, 

when bidding, nurses can offer any combination of work shifts that have the same 

number of shifts that are in the stint being sold. This new, more flexible trading 

mechanism is called advanced trading (AT). AT allows nurses to bid with a variety of 

shorter stints in an effort to increase the likelihood of a trade. This added flexibility helps 

minimize the negative effect of any trade on a bidding nurse’s schedule. 

 

4.1 ADVANCED SHIFT TRADING 

AT requires a redesign of the currency list used in the original CNR auction. In 

the original CNR algorithm, the currency list represented all the work stints that a nurse 

would accept in exchange for the work stint she was selling.  The currency list is sorted in 

descending order with the first stint was the one that results in the most favorable trade 

for the selling nurse. This currency list only includes stints that are equal in size to the 

stint that is for sale. When modified for AT, the currency list contains a sequence of shift 
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sets where each set has the same number of work shifts as is in the work stint that is for 

sale. The redesign of the currency list is depicted in Figure 4-1. 

 
 

 

Figure 4-1: This figure depicts the modification done to the CNR auction item for AT. 

There are no changes to the sale item but the currency list simply contains any work 

shifts, not just consecutive shifts. In this image the selling nurse  is trying to sell the day 

shifts on days 5, 6 and 7. The seller is asking for the day shifts on days 1, 11, and 12 in 

exchange. 

 

The CNR auction mechanism is more powerful when it is given the added 

flexibility of using AT. This added flexibility allows the selling and bidding nurses to 

consider all the trades possible in the original CNR plus any additional trades that result 

from bidding with nonconsecutive shifts. This larger set of possible trades means that any 

single trade will be at least as good as the original CNR.  
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The AT trading mechanism was tested in the CNR and CNR-ILS algorithms using 

the same random experiments from our previous work (Chiaramonte 2008). In our 

previous work the CNR and CNR-ILS algorithms were tested using random experiments 

where the  bid threshold (B) was set to 10, the single off penalty (C1) was set to 10, the 

balance penalty (C2) was set to 5, and the maximum number of iterations was set to 250. 

A design of experiments performed during our previous research on the CNR algorithm 

determined that these settings produced the most favorable results. The same experiments 

were rerun to test these algorithms when the AT trading mechanism is incorporated. 

 

4.1.1 ROSTERING RESULTS 

The CNR and CNR-ILS algorithms were compared with and without the AT 

mechanism is in place. The key performance metrics that were recorded are the number 

of single days off, the ratio of informal request offs granted, and the utility measures of 

the individual nurses. Table 4-1 shows the p-values from the tests of equality for CNR 

and CNR-ILS compared to the same algorithms when AT is used. 

 

Table 4-1: This table shows the p-values for the equality of means tests on key 

performance indicators. The p-values show that using advanced trading improves the 

CNR algorithm with respect to the number of single days off.  

Algorithm 
Comparison 

Single Days 
Off 

Ratio of 
Request Offs 

(ROs) Granted

Individual 
Nurse Utility 

CNR 0.00 0.11 0.18 
CNR-ILS 0.25 0.10 0.39 
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Implementing AT for CNR and CNR-ILS does not improve the overall 

performance of the rerostering algorithm. Only the improvement for the average number 

of single days off when using CNR was statistically significant. Conversely when CNR-

ILS had AT implemented the observed difference in averages were not statistically 

significant.  

While it is not apparent that AT improves the overall CNR or CNR-ILS algorithm 

AT does improve the individual trades. When AT is implemented the average number of 

trades per nurse for a 28-day schedule with 20 nurses decreases from 45.7 to 30.1. This 

difference is statistically significant with a p-value of 0.00. The added complexity of the 

AT mechanism increases the run time of the CNR algorithm to an average of 196 seconds 

from 37 seconds.  

 

4.2 REROSTERING 

 Similar to CNR and CNR-ILS, CNRR relies on one-to-one shift trading. This one-

to-one ratio ensures that any CNRR solution conforms to Moz and Vaz Pato’s definition 

of optimality (2003). They defined optimal as any solution that minimizes the differences 

between the original and new roster. Unlike their solutions, CNRR also considers 

preferences while solving for this optimality. 

CNRR modifies the utility function that is used in CNR and CNR-ILS. The 

modification allows nurses to work the opposite shift from which they are assigned. Thus 

the exchange of day and night shifts, while not desirable, is possible in CNRR. The 

interchanging of day and night shifts is controlled by the addition of a new term to the 

utility function. This term, detailed in Equation 4.1, assigns a penalty (C3) to minimize 
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these exchanges. In this term Xj indicates a day were the nurse is assigned to the wrong 

shift. 

)1.4(3∑
∈

−
Jj

jXC

 

 In CNRR, disruptions are treated as request offs (ROs) and can be no longer than 

three days. Limiting disruption lengths helps enforce a staffing rule from our test hospital 

that requires nurses to take vacation time when they will be off duty for more than three 

consecutive days. When adding a disruption, a RO is added to the nurse’s preference 

structure for each day that is disrupted. Each single RO is added with a very large 

preference weighting. Figure 4-2 depicts a disruption added to a nurse’s preference list. 

In this figure the nurse experiences a three-day disruption in her schedule starting on day 

one. 

 

Figure 4-2: This image depicts the addition of a three day disruption to the preference list 

of a nurse. Each day in the disruption is added as a single day stint with a large weight M.  

 

 CNRR uses a three stage approach to minimize the impact that rerostering has on 

nurse preferences. These stages are Schedule Improvement, Impact Isolation, and Impact 
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Minimization. During the first and last stage, CNRR tries to fix a disruption by using the 

CNR auction mechanism with Advanced Trading (AT). During the second stage, CNRR 

attempts to fix a disruption using the ILS framework introduced in the CNR-ILS 

algorithm. In every stage CNRR attempts to trade the entire disrupted work stint in one 

trade. Failing to do this it will attempt to trade away the disruption in the least number of 

trades. Figure 4-3 depicts the order that CNRR will use when attempting to solve a three-

day disruption that starts on day one.  

 

 

Figure 4-3: This image depicts the set of stints that are developed from a three day 

disruption. The nurse experiencing the disruption will attempt to sell these stints at 

auction in the order shown. In this image the nurse was assigned to the day shift for all 

three days in the disruption. 

 

 The first stage is called Schedule Improvement (SI) because the goal of CNRR is 

to use the CNR auction to improve the utility of the bidding nurses. As a result of this 
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goal, the bid threshold in the CNR auction is set to zero. The bid threshold determines 

how much of a utility loss the bidding nurse is willing to accept in any auction sale. The 

SI stage’s algorithm is depicted in Figure 4-4. 

  

 

Figure 4-4: Pseudo code for the schedule improvement stage of CNRR. This stage is a 

CNR auction with AT where the bid threshold is set to zero. In this stage the set of stints 

that comprise the disruption are offered at auction.  

 

 When CNRR fails to satisfy an entire disruption in the SI stage the algorithm 

advances to the Impact Isolation (II) stage. This second stage accepts that there are no 

shift trades between nurses that can improve the utility of bidding nurses and attempts to 

ensure that any negative effects are isolated to the disrupted nurse. To do this, CNRR 

uses the CNR-ILS mechanism. In this stage, the ILS uses staffing slack to move work 

assignments from disrupted days to other days in the nurse’s schedule. This stage of 

CNRR is only effective when the days involved in the disruption are not minimally 

staffed. The algorithm for the Impact Isolation stage is depicted in Figure 4-5.   
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Figure 4-5: Pseudo code for the impact isolation stage of CNRR. This stage uses the 

CNR-ILS mechanism to attempt to satisfy the disruption by using staffing slack to shift 

the stints within the nurse’s schedule.  The ILS is run on all the stints in the set C that are 

not satisfied by stage 1 of CNRR.  

 

 When CNRR fails to fully satisfy a disruption during the SI and II stages, the 

algorithm advances to the Impact Minimization (IM) stage. This stage uses the same 

CNR auction mechanism with AT that is used in SI. Unlike the first stage, this stage uses 

a linear rollback (LRB) to allow stint trades that negatively impact bidding nurse utilities. 

LRB is used to minimize these negative impacts. 

)2.4(* KNBT =  

 LRB is a linear modification to the bid threshold. The bid threshold dictates how 

much utility a bidding nurse can lose on a single trade in a CNR auction. LRB, defined in 

Equation 4.2, slowly increases the bid threshold with each iteration of the IM stage. In 

this equation BT is the bid threshold, N is the iteration number, and K is the iteration 

increment. The iteration increment determines how quickly the algorithm increases bid 

flexibility. Figure 4-6 depicts the IM stage in pseudo code where K is set to 0.05  
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Figure 4-6: Pseudo code for the impact minimization stage of CNRR. This stage uses the 

CNR auction mechanism with Advanced Trading. In this stage the bid threshold is 

governed by linear rollback (LRB) which increases the bid threshold in a linear fashion 

until the CNRR algorithm succeeds or fails. 

4.3 RESULTS 

The rerostering experiments were run using the staffing rules of an actual 

hospital’s medical surgical ward. These rules are detailed in Appendix B. CNRR cannot 

alter any initial roster if it results in a violation of the hard constraints listed in this table. 

The soft constraints reflect guidelines that the medical surgical ward tries to satisfy but 

are not required. CNRR was tested on initial rosters that were 28 days long and included 

20 nurses.  All of these initial rosters were generated from the output of the random 

CNR-ILS experiments from our previous research.  
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CNRR was tested using three sets of  30 experimental runs each. The settings for the 

CNRR test sets are detailed in Table 4-2. The first two test sets are designed to simulate a 

situation where a nursing roster, designed well before the work period covered, is 

disrupted in advance by some event.  

The first two experimental sets use the same 30 runs. Each experimental run 

induces between one and five disruptions. Each disruption is between one and three days 

long. These sets of experiments treat paritially and fully satisfied ROs differently. In the 

first set of experiments, CNRR will not allow a shift trade that gives a nurse a work 

assignment during a day that is part of a RO. This trade restiriction  is consistent with our 

prevous CNR and CNR-ILS research. The second set of experiments lifts this restriction. 

The third set of experiments are designed to test CNRR when disruptions are 

realized during a scheduling period that has already begun. In this experimental set, 

nurses are only allowed to change their roster from day 14 onward.  

The third experimental set does not use the same 30 runs as the first two sets. In 

the third set, each run consists of only one or two disruptions that start during the third 

week of the roster (between day 14 and 21).  Like the first set of experiments, the third 

set handles partially and fully satisfied ROs the same way as our previous CNR and 

CNR-ILS research.  

The CNR auction settings were determined through the use of a designed 

experiment in our previous research. The selection of the LRB settings were determined 

by comparing two factors, the effect on runtime and effectiveness. We selected a K of 

0.05 because at this size it had little impact on runtime. Furthermore using a K smaller 

than 0.05 did not improve results When K was increased larger impacts were seen on 
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nurse preferences. The maximum number of iterations used for the LRB was set to 1000. 

This setting was selected because there were no experimental runs where the algorithm 

solved a disruption after 1000 iterations. The largest number of iterations seen was 901. 

Using these settings, CNRR almost always solved disruptions in under 5 seconds. 

In the worst case scenario, when the algorithm failed to solve the disruption and ran 

through all 1000 LRB iterations, CNRR completed in approximately 15 seconds.  

 

Table 4-2: This table is a summary of the three experimental sets used to test CNRR. 

Each set had 30 runs, and used the same CNR auction and LRB settings. In this table BT 

is the bid threshold, Cs is the single day off penalty, CB is the schedule balance penalty, 

Cw is the wrong shift penalty, K is the LRB iteration increment value, and MI is the 

maximum number of LRB iterations. 

 Test Set 1 Test Set 2 Test Set 3 
Start Day 0 0 14 

Disruptions Per 
Run 1-5 1-5 1-2 

Disruption 
Characteristics 1-3 days long 1-3 days long 

1-3 days long 
Starting between  

day 14 and 21 

CNR Auction 
Settings  

BT=LRB 
Cs=10 
CB=5 

Cw=20 

BT=LRB 
Cs=10 
CB=5 

Cw=20 

BT=LRB 
Cs=10 
CB=5 

Cw=20 

LRB Settings K=0.05 
MI=1000 

K=0.05 
MI=1000 

K=0.05 
MI=1000 

RO Handling Cannot Trade Can Trade Cannot Trade 
Total Number of 

Disruptions 87 87 47 

 

 When testing CNRR each disruption is classified in three ways: the size of the 

disruption in days, the CNRR phase in which the disruption was finally satisfied, and 
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whether or not the disruption has a feasible solution with respect to the staffing rules. The 

first classification breaks down how well the CNRR algorithm handles disruptions of 

one, two or three days. 

The second classification indicates the phase in which the disruption was 

satisfied. A three day disruption that was finally satisfied during the Impact Minimization 

(IM) phase may have had a day satisfied in the Schedule Improvement (SI) phase and a 

day satisfied in the Impact Isolation (II) phase.  

 The third classification indicates whether or not it is possible for CNRR to solve 

the disruption given the staffing rules. When testing, CNRR experienced two conditions 

that prevented the algorithm from finding a solution. The first is a condition that requires 

too many days off in a row and the second is one that requires too many days on in a row. 

These two conditions are depicted in Figure 4-7.  

Table 4-3 details the ratios of disruptions solved by CNRR in the first 

experimental set. In this set there were 87 total disruptions over 30 runs. Of these 87 

disruptions 81 were solvable while six were not. Five of the unsolvable disruptions were 

the result of Condition One while only one disruption was the result of Condition Two.  
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Figure 4-7: This figure depicts the two primary conditions where it is impossible for 

CNRR to solve disruptions. In this figure underlined ‘D’ indicates day shifts that are 

disrupted. Any bold italicized ‘O’ indicates a day off that is part of a RO. The first 

condition exists when a disruption is surrounded by ROs. Since CNRR will not allow 

trades where nurses take on work during part of a RO, solving the disruption will require 

more days off in a row than is allowed. The second condition exists when satisfying the 

disruption requires more than three days on in a row. In this condition at least one of the 

days labeled ‘1’, ‘2’, or ‘3’ would need to be traded for a work shift to satisfy the 

disruption. This would result in four consecutive workdays.  

 

 The first two rows in Table 4-3 detail the overall results for CNRR while the next 

six rows show the results by algorithm phase. Every row titled with “possible” 

considerers only those disruptions that did not fall into Condition One or Condition Two. 

The columns break down ratios solved by the size of the disruption with the last column 

indicating the ratio solved over all disruptions.  
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 CNRR solved 91% of the disruptions in the first experimental set. It was 98% 

when only solvable disruptions were considered. 2% of the disruptions were solved in the 

Schedule Improvement phase, 54% of the disruptions were solved during the Impact 

Isolation phase, and 38% of the disruptions required CNRR to enter the Impact 

Minimization phase. One third of the disruptions solved during the Impact Minimization 

phase required only one LRB iteration. One iteration equates to a utility impact that is 

negligible. Only 39% of the disruptions solved during the last phase required significant 

utility impact (at least 100 LRB iterations or 5 utility points).  

  

Table 4-3: This table presents the ratio of the disruptions solved over 30 random 

experiments where each experiment had between one and five disruptions applied to a 28 

day schedule. Disruptions varied in size from one day to three consecutive days. There 

were a total of 87 disruptions and 81 of those were solvable.  Of the 87 disruptions 62% 

were one day long, 29% were two days long and 9% were three days long. The first two 

rows present the ratio solved for the entire algorithm while the next six rows show the 

ratio solved by each algorithm stage. Rows that indicate “possible” consider only those 

disruptions that do have feasible solutions. 

  1 Day 2 Day 3 Day Total 
Ratio Solved 0.98 0.80 0.75 0.91 

Ratio Possible 
Solved 1.00 0.95 0.86 0.98 

 Ratio SI 0.04 0.00 0.00 0.02 
Ratio Possible SI 0.04 0.00 0.00 0.02 

 Ratio II 0.67 0.28 0.13 0.51 
Ratio Possible II 0.68 0.33 0.14 0.54 

 Ratio IM 0.28 0.52 0.63 0.38 
Ratio Possible 

IM 0.28 0.62 0.71 0.41 
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 Table 4-4 displays the results of the second experimental set when CNRR is 

modified to allow nurses to trade days that are part of ROs. This table is organized in the 

same way as Table 4.4. When CNRR is allowed to trade ROs the algorithm solved 99% 

of the disruptions with no disruptions being impossible to solve. Similar to the results in 

Table 4.4, Table 4.5 shows that most disruptions were solved during the Impact Isolation 

phase. Impact Minimization solved 44% of the disruptions with 29% of those having 

negligible impact and 58% having little impact (less than 100 LRB iterations). Only 13% 

required at least 100 LRB iterations. 

 

Table 4-4: This table presents data from the same experiments as Table 4-3. In this table 

the nurses were willing to give up days that were part of a request off to satisfy 

disruptions. There were a total of 87 disruptions and all 87 were solvable. The first two 

rows present the total solved while the next six rows show the ratio solved by each 

algorithm stage. 

  1 Day 2 Day 3 Day Total 
Ratio Solved 1.00 1.00 0.88 0.99 

Ratio SI 0.04 0.00 0.00 0.02 
Ratio II 0.67 0.36 0.13 0.53 

 Ratio IM 0.30 0.64 0.75 0.44 
 

 The third experimental set consists of 30 experimental runs totaling 47 

disruptions. The results are displayed in Table 4-5 which is given the same formatting as 

Table 4-3. CNRR was able to solve 98% of the disruptions when nurses could only trade 

shifts from the second half of a scheduling period. The algorithm solved 100% of the 

disruptions that have feasible solutions. Only one disruption was impossible to solve and 

that disruption fit into Condition One.  

 



 91

In the third experimental set the majority of the disruptions were solved in the 

Impact Minimization phase. Unlike the other two experimental sets, this set required 

more LRB iterations. 49% of the disruptions required CNRR to progress to the Impact 

Minimization phase. Of those, 17% had a negligible impact and 22% had a small impact. 

Most (61%) required at least 100 LRB iterations with 17% requiring more than 400 

iterations. Only one disruption in each of the first two sets required more than 400 LRB 

iterations. 

 

Table 4-5: This table presents the ratio of the disruptions solved over 30 random 

experiments where each experiment had one or two disruptions. Disruptions varied in 

size from one day to three consecutive days. There were a total of 47 disruptions and 46 

of those were solvable.  Of the 47 disruptions, 53% were a single day, 38% were two 

days and 9% were three days.   The first two rows present the ratio solved for the entire 

algorithm while the next six rows show the ratio solved by each algorithm stage. Rows 

that indicate “possible” are the ratios that consider those disruptions that do have feasible 

solutions.  

  1 Day 2 Day 3 Day Total 
Ratio Solved 1.00 1.00 0.75 0.98 

Ratio Possible 
Solved 1.00 1.00 1.00 1.00 

 Ratio SI 0.12 0.00 0.00 0.06 
Ratio Possible SI 0.12 0.00 0.00 0.07 

 Ratio II 0.60 0.28 0.00 0.43 
Ratio Possible II 0.60 0.28 0.00 0.43 

 Ratio IM 0.28 0.72 0.75 0.49 
Ratio Possible 

IM 0.28 0.72 1.00 0.50 
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 The runtime characteristics of CNR are most affected by the number of nurses 

being scheduled. This effect is O(n2). While adding nurses to CNR slows the algorithm, it 

also increases the solution space that can be explored and therefore produces better 

results with respect to preferences. Unlike CNR, CNR-ILS searches each nurse’s 

schedule individually. As a result, the ILS runtime is primarily a product of schedule 

length. Longer scheduling periods allow the ILS to explore more potential shift trades 

which results in better results. The ILS in CNR-ILS is O(n*d2) where ‘d’ represents days. 

We include the ‘n’ in this equation to differentiate from the ILS runtime in the II stage of 

CNRR. 

 

 

Figure 4-8: This chart shows how many iterations of the Impact Minimization (IM) phase 

were required for CNRR to solve a disruption. Runs that terminated prior to the IM phase 

or failed to find a solution are not included. When rerostering is confined to part of a 

scheduling period, as in experimental set three, and not the whole period, as in 
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experimental sets one and two, there will be larger impacts on nurse preferences. When 

CNRR can trade days that are part of a RO there is no improvement to the IM phase’s 

effect on nurse preferences in which case the algorithm’s only improvement is that it can 

solve more disruptions.  

 

When rerostering, CNRR’s runtime is affected by those of both CNR and CNR-

ILS. Unlike CNR, the SI and IM stages of CNRR look to trade only those shifts that are 

disrupted. This difference causes the auction runtime to be on the order of O(n) with 

respect to nurses rather than O(n2). This improvement allows CNRR to use the Advanced 

Trading mechanism without serious impact to observed runtimes.  The II phase needs to 

run the ILS only on the disrupted nurse’s schedule. This difference means that the ILS in 

CNRR is on the order of O(d2) rather than O(n*d2). This difference is marginal because 

the largest effect is from the number of days not the number of nurses.  

The most time intensive part of the CNRR algorithm is the Impact Minimization 

phase. The CNR auction is more complicated than the ILS and requires more runtime. 

Furthermore the Impact Minimization (IM) phase uses LRB while the Schedule 

Improvement (SI) phase does not. The use of LRB means that the IM phase can have 

multiple iterations, each having a new bid threshold. The SI phase has one iteration that 

uses a constant bid threshold of 0.0. The potential for multiple iterations in the IM phase 

means that the runtime of IM will be at least as large as the SI phase. 

Figure 4-8 charts both the bid threshold that results from the LRB equation and 

the ratio of the cumulative number of disruptions that were solved when CNRR reached 

each iteration. The figure shows the algorithm requires more LRB iterations when there is 
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a decrease in the number of days considered (Experimental Set 3). The algorithm 

manipulates the entire schedule even though only the second half is being considered. 

Because the CNRR algorithm always manipulates the entire schedule, more LRB 

iterations require more time to complete.  

4.4 DISCUSSION 

 CNRR is a modified version of the CNR-ILS rostering algorithm and represents 

the only current nurse rostering and rerostering system. CNRR minimizes the preference 

utility impact on the rostered nurses while adhering to Moz and Vaz Pato’s definition of 

optimal – minimal difference from the reroster and the initial roster. This is accomplished 

this by assuring one-to-one shift trades and determining which shift trades to make via 

preference analysis.  

While CNRR solved over 90% of the disruptions in all three of our experimental 

sets, it does have some shortcomings. The first is the potential for infeasibility. Since 

CNRR only allows one-to-one shift trades it cannot solve every possible disruption. In a 

three day disruption CNRR will only explore those solutions that have six different shift 

assignments (the three involved in the disruption and the three traded for the disruption). 

This limitation does not allow CNRR to explore the entire solution set.  

A related shortcoming is that CNRR has no means to explore the impact of more 

complex trades on nurse preferences. While CNRR does limit the negative impact of 

disruptions it must do so within the context of one-to-one shift trade ratios. It is possible 

that other rerostering solutions exist that have smaller preference impacts but do not 

adhere to Moz and Vaz Pato’s optimality definition. 
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Another limitation is that using LRB during the Impact Minimization phase 

requires an implied comparison of nurse utilities. During the development of CNR and 

CNR-ILS the direct comparison of the utility values from two different nurses was 

avoided. To accurately make these comparisons the utility functions of each nurse would 

need to be equally scaled. To avoid this complication, CNR and CNR-ILS ensured that 

decisions to alter a nurse’s schedule were made by considering only that nurse’s utility 

function. LRB allows negative preference impacts based on the numerical value of the 

impact on a nurse’s utility. For these impacts to be consistent between the different 

nurses the utility functions must be of the same scale, something CNRR does not 

guarantee. 

While CNRR is not perfect, it does present a promising rerostering methodology. 

It has the potential to be coupled with CNR-ILS to form a real-time scheduling and 

schedule recovery system. This system would have a high success rate in developing 

good rosters and solving disruptions to those rosters. 
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CHAPTER 5 CONCLUDING DISCUSSION AND FUTURE RESEARCH 

 

Our vision for the nurse scheduling algorithms presented in this dissertation is a real-

time scheduling paradigm where nurses are responsible for keeping their preferences up 

to date in the system and rosters are developed and reconstructed as needed. This real-

time paradigm helps to minimize the need for designated scheduling staff.  

CNRR, the culminating algorithm in this dissertation represents a unique and capable 

nurse scheduling method. The algorithm successfully divides the nurse rostering problem 

into a cost minimization problem and a preference maximization problem, models nurse 

preferences individually, presents a new agent based solution to the rostering and 

rerostering problem, and represents the first model designed to solve both the rostering 

and rerostering problems. 

The Competitve Nurse Rostering Algorithms (CNRAs) were tested based on the 

staffing rules at Mike O’Callaghan Federal Hospital Air Force Medical Surgical Unit. 

This ward, being a military ward, differs from the general nursing industry. For example, 

the nurses working on this ward are not paid by the hour but rather by the annum. As a 

result, the cost minimization problem in these experiments required that each nurse work 

at least some minimum number of hours per scheduling period. By contrast, civilian 

nurses are often paid by the hour, may have differing pay scales, and may not be required 

to work a minimum number of hours per scheduling period. This ward also tends to use 

few pool nurses while some hospitals rely on float or pool nurses to satisfy varying 

demand. Because this is a military ward the nursing staff is subject to longer periods of 

absences due to required training and missions away from the hospital. Given these 
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differences, our paradigm has shown promise but requires more research to prove it 

applicability in the general nursing industry. While these are a few examples of where the 

test ward may be different it is not all inclusive. Overcoming these differences and 

extending our CNRA paradigm to the general nursing industry requires further research. 

Nurses with varying pay scales can be accommodated in the CNRA paradigm by 

adding a single cost function to regulate shift trades between nurses. When two nurses 

that are paid at different rates or are paid different rate depending on what hour of the day 

they are working trade shifts, this function could measure the impact on the roster’s cost. 

The overall cost could be controlled by setting an upper bound.  

The use of extra staff could be regulated within the cost function through their 

naturally higher salaries or by imposing a subjective penalty for requiring the use of extra 

staffing beyond the core nursing staff. 

Beyond simply generalizing the CNRA paradigm, it can be extended by researching 

modifications to the underlying methodologies and algorithm inputs. Some examples are 

as follows: 

1. Using a nurse sign up model rather than an auction. 

2. Trading shifts between more than two nurses at a time. 

3. Integrating the ILS mechanism into the auction mechanism so that when 

there is staffing slack shift trades do not need to be made on a one-to-one 

ratio. 

4. Altering the preference characteristics that are considered. 

5. Developing an initial cost model rather than the simple input rosters we 

used. 
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6. Studying the affect of input rosters with different characteristics with 

respect to algorithm settings. 

While the algorithm requires further research, it is promising and in our 

experiments proved to be a viable method for automatically solving both the rostering 

and rerostering problem. 

 

DISCLAIMER 

The views expressed in this article are those of the author and do not reflect the 

official policy or position of the United States Air Force, Department of Defense, or the 

U.S. Government. 
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APPENDIX A: A CHRONOLOGICAL TABLE OF STAFF SCHEDULING 

LITERATURE 

Table A.1: This table defines seven common extensions to the traditional days-off, shift 

and tour scheduling.  Specifically these definitions are used to categorize the papers listed 

in Table  

Category Definition 

Preferences Preference considerations of individual staff members 
are explicitly handled. 

Rerostering Fixes disruptions in an existing roster due to staff 
absenteeism. 

Variable Shift Starting Times Uses shifts that may have differing starting times. 

Work-Rest Scheduling Included the scheduling of break periods during 
scheduled work shifts. 

Extra Staffing 
Deals with the allocation and scheduling of overtime, or 
agency temporary staff. This does not include part time 

employees. 

Scheduling Systems 
These papers focus on the development of a useable 

scheduling system. These papers often outline a software 
system though it may just be a conceptual model. 

Special Schedules 
Research in this category utilizes nontraditional 
schedules. These include cyclical schedules and 

compressed schedules. 

 

Table A.2: This table lists some of the literature related to staff scheduling. In this table 

the papers are sorted by publication year and categorized by what type of scheduling 

problem is addressed. Key papers, the rerostering column, and the preferences column 

are highlighted. These columns are singled out to focus on the part of the scheduling 
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problem addressed in our research. The three phases of the staff scheduling problem is 

shaded in grey: demand forecasting, demand covering, and rostering. Following the three 

phases are seven common research extensions: staff schedule preferences, rerostering, 

variable shift starting times, work-rest scheduling, extra staffing, scheduling systems, and 

special schedules. The seven extensions are defined in Table A.1. 
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Abernathy, William et. al. 1973  X X         
Segal, M 1974   X     X    

Miller, Holmes et. al. 1976   X X X       
Trived, Vandankumar 

and Warner, D. Michael 1976  X X      X   

Warner, D. Michael 1976   X X X       
Gentzler, G.L. et. al. 1977        X    
Bechtold, Stephen 1979        X    
Morris, James and 
Showalter, Michael 1983   X         

Bechtold, Stephen et. al. 1984        X    
Bailey, James 1985   X    X     

Glover, Fred and 
McMillan, Claude 1986   X X        

Rosenbloom, E.S. and 
Goertzen, N.F. 1987   X        X 

Baxter, John and Mosby, 
Mark 1988   X X X       

Bechtold, Stephen 1988   X      X   
Bechtold, Stephen and 

Sumners, DeWitt 1988        X    

Okada, Mihoko and 
Okada, Masahiko 1988   X X X       

Okada, Mihoko and 
Okada, Masahiko 1988   X X X       

Ozkarahan, Irem and 
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Ozkarahan, Irem 1989   X X X     X  
Bechtold, Stephen and 

Jacobs, Larry 1990   X     X    

Bechtold, Stephen 1991        X    
Bechtold, Stephen et. al. 1991 X           
Easton, Fred and Rossin, 

Donald 1991   X         

Easton, Fred and Rossin, 
Donald 1991   X         

Hung, Rudy 1991   X X       X 
Kostreva, M.M., et. al. 1991    X        

Loucks, John and Jacobs, 
Robert 1991   X X        

Ozkarahan, Irem 1991   X X X     X  
Chen, Jen-Gwo and 

Yeung, Tony W. 1992   X X X     X  

Okada, Mihoko 1992   X X X     X  
Siferd, Sue 1992 X           

Thompson, Gary M 1992   X         
Bechtold, Stephen and 

Thompson Gary 1993        X    

Brusco, MJ and 
Showalter, MJ 1993   X         

Franz, Lori and Miller, 
Janis 1993   X X X       

Hung, Rudy 1993   X X       X 
Hung, Rudy and 

Emmons, Hamilton 1993   X X       X 

Randhawa, Sabah and 
Sitompul, Darwin 1993   X X      X  

Thompson, Gary M 1993   X     X    
Bechtold, Stephen and 

Brusco, Michael 1994   X         

Bechtold, Stephen and 
Brusco, Michael 1994   X         

Hung, Rudy 1994   X X       X 
Hung, Rudy 1994   X X       X 
Hung, Rudy 1994   X X       X 

Lauer, L. et. al. 1994   X X      X  
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Siferd, Sue and Benton, 
W.C. 1994  X          

Bechtold, Stephen and 
Brusco, Michael 1995   X         

Brusco, Michael and 
Jacobs, Larry 1995   X         

Thompson, Gary M 1995   X    X X X   
Thompson, Gary M 1995   X         
Brusco, Michael and 

Johns, Tony 1996   X         

Easton, Fred and Rossin, 
Donald 1996   X         

Thompson, Gary M 1996   X X        
Easton, Fred and Rossin, 

Donald 1997   X      X   

Brusco, Michael 1998   X         
Brusco, Michael and 

Jacobs, Larry 1998   X         

Brusco, Michael and 
Jacobs, Larry 1998   X    X     

Dowsland, Kathryn 1998   X X X       
Millar, Harvey H. and 

Kiragu, Mona 1998   X X        

Burns, R. and 
Narasimhan, R. 1999  X X        X 

Easton, Fred and 
Mansour, Nashat 1999  X X         

Aickelin, Uwe and 
Dowsland, Kathryn 2000   X X X       

Brusco, Michael and 
Jacobs, Larry 2000   X    X X    

Dowsland, K.A. and 
Thompson, J.M. 2000   X X X       

Jan, et. al. 2000   X X        
Spyropoulos, Constantine 2000 X           
Thengvall, Benjamin et. 

al. 2000     X X      

Brusco, Michael and 
Jacobs, Larry 2001   X    X     
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Ferland, Jacques et. al. 2001   X         
Dias, Tiago M. et. al. 2003   X X X       
Ikegami, Atsuko and 

Niwa, Akira 2003   X X X       

Kawanaka, Hiroharu et. 
al. 2003   X X X       

Moz, Margarida and Vaz 
Pato, Margarida 2003      X      

Rosenberger, Jay et. al. 2003      X      
Yu, Gang et. al. 2003      X      

Aickelin, Uwe and 
Dowsland, Kathryn 2004   X X X       

Aickelin, Uwe and White, 
Paul 2004   X X X       

Alfares, Hesham 2004 X           
Bard, Jonathan F. 2004   X         
Bard, Jonathan F. 2004   X     X    
Ernst, A.T. et. al. 2004 X           
Ernst, A.T. et. al. 2004 X           
Eveborn, P. and 
Ronnqvist, M. 2004   X X X     X  

Isken, Mark 2004   X X   X     
Moz, Margarida and Vaz 

Pato, Margarida 2004      X      

Winstanley, Graham 2004   X X X       
Azaiez, M.N. and Al 

Sharif, S.S 2005   X X X       

Bard, Jonathan and 
Purnomo, Hadi 2005  X X X X       

Bard, Jonathan and 
Purnomo, Hadi 2005   X X X    X   

Easton, Fred 2005      X      
Fung, Spencer 2005   X X        

Hattori, Hiromitsu et. al. 2005   X X X X      
Bard, Jonathan and 

Purnomo, Hadi 2006   X X X    X   

Beddoe, Gareth and 
Petrovic, Sanja 2006   X X        

Belien, Jeroen and 2006   X X X       
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Demeulemeester, Erik 
Bhadury, J. and 
Radovilsky, Z. 2006   X X        

Bratu, Stephane and 
Barnhart, Cynthia 2006      X      

Hochbaum, Dorit and 
Levin, Asaf 2006   X        X 

Qi, Xiangtong and Bard, 
Jonathan F. 2006   X         

Trinkoff, Alison et. al. 2006            
Wright, Daniel 2006   X X X    X   

Bard, Jonathan and 
Purnomo, Hadi 2007   X X X      X 

Gutjahr, Walter J. and 
Rauner, Marion S. 2007   X X X    X   

Huisman, Dennis 2007      X      
Moz, Margarida and Vaz 

Pato, Margarida 2007      X      
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APPENDIX B: NURSE STAFFING RULES FROM MIKE O’CALLAGHAN 
FEDERAL HOSPITAL’S AIR FORCE MEDICAL/SURGICAL UNIT 

 

1) Nurses work 12 hr shifts from 0700h-1900h or from 1900h-0700h.  

2) Nurses must work 14 shifts in a 28 day scheduling period.  

3) Every two days of paid vacation counts as one work day. Therefore if a nurse has 

4 days of paid vacation during a scheduling period she needs to work only 12 

shifts. The number of paid vacation days is rounded up so that if a nurse has 3 

days of paid vacation she still only needs to work 12 shifts. 

4) A nurse may have no more than two days off prior to taking paid vacation. 

5) A nurse may have no more than two days off following a period of paid vacation. 

6) If a nurse has two days off prior to paid vacation she may have only one day off 

following the paid vacation. 

7) If a nurse has two days off following a paid vacation she may have only one day 

off prior to paid vacation. 

8) A nurse may work no more than 3 days in a row. 

9) A nurse may have no more than 4 days off in a row without taking paid vacation. 

10)  A nurse cannot work back-to-back shifts. For example working a night shift on 

Monday followed by a day shift on Tuesday. 

11)  There must be at least one level three nurse on duty during each shift to serve as 

the charge nurse. 

12)  Each night shift must be worked by at least 3 nurses that are not in a training 

status. 
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13)  Each weekday day shift must be worked by at least 4 nurses that are not in a 

training status. 

14) Each weekend day shift must be worked by at least 3 nurses that are not in a 

training status. 

15)  Every nurse can request up to four days off during a scheduling period. These 

request offs (ROs) are considered a courtesy and though they are usually granted 

they are not guaranteed. This is a hard constraint because nurses cannot request 

more that four days off in any scheduling period without taking vacation time. 

16) *Nurses rotate shift assignments. They are assigned to work the night shift for 

three months then change assignments to the day shift. Nurses who have been on 

day shifts the longest rotate to night shifts as needed. 

These rules are considered hard constraints that cannot be broken. In addition to these 

rules the scheduling staff at MOFH-AFMSU also takes into account the following 

guidelines as soft constraints: 

1) Schedules should avoid single days off or on-off-on patterns. 

2) Schedules should balance the workload over the scheduling period.  

3) ROs should be granted if possible. 

4) At least two days off should be given when transitioning between night and day 

shifts. 

5) Weekends should not be split if possible. 

*In CNRR nurses may work the opposite shift for a short time period to satisfy a 

disruption or to ensure roster feasibility. This action is governed by a cost penalty (C3) 

added to the utility functions. 
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APPENDIX C: NURSE PREFERENCE WORKSHEET 
 
Name:___________________________ Date:_____________ 
 
Please fill in your preferences as requested. A higher value indicates a stronger 
preference for having the indicated item in your 28 day schedule. 
 

 Preference 
Points 

 
Schedules with 4 consecutive days off 

 
 

 
Schedules with 3 consecutive days off 

 
 

 
Schedules with 2 consecutive days off 

 
 

 
Total for schedule characteristics 

 
 

Please assign UP TO 40 
points for this section. 

A weekday off A weekend day off  
Which do you prefer? 

Do no assign points to this selection 
simply put an X under your preference if 

you have one. 
 

  

 Preference 
Points Start Day End Day 

 
 
 

  

 
 
 

  

 
 
 

  

Requests off (Cannot be more than 4 
total days. Requests for multiple days off 

as a group are treated all-or-nothing). 
Please assign UP TO 60 points for this 

section 

 
 
 

  

 
Total for requests offs 
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APPENDIX E: RAW DATA TABLES 

Table E-1: This table presents the results of our designed experimental runs used to tune the CNR algorithm.  
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Table E-2: This table presents the performance of the CNR algorithm during our random experiments with respect to utility.  
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Table E-3: This table presents the performance of the CNR algorithm using the AT mechanism during our random experiments with 
respect to utility.  
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Table E-4: This table presents the performance of the CNR algorithm during our random experiments with respect to the ratio of ROs 
granted.  
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Table E-5: This table presents the performance of the CNR algorithm using the AT mechanism during our random experiments with 
respect to the ratio of ROs granted. 
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Table E-6: This table presents the performance of the CNR algorithm during our random experiments with respect to the number of 
single days off. 
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Table E-7: This table presents the performance of the CNR algorithm using the AT mechanism during our random experiments with 
respect to the number of single days off. 
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Table E-8: This table presents the performance of the CNR-ILS algorithm during our random experiments with respect to the nurse 
utility values. 
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Table E-9: This table presents the performance of the CNR-ILS algorithm during our random experiments with respect to the nurse 
utility values when the demand for nurses is reduced from four to three per shift. 
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Table E-10: This table presents the performance of the CNR-ILS algorithm using the AT mechanism during our random experiments 
with respect to the nurse utility values. 
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Table E-11: This table presents the performance of the CNR-ILS algorithm during our random experiments with respect to the ratio of 
ROs granted. 
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Table E-12: This table presents the performance of the CNR-ILS algorithm during our random experiments with respect to the ratio of 
ROs granted when the demand for nurses is decreased from four to three per shift. 
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Table E-13: This table presents the performance of the CNR-ILS algorithm using the AT mechanism during our random experiments 

with respect to the ratio of ROs granted. 
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Table E-14: This table presents the performance of the CNR-ILS algorithm during our random experiments with respect to the number 

of single days off. 
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Table E-15: This table presents the performance of the CNR-ILS algorithm during our random experiments with respect to the number 
of single days off when the demand for nurses is reduced from four to three per shift. 
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Table E-16: This table presents the performance of the CNR-ILS algorithm using the AT mechanism during our random experiments 
with respect to the number of single days off. 
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Table E-17: This table presents the performance of the IP model during our random experiments with respect to the nurse utility 
values. 
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Table E-18: This table presents the performance of the IP model during our random experiments with respect to the ratio of ROs 
granted. 
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Table E-19: This table presents the performance of the IP model during our random experiments with respect to the number of single 
days off. 
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Table E-20: This table presents the difference between the nurse utility values from CNR algorithm and the IP model during our 
random experiments. The difference is calculated as the CNR value minus the IP value. 
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Table E-21: This table presents the difference between the nurse utility values from CNR-ILS algorithm and the IP model during our 
random experiments. The difference is calculated as the CNR-ILS value minus the IP value. 
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Table E-22: This table presents the difference between the nurse utility values from CNR-ILS algorithm when the demand for nurses 
is three per shift and when the demand is four per shift. The difference is calculated as the value when demand is three nurses minus 

the value when demand is four nurses. 
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Table E-23: This table presents the difference between the nurse utility values from CNR algorithm when there are 20 nurses and 
when there are 16 nurses. The difference is calculated as the 20 nurse values minus the 16 nurse values. The 16 nurses that are 

compared were determined by deleting two nurses form both the night and day shift of the 20nurse CNR experiment. 
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Table E-24: This table presents the results from test for equality of means between the IP, CNR, and CNR-ILS models. CNR-ILS 4 = 
CNR-ILS where demand for nurses is four per shift; CNR-ILS 3 = CNR-ILS where demand for nurses is three per shift; ADV CNR = 

CNR with the AT Mechanism; ADV CNR-ILS = CNR-ILS with the AT mechanism.  
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Table E-25:  This table presents the survey results from Mike O’Callaghan Federal Hospital.  

 
 

 



 
Table E-26:  This table presents the number of LRB iterations that were required to solve disruptions that entered the IM phase of the 

CNRR algorithm during rerostering. 
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