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ABSTRACT 

This thesis explores the “Infomax” method of Independent Component Analysis 

(ICA) to accomplish blind source separation (BSS).  The Infomax method separates 

unknown source signals from a number of signal mixtures by maximizing the entropy of 

a transformed set of signal mixtures and is accomplished by performing gradient ascent 

in MATLAB. This work specifically focuses on small numbers of two types of signals: 

audio signals and simple communications signals (polar non-return to zero signals).  The 

Infomax method is found to be successful and efficient only for small numbers of signals, 

and improvements to the gradient ascent algorithm should be made for the Infomax 

algorithm to succeed for more than three signal mixtures.  MATLAB implementation 

code is included as appendices. 
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EXECUTIVE SUMMARY 

As the use of wireless communications expands, more signals are introduced into 

the environment.  The pervasiveness of these signals results in overcrowding in the 

spectrum and an increasing number of overlapping signals.  Multiple signals overlapping 

in time and frequency create co-channel interference.  When superimposed signals are 

received, they are generally difficult to demodulate due to the influence of the interfering 

signal on the decision statistics in the receiver, resulting in inaccurate demodulation. 

In military applications, the ability to correctly demodulate received signals 

affects friendly communications capabilities as well as hostile threat assessments.  Co-

channel signals are often received as signal mixtures, although the nature of the source 

signals and the mixing process is usually unknown.  The problem of finding original 

signals from a mixture of signals is called blind source separation. 

Blind source separation (BSS) is a term used to describe the method of extrication 

of underlying source signals from a set of observed signal mixtures with little or no 

information as to the nature of those source signals.  Blind source separation has a variety 

of applications, including neural imaging, economic analysis, and signal processing.  

Independent Component Analysis (ICA) is a method of finding unknown source signals 

from signal mixtures, and it is just one of many solutions to the BSS problem. 

Just as ICA is one of many methods of resolving signal mixtures into their 

original component source signals, many approaches have been developed to perform 

ICA.  This research focuses on the “Infomax” algorithm, which finds a number of 

independent source signals from the same number of signal mixtures by maximizing the 

entropy of the signals. 

Entropy is basically the average information obtained when the value of a random 

variable is found, and Infomax is based on the fact that the maximum entropy of joint 

continuous random variables occurs only when the random variables are statistically  

 

 



 
 
 

 xviii

independent.  Therefore, if entropy is maximized, the resulting signals must be 

independent.  If the contributing signals are independent, then these independent signals 

must be the original source signals.   

The Infomax algorithm achieves the maximum entropy of a function using 

gradient ascent, an iterative process of taking a “step” in the direction of maximum 

gradient until a local maximum is reached.  If this process is repeated sufficiently, the 

global maximum will eventually be found.  When the global maximum of entropy is 

found using gradient ascent, entropy has been maximized, and the resulting signals are 

the source signals. 

In this research, the Infomax algorithm was implemented in MATLAB, and the 

Infomax theory was first tested on audio signals.  For small numbers of signal mixtures 

(two to three), the Infomax algorithm was found to be rather efficient.  As the number of 

signal mixtures increased, however, the complexity of the algorithm increased and 

efficiency decreased.  The algorithm was then adapted to a simple communications 

signal, the polar non-return to zero (NRZ) waveform.  Two methods of modifying the 

Infomax algorithm to a different signal type were tested, and the superior method was 

chosen to run simulations.  Again, the Infomax algorithm proved to be efficient in 

extracting small number of signals (two to three) from the same number of signals 

mixtures.  As the number of signals increased, the complexity of the algorithm increased, 

resulting in longer and less accurate computations. 

The Infomax method of ICA was found to be quite successful in solving the blind 

source separation problem for small numbers of sources (both audio signals and polar 

NRZ signals).  This research could be extended to larger numbers of signals, as well as 

signals of many different types.  Improvements to the gradient ascent algorithm could 

improve the Infomax algorithm’s performance in both of these cases.  Additionally, the 

many other methods of ICA could be tested and compared for consistency, efficiency, 

and accuracy.  The applicability of this topic to a variety of research fields creates 

abundant opportunities for future work:  a very exciting future for breakthroughs in ICA 

as a method of Blind Source Separation. 
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I. INTRODUCTION 

As the use of wireless communications expands, more signals are introduced into 

the environment.  The pervasiveness of these signals results in overcrowding in the 

spectrum and an increasing number of overlapping signals.  Multiple signals overlapping 

in time and frequency often create co-channel interference [8].  When these 

superimposed signals are received, they are generally difficult to demodulate due to the 

influence of the interfering signal on the decision statistics in the receiver [10], resulting 

in inaccurate demodulation. 

In military applications, the ability to correctly demodulate received signals 

affects friendly communications capabilities as well as hostile threat assessments.  Co-

channel signals are often received as signal mixtures, although the nature of the source 

signals and the mixing process is usually unknown.  The problem of finding original 

signals from a mixture of signals is called blind source separation. 

A. BLIND SOURCE SEPARATION 

Blind source separation (BSS) is a term used to describe the method of extrication 

of underlying source signals from a set of observed signal mixtures with little or no 

information as to the nature of those source signals.  Blind source separation has a variety 

of applications, including neural imaging, economic analysis, and signal processing.  A 

classic example of blind source separation is the “cocktail party problem [12], [6].” 

1. The Cocktail Party Problem 

The cocktail party problem considers the example of a room full of people 

speaking simultaneously.  Microphones (equal to the number of people in the room) are 

scattered throughout the room, and each microphone records a mixture of all the voices in 

the room.  The problem, then, is to separate the voices of the individual speakers using 

only the recorded mixtures of their voices.  A simplified version of the cocktail party is 

illustrated in Figure 1. 
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Figure 1 The “Cocktail Party” problem. 

 

While this figure is simplified in that there are only four “attendees” at the “party”, it is 

also evident how complicated the problem becomes as the number of source signals and 

signal mixtures increases.  Independent Component Analysis (ICA) is one of many 

methods of addressing the problem of blind source separation. 

B. OBJECTIVES AND OUTLINE 

This thesis is intended to provide a framework for future research into the topic of 

Independent Component Analysis at the Naval Postgraduate School.  Research objectives 

are as follows. 
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1. Research ICA Methods 

A variety of ICA methods were reviewed, and a single method was chosen for 

further analysis.  Chapter II contains a history of ICA and a literature review.  The 

Infomax method was chosen based on the more comprehensive introductory material 

available (mainly in the form of Stone’s book [12]), as well as the similarity in its 

resultant equation to other methods. 

2. Analyze Infomax Method 

Chapter III presents a detailed analysis of the Infomax method of ICA.  The main 

concepts of Infomax are defined, and the equations necessary for the implementation of 

the Infomax algorithm are derived. 

3. Implement Infomax Algorithm in MATLAB 

Basic MATLAB code for the Infomax method is provided in Appendix D of [12], 

and this code was modified and adapted for convenience and expansion of applications.  

Chapter IV describes the process of tailoring and improving code for the basic algorithm, 

as well as describing the results of the algorithm. 

4. Draw Infomax Conclusions and Outline Future Research 

The capabilities of the Infomax method as it relates to signal processing are 

addressed in Chapter V, and the algorithm was found to be very successful in extracting 

small numbers of signals.  Potential future research topics, including adapting the 

algorithm for larger numbers of signals and testing on different types of signals, are 

addressed as well. 
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II. BACKGROUND 

Independent component analysis attempts to extract M  signals y from M  signal 

mixtures x  by optimizing an unmixing matrix W , where [12] 

 y = Wx  (1) 
In vector-matrix notation 

 

1 2 3 1 2 3
11 12 11 1 1 1 1 1 1 1

1 2 3 1 2 3
21 22 22 2 2 2 2 2 2 2

1 2 3 1 2 3
1 2

N N
M

N N
M

N N
M M MMM M M M M M M M

w w wy y y y x x x x
w w wy y y y x x x x

w w wy y y y x x x x

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

LL L L L

LL L L L

M M O MM M M M M M M M M M M M

LL L L L

(2) 

 
where the subscripts of x  and y  indicate the signal number and the superscripts are the 

time index. 

The principle of ICA was first developed in the early 1980’s by Herault, Jutten, 

and Ans, neurophysiologists studying muscle contraction.  They observed two responses 

1( )x t  and 2 ( )x t , from which they obtained position and velocity signals 1( )y t  and 2 ( )y t  

[6].  Utilizing a technique of non-linear decorrelation, they showed that independent 

components could be found as “nonlinearly uncorrelated linear combinations” [6].  While 

this is the first known adaptation of ICA, it focused only on two signals and is less 

efficient than the more modern approaches [6].  Other early work on ICA included the 

work of Cichocki and Unbehauen, who developed the algorithm to solve Equation (1) 

and applied it to neural networks [4].   

In the early 1990’s, Principal Component Analysis (PCA) and Projection Pursuit, 

both similar methods to ICA, were applied to the blind source separation problem 

[6][12].  Principal Component Analysis seeks sources that are Gaussian and uncorrelated, 

rather than the non-Gaussian, independent sources of ICA [12].  As uncorrelatedness is 

not as strong a property as independence, PCA is not as robust as ICA but is less 

computationally challenging.  Additionally, PCA can be utilized as a precursor to the 

ICA algorithm [6].  Projection Pursuit seeks one independent component at a time from a 

set of mixtures by maximizing kurtosis to find the most non-Gaussian signal [12].  This 
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differs from ICA in that projection pursuit extracts one signal from a mixture of M 

signals at a time, while ICA extracts all M signals at once [12]. 

In 1995, A.J. Bell and T.J. Sejnowski developed an “information-maximization 

approach to blind separation and blind deconvolution,” which is now referred to as 

Infomax [2].  Infomax is a method of finding mutually independent signals by 

maximizing information-flow, or entropy.  Infomax yields the same result as another ICA 

method, Maximum Likelihood Estimation (MLE) [6], [12].  MLE optimizes parameter 

values to find the best fit of observed data given some model (MLE optimizes W  to find 

the best fit of the extracted signals y  to the source signals s ) [6], [12].  Both Infomax 

and MLE make several assumptions about the source signals, the validity of which is 

explored in Chapter III. 

In Infomax and MLE, as well as PCA and projection pursuit, optimization is 

achieved by gradient ascent.  Gradient ascent is an optimization method that maximizes a 

function of multiple parameters by iteratively improving an initial guess using the 

gradient, which points in the direction of maximum slope [12].  A disadvantage of this 

method is that if the step size, or learning rate, is not chosen carefully, the function does 

not converge properly.  Additionally, the Gradient Ascent method only finds a local 

maximum, so if the initial starting value is closer to a local maximum than the global 

maximum, the algorithm does not converge to find the maximum function value.  Either 

of these situations can produce erroneous results [6]. 

Slightly more advanced methods of ICA include complexity pursuit and FastICA.  

Complexity Pursuit describes a method of ICA that extracts signals with the least 

complexity, as a mixture of signals will be more complex than any of its source signals 

[12].  FastICA describes a fixed point algorithm that can be applied (in lieu of gradient 

ascent) to perform more efficient calculations [6]. 

Relatively recent extensions of the ICA model include applications for noisy 

environments, cases in which there are fewer mixtures than independent components, and 

circumstances where convolution is incorporated in the creation of the mixtures.  

Considerations have also been given to nonlinear mixing processes and situations where 
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the components are Gaussian and have time dependencies.  Of particular interest is the 

application of ICA to telecommunications.  Uses of ICA and BSS in code-division 

multiple access (CDMA) have been explored.  This thesis focuses mainly on the Infomax 

and Gradient Ascent methods, and the other methods and extensions of ICA were not 

pursued [6]. 

This chapter introduced the background of ICA as a method of BSS.  In Chapter 

III, the Infomax algorithm and its implementation are analyzed. 
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III. ANALYSIS 

In this chapter, one independent component analysis algorithm and its 

implementation are presented.  The mathematics in this chapter is mostly adapted from 

James V. Stone’s book, “Independent Component Analysis:  A Tutorial Introduction” 

[12].  Note that in this chapter, as in [12], the notation y  represents a vector function of 

time while ty  represents a sample of that vector function at specific time t . 

A. INFOMAX STRATEGY 

Infomax is a method of ICA grounded in information theory which aims to find 

independent source signals by maximizing entropy.  The details, calculations, and 

assumptions involved with the Infomax method are discussed later in this chapter, but the 

general strategy of Infomax begins with Equation (1), where the extracted signals y  are 

obtained from signal mixtures x  by optimizing an unmixing matrix W .  Infomax holds 

that the extracted signals are source signals if they are mutually independent.  While 

independence of the signals cannot be measured, entropy can.  Entropy is related to 

independence in that maximum entropy implies independent signals.  Therefore, the 

objective of ICA is to find the unmixing matrix W  that maximizes the entropy in the 

extracted signals y . 

Entropy of the signal mixtures x  is constant, but the change in entropy can be 

maximized by mapping the signals =y Wx  to an alternate set of signals 

( ) ( )g g= =Y y Wx .  This mapping spreads out Y  so that the change in entropy from 

→x Y  can be maximized by optimizing the unmixing matrix W , and when entropy is 

maximized, the resulting signals are independent.  The inverse 1( )g −=y Y  is then taken, 

resulting in extracted signals y  that are also independent.  Since the extracted set of 

signals y  are independent, they must be the original source signals s .  The Infomax 

strategy is depicted graphically in Figure 2. 
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Signal 
mixtures

x

Optimize W
for

Max Entropy
of
Y

Extracted
Signals

y

Map
Y=g(Wx)

Invert
y=g-1(Y)

 
Figure 2 Infomax strategy. 

 

The aforementioned strategy is based on four properties of bounded signals which 

are discussed in detail in Section C.1 and involve the topics mutual independence, 

invertible functions, inverse functions, and entropy.  Mutual independence means that the 

outcome of one event has no effect on the outcome of another.  A function ( )y f x=  is 

invertible if every value of x  corresponds to only one value of y .  Entropy is discussed 

in the following section. 

B. ENTROPY 

In 1948, Claude Shannon introduced the concept of information entropy as a 

measure of uncertainty associated with a random variable [9].  Stone describes entropy as 

a “measure of uniformity of distribution such that complete uniformity equals maximum 

entropy.”  Other descriptions include average surprise, or average information [13]. 

1. Information 

The information associated with the occurrence of event A is defined as 

 ( )1( ) ln ln Pr[ ]
Pr[ ]

I A A
A

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
. (3) 

Note that the base of the logarithm is arbitrary, but the natural logarithm is used in this 

thesis for mathematical convenience.  Therefore, the units of information are nats.  If the 

probability of event A  occurring is high ( )Pr[ ] 1A ≈ , then it contains very little 

information: 

 ( ) ( )( ) ln Pr[ ] ln 1 0I A A= − ≈ − ≈ . (4) 

Conversely, if the probability of an event is very low ( )Pr[ ] 0A ≈ , then it contains infinite 

information: 
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 ( ) ( )( ) ln Pr[ ] ln 0I A A= − ≈ − ≈ ∞  (5) 

Entropy is average information, which can be obtained from the expectation.  An 

expectation is essentially a weighted average and is defined in [13] as 

 { } ( ) Pr[ ]
S

E X X s s=∑ . (6) 

The entropy H, or expected information, is then 

 [ ] [ ]( ) { ( )} Pri i
i

H A E I A I A A= =∑  (7) 

where i represents an arbitrary number of events.  For this arbitrary number of events, 

entropy ( )H A  is obtained by substituting Equation (3) into Equation (7), resulting in 

 [ ]( ){ } [ ]( ) [ ]( ) ln Pr ln Pr Pr ii
i

H A E A A A= − = −∑  (8) 

which can be rearranged to the form 

 [ ] [ ]( )( ) Pr ln Pr
n

i i
i

H A A A= −∑ . (9) 

Equation (9) is the formal definition of entropy for a set of events [13]. 

2. A Two-Event Example 

In circumstances where there are only two possible outcomes (n=2) for an event 

(Yes/No, Heads/Tails, 0/1, etc.), the probabilities of the two events sum to one, and 

 [ ] [ ]1 2Pr Pr 1A A+ = . (10) 

Define 

 [ ] [ ]1 2Pr and Pr 1A p A p= = − . (11) 

For the two event example, Equation (9) can be expressed as 

 [ ] [ ]( ) [ ] [ ]( )( )1 1 2 2( ) Pr ln Pr Pr ln PrH A A A A A= − +  (12) 

and substitution of Equation (11) into Equation (12) yields 

 ( ) ln( ) (1 ) ln(1 )H p p p p p= − − − − . (13) 

Entropy ( )H p , where p takes on the values of probability ranging from zero to 

one ( 0 1p< < ), is shown in Figure 3.  It is evident from the plot that the maximum value 

of entropy is obtained when 0.5p = , which, for example, could be a fair coin where a 
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head is as likely to result as a tail.  The probability mass function of a fair coin resembles 

a uniform probability density function (pdf), illustrating that signals with a uniform pdf 

have maximum entropy. 

 
Figure 3 Entropy of a two-event example with equal probability. 

 

Entropy can also be expressed as a continuous random variable in analogy with 

Equation (9) as the limit n →∞ .  The entropy of a continuous random variable A  is 

defined as 

 ( ){ }( ) ( ) ln ( ) ln ( )A A AH A p a p a da E p A
+∞

−∞
= − = −∫ . (14) 

All expectations can be approximated by averaging a reasonably large number of 

trials.  Applying this to Equation (14), we get 

 1( ) ln ( )
N

t
A

t

H A p A
N

= − ∑ , (15) 

where t  is a time sample and N  is the number of time samples.  This is the definition of 

entropy that is utilized in Infomax. 
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3. Entropy of a Univariate Probability Density Function 

Since the Infomax method obtains mutually independent signals by maximizing 

entropy, and the entropy of the signal mixtures x  is constant, an expression for entropy 

of a transformed signal Y  is necessary so that the change in entropy can be maximized.  

A simplified expression of entropy can be obtained by considering the univariate case, 

where the signal contains only one dependent variable.  In this case, x  is a random vector 

and each element of x  is a different signal sampled at the same time t .  

From Equation (15), entropy of a signal Y is 

 1( ) ln ( )
N

t
Y

t

H Y p Y
N

= − ∑ , (16) 

where ( )Y g y= , and y  is scalar function of time ( )( ) ty y t y= = , and the superscript t 

indicates the scalar value of y  at time t .  The function ( )g y  is the cumulative 

distribution function (cdf) of the desired signal y  and is often referred to as the “model 

cdf” of the source signals as it is chosen to extract a desired type of source signal.  This is 

described in the following section.  

The univariate case is explored by modifying Equation (1) to Ty = w x , where 
Tw is a single row of the unmixing matrix W , and x  is a vector representing a snapshot 

of M signals in time, as shown in vector matrix notation.  That is, for 

 Ty = w x  (17) 
  
where 

 

11 12 11

21 22 22

1 2

and

t
M

t
M

t
M M MMM

w w wx
w w wx

w w wx

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

x W =

L

L

M M O MM

L

 (18) 

 
then 

 [ ]
1

2
21 22 2

t

t
T

M

t
M

x
x

y w w w

x

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

w x L
M

. (19) 

Tw  
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Vector multiplication yields 
 
 21 1 22 2 2

t t t t
M My w x w x w x= + + +L , (20) 

 

where ty  is a scalar value of one signal sampled at time t .  The transformation of ty  

through the model cdf ( )tg y  yields the mapped value of Y , where Y  is a random 

variable on the range from zero to one; i.e., 

 
 ( )21 1 22 2 2( )t t t t

M MY g y g w x w x w x= = + + +L  (21) 

From Equation (16), ( )t
Yp Y  is the pdf of the mapped signal ( )Y g y=  and is 

related to the pdf of the extracted signal y, ( )t
yp y , as shown in Figure 4. 

 
Figure 4 Transformation of y  to Y , From Ref. [12]. 

 

Figure 4 illustrates how a signal ( )1 5000,...,y y=y  (C) can be used to approximate 

its pdf (D).  The transformation of its pdf through its cdf (B) yields a uniform distribution 

(A).  From Figure 4,  

 ( ) ( )t t
Y yp Y Y p y yΔ = Δ . (22) 
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By rearranging Equation (22), we get 

 
( )

( ) ( )
t

yt t
Y y

p yyp Y p y YY
y

Δ
= =

ΔΔ
Δ

. (23) 

Since  

 as 0Y dY y
y dy

Δ
→ Δ →

Δ
, (24) 

Equation (23) becomes 

 
( )

( )
t

yt
Y

p y
p Y dY

dy

= . (25) 

The magnitude of the denominator of Equation (25) is taken into account for 

monotonically increasing and decreasing functions, resulting in 

 
( )

( )
t

yt
Y

p y
p Y

dY
dy

= . (26) 

Since ( )Y g y=  where ( )g y  is the model cdf of the source signal, then '( )dY g y
dy

= , and 

'( )g y  is the pdf of the source signal ( )sp y .  Substituting this result into Equation (26), 

we obtain 

 
( )

( )
( )

t
yt

Y t
s

p y
p Y

p y
=  (27) 

Substituting Equation (27) into Equation (16), we get a univariate expression for entropy 

in terms of the pdfs of the source and extracted signals: 

 
( )1( ) ln
( )

tN
y

t
t s

p y
H Y

N p y
= − ∑  (28) 

To solve Equation (28), an expression for the pdf of the extracted signal ( )yp y  is 

necessary, but as the discussion of the univariate case is meant as an introduction to the 

multivariate case, this is addressed in the next section. 
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4. Entropy of a Multivariate pdf 

The univariate model can be extended to a general case in which there is more 

than one random variable.  From Equation (14), Entropy H is equal to 

 ( ){ }( ) ln ( )AH A E p a= − . (29) 

This can be represented in vector notation for multiple variables, where 

{ }1 2, , , MA A A=A L  and { }1 2, , , Ma a a=a L .  The resulting multivariate expression for 

entropy is 

 ( ){ }( ) ln ( )H E p= − AA a  (30) 

where ( )pA a  is the multivariate pdf of random vector A .  If each ia  is independent and 

identically distributed, then 

 1 2
1

( ) ( ) ( ) ( ) ( )
M

A A A M A i
i

p p a p a p a p a
=

= =∏A a L . (31) 

The natural log of the multivariate pdf is 

 ( ) ( )1 2
1

ln ( ) ln ( ) ln ( ) ( ) ( )
M

A i A A A M
i

p p a p a p a p a
=

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∏A a L . (32) 

From the properties of logarithms, the log of a product is equal to the sum of the logs, so 

 ( ) ( ) ( ) ( )1 2 1 2ln ( ) ( ) ( ) ln ( ) ln ( ) ln ( )A A A M A A A Mp a p a p a p a p a p a= + + +L L . (33) 

Equation (33) can be rewritten as 

 ( )
1

ln ( )
M

A i
i

p a
=
∑ . (34) 

Substituting Equation (34) into Equation (30), we get the resulting expression for entropy 

as 

 ( )
1

( ) ln ( )
M

A i
i

H A E p a
=

⎧ ⎫= −⎨ ⎬
⎩ ⎭
∑ . (35) 

The expectation can be estimated by taking an average, which yields an expression 

similar to the univariate result in Equation (15): 

 ( ) ( )
1 1 1

1 1( ) ln ( ) ln ( )
M N N

t
A i A

i t t

H p a p
N N= = =

= − = −∑∑ ∑A a  (36) 
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If Equation (36) is applied to the mapped signal Y transformed from the model 

cdf ( ) ( )g g= =Y y Wx , the multivariate expression of entropy of signals Y  becomes  

 ( )
1

1( ) ln ( )
N

t
Y

t
H p

N =

= − ∑Y Y , (37) 

which is the multivariate form of the univariate expression in Equation (16). 

As in the univariate case, an expression is needed for the joint pdf ( )t
Yp Y  and is 

obtained by adapting Equation (26) for the multivariate case, resulting in 

 
( )

( ) y
Y

p
p =

∂
∂

y
Y

Y
y

. (38) 

The denominator of Equation (38) is the Jacobian, which is examined in more 

detail in the following section.  Following the logic in the univariate case, since 

( )g=Y y , where ( )g y  is the model cdf of the source signals, then ∂ ∂Y y  is the pdf 

'( )g y  of the source signals, which can also be expressed as ( )sp y .  Equation (38) can be 

rewritten as 

 
( )

( )
( )

y
Y

s

p
p

p
=

y
Y

y
. (39) 

Substitution of Equation (39) into Equation (37) results in a multivariate expression for 

entropy in terms of both the source signal pdf ( )sp y and the extracted signal pdf ( )yp y : 

 
1

( )1( ) ln
( )

tN
y

t
t s

p
H

N p=

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
∑

y
Y

y
. (40) 

As in the univariate expression of entropy in Equation (28), this multivariate 

expression of entropy requires an expression for the pdf of the extracted signal  ( )yp y .  

To obtain this expression, the relationship in Equation (38), which is true for any 

invertible function, is taken into account.  The pdf ( )yp y  of the extracted signal =y Wx  

can be expressed as 

 ( )( ) x
y

pp =
∂
∂

xy
y
x

. (41) 
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As in Equation (38), the denominator of Equation (41) is the Jacobian. 

a. The Jacobian 

The Jacobian J  is a scalar value which is the determinant of an M M×  

Jacobian matrix J  of partial derivatives [1].  If 2M = , then 

 

1 1

1 2

2 2

1 2

y y
x x
y y
x x

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂∂ ⎢ ⎥= =
∂ ∂∂ ⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

yJ
x

. (42) 

Since the Jacobian J is the determinant of the Jacobian matrix J  [1], 

 

1 1

1 2 1 2 1 2

2 2 1 2 2 1

1 2

y y
x x y y y yJ
y y x x x x
x x

∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

= = = −
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂

J . (43) 

b. The Jacobian and the Unmixing Matrix 

An example with 2M =  is used to illustrate the relationship between the 

Jacobian matrix J  and the unmixing matrix W . 

From Equation (1), =y Wx , where 

  

 1 11 12 1

2 21 22 2

y w w x
y w w x
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

y W x  (44) 

Substituting these values into Equation (1), we get 

 1 11 12 1

2 21 22 2

y w w x
y w w x
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (45) 

Evaluation of this equation shows that 

 1 11 1 12 2y w x w x= +  (46) 

and 

 2 21 1 22 2y w x w x= + . (47) 



 
 
 

 19

From Equation (42), the Jacobian matrix requires expressions for 1 1y x∂ ∂ , 1 2y x∂ ∂ , 

2 1y x∂ ∂ , and 2 2y x∂ ∂ .  The first two partial derivatives are obtained from Equation (46), 

while the second two are obtained from Equation (47): 

 1
11

1

y w
x
∂

=
∂

 (48) 

 

 1
12

2

y w
x
∂

=
∂

 (49) 

 

 2
21

1

y w
x
∂

=
∂

 (50) 

 

 2
22

2

y w
x
∂

=
∂

 (51) 

Substitution of Equations (48) - (51) into the Jacobian matrix in Equation (42) yields the 

Jacobian matrix 

 11 12

21 22

w w
w w
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

J . (52) 

Equation (52) is identical to the expression for W used in Equation (44).  Therefore, 

 11 12

21 22

w w
w w
⎡ ⎤

= =⎢ ⎥
⎣ ⎦

J W . (53) 

The determinant of J  is then equal to the determinant of W , so from Equation (43) 

 J = =J W  (54) 

The multivariate expression of entropy in Equation (40) requires an expression for 

( )yp y , where ( ) ( )y xp p= ∂ ∂y x y x  as shown in Equation (41) .  As ∂ ∂y x  is the 

Jacobian, from Equation (54) 

 J∂
= =

∂
y W
x

, (55) 

and the pdf of the extracted signal can be rewritten as 

 ( )( ) x
y

pp =
xy

W
. (56) 
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This result leads to the expression of entropy used in the Infomax algorithm. 

5. INFOMAX Expression for Entropy 

Substituting the expression for the pdf of the extracted signals found in Equation 

(56) into the expression for entropy in Equation (40), we get 

 
1

( )1( ) ln
( )

tN
x

t
t s

pH
N p=

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ xY

W y
. (57) 

From the properties of logarithms, this equation can be rewritten as  

 ( )
1

1( ) ln ( ) ln ln ( )
N

t t
x s

t

H p p
N =

= − − −∑Y x W y . (58) 

Distribution of the summation results in the form 

 
1 1

1 1( ) ln ( ) ln ( ) ln
N N

t t
x s

t t
H p p

N N= =

= − + +∑ ∑Y x y W . (59) 

When the first part of Equation (59) is compared to the expression of entropy in Equation 

(37), it is recognized as the entropy of X : 

 
1

1( ) ln ( )
N

t
x

t
H p

N =

= − ∑X x  (60) 

Equation (59) can now be rewritten as 

 
1

1( ) ( ) ln ( ) ln
N

t
s

t

H H p
N =

= + +∑Y X y W . (61) 

Since the unmixing matrix W that maximizes the entropy ( )H Y  does not affect the 

entropy ( )H X , ( )H X  can be ignored, meaning that the unmixing matrix that maximizes 

Equation (61) also maximizes 

 
1

1( ) ln ( ) ln
N

t
s

t
h p

N =

= +∑Y y W  (62) 

where t is the time index.  Equation (62) can be modified further by ignoring the ordering 

of the signals M , resulting in  

 
1 1

1( ) ln ( ) ln
M N

t
s i

i t

h p y
N = =

= +∑∑Y W . (63) 



 
 
 

 21

The W  that maximizes Equation (63) maximizes the entropy in Y , implying the 

rows of Y  are independent.  Since y  is the inverse of Y , this implies the rows of y  are 

independent, which implies that W  is the unmixing matrix that yields the original 

signals.  Equation (63) is the fundamental equation used in the Infomax algorithm and is 

based on several assumptions. 

C. PROPERTIES AND ASSUMPTIONS 

The process shown in Section B is based on the following properties of bounded 

signals and assumptions. 

1. Properties 

a. Bounded Signals with a Uniform pdf Have Maximum Joint 
Entropy 

This is addressed in detail in Section B.2.  Equation (28) at the end of 

section B.3 demonstrates this property as well.  As the goal of Infomax is to optimize W  

so that the extracted signals match the source signals, an important characteristic to note 

is that W  is chosen so that ( ) ( )t t
s yp y p y= ; i.e., the ratio of the pdfs is equal to one.  

From Equation (27), 

 
( )

( ) 1
( )

t
yt

Y t
s

p y
p Y

p y
= = . (64) 

Therefore, if the pdf of the mapped signal Y  is equal to one, then the mapped signal is 

uniformly distributed on [0,1], which indicates a maximum entropy function for random 

variables bounded by [0,1]. 

b. Signals with Maximum Joint Entropy are Mutually Independent 

This is proven in Appendix B.  Since entropy is additive for independent 

random events, and entropy of dependent random events is less than that of independent 

random events, maximizing entropy must yield mutually independent signals [3].  

Sections B.3 through B.5 addressed obtaining an expression of entropy, and Section D 

describes the method to maximize entropy. 
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c. Any Invertible Function of Mutually Independent Signals Yields 
Mutually Independent Signals 

This allows W  to be optimized so that ( )g Wx  yields independent 

signals.  If ( )g Wx  is a function of mutually independent signals, then ( )g=Y Wx  also 

yields mutually independent signals. 

d. If a Function is Invertible, its Inverse is Invertible 

This property allows the extracted signals y  to be obtained from the 

mutually independent signals ( ) ( )g g= =Y y Wx  by taking the inverse 1( )g −=y Y .  

Since W  is optimized so that each row of Y  is independent, its inverse y  is also 

independent. 

2. Assumptions 

The Infomax method makes the following assumptions. 

a. All Time Samples of Each Signal Are Independent  

This assumption is not realistic, but it allows M  independent signals to be 

estimated over N  time steps.  Since communication signals violate this assumption, it is 

recognized that the Infomax method may not have universal applicability to 

communications signals, especially those signals sampled at rates much higher than the 

Nyquist rate. 

b. All Source Signals Can Be Approximated by the Same pdf 

This assumption is also unrealistic, but it is convenient and leads to useful 

results.  It has been shown by [12] that the Infomax algorithm is somewhat forgiving of 

violations of this assumption. 

c. The Model pdf is an Exact Match for the pdf of the Source 
Signals 

The third assumption is highly unlikely, but others [2] have had success 

with Infomax despite the violation of this assumption.  This is because the exact source 
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signals are unknown, so if the model pdf is an approximation of the source pdf, then the 

extracted signals are the best possible approximation of the sources signals. 

While none of the assumptions above are truly valid, all are acceptable as 

some assumptions must to be made about the source signals in order to establish a 

starting point for blind source separation. 

D. GRADIENT ASCENT 

Equation (63) gives the entropy of the transformed signals Y  to within a 

constant.  Now that an expression for entropy has been derived, the objective of Infomax 

is to find an unmixing matrix W  that maximizes the entropy of Y , or equivalently 

maximizes ( )h Y  where ( ) ( )g g= =Y y Wx .  Gradient ascent is the method used to 

optimize the unmixing matrix W .  Essentially, gradient ascent is an iterative process of 

taking a “step” in the direction of maximum gradient until a local maximum is reached.  

Gradient ascent requires an expression for the gradient of entropy.   

1. Gradient of Entropy 

Equation (63) is rewritten for this purpose by taking the expectation over time 

rather than assuming that all time steps are independent, which results in 

 
1

( ) ln ( ) ln
M

s i
i

h E p
=

⎧ ⎫= +⎨ ⎬
⎩ ⎭
∑Y y W . (65) 

The gradient is found by taking the partial derivative of h  with respect to W , 

h∂ ∂W , and for the purpose of simplification, the gradient is first found with respect to 

one element of W , ijh W∂ ∂ , and is then expanded to every element.  Hence, 

 
1

lnln '( )M
i

iij ij ij

gh E
W W W=

⎧ ⎫ ∂∂∂ ⎪ ⎪= +⎨ ⎬∂ ∂ ∂⎪ ⎪⎩ ⎭
∑

Wy  (66) 

Simplification of this partial derivative takes place in two parts, treating first the first 

term and then the second term. 
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a. The First Term of Equation (66) 

To simplify the expectation in Equation (66), the partial derivative is 

examined: 

 ln '( )i

ij

g y
W

∂
∂

 (67) 

Let  

 '( )iu g y= . (68) 

Equation (67) can now be expressed 

 ln

ij

u
W

∂
∂

. (69) 

Using the Chain Rule [11], we get 

 ln 1 '
ij

u u
W u

∂
=

∂
. (70) 

Equation (68) gives an expression for u , and the derivative of u  is  

 '( )' i

ij ij

g yuu
W W

∂∂
= =
∂ ∂

. (71) 

Replacing the expression in Equation (70) with Equations (68) and (71), we get 

 '( )ln 1
'( )

i

ij i ij

g yu
W g y W

∂∂
=

∂ ∂
. (72) 

The expression '( )i ijg y W∂ ∂  in Equation (72) can be simplified further using the Chain 

Rule in Leibniz notation [11], 

 g g y
W y W
∂ ∂ ∂

=
∂ ∂ ∂

. (73) 

From Equation (73), 

 '( ) '( )i i i

ij i ij

g y g y y
W y W

∂ ∂ ∂
=

∂ ∂ ∂
. (74) 

Equation (74) further simplifies to  

 '( ) ''( )i i
i

ij ij

g y yg y
W W

∂ ∂
=

∂ ∂
. (75) 
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The expression i ijy W∂ ∂  is one element from a mixture x .  Generalizing Equations (46) 

and (47) with this expression, we get 

 i
j

ij

y x
W
∂

=
∂

. (76) 

Substituting Equation (76) into Equation (75), we obtain 

 '( ) ''( )i
i j

ij

g y g y x
W

∂
=

∂
. (77) 

Now substituting Equation (77) into Equation (72), we get 

 ln 1 ''( )
'( ) i j

ij i

u g y x
W g y

∂
=

∂
. (78) 

Equation (78) can now replace the expression ln '( )i ijg y W∂ ∂  in the expectation in 

Equation (66), resulting in 

 
1

ln''( )
'( ) ln

M
i

j
iij i ij

g yh E x
W g y W=

∂⎧ ⎫∂
= +⎨ ⎬∂ ∂⎩ ⎭

∑
W

. (79) 

Now ''( ) '( )i ig y g y  is further simplified for convenience.  We define 

 ''( )( )
'( )

i
i

i

g yy
g y

Ψ =  (80) 

and Equation (79) can be expressed as 

 
1

ln
( )

ln

M

i j
iij ij

h E y x
W W=

∂∂ ⎧ ⎫= Ψ +⎨ ⎬∂ ∂⎩ ⎭
∑

W
. (81) 

Equation (81) represents the partial derivative of entropy in Equation (66) with the first 

term fully simplified. 

b. The Second Term 

To simplify the second term ln ln ijW∂ ∂W , an example is used to show 

that 

 
ln
ln

T

ij
ijW

−∂
⎡ ⎤= ⎣ ⎦∂

W
W , (82) 

where T

ij

−⎡ ⎤⎣ ⎦W  is one element of the inverse of the transposed unmixing matrix: 
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1T T −− ⎡ ⎤= ⎣ ⎦W W  (83) 

When 2M = , the unmixing matrix W  is 

 11 12

21 22

w w
w w
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

W  (84) 

The transpose TW  is 

 11 21

12 22

T w w
w w
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

W  (85) 

and the determinant of the unmixing matrix W  is equal to the determinant of the 

transposed unmixing matrix TW : 

 11 22 21 12  Tw w w w= − =W W . (86) 

When 1i j= = ,  

 11 22 21 12 22 22

11 11 11 22 21 12

ln ln( )
ln

w w w w w w
W w w w w w

∂ ∂ −
= = =

∂ −
W

W
. (87) 

The inverse transpose T−W , using Equation (85) in Equation (83), is 

 
1 22 12 22 22

21 1111 22 21 12 11 22 21 12

1T T w w w w
w ww w w w w w w w

−− −⎡ ⎤
⎡ ⎤= = = =⎢ ⎥⎣ ⎦ −− −⎣ ⎦

W W
W

. (88) 

The methods in Equation (87) and Equation (88) yield the same result, as is the case for 

all values of i  and j .  This example illustrates Equation (82), which is accepted without 

proof as is done in [12]. 

c. The Gradient of Entropy 

Equation (82) can be substituted into the expression for the gradient of 

entropy in Equation (81), resulting in 

 
1

( )
M

T
i j ij

iij

h E y x
W

−

=

∂ ⎧ ⎫ ⎡ ⎤= Ψ +⎨ ⎬ ⎣ ⎦∂ ⎩ ⎭
∑ W . (89) 

When this expression is expanded to all elements in the unmixing matrix W , it yields a 

complete expression for the gradient of entropy h∇ , where the gradient of a scalar with 

respect to a matrix is defined as 
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11 12 1

21 22 2

1 2

M

M

M M MM

h h h
W W W
h h h

W W Wh

h h h
W W W

∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂⎢ ⎥
∂ ∂ ∂⎢ ⎥

⎢ ⎥∂ ∂ ∂∇ = ⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎣ ⎦

L

L

M M O M

L

. (90) 

The gradient of entropy h∇  for all elements of the unmixing matrix W  is then 

 { }( )T Th E−∇ = + ΨW y x . (91) 

By assuming that signals are ergodic [7], the expectation can again be mitigated, resulting 

in 

 
1

1 ( )
N TT t t

t
h

N
−

=

⎡ ⎤∇ = + Ψ ⎣ ⎦∑W y x . (92) 

2. Gradient Ascent Algorithm for Infomax 

The optimal unmixing matrix W  is found by maximizing entropy; that is, 

iteratively following the gradient h∇  until a local maximum is reached.  This is 

accomplished with the following algorithm 

 new old hη= + ∇W W  (93) 

where η  is a small constant.  Inserting the expression for h∇  in Equation (92) into 

Equation (93), we get the expression to optimize the unmixing matrix W  to maximize 

entropy: 

 new old old
1

1 ( )
N TT t t

tN
η −

=

⎛ ⎞⎡ ⎤= + + Ψ⎜ ⎟⎣ ⎦⎝ ⎠
∑W W W y x  (94) 

Equation (94) is the general form of the Infomax algorithm using gradient ascent to 

optimize the unmixing matrix W .  It is important to note, however, that the gradient 

ascent algorithm only finds a local maximum, which is not necessarily the global 

maximum of the function.  This can be mitigated by running multiple trials of the 

gradient ascent algorithm, initiated from different starting points. 



 
 
 

 28

The expression ( )tΨ y  is shown in Equation (80) to equal ''( ) '( )g gy y .  It should 

be recalled that ( )g y  is the model cdf of the source signals, so ( )tΨ y  depends upon the 

source signals that the algorithm aims to extract.  Since W  is optimized by maximizing 

entropy of the transformed signals ( )g=Y y  and maximum entropy signals Y  are 

mutually independent, the signals 1( )g −=y Y  are also mutually independent.  Since 

Infomax extracts a set of signals y  which are mutually independent and the only 

mutually independent signals possible are the original source signals, the results of the 

optimized algorithm in Equation (94) are the source signals s . 

In this chapter, the Infomax algorithm was derived and its implementation using 

gradient ascent was analyzed.  In Chapter IV, the expressions for entropy and gradient are 

applied to specific signal types, and the results from simulations of the Infomax method 

using MATLAB are given. 
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IV. MODELING AND SIMULATION 

Chapter III was dedicated to obtaining expressions for entropy and its gradient.  

The entropy ( )h Y , as shown in Equation (63), is 
1 1

1( ) ln ( ) ln
M N

t
s i

i t

h p y
N = =

= +∑∑Y W .  The 

gradient h∇  was shown in Equation (92) to be 
1

1 ( )
N TT t t

t
h

N
−

=

⎡ ⎤∇ = + Ψ ⎣ ⎦∑W y x , where 

( )tΨ y  is ''( ) '( )g gy y .  The change in entropy is maximized using the gradient ascent 

algorithm in Equation (93), new old hη= + ∇W W . 

It is clear from the equations above that both the entropy and its gradient are 

dependent upon a model pdf of the source signals, ( )sp y  or '( )g y , and it should be 

recalled that the extracted signals are transformed through their model cdf ( )g=Y y .  

Stone refers to this as the cdf/pdf-matching property of Infomax, and it is through the 

careful selection of a model cdf and pdf that the Infomax method is tuned towards the 

desired type of extracted signal.  If one desires extracted speech (or audio) signals, as in 

the cocktail party example of Chapter I, a model cdf and pdf that resembles audio signals 

should be used in the Infomax algorithm [12]. 

A. HIGH-KURTOSIS SIGNALS 

Kurtosis K  is a measure of peakedness of a pdf and is defined as 

 
{ }
{ }

4

22
3

E x
K

E x
= − , (95) 

where { }4E x  is the fourth central moment and { }2E x  is the second central moment.  

Gaussian signals have zero kurtosis.  When kurtosis is negative, a signal is sub-Gaussian.  

A super-Gaussian signal has positive kurtosis and is referred to as a high-kurtosis signal 

[12]. 

Figure 5 depicts a sample audio signal of the first few bars of the “Hallelujah 

Chorus” from Handel’s Messiah, from MATLAB’s “Datafun” directory.   
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Figure 5 Sample audio signal. 

 

As audio signals spend the majority of their time around zero, they typically have super-

Gaussian pdfs.  Therefore, Infomax uses a super-Gaussian pdf to model high-kurtosis 

signals such as audio signals [12]. 

1. Adapting the Infomax Algorithm 

A typical cdf used to model high-kurtosis signals is the hyperbolic tangent, 

plotted in Figure 6.  While this is not a valid cdf because it contains negative values, it 

was used successfully in [12], and was also used in these simulations.  Simulations were 

also run with a shifted and scaled version of the hyperbolic tangent as a model cdf, and a 

shifted and scaled version of its derivative as the model pdf.  These were more accurate 

representations of the cdf and because they were valid models: the cdf was positive and 

ranged from [ ]0,1 , and the pdf had an area of 1.  The results of the scaled and shifted 

hyperbolic tangent were consistent with the results using the true hyperbolic tangent 

function.  The original version of the hyperbolic tangent was used for ease of comparing 

results with the work done in [12]. 
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Figure 6 Hyperbolic tangent function. 

 
Hence, 
 ( ) tanh( )g= =Y y y  (96) 

Since the cdf ( )g y  was chosen to be the hyperbolic tangent in Equation (96), the 

derivative of this is '( )g y , or the pdf, which is illustrated in Figure 7 [11].  This pdf is not 

ideal because its area is 2 , but was also used successfully in [12].  Hence, 

 2 2'( ) tanh( ) sech ( ) 1 tanh ( )dg
dy

= = = −y y y y  (97) 

 
Figure 7 Hyperbolic tangent derivative. 
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Adapting Equation (63) for a high-kurtosis signal, the expression for entropy becomes 

 ( )2

1 1

1( ) ln 1 tanh ln
M N

t
i

i t
h y

N = =

= − +∑∑Y W . (98) 

 The gradient of entropy h∇  contains the ratio ( )Ψ y , where ( ) ''( ) '( )g gΨ =y y y .  

While the pdf '( )g y  was given in Equation (97), the derivative of the pdf, ''( )g y  is also 

necessary and is 

 ( ) ( )2 2''( ) '( ) 1 tanh ( ) tanh ( ) 2 tanh( ) tanh( )d d d dg g
dy dy dy dy

= = − = − = −y y y y y y  (99) 

Since ( )tanh( )d dy y  is equal to '( )g y , Equation (99) becomes 

 2 tanh( ) '( )g− y y , (100) 

and the resulting expression for the derivative of the model pdf is 

 ''( ) 2 tanh( ) '( )g g= −y y y . (101) 

The ratio ( )Ψ y  in the gradient h∇  is 

 ''( ) 2 tanh( ) '( )( ) 2 tanh( )
'( ) '( )

g g
g g

−
Ψ = = = −

y y yy y
y y

. (102) 

Adapting Equation (92) for a high-kurtosis signal, we get the following gradient h∇  

 
1

1 2 tanh( )
N TT t t

t
h

N
−

=

⎡ ⎤∇ = + − ⎣ ⎦∑W y x . (103) 

Expressions for high-kurtosis implementation of Infomax have been obtained, so 

now a computing tool is necessary to perform the algorithm effectively and efficiently. 

2. Implementation in MATLAB 

Appendix D in [12] shows sample code for the implementation of the Infomax 

algorithm for high-kurtosis signals using gradient ascent.  The code was adapted for 

easier entry of variables, which allowed inputs to be changed and simulations to be run 

and re-run with greater ease.  With Stone’s default values for step size η  ( 0.25η = ) and 

maximum number of iterations (100), the algorithm converged approximately half the 

time.  It was clear that an improved gradient ascent algorithm was necessary for more 

consistent performance, and some additional complexity in the code was accepted to 

improve the reliability of the results. 
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a. Improving the Gradient Ascent Algorithm for Faster 
Convergence 

The goal of improving the gradient ascent algorithm new old hη= + ∇W W  

was not to find the optimal algorithm but instead to increase the rate of convergence as 

well as the accuracy of the algorithm results.  The unmixing matrix W  is initially set to 

the identity matrix.  However, rather than taking the same size step in the direction of 

maximum increase, larger steps are taken as long as entropy ( )h Y  continues to increase.  

If entropy decreases, it is assumed that the algorithm missed the maximum.  Rather than 

continuing to take steps, the algorithm regresses to the last “good” values of W  and 

( )h Y  and begins taking smaller steps, which gradually increase again as long as entropy 

increases.  A flow chart of the improved gradient ascent algorithm is shown in Figure 8. 

b. Improving Maximization by Varying Initial W 

Gradient ascent finds the nearest local maximum of a function, which is 

not necessarily the maximum function value.  Since Infomax finds extracted signals by 

maximizing entropy, it is necessary for the global maximum to be found for the algorithm 

to properly converge.  A higher probability of locating a global maximum was obtained 

by creating a function of the improved gradient ascent algorithm so that gradient ascent 

could be repeated multiple times with varying starting points.  The gradient ascent 

function encompasses the process shown in Figure 8.  The Infomax MATLAB code was 

adapted so that the gradient ascent function could be repeated multiple times.  The first 

repetition uses the identity matrix for the initial value of W , and subsequent repetitions 

randomly select an unmixing matrix W , which is then multiplied by some small step 

constant and the repetition number.  The adapted MATLAB code for high-kurtosis 

signals is included in Appendix D, and the gradient ascent function is included in the 

Appendix E. 
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Figure 8 Improved gradient ascent algorithm flow chart. 
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3. Results and Conclusions 

The modified MATLAB code was run for M  signals with 2,  3,  and 6M = .  

Adding to the complexity of the code increased the run time but also resulted in more 

reliable convergence (approximately 80% of simulations with 2M =  converged in 35 

iterations or fewer). 

a. Results for 2M =  Source Signals 

High-kurtosis signals were imported from MATLAB’s “data fun” 

directory and are shown as Signal 1 (a bird chirp) and Signal 2 (a gong) in the first row of 

Figure 9.  The random mixtures of the two source signals are shown in the second row of 

Figure 9.  The Infomax algorithm was run with the values shown in Table 1. 

 

Table 1 Algorithm variable values for 2M = . 

Infomax algorithm iterations 100 

Initial step size η  0.1 

Step size increase factor α  1.2 

Step size decrease factor β  0.1 

Gradient Ascent repetitions 5 

 

The values of these variables were not analyzed to be optimal, but produced consistent 

results.  The signals extracted by the Infomax algorithm are shown in row three of Figure 

9.  The similarity of the extracted signals to the original source signals is evident.  As 

Infomax does not preserve the ordering of the signals, the results would sometimes be 

reversed (as shown), with the gong extracted as “Extracted Signal 1” and the chirp 

extracted as “Extracted Signal 2.”  Additionally, Infomax does not necessarily preserve 

the sign of a signal with a pdf that is even about zero, although this is not evident in 

Figure 9. 
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Figure 9 Infomax results for 2M = . 

 

Figure 10 shows gradient ascent function values for entropy ( )h Y , 

gradient of entropy h∇ , and step size η .  In Figure 10, results converged after 

approximately 15  iterations, although, generally, the results converged after 35  to 50  
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iterations.  The middle plot depicts h∇ ,  the magnitude of the entropy gradient.  As 

entropy is maximized, the magnitude of the gradient decreases, indicating the maximum 

is very near the current value.  The bottom plot shows how the step size η  changes with 

the “learning” gradient ascent algorithm.   

 
Figure 10 Entropy ( )h Y , gradient h∇ , and η  values for 2M = . 
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b. Results for 3M =  Source Signals 

The addition of a third signal from the MATLAB “Data fun” directory 

(the “splat” sound of spilling paint) and third signal mixture to the Infomax algorithm 

slightly increases the complexity and computation time.  The values used in the algorithm 

are shown in Table 2. 

 

Table 2 Algorithm variable values for 3M = . 

Infomax algorithm iterations 100 

Initial step size η  0.1 

Step size increase factor α  1.2 

Step size decrease factor β  0.1 

Gradient Ascent repetitions 5 

 

With the same number of iterations and the same number of gradient 

ascent repetitions performed, the results were fairly consistent with those obtained in part 

a, although they converged less often (approximately 50% of runs converged).  The 

results converged more frequently when the number of gradient ascent repetitions 

increased, but that also increased the computation time.  The results of a sample run of a 

“chirp,” a “gong,” and a “splat” are shown in Figure 11.  As in the two-signal case of part 

a, the extracted signals are clearly close matches for the source signals.  Also, although 

Figure 11 suggests otherwise, in general signal ordering is not preserved [12]. 
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Figure 11 Infomax results for 3M = . 
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c. Results for 6M =  Source Signals 

The Infomax method was tested on six source signals and mixtures from 

MATLAB’s “Data fun” directory, with the types of each source signal shown in Table 3. 

 

Table 3 Signal descriptions for 6M =  source signals. 

Signal 1 Signal 2 Signal 3 Signal 4 Signal 5 Signal 6 

chirp gong splat laughter train whistle music 

 

The values for the Infomax iterations and gradient ascent variables are 

shown in Table 4. 

 

Table 4 Algorithm variable values for 6M = . 

Infomax algorithm iterations 100 

Initial step size η  0.1 

Step size increase factor α  1.2 

Step size decrease factor β  0.1 

Gradient Ascent repetitions 5, 10, 15, 20, 25, 50, 100 

 

In the six source signal case, multiple runs with increasing numbers of 

gradient ascent iterations were attempted in order to find a reasonable number of 

iterations where the function converged fairly consistently.  For five iterations of the 

gradient ascent function, it was clear that similarities between the source signals and 

extracted signals existed, and the entropy value was maximized as shown in the first plot 

of Figure 12.  However, zero of ten trials with five gradient ascent repetitions truly 

converged, as is evident from a sample trial shown in Figure 13.  In fact, even 100 

repetitions of the gradient ascent algorithms did not produce consistently convergent 

results, although entropy was still maximized, as evident from the top plot in Figure 14.  
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The source and extracted signals for 100 gradient ascent repetitions are shown in Figure 

15.  Although the results are slightly better than the five repetition case, there was a 

significant increase in computation time for a relatively small improvement in results. 

 
Figure 12 ( )h Y , h∇ , and η  values for 6M =  for 5 gradient ascent repetitions. 
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Figure 13 Source and extracted signals for five gradient ascent repetitions. 
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Figure 14 ( )h Y , h∇ , and η  values for 6M =  for 100 gradient ascent repetitions. 
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Figure 15 Source and Extracted Signals for 100 gradient ascent repetitions. 
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d. Conclusions 

For high-kurtosis signals, the Infomax algorithm with multiple iterations 

of a “learning” gradient ascent function proved quite useful in extracting small numbers 

of signals from signal mixtures.  As the number of source signals increased, the algorithm 

was less able to reliably extract source signals quickly and consistently.  This was likely 

because the random mixtures of an increased number of source signals s  resulted in 

signal mixtures x  with “bumpier” entropy functions; i.e. entropy ( ) ( )h h=Y Wx  with 

many local maximums.  The increased occurrence of local maximums required more 

iterations of the gradient ascent function with different initial values for the unmixing 

matrix W  to find a starting point that might find the global maximum rather than a local 

maximum, since the Infomax algorithm only converges and extracts source signals by 

finding the global maximum of entropy ( )h Y . 

B. SIMPLE COMMUNICATIONS SIGNALS 

Once it was determined that the Infomax algorithm was fairly reliable for small 

numbers of high-kurtosis signals, it was tested on a simple communications signal, the 

polar non-return to zero signal [5]. 

1. Adapting the Infomax Algorithm for a Polar NRZ Signal 

The implementation of a polar NRZ signal into the Infomax algorithm first 

required a function that would create a polar NRZ signal in MATLAB.  Code for this 

function is included in Appendix F.  The polar NRZ function was used to generate two 

signals with randomly selected amplitudes, bit rates, and time shifts, and these signals 

were randomly mixed.  The first attempt at extracting polar NRZ signals used the high-

kurtosis model cdf ( ) tanh( )g =y y  and model pdf 2'( ) 1 tanh ( )g = −y y .  As expected, the 

algorithm was unsuccessful at extracting the two polar NRZ signals after multiple 

attempts, and it was necessary to model the cdf and pdf of a polar NRZ signal. 

A sample polar NRZ signal is shown in Figure 16.  The cdf is shown in Figure 17, 

and its associated derivative pdf is shown in Figure 18. 
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Figure 16 Sample polar NRZ signal. 

 

 
Figure 17 Theoretical polar NRZ cdf. 

 

 
Figure 18 Theoretical polar NRZ pdf. 

 

The equation representing the cdf ( )g y of a polar NRZ signal as shown in Figure 17 is 

 ( ) 0.5 ( 1) 0.5 ( 1)g y u y u y= + + − , (104) 
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where ( )u y  is the unit-step function.  The corresponding derivative '( )g y  is 

 '( ) 0.5 ( 1) 0.5 ( 1)g y y yδ δ= + + −  (105) 

The theoretical cdf and pdf for the polar NRZ signal create a dilemma in that they cannot 

be implemented in MATLAB due to the delta function in the pdf.  Therefore, it was 

necessary to create approximations of the cdf and pdf that could be implemented in 

MATLAB. 

2. Creating Model Statistical Functions 

As Infomax aims to extract source signals based on a model cdf and pdf, it was 

necessary to create functions for the cdf ( )g Y , the pdf '( )g Y , and the derivative of the 

pdf ''( )g Y  that could be implemented in the Infomax code using MATLAB.  This was 

accomplished by two separate approaches.  The first of these approaches modeled the 

delta functions in the pdf as triangles with arbitrarily narrow bases.  The second approach 

used a modified version of the hyperbolic tangent function to more closely model the cdf 

and pdf of a polar NRZ signal. 

a. The Triangular Model 

The first approach involved approximating the delta function in the pdf of 

Figure 18 as a triangle with a base of 2γ , where γ  was chosen as an arbitrarily small 

number, as shown in Figure 19. 

 
Figure 19 Approximate polar NRZ pdf. 
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The approximate pdf and cdf are derived in Appendix C.  The resultant expression for the 

approximate pdf '( )q y  for a polar NRZ signal is  

 

2 2

2 2

2 2

2 2

0 (1 )
1 1 (1 ) 1

2 2
1 1 1 1

2 2
'( )  0 1 1

1 1 1 1
2 2

1 1 1 1
2 2
0 1
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y y

y y

q y y

y y

y y

y
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γ γ

γ γ
γ γ
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⎪
⎪= − ≤ < −⎨
⎪ −⎪ + − ≤ <
⎪
⎪ − +⎪ + ≤ < +
⎪
⎪ > +⎩

 (106) 

 

The function was implemented in MATLAB (code for “polarNRZpdf” in Appendix H). 

The approximate cdf ( )q y  was found by integrating the pdf '( )q y , and is  
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 (107) 

The function was implemented in MATLAB (code for “polarNRZcdf” in Appendix G). 
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The derivative of the pdf ''( )q y  was simple to construct by taking the 

slope values from the appropriate regions of the pdf, resulting in  
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 (108) 

Code for the “polarNRZdpdf” function is included in Appendix I. 

The MATLAB implementations of the approximate model cdf ( )q y , pdf 

'( )q y , and pdf derivative ''( )q y  are plotted for 0.1γ =  in Figure 20.  The approximate 

functions ( )q y  and '( )q y  bear a striking resemblance to the theoretical functions ( )g y  

and '( )g y  shown in Figure 17 with the added benefit that they can be implemented in 

MATLAB so that the Infomax algorithm can be adapted for the polar NRZ signal. 
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Figure 20 Approximate polar NRZ cdf ( )q y , pdf '( )q y , and ''( )q y  for 0.1γ = . 
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b. The Hyperbolic Tangent Model 

Since the long range of zeroes in the triangular model caused divide by 

zero problems in the Ψ  function (Equation (80)) when implemented, and the hyperbolic 

tangent was used successfully in approximating the cdf and pdf of the high-kurtosis 

signals in part A, modifications were made to adapt the theoretical polar NRZ cdf from 

Figure 17 and pdf from Figure 18. 

A second approximate polar NRZ cdf ( )yθ  is created by duplicating and 

shifting the hyperbolic tangent function so as to more closely approximate the theoretical 

cdf.  A good approximation of the cdf is found to be 

 
( )

( )

1 tanh ( 1) 1 0
4( )
1 tanh ( 1) 3 0
4

y y
y

y y

σ
θ

σ

⎧ + + <⎪⎪= ⎨
⎪ − + ≥
⎪⎩

 (109) 

where σ  is a compression factor that controls the slope of the function.   

The approximate pdf '( )yθ  is found by taking the derivative of the cdf 

( )yθ , and the result is 
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2

2

1 tanh ( 1) 0
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1 tanh ( 1) 0
4

y y
y

y y

σ σ
θ

σ σ
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⎪⎩

 (110) 

An expression for ''( )yθ  is found by taking the derivative of the pdf 

'( )yθ : 

 ( )( ) ( )2 2''( ) '( ) 1 tanh ( 1) 0 tanh ( 1)
4 4

d d dy y y y
dy dy dy

σ σθ θ σ σ⎛ ⎞ ⎛ ⎞= = − ± = − ±⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (111) 

 
Using the chain rule, we get 

 ( ) ( )( )22''( ) tanh ( 1) 1 tanh ( 1)
4 4

y y yσ σθ σ σ σ⎛ ⎞⎛ ⎞= − ± − ±⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (112) 

From Equation (110), ( )( )2'( ) 1 tanh ( 1)
4

y yσθ σ= − ± , so Equation (112) simplifies to  
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 ( )
2

''( ) tanh ( 1) '( )
2

y y yσθ σ θ−
= ±  (113) 

The resulting expression for the approximate pdf derivative ''( )yθ  is 
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 (114) 

The approximate polar NRZ cdf ( )yθ  and pdf '( )yθ  using the hyperbolic 

tangent function are shown in Figure 21.  Like the triangular model, they closely 

resemble the theoretical versions in Figure 17 and Figure 18.  MATLAB code for these 

functions is included in Appendices J, K, and L. 

 
Figure 21 Approximate polar NRZ cdf ( )yθ  and pdf '( )yθ  with 10σ = . 
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3. Results and Conclusions 

Numerous simulations were run using the triangle model to approximate polar 

NRZ statistical functions with 0.1γ = .  These simulations were repeated using the 

hyperbolic tangent model with 10σ =  so as to closely approximate the theoretical cdf 

and pdf of the polar NRZ signal.  The long ranges of zero for '( )q y  and ''( )q y  produced 

with 0.1γ = , as shown in Figure 20, and the long ranges of near-zero values for '( )yθ  

caused the Infomax algorithm to behave poorly.  As ( )yΨ  is the second derivate divided 

by the first derivative, and the first derivative contained long ranges of zero, the divide by 

zero produced erroneous results.  To eliminate the long ranges of zero values, trials were 

repeated using the triangle model with 1.0γ =  (Figure 22) and the hyperbolic tangent 

model with 2σ =  (Figure 23). 

Setting γ  equal to 1.0  removed the long stretches of zeroes in the center of the 

pdf '( )q y  and its derivative ''( )q y , as shown in Figure 22.  This proved advantageous in 

that simulations with 2M =  signals were successful over fifty percent of the time.  

However, also evident from Figure 22 is that the resulting cdf ( )q y  and pdf '( )q y  are 

much poorer approximations of the ideal cdf ( )g y  and pdf '( )g y .  Similarly, using the 

compression factor 2σ =  in the hyperbolic tangent model eliminated the long ranges of 

near-zero values, as is evident from Figure 23.  This improved the reliability of the 

Infomax algorithm.  Again, the resulting cdf ( )yθ  and pdf '( )yθ  are poorer 

approximations of the theoretical cdf and pdf of the polar NRZ signal. 

In both cases, the less ideal approximation of the polar NRZ cdf and pdf produced 

the best results for the Infomax algorithm.  However, all results in this section were 

obtained using the hyperbolic tangent model with 2σ =  because the hyperbolic tangent 

model provided a more continuous pdf which was differentiable at more points than the 

triangular model pdf.  Therefore, the hyperbolic tangent model’s approximation of the 

polar NRZ cdf and pdf produced more consistent results which converged faster, and 

with a greater number of signals and signal amplitudes, than the triangular model 

approximation. 
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Figure 22 Approximate polar NRZ cdf ( )q y , pdf '( )q y , and ''( )q y  for 1.0γ = . 
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Figure 23 Approximate polar NRZ cdf ( )yθ , pdf '( )yθ , and ''( )yθ  with 10σ = . 
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a. Results for 2M =  Source Signals 

The Infomax algorithm was run with two source signals of randomly 

selected amplitude, bit rate, and time shift using the values shown in Table 5, and 

converged in 70%  of trials. 

 

Table 5 Algorithm variable values for 2M = . 

Infomax algorithm iterations 100 

Initial step size η  0.05 

Step size increase factor α  1.2 

Step size decrease factor β  0.1 

Gradient Ascent repetitions 50 

 

Figure 24 shows the results of a sample trial, where the top row shows the 

randomly generated source signals, the middle row shows the random mixtures of the 

signals, and the bottom row shows the extracted signals.  It is clear from Figure 24 that 

Extracted Signal 1 shares the same bit pattern as Source Signal 2, but with a different 

magnitude, and the case is the same with Source Signal 1 and Extracted Signal 2.  In fact, 

every single successful run of the Infomax algorithm extracted signals with a magnitude 

of approximately one.  This result is due to the tendency of the Infomax algorithm to 

match the pdf of the extracted signal to the model pdf supplied to the algorithm.  Since 

the model pdf was developed around a polar NRZ signal with an amplitude of 1.0 , the 

extracted signal also had an amplitude of 1.0 .  In addition to not preserving the 

magnitude of the original signal, repeated trials showed the algorithm did not necessarily 

preserve the ordering or the phase ( / )+ −  of the extracted signals, as was the case with 

the high-kurtosis signals. 
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Figure 24 Source and extracted signals for 2M =  polar NRZ signals. 
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b. Results for 3M =  Source Signals 

The Infomax algorithm was repeated for three polar NRZ source signals of 

the same amplitude and a randomly selected bit rate and time shift, as well as three 

source signals with randomly selected amplitude, bit rate, and time shift using the values 

shown in Table 6. 

 

Table 6 Algorithm variable values for 3M = . 

Infomax algorithm iterations 100 

Initial step size η  0.01 

Step size increase factorα  1.2 

Step size decrease factor β  0.1 

Gradient Ascent repetitions 100 

 

Trials with 3M =  required more iterations of the gradient ascent 

algorithm and converged less frequently than the two-signal case.  While the Infomax 

algorithm was successful in extracting two source signals often ( 70%  of trials), it only 

truly converged to extract all three source signals in 5%  of trials.  The result of a 

converging trial is shown in Figure 25.  From this figure, it is clear that Extracted Signal 

1 is Source Signal 2 with amplitude of one.  Source Signal 1 is extracted as Extracted 

Signal 2, and Source Signal 3 is Extracted Signal 3.  As was the case for 2M =  polar 

NRZ source signals, successful trials do not preserve the magnitude of the original source 

signals, although Infomax was equally capable of distinguishing between signals with the 

same amplitude (not shown) and signals with randomly selected amplitude.  Additionally, 

the algorithm does not always preserve signal order or phase. 
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Figure 25 Source and extracted signals for 3M =  polar NRZ signals. 
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c. Results for 6M =  Source Signals 

The Infomax algorithm was again repeated for six polar NRZ source 

signals of randomly selected amplitude, bit rate, and time shift using the values shown in 

Table 7. 

 

Table 7 Algorithm variable values for 6M = . 
 

Infomax algorithm iterations 100 

Initial step size η  0.01 

Step size increase factor α  1.2 

Step size decrease factor β  0.1 

Gradient Ascent repetitions 300 

 

For the given values, no signals of significance were extracted.  Successful 

implementation for a reasonably fast convergence of the algorithm for greater than three 

source signals either requires a more advanced gradient ascent algorithm or a more 

exhaustive search for the optimal unmixing matrix W , resulting in a significantly 

increased simulation time. 

d. Conclusions 

For polar NRZ signals, the Infomax algorithm as implemented in 

Appendix M was consistently successful in extracting two signal patterns from two signal 

mixtures; however, it does not preserve signal magnitude, ordering, or phase ( / )+ − .  

Magnitude is not preserved as the algorithm matched the signal mixtures to the model 

pdf.  Signal order is not preserved because the order was merely convention, and there is 

no way for the algorithm to determine that convention from the signal mixtures.  Phase, 

or sign ( / )+ − , is not preserved due to the symmetry of the pdf around zero.   
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When the number of source signals grows to 2M > , the algorithm is not 

reliable in extracting M source signals quickly and consistently.  Similar to the high 

kurtosis case, this is likely because the random mixtures of an increased number of 

source signals s  result in signal mixtures x  with a “bumpier” entropy function 

( ) ( )h h=Y Wx  with many local maximums.  The increased occurrence of local 

maximums requires more repetitions of the gradient ascent function with different initial 

values for the unmixing matrix W  to find a starting point that finds the global maximum 

rather than a local maximum of entropy ( )h Y . 

This chapter modeled the Infomax algorithm for both high-kurtosis and 

polar NRZ signals and presented the results and conclusions of MATLAB simulations for 

each individual case.  Chapter V presents the broad conclusions of the research as well as 

opportunities for future research in this subject area. 
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V. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

Independent Component Analysis using the Infomax method of maximizing 

entropy proved to be a feasible solution to the blind source separation problem for small 

numbers of signals.  The assumptions made in Chapter III.C.2, although not necessarily 

accurate, were very useful in that they allowed signals to be extracted successfully.  The 

gradient ascent algorithm described in Chapter III.D was sufficient to obtain solid results 

for small numbers of signal mixtures ( 3)M ≤ , although greater numbers of mixtures 

required more calculation time for convergence.  This result was due to the ability of the 

gradient ascent algorithm to locate only the nearest local maximum, while the Infomax 

algorithm seeks the location of the global maximum of entropy. 

By choosing a pdf that matched the desired signals to be extracted, the Infomax 

algorithm was effectively tailored to both a typical high-kurtosis audio signal mixture and 

a simple communications polar NRZ signal mixture.  In both cases, Infomax was found 

to be a speedy and reliable method of extracting a small number of signals from a small 

number of signal mixtures.  Complexity of the calculations increased with increased 

number of source signals for both types of signals.  While the added complexity of 

additional signals makes the problem difficult, it is not impossible to adapt the Infomax 

algorithm for larger quantities of signals.  Greater numbers of mixtures would require 

additional improvements to the gradient ascent algorithm or more calculation time in 

order to obtain meaningful results. 

Overall, the Infomax method of ICA implemented with multiple iterations of a 

gradient ascent algorithm as implemented in this thesis was quite successful for 

extracting a small numbers of the signals out of the same number of mixtures.  There are, 

however, several opportunities for extended research on this topic. 
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B. FUTURE WORK 

While ICA is still a relatively new research field, its popularity is rapidly 

increasing, and opportunities for future work in this subject matter are abundant.  

Research opportunities range from extensions of this research to exploring other ICA 

methods. 

1. Extensions of “Independent Component Analysis by Entropy 
Maximization (Infomax)” 

a. Signals with Identical Bit Rates 

While Chapter IV.B considered polar NRZ signals with both identical and 

random amplitudes, only randomly selected bit rates were analyzed.  Further work could 

be done to determine the ability of the Infomax algorithm to distinguish between source 

signals with identical bit rates. 

b. Gradient Ascent Optimization 

The Infomax algorithm was found to converge consistently only for small 

numbers ( 3)M ≤  of source signals and signal mixtures.  With 6M =  source signals and 

mixtures, some similarities between the source and extracted signals were found for 

audio signals, but little similarity was found between source and extracted polar NRZ 

signals.  Further investigation of an optimal gradient ascent algorithm would likely 

improve the efficiency of the Infomax algorithm as well as extend its capability beyond 

just a few signal mixtures. 

2. Additional Signals 

While this research focused on audio signals and the polar NRZ communications 

signal, Infomax could be applied to a variety of other communications signals.  

Additional communication signal types such as signals at intermediate frequency (IF) or 

radio frequency (RF) with different probability density functions should be considered as 

well as wireless local area network (WLAN), cellular (especially CDMA), and 

frequency-hopped signals.   
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3. Other ICA Methods 

Infomax is just one of many methods of ICA.  Numerous other methods could be 

developed, tested, and refined to determine the relative applicability and efficiency with 

various signals.  These methods include sphering or whitening (separating the signals 

from additive white Gaussian noise) to the more advanced methods described in Chapter 

II.  All of these possibilities for additional research paint an exciting future for 

breakthroughs in ICA as a method of Blind Source Separation. 
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APPENDIX A.  LIST OF VARIABLES 

A  arbitrary event 

{ }E X  expected value of X  

( )g y  model cdf through which y  is transformed 

'( )g y  pdf of source signal, also expressed as ( )sp y  

''( )g y  derivative of pdf '( )g y  

( )H A  entropy of event A  

( )H Y  entropy of transformed signal Y  

( )h Y  relative entropy of transformed signal Y  

h∇  gradient of entropy 

( )I A  information associated with event A  

J  Jacobian matrix 

J  determinant of Jacobian matrix 

M  number of source signals 

N  number of time elements 

( )sp y  pdf of source signal, also expressed as '( )g y  

( )Yp Y  pdf of the mapped signal ( )g=Y y  

( )yp y  pdf of extracted signal y  

( )q y  triangular model approximation of polar NRZ cdf 

'( )q y  triangular model approximation of polar NRZ pdf 

''( )q y  triangular model approximation of polar NRZ pdf derivative 
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t  time index 

W  ( )M M×  unmixing matrix 

ijw  single element of thi  row and thj  column of W  

x  ( )M N×  matrix of signal mixtures 

t
ix  signal i  of x  at time t  

Y  ( )g= y , transformed signal matrix 

y  ( )M N×  matrix of extracted signals, 1( )g −=y Y  

t
iy  signal i  of y  at time t  

α  small constant, increased gradient ascent step size 

β  small constant, decreased gradient ascent step size 

γ  small constant, base of triangular model for polar NRZ pdf approximation 

η  small constant, initial gradient ascent step size 

σ  small constant, compression factor for polar NRZ cdf approx (tanh model) 

( )Ψ y  ratio ''( ) '( )g gy y  

( )θ y  modified tanh model approximation of polar NRZ cdf 

'( )θ y  modified tanh model approximation of polar NRZ pdf 

''( )θ y  modified tanh model approximation of polar NRZ pdf derivative 
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APPENDIX B.  MAXIMUM ENTROPY YIELDS INDEPENDENT 
SIGNALS (PROOF) 

The discrete version of this proof is shown in [3] and is derived in two parts.  The 

continuous version presented in this Appendix follows [3] closely.  The first part of this 

proof shows that entropy is additive for independent random events, while the second 

part utilizes the inequality ( )ln 1 1x x≥ −  to prove that entropy of dependent random 

events is always less than entropy of independent events.  Since independent events have 

greater entropy than dependent events, the maximization of entropy results in 

independent events.  When applied to the Infomax principle, maximizing entropy through 

gradient ascent results in independent signals. 

A. ENTROPY IS ADDITIVE FOR INDEPENDENT RANDOM EVENTS 

The independent random events 1 2( , , , )nX X X=X K  have a joint pdf 

1 21 2( ) ( ) ( ) ( )
nX X X X np p x p x p x=x L .  The entropy of 1X  is 

 ( ) { }1 1 11 1 1 1 1ln ( ) ( ) ln ( )X X XH X E p x p x p x dx
∞

−∞

= − = − ∫ . (115) 

The joint entropy ( ) { }ln ( )H E p= − XX x  is 

 ( )
1 11 1 1( ) ( ) ln ( ) ( )

n nX X n X X n nH p x p x p x p x dx dx
∞ ∞

−∞ −∞

⎡ ⎤= − ⎣ ⎦∫ ∫X L L L L . (116) 

From the properties of logarithms,  

 
1 11 1ln ( ) ( ) ln ( ) ln ( )

n nX X n X X np x p x p x p x⎡ ⎤ = + +⎣ ⎦L L  (117) 

and entropy ( )H X  can be rewritten as 

 ( )
1 11 1 1( ) ( ) ln ( ) ln ( )

n nX X n X X n nH p x p x p x p x dx dx
∞ ∞

−∞ −∞

⎡ ⎤= − + +⎣ ⎦∫ ∫X L L L L . (118) 

This expression for entropy can again be rearranged, yielding 

 ( )
1 11 1 1( ) ln ( ) ( ) ln ( )

n nX X X n X n nH p x p x dx p x p x dx
∞ ∞

−∞ −∞

⎡ ⎤
= − + +⎢ ⎥

⎣ ⎦
∫ ∫X L . (119) 
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From Equation (115), ( )
1 11 1 1 1( ) ln ( )X XH X p x p x dx

∞

−∞

= − ∫ , so Equation (119) can again be 

rewritten as 

 ( ) ( ) ( )1 nH H X H X= + +X L , (120) 

which proves entropy is additive for independent random events. 

B. ENTROPY IS LESS FOR DEPENDENT RANDOM EVENTS THAN 
INDEPENDENT RANDOM EVENTS 

Equation (120) is true for any number of independent random events and can be 

expressed as the summation 

 ( ) ( ) ( )1
1

n

n k
k

H X H X H X
=

+ + =∑L . (121) 

The summation ( )
1

n

k
k

H X
=
∑  can also be expressed as 

 ( )
1 1

( ) ln ( )
k k

n n

k X k X k k
k k

H X p x p x dx
∞

= = −∞

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ ∑ ∫ , (122) 

or 

 ( ) 1 1
1 1

( , , ) ln ( )
k

n n

k n X k n
k k

H X p x x p x dx dx
∞ ∞

= =−∞ −∞

= −∑ ∑∫ ∫ XL K L . (123) 

Using the properties of logarithms, we can rewrite Equation (123) as 

 ( ) 1 1
1 1

( , , ) ln ( )
k

nn

k n X k n
k k

H X p x x p x dx dx
∞ ∞

= =−∞ −∞

= −∑ ∏∫ ∫ XL K L . (124) 

The second part of this proof assumes 1 2( , , , )nX X X=X K  are not the 

independent random events of part one but rather dependent random events.  As X  is no 

longer independent, the pdfs do not multiply as in part one.  Instead, entropy ( )H X  is 

 ( ) ( )1 1 1 1, , ( , , ) ( ) ln ( , , )
nn n X n n nH H X X p x x p x p x x dx dx

∞ ∞

−∞ −∞

= = − ∫ ∫ X XX K L K L K L .(125) 

 To prove that entropy is less for dependent random events than independent 

random events, Equation (125) is subtracted from Equation (124) to get  
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( ) ( )1
1

, ,
n

k n
k

H X H X X
=

− =∑ K   (126) 

 1 1
1

( , , ) ln ( )
k

n

n X k n
k

p x x p x dx dx
∞ ∞

=−∞ −∞

= − ∏∫ ∫ XL K L  

 1 1 1( , , ) ( ) ln ( , , )
nn X n n np x x p x p x x dx dx

∞ ∞

−∞ −∞

+ ∫ ∫ X XL K L K L  (127) 

Factoring out 1( , , )np x x
∞ ∞

−∞ −∞
∫ ∫ XL K , we get 

 ( )1 1 1

1

1( , , ) ln ln ( , , )
( )

k

n n nn

X k
k

p x x p x x dx dx
p x

∞ ∞

−∞ −∞

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟= +
⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫
∏

X XL K K L . (128) 

Since ( ) ( ) ( )ln ln lna b ab+ = , Equation (128) can be rewritten as 

 1
1 1

1

( , , )( , , ) ln
( )

k

n
n nn

X k
k

p x xp x x dx dx
p x

∞ ∞

−∞ −∞

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟=
⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫
∏
X

X
K

L K L . (129) 

The inequality ( )ln 1 1x x≥ −  can be applied to Equation (129), resulting in 

 1
1 1

1

( )
( , , ) 1

( , , )

k

n

X k
k

n n
n

p x
p x x dx dx

p x x

∞ ∞
=

−∞ −∞

⎡ ⎤
⎢ ⎥
⎢ ⎥≥ −
⎢ ⎥
⎢ ⎥⎣ ⎦

∏
∫ ∫ X

X

L K L
K

. (130) 

Distribution of the integral yields 

 
1

1
1 1 1

1

( , , ) ( )
( , , )

( , , )

k

n

n X k
k

n n n
n

p x x p x
p x x dx dx dx dx

p x x

∞ ∞ ∞ ∞
=

−∞ −∞ −∞ −∞

≥ −
∏

∫ ∫ ∫ ∫
X

X
X

K

L K L L L
K

. (131) 

The first part of Equation (131) is the area under the joint pdf, which equals one.  The 

second part of Equation (131) is the product of the area under each independent pdf, 

which also equals one.  Therefore, 

 ( ) ( )1
1

, , 1 1 0
n

k n
k

H X H X X
=

− ≥ − =∑ K  (132) 

Rearranging Equation (132), we obtain 
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 ( ) ( )1
1

, ,
n

n k
k

H X X H X
=

≤ ∑K , (133) 

thus, proving that dependent random events have less entropy than independent random 

events. 
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APPENDIX C.  THE TRIANGULAR MODEL APPROXIMATION 
(DERIVATION) 

A. PDF 

The approximate polar NRZ pdf (shown in Figure 19 and reproduced below) was 

found by breaking the pdf into the regions shown in the figure, and the slope and y -

intercept of each region was found for non-zero regions according to the slope-intercept 

form z my b= + . 

 
Figure 26 Approximate polar NRZ pdf (from Figure 19). 

 

First, the height of each triangle is found according to the equation for the area of a 

triangle  

 1
2

A bh=  (134) 

where area A  is one-half the base b  times the height h .  As the total area under a pdf is 

equal to one, the area of each triangle is 0.5 .  The base 2b γ= , so  

 2 2(0.5) 1
2 2

Ah
b γ γ

= = = . (135) 

The slope of regions 2 and 5 is the same, and the slope of regions 3 and 6 is the negative 

of regions 2 and 5.  Slope m z y= Δ Δ  and was found to be 

 2

1 0 12
1 (1 ) 2

zm
y

γ
γ γ

−Δ
= = =
Δ − −

. (136) 
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The slope is positive in regions 2 and 5 and negative in regions 3 and 6. 

The y -intercept b  is found according to the slope-intercept equation z my b= + .  

For regions 2 and 4, 

 2 2

1 (1 )0 (1 )
2 2

b z my γγ
γ γ

+
= − = − + = . (137) 

For regions 3 and 5, 

 2 2

1 ( 1)0 ( 1)
2 2

b z my γγ
γ γ

−
= − = − − = . (138) 

The resultant expression for the approximate polar NRZ pdf '( )q y  is 

 

2 2

2 2

2 2

2 2

0 (1 )
1 1 (1 ) 1

2 2
1 1 1 1

2 2
'( )  0 1 1

1 1 1 1
2 2

1 1 1 1
2 2
0 1

y

y y

y y

q y y

y y

y y

y

γ
γ γ

γ γ
γ γ

γ γ
γ γ

γ γ
γ γ

γ γ
γ γ

γ

< − +⎧
⎪ +⎪ + − + ≤ < −
⎪
⎪ − −⎪ + − ≤ < −
⎪
⎪= − ≤ < −⎨
⎪ −⎪ + − ≤ <
⎪
⎪ − +⎪ + ≤ < +
⎪
⎪ > +⎩

 (139) 

 

B. CDF 

The approximate cdf ( )q y  was found by integrating the pdf '( )q y . 

For region 2, 

 ( ) 2

(1 )(1 )

1( ) '( ) ' ' ' '
2

yy

q y q y my b dy my by
γγ − +− +

= = + = +∫ ∫  (140) 

 ( ) ( )2 21( ) (1 ) (1 )
2

q y m y b yγ γ= − + + − − . (141) 
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For region 3, 

 ( ) 2

11

1( ) '( ) 0.25 ' ' 0.25 ' '
2

yy

q y q y my b dy my by
−−

⎡ ⎤
= = + + = + +⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫  (142) 

 ( ) ( )21( ) 0.25 1 1
2

q y m y b y⎡ ⎤= + − + +⎢ ⎥⎣ ⎦
. (143) 

For region 5, 

 ( ) 2

11

1( ) '( ) 0.5 ' ' 0.5 ' '
2

yy

q y q y my b dy my by
γγ −−

= = + + = + +∫ ∫  (144) 

 ( ) ( )2 21( ) 0.5 (1 ) (1 )
2

q y m y b yγ γ⎡ ⎤= + − − + − −⎢ ⎥⎣ ⎦
 (145) 

For region 6, 

 ( ) 2

11

1( ) '( ) 0.75 ' ' 0.75 ' '
2

yy

q y q y my b dy my by
⎡ ⎤

= = + + = + +⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫  (146) 

 ( ) ( )21( ) 0.75 1 1
2

q y m y b y⎡ ⎤= + − + −⎢ ⎥⎣ ⎦
 (147) 

The resultant expression for the approximate polar NRZ cdf ( )q y  is 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2

2

2 2

2

0 (1 )
1 (1 ) (1 ) (1 ) 1
2

10.25 1 1 1 1
2

0.5 1 1( )
1( ) 0.5 (1 ) (1 ) 1 1
2
1( ) 0.75 1 1 1 1
2

1.0 1

y

m y b y y

m y b y y

yq y

q y m y b y y

q y m y b y y

y

γ

γ γ γ

γ

γ γ

γ γ γ

γ

γ

< − +⎧
⎪
⎪ − + + − − − + ≤ < −
⎪
⎪ ⎡ ⎤⎪ + − + + − ≤ < −⎢ ⎥⎣ ⎦⎪
⎪ − ≤ < −= ⎨
⎪ ⎡ ⎤⎪ = + − − + − − − ≤ <⎢ ⎥⎣ ⎦⎪
⎪ ⎡ ⎤⎪ = + − + − ≤ < +⎢ ⎥⎪ ⎣ ⎦
⎪ > +⎩

 (148) 
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APPENDIX D.  INFOMAX CODE FOR HIGH-KURTOSIS SIGNALS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                          %  

%   INFOMAX                % 

%   LT Jennie H. Garvey    % 

%   01 May 2007            % 

%                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Adapted from:     % 

% James V. Stone's  % 

% ICA Tutorial      % 

% Appendix D        % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                                                                % 

%  DESCRIPTION:                                                  % 

%   3 high-kurtosis signals                                      %  

%   multiple iterations of a modified gradient ascent function   % 

%   cdf/pdf: hyperbolic tangent                                  % 

%                                                                % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

clear 

 

%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%% 

%%                 %% 

%%  INPUT Section  %% 

%%                 %% 

%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% All inputs are entered here % 

% for ease of adapting code   % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% Enter number of signals (make modifications for add'l sigs below) 

M = 3; 

% Enter number of samples 

N = 10000; 

% Enter maximum # of iterations for Gradient Ascent 

maxiter = 100; 
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% Enter inital step size for Gradient Ascent 

eta = .1;        

% Enter increased step size for Gradient Ascent 

alpha = 1.2; 

% Enter decreased step size for Gradient Ascent 

beta = 0.1; 

% Enter # of times to repeat Gradient Ascent 

gradasiter = 5; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% MUST DEFINE cdf, pdf, dpdf in GRADIENT ASCENT function % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% % Set Random Number State 

% state=2; rand('state',state); randn('state',state)  

 

% Create "random" signals... 

M = M;     % # of signals 

N = N;     % # of samples 

i = 1:N; 

load chirp; s1=y(i); s1=s1/std(s1); 

load gong;  s2=y(i); s2=s2/std(s2); 

load splat; s3=y(i); s3=s3/std(s3); 

 

% Create "unknown" signal mixture x 

w = rand(M);  

s = [s1,s2,s3];    %column vectors 

x = s * w; 

mixture = x; 

 

% Perform GRADIENT ASCENT repetitions 

for j = 1:gradasiter; 

    if j == 1 

        W = eye(M); %initializes 1st W to identity matrix 

    else 

        W = 2 * j * rand(M); %randomly selects subsequent W, increases w/ j 

    end 

     

    [y,hs,grads,etas,W] = GradientAscent_highkurtosis(N,maxiter,alpha,beta,eta,x,W); 

     

    %Create temporary arrays to store values from each iteration 

    ytemp(j,:,:) = y;  

    hstemp(j,:,:) = hs; 
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    gradstemp(j,:,:) = grads; 

    etastemp(j,:,:) = etas; 

    Wtemp(j,:,:) = W; 

end 

 

% Select iteration with highest ENTROPY 

[maxh,index] = max(max(hstemp')); %finds highest entropy index 

 

% Select y, hs, grads, etas, W from highest entropy index 

y(:,:) = ytemp(index,:,:);  

hs(:,:) = hstemp(index,:,:); 

grads(:,:) = gradstemp(index,:,:); 

etas(:,:) = etastemp(index,:,:); 

W(:,:) = Wtemp(index,:,:); 

 

% Break out extracted signals (column vectors) 

y1 = y(:,1);  y2 = y(:,2);  y3 = y(:,3); 

 

%%%%%%%%%%%% 

%%%%%%%%%%%% 

%% PLOTS  %% 

%%%%%%%%%%%% 

%%%%%%%%%%%% 

 

%Plot original signals 

figure(1); 

subplot(3,M,1); plot(i,s1); title('\bfSignal 1'); xlabel('discrete time'); 
ylabel('Voltage') 

subplot(3,M,2); plot(i,s2); title('\bfSignal 2'); xlabel('discrete time'); 
ylabel('Voltage') 

subplot(3,M,3); plot(i,s3); title('\bfSignal 3'); xlabel('discrete time'); 
ylabel('Voltage') 

 

%Plot signal mixtures 

subplot(3,M,4); plot(i,mixture(:,1)); title('\bfSignal Mixture 1'); xlabel('discrete 
time'); ylabel('Voltage') 

subplot(3,M,5); plot(i,mixture(:,2)); title('\bfSignal Mixture 2'); xlabel('discrete 
time'); ylabel('Voltage') 

subplot(3,M,6); plot(i,mixture(:,3)); title('\bfSignal Mixture 3'); xlabel('discrete 
time'); ylabel('Voltage') 

 

%Plot extracted signals 

subplot(3,M,7); plot(i,y1); title('\bfExtracted Signal 1'); xlabel('discrete time'); 
ylabel('Voltage') 
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subplot(3,M,8); plot(i,y2); title('\bfExtracted Signal 2'); xlabel('discrete time'); 
ylabel('Voltage') 

subplot(3,M,9); plot(i,y3); title('\bfExtracted Signal 3'); xlabel('discrete time'); 
ylabel('Voltage') 

 

% % Plot PDFs of "Random" Signals (Optional) 

% figure(2); subplot(2,1,1); hist(s1,N/100); title('\bfPDF of Signal 1') 

% figure(2); subplot(2,1,2); hist(s2,N/100); title('\bfPDF of Signal 2') 

 

%Plot change in h and gradient magnitude during optimization 

figure(3); 

subplot(3,1,1);plot(hs);  

 title('\bfFunction Values - Entropy');xlabel('Iteration'); ylabel('h(Y)'); 

subplot(3,1,2);plot(grads);  

 title('\bfMagnitude of Entropy Gradient');xlabel('Iteration'); ylabel('Gradient 
Magnitude'); 

subplot(3,1,3);plot(etas); 

 title('\bfMagnitude of Eta');xlabel('Iteration'); ylabel('Eta Magnitude'); 

  

% % Modified plots of signals and extracted signals 

% figure(4);  

% subplot(1,M,1); plot(i,s1); title('\bfSignal 1'); 

% subplot(1,M,2); plot(i,s2); title('\bfSignal 2'); 

% subplot(1,M,3); plot(i,s3); title('\bfSignal 3'); 

%  

% figure(5); 

% plot(i,x); title('\bfSignal Mixtures') 

%  

% figure(6); 

% subplot(1,M,1); plot(i,y1); title('\bfExtracted Signal 1');  

% subplot(1,M,2); plot(i,y2); title('\bfExtracted Signal 2');  

% subplot(1,M,3); plot(i,y3); title('\bfExtracted Signal 3'); 

  

% Listen to audio signals ... 

% [10000] Fs Sample rate of speech. 

listen=1; 

Fs=10000; 

if listen  soundsc(y1,Fs); %soundsc(y2,Fs); 

end 

w;  % Mixing Matrix 

W;  % Unmixing Matrix 

I=w*W % should yield Identity matrix 

index 
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APPENDIX E.  GRADIENT ASCENT FUNCTION (HIGH-
KURTOSIS) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% GRADIENT ASCENT for HIGH KURTOSIS signals                                          % 

% This function performs a Gradient Ascent algorithm that varies its "step"          % 

%   size as a maximum is approached - input cdf, pdf, and dpdf required!             % 

%   eta = initial step size, alpha = increased step size, beta = decreased step size % 

% CDF, PDF, DPDF INPUTS: hyperbolic tangent                                          % 

%[y,hs,grads,etas,W] = GradientAscent_highkurtosis(N,maxiter,alpha,beta,eta,x,W)     % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function[y, hs, grads, etas, W] = GradientAscent_highkurtosis(N, maxiter, alpha, beta, 
eta, x, W) 

 

% Create arrays to store values of h, grad, eta, and W 

hs = zeros(maxiter,1);  gs = zeros(maxiter,1);  etas = zeros(maxiter,1); 

 

for iter = 1:maxiter 

     y = x * W; 

     %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     % INPUT for Gradient Ascent % 

     %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     % Input model CDF [Y=g(y)] 

     Y = tanh(y); 

     % Input model PDF [cdf'=pdf=g'(y)] 

     pdf = (1 - tanh(y).^2);  

     % Input PDF derivative [dpdf=g''(y)] 

     dpdf = -2 * tanh(y) + 2 * tanh(y).^3; 

     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     % End INPUT - more in 'else' below! % 

     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     psi = (dpdf)./ (eps + pdf); %or: psi = -2*Y (for high-kurtosis sigs only); 

     detW = abs(det(W)); 

     % Calculate entropy for current iteration     

     h = (1 / N) * sum(sum(log(eps + pdf))) + log(detW);       

      

     if iter > 1    

        if h > hs(iter - 1) %(if entropy increased) 

            eta = alpha * etas(iter - 1); 

        else  % h < hs (iter - 1): (h got smaller - entropy decreased) 
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                W = Wold; 

                eta = beta * etas(iter - 1); 

                y = x * W; 

                %%%%%%%%%%%%%%%%%%%%%%% 

                % INPUT for ELSE loop % 

                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                % Use same cdf, pdf as above! % 

                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                % Input model CDF 

                Y = tanh(y); 

                % Input model PDF 

                pdf = (1-tanh(y).^2); 

                % Input PDF derivative 

                dpdf = -2*tanh(y)+2*tanh(y).^3; 

                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                % End INPUT                   % 

                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                %Recalculate detW, h, psi for Wold 

                detW = abs(det(W));  

                h = (1/N)*sum(sum(log(eps+pdf))) + log(detW); 

                psi = (dpdf)./(eps+pdf); 

        end      

     else % iter <=  1 

        h = h;  

     end  

      

     grad = inv(W') + (1 / N) * (x' * psi);  

     W = W + eta * grad;  

     

     %Record h, grad, eta, W 

     hs(iter) = h;  grads(iter) = norm(grad(:));  etas(iter) = eta;  Wold = W;    

end 

 

%OUTPUTS y, hs, grads, etas 

y = y;  hs = hs;  grads = grads;  etas = etas;  W = W; 
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APPENDIX F.  POLAR NRZ SIGNAL FUNCTION 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% POLAR NRZ SIGNAL                                                % 

% This function returns a vector representing a polar NRZ signal. % 

% s = polarNRZ(totaltime, bitrate, samplerate)                    % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function s = polarNRZ(totaltime, bitrate, samplerate) 

    % STEP 1 - Generate random bit sequence 

    bits = rand(totaltime * ceil(bitrate), 1) < 0.5; 

    bits = 2 * (bits - .5);   %converts bits from 0,1 to -1,1 

     

    % STEP 2 - Duplicate bit sequence n times, where n = samplerate / bitrate 

    n = ceil(samplerate/bitrate); 

    x = [ ]; 

    for i = 1:n 

        x = [x,bits]; % duplicates column vector 

    end 

    % STEP 3 - Concatenate rows of x 

    y = [ ]; 

    for i = 1:length(bits) 

        y = [y x(i,:)]; 

    end 

   

    actualsamples = totaltime * samplerate; 

    s = y(1:actualsamples); 

     

    % STEP 4 - change first bit to be random (i.e. not always at the beginning of a bit) 

     

    shift = ceil(rand*samplerate/bitrate); 

    s = [s(shift + 1:actualsamples) s(1:shift)]'; 



 
 
 

 84

THIS PAGE INTENTIONALLY LEFT BLANK  

 



 
 
 

 85

APPENDIX G.  POLAR NRZ CDF FUNCTION: TRIANGULAR 
MODEL 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% POLAR NRZ CDF                                                   % 

% This function returns an approximate cdf of a polar NRZ signal  % 

%   using the triangular model with gamma as small base constant  % 

% z = polarNRZcdf(y, gamma)                                       % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function z = polarNRZcdf(y, gamma) 

    m = 1 / (2 * gamma^2); % slope (pos or neg) 

    bpos = 1 + gamma;      % numerator of y-intercept (pos) 

    bneg = gamma - 1;      % numerator y-intercept (neg) 

    bdenom = 2 * gamma^2;  % denominator of y-intercept b 

    b1 = bpos / bdenom;    % y-intercept (pos) 

    b2 = bneg / bdenom;    % y-intercept (neg) 

    z = zeros(size(y));    % creates array to store values for cdf 

 

    % Define "critical points" - where equations change 

    critPoints = [-(1+gamma) -1 (-1+gamma) (1-gamma) 1 (1+gamma)]; 

 

    % Region 1 equation (z < -1-gamma) 

    % z = 0 - do nothing! 

    % Region 2 equation (-1-gamma < z <= -1) 

    z2 = (0.5 * m * (y.^2 - (1 + gamma)^2) + b1 * (y + 1 + gamma)).* (y >= critPoints(1) 
& y < critPoints(2)); 

    % Region 3 equation (-1 < z <= -1+gamma) 

    z3 = (.25 + (.5 * m * (1 - y.^2) + b2 * (1 + y))).* (y >= critPoints(2) & y < 
critPoints(3)); 

    % Region 4 equation (-1+gamma < z <= 1-gamma) 

    z4 = .5.* (y >= critPoints(3) & y < critPoints(4)); 

    % Region 5 equation (1-gamma < z <= 1) 

    z5 = (.5 + (.5 * m * (y.^2 - (1 - gamma)^2) + b2 * (y - (1-gamma)))).* (y >= 
critPoints(4) & y < critPoints(5)); 

    % Region 6 equation (1 < z <= 1+gamma)   

    z6 = (.75 + (.5 * m * (1 - y.^2) + b1 * (y - 1))).* (y >= critPoints(5) & y < 
critPoints(6));  

    % Region 7 equation (z > 1+ gamma)    

    z7 = (y >= critPoints(6)); % always 1 

    % Combine values of each region for output cdf 

    z = z2 + z3 + z4 + z5 + z6 + z7; 
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APPENDIX H.  POLAR NRZ PDF FUNCTION: TRIANGULAR 
MODEL 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% POLAR NRZ PDF                                                   % 

% This function returns an approximate pdf of a polar NRZ signal  % 

%   using the triangular model with gamma as small base constant  % 

% z = polarNRZpdf(y, gamma)                                       % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function z = polarNRZpdf(y, gamma) 

 

    m = 1 / (2 * gamma^2); % slope (pos or neg) 

    bpos = 1 + gamma;      % numerator of y-intercept (pos) 

    bneg = gamma - 1;      % numerator y-intercept (neg) 

    bdenom = 2 * gamma^2;  % denominator of y-intercept b 

    b1 = bpos / bdenom;    % y-intercept (pos) 

    b2 = bneg / bdenom;    % y-intercept (neg) 

 

    z = zeros(size(y));    % creates array to store values 

 

    % Define "critical points" - where equations change 

    critPoints = [-(1+gamma) -1 (-1+gamma) (1-gamma) 1 (1+gamma)]; 

 

    % Region 1 (z < -1-gamma) - always 0 

    % Region 2 equation (-1-gamma < z <= -1) 

    z2 = (m * y + b1).*( y >= critPoints(1) & y < critPoints(2)); 

    % Region 3 equation (-1 < z <= -1+gamma) 

    z3 = (-m * y + b2).* (y >= critPoints(2) & y < critPoints(3)); 

    % Region 4 (-1+gamma < z <= 1-gamma) - always 0 

    % Region 5 equation (1-gamma < z <= 1) 

    z5 = (m * y + b2).* (y >= critPoints(4) & y < critPoints(5)); 

    % Region 6 equation (1 < z <= 1+gamma)   

    z6 = (-m * y + b1).* (y >= critPoints(5) & y < critPoints(6));  

    % Region 7 (z > 1+ gamma) - always 0    

       

    % Combine values of each region for output pdf 

    z = z2 + z3 + z5 + z6; 
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APPENDIX I.  POLAR NRZ DPDF FUNCTION: TRIANGULAR 
MODEL 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% POLAR NRZ DPDF                                                  % 

% This function returns an approximate dpdf of a polar NRZ signal % 

%   using the triangular model with gamma as small base constant  % 

% z = polarNRZdpdf(y, gamma)                                      % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function z = polarNRZdpdf(y, gamma) 

 

    m = 1 / (2 * gamma^2);  % slope (pos or neg) 

     

    z = zeros(size(y));       % create array to store values 

     

    % Define "critical points" - where equations change 

    critPoints = [-(1+gamma) -1 (-1+gamma) (1-gamma) 1 (1+gamma)]; 

     

    % Region 1 (z < -1-gamma) - always 0 

    % Region 2 equation (-1-gamma < z <= -1) 

    z2 = (m).* (y >= critPoints(1) & y < critPoints(2)); 

    % Region 3 equation (-1 < z <= -1+gamma) 

    z3 = (-m).* (y >= critPoints(2) & y < critPoints(3)); 

    % Region 4 (-1+gamma < z <= 1-gamma) - always 0 

    % Region 5 equation (1-gamma < z <= 1) 

    z5 = (m).* (y >= critPoints(4) & y < critPoints(5)); 

    % Region 6 equation (1 < z <= 1+gamma)   

    z6 = (-m).* (y >= critPoints(5) & y < critPoints(6));  

    % Region 7 (z > 1+ gamma) - always 0    

     

     

    % Combine values of each region for output dpdf 

    z = z2 + z3 + z5 + z6; 
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APPENDIX J.  POLAR NRZ CDF FUNCTION: TANH MODEL 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% POLAR NRZ CDF2                                                             % 

% This function returns an approximate cdf of a polar NRZ signal             % 

%   using the modified hyperbolic tangent model w/ compression factor sigma  % 

% z = polarNRZcdf2(y, sigma)                                                 %  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function z = polarNRZcdf2(y, sigma) 

 

    z = zeros(size(y));  % creates array to store values 

 

    % Define "critical point" - where equation changes 

    critPoint = 0; 

     

    % Equation for z < 0 

    z1 = (.25 * (tanh(sigma * (y + 1)) + 1)).* (y < critPoint); 

     

    % Equation for z >= 0 

    z2 = (.25 * (tanh(sigma * (y - 1)) + 3)).* (y >= critPoint); 

     

    % Combine values of each region for output cdf 

    z = z1 + z2; 
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APPENDIX K.  POLAR NRZ PDF FUNCTION: TANH MODEL 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% POLAR NRZ PDF2                                                             % 

% This function returns an approximate pdf of a polar NRZ signal             % 

%   using the modified hyperbolic tangent model w/ compression factor sigma  % 

% z = polarNRZpdf2(y, sigma)                                                 %  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function z = polarNRZpdf2(y, sigma) 

 

    z = zeros(size(y));  % creates array to store values 

 

    % Define "critical point" - where equation changes 

    critPoint = 0; 

     

    % Equation for z < 0 

    z1 = ((sigma / 4) * (1 - tanh(sigma * (y + 1)).^2)).* (y < critPoint); 

     

    % Equation for z >= 0 

    z2 = ((sigma / 4) * (1 - tanh(sigma * (y - 1)).^2)).* (y >= critPoint); 

     

    % Combine values of each region for output pdf 

    z = z1 + z2; 
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APPENDIX L.  POLAR NRZ DPDF FUNCTION: TANH MODEL 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% POLAR NRZ DPDF2                                                            % 

% This function returns an approximate pdf derivative of a polar NRZ signal  % 

%   using the modified hyperbolic tangent model w/ compression factor sigma  % 

% z = polarNRZdpdf2(y, sigma)                                                %  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function z = polarNRZdpdf2(y, sigma) 

 

    z = zeros(size(y));  % creates array to store values 

 

    % Define "critical point" - where equation changes 

    critPoint = 0; 

     

    % Equation for z < 0 

    z1 = -((sigma^2) / 2).* (tanh(sigma * (y + 1)).* polarNRZpdf(y, sigma)).* (y < 
critPoint); 

     

    % Equation for z >= 0 

    z2 = -((sigma^2) / 2).* (tanh(sigma * (y - 1)).* polarNRZpdf(y, sigma)).* (y >= 
critPoint); 

     

    % Combine values of each region for output dpdf 

    z = z1 + z2; 
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APPENDIX M.  INFOMAX CODE FOR POLAR NRZ SIGNALS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                          %  

%   INFOMAX                % 

%   LT Jennie H. Garvey    % 

%   01 May 2007            % 

%                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Adapted from:     % 

% James V. Stone's  % 

% ICA Tutorial      % 

% Appendix D        % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                                                                % 

%  DESCRIPTION:                                                  % 

%   3 polar NRZ signals                                          %  

%   multiple iterations of a modified gradient ascent function   % 

%   cdf/pdf: modified hyperbolic tangent function                % 

%                                                                % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

clear 

format compact 

 

% % Set Random Number State 

% state=2; rand('state',state); randn('state',state)  

 

%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%% 

%%                 %% 

%%  INPUT Section  %% 

%%                 %% 

%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% All inputs are entered here % 

% for ease of adapting code   % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

% Enter number of signals (will need to make modifications for add'l sigs below) 

M = 3; 
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% Enter number of samples 

N = 100; 

% Enter lenth of time vector in seconds 

totaltime = 5; 

% Enter sample rate 

samplerate = 100; 

% Enter maximum # of iterations for Gradient Ascent 

maxiter = 100; 

% Enter inital step size for Gradient Ascent 

eta = .05;        

% Enter increased step size for Gradient Ascent 

alpha = 1.2; 

% Enter decreased step size for Gradient Ascent 

beta = 0.1; 

% Enter # of times to repeat Gradient Ascent 

gradasiter = 100; 

% Enter new W step for multiple Gradient Ascent iterations 

step = 0.01; 

% Enter compression factor for polar NRZ functions 

sigma = 2; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% MUST DEFINE cdf, pdf, dpdf in GRADIENT ASCENT function % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% Create "random" signals... 

M = M;     % # of signals, this will have to be changed below if M is increased 

N = N;     % # of samples 

i = 1:N; 

%s1=(rand(1)).*polarNRZ(totaltime,10*rand(1),samplerate); %s1=s1/std(s1); 

%s2=(rand(1)).*polarNRZ(totaltime,10*rand(1),samplerate); %s2=s2/std(s2); 

s1 = (rand(1)).*polarNRZ(totaltime,10*rand(1),samplerate);  

s2 = (rand(1)).*polarNRZ(totaltime,10*rand(1),samplerate); 

s3 = (rand(1)).*polarNRZ(totaltime,10*rand(1),samplerate); 

s = [s1 s2 s3]; %column vectors 

 

% Create "unknown" signal mixture x 

w = rand(M);  

x = s * w; 

mixture = x; 

 

% Perform GRADIENT ASCENT repetitions 

for j = 1:gradasiter; 
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    if j == 1 

        W = eye(M); %initializes 1st W to identity matrix 

    else 

        W = step * j * rand(M); %randomly selects subsequent W, increases w/ j 

    end 

     

    % Call GradientAscent function to perform gradient ascent 

    [y,hs,grads,etas,W] = GradientAscent_polarNRZ2(N,maxiter,alpha,beta,eta,x,W,sigma); 

     

    % Create temporary arrays to store values from each iteration 

    ytemp(j,:,:) = y;  

    hstemp(j,:,:) = hs; 

    gradstemp(j,:,:) = grads; 

    etastemp(j,:,:) = etas; 

    Wtemp(j,:,:) = W; 

end         

         

% Select iteration with highest ENTROPY 

[maxh,index] = max(max(hstemp')); %finds highest entropy index 

 

% Select y, hs, grads, etas, W from highest entropy index 

y(:,:) = ytemp(index,:,:);  

hs(:,:) = hstemp(index,:,:); 

grads(:,:) = gradstemp(index,:,:); 

etas(:,:) = etastemp(index,:,:); 

W(:,:) = Wtemp(index,:,:); 

 

% Break out extracted signals - using column vectors 

y1 = y(:,1);  y2 = y(:,2);  y3 = y(:,3);      

 

 

%%%%%%%%%%%% 

%%%%%%%%%%%% 

%% PLOTS  %% 

%%%%%%%%%%%% 

%%%%%%%%%%%% 

 

%Plot original signals 

figure(1); 

subplot(3,M,1); plot(s1); title('\bfSignal 1'); xlabel('discrete time'); 
ylabel('Voltage') 

subplot(3,M,2); plot(s2); title('\bfSignal 2'); xlabel('discrete time'); 
ylabel('Voltage') 
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subplot(3,M,3); plot(s3); title('\bfSignal 3'); xlabel('discrete time'); 
ylabel('Voltage') 

 

%Plot signal mixture 

subplot(3,M,4); plot(mixture(:,1)); title('\bfSignal Mixture 1'); xlabel('discrete 
time'); ylabel('Voltage') 

subplot(3,M,5); plot(mixture(:,2)); title('\bfSignal Mixture 2'); xlabel('discrete 
time'); ylabel('Voltage') 

subplot(3,M,6); plot(mixture(:,3)); title('\bfSignal Mixture 3'); xlabel('discrete 
time'); ylabel('Voltage') 

 

%Plot extracted signals 

subplot(3,M,7); plot(y1); title('\bfExtracted Signal 1'); xlabel('discrete time'); 
ylabel('Voltage') 

subplot(3,M,8); plot(y2); title('\bfExtracted Signal 2'); xlabel('discrete time'); 
ylabel('Voltage') 

subplot(3,M,9); plot(y3); title('\bfExtracted Signal 2'); xlabel('discrete time'); 
ylabel('Voltage') 

 

%Plot change in h and gradient magnitude during optimization 

figure(3); 

subplot(3,1,1); plot(hs); title('\bfFunction Values - Entropy'); 

  xlabel('Iteration'); ylabel('h(Y)'); 

subplot(3,1,2); plot(grads); title('\bfMagnitude of Entropy Gradient'); 

  xlabel('Iteration'); ylabel('Gradient Magnitude'); 

subplot(3,1,3); plot(etas); title('\bfMagnitude of Eta'); 

  xlabel('Iteration'); ylabel('Eta Magnitude'); 

% % Plot PDFs of "Random" Signals (Optional) 

% figure(2);subplot(2,1,1); hist(s1,N/100); title('\bfPDF of Signal 1') 

% figure(2);subplot(2,1,2); hist(s2,N/100); title('\bfPDF of Signal 2')  

  

%%%%%%%%% 

% CHECK % 

%%%%%%%%% 

w;  % Mixing Matrix 

W  % Unmixing Matrix 

I = w*W % should yield Identity matrix 

% Compute optimum h 

pdfopt = polarNRZpdf(s,sigma); 

detWopt = abs(det(inv(w))); 

hopt = (1/N)*sum(sum(log(eps+pdfopt))) + log(detWopt) 

h = max(hs) 

index 



 
 
 

 101

APPENDIX N.  GRADIENT ASCENT FUNCTION (POLAR NRZ - 
TANH MODEL) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% GRADIENT ASCENT for POLAR NRZ signals                                              % 

% This function performs a Gradient Ascent algorithm that varies its "step"          % 

%   size as a maximum is approached - input cdf, pdf, and dpdf required!             % 

%   eta = initial step size, alpha = increased step size, beta = decreased step size % 

% CDF, PDF, DPDF INPUTS: modified hyperbolic tangent function for approximation      % 

% [y,hs,grads,etas,W] = GradientAscent_polarNRZ2(N,maxiter,alpha,beta,eta,x,W,sigma) % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function[y, hs, grads, etas, W] = GradientAscent_highkurtosis(N, maxiter, alpha, beta, 
eta, x, W, sigma) 

 

% Create arrays to store values of h, grad, eta, and W 

hs = zeros(maxiter,1);  gs = zeros(maxiter,1);  etas = zeros(maxiter,1); 

 

for iter = 1:maxiter 

     y = x * W; 

     %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     % INPUT for Gradient Ascent % 

     %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     % Input model CDF [Y=g(y)] 

     Y = polarNRZcdf2(y,sigma); 

     % Input model PDF [cdf'=pdf=g'(y)] 

     pdf = polarNRZpdf2(y,sigma);   

     % Input PDF derivative [dpdf=g''(y)] 

     dpdf = polarNRZdpdf2(y,sigma); 

     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     % End INPUT - more in 'else' below! % 

     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     psi = (dpdf)./ (eps + pdf); 

     detW = abs(det(W)); 

     % Calculate entropy for current iteration     

     h = (1 / N) * sum(sum(log(eps + pdf))) + log(detW); 

      

     if iter > 1  

        if h > hs(iter - 1)  % (if entropy increased)  

            eta = alpha * etas(iter - 1); 

        else %h<hs(iter-1): (h got smaller - entropy decreased) 
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                W = Wold; 

                eta = beta * etas(iter - 1); 

                y = x * W; 

                %%%%%%%%%%%%%%%%%%%%%%% 

                % INPUT for ELSE loop % 

                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                % Use same cdf, pdf as above! % 

                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                % Input model CDF 

                Y = polarNRZcdf2(y,sigma); 

                % Input model PDF 

                pdf = polarNRZpdf2(y,sigma); 

                % Input PDF derivative 

                dpdf = polarNRZdpdf2(y,sigma); 

                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                % End INPUT                   % 

                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                %Recalculate detW, h, psi for Wold 

                detW = abs(det(W));  

                h = (1 / N) * sum(sum(log(eps + pdf))) + log(detW); 

                psi = (dpdf)./ (eps + pdf); 

        end      

     else % iter <=  1 

        h = h;  

     end               

     grad = inv(W') + (1 / N) * (x' * psi); 

     W = W + eta * grad;  

     

     %Record h, grad, eta, W 

     hs(iter) = h;  grads(iter) = norm(grad(:));  etas(iter) = eta;  Wold = W;   

end 

 

%OUTPUTS y, hs, grads, etas 

y = y;  hs = hs;  grads = grads;  etas = etas;  W = W; 
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