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Signal and power harnesses on spacecraft buses and payloads can alter 
structural dynamics, as has been noted in previous flight programs. The 
community, however, has never undertaken a thorough study to understand the 
impact of harness dynamics on spacecraft structures. The Air Force Research 
Laboratory is leading a test and analysis program to develop fundamental 
knowledge of how spacecraft harnesses impact dynamics and develop tools that 
structural designers could use to achieve accurate predictions of cable-dressed 
structures. The work described in this paper involved a beam under simulated free 
boundary conditions that served as a validation test bed for model development.  

Nomenclature 
C = system damping matrix 
F = forcing function vector 
K = system stiffness matrix 
Kc = structural damping matrix 
j = imaginary unit 
M = system mass matrix 
Mc = mass-proportional damping matrix 

xxx &&&,,  = displacement, velocity and acceleration vectors 
α,β = scalar proportionality constants 
ω = natural frequency in radians/second 

I. Introduction 
he evolution of military spacecraft has led to structures of ever decreasing weight and specific mass 
values, while the requirements on both static and dynamic mechanical stability have increased 
dramatically for spacecraft and payloads. Structural control systems are needed to meet mission goals 

and, at a minimum, the design of spacecraft systems must refine structural dynamics to minimize its impact 
on mission performance metrics.  

Experiments used to identify plant model order, poles, and gains commonly occur early in the program 
development, using mass simulators before the system can be fully integrated. Near the end of the 
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integration and test phase, measurements are made to quantify structural dynamics with the structure “fully 
dressed” and demonstrate suitable workmanship levels. From the measurements on the fully dressed 
structure, it is commonly found that the dynamics changed from the original “bare structure” tests. Previous 
flight program tests have shown that flight harnesses can shift modal frequencies and cause a significant 
increase in modal damping ratios, particularly those at high mode order. This illustrates that a potentially 
critical component missed in the design and integration of precision space structures are power and signal 
cable harnesses. 

Since it is not standard practice to include cable harnesses in modal models (with the exception of 
modeling harnesses as non-structural mass), it is conceivable that numerical results and designs are overly 
conservative, requirements for isolation systems are overstated, and high bandwidth structural control 
systems may be adversely affected (i.e., reduced performance with nominal gains and/or instability). 
Refining the controller design before launch is imperative: finding that the control system is unstable when 
on-station is a worst-case scenario.  

The Air Force Research Laboratory-led team is studying the following aspects of cable harness effects 
on precision structures: the underlying physics of unsupported cables, a case study of a space telescope test 
bed and how cable harnesses alter the dynamics of simple and lightly damped test articles. The latter test 
and analysis program is covered in this paper. The overarching program goals include extending the 
understanding of the effects of cable harnesses on a structure’s dynamics leading to development of design 
tools for the structural dynamicist. Ideally, the design tools will allow the engineer to fine-tune the 
structural dynamics to increase on-station mission performance through harness design, placement and 
mounting geometry, thereby reducing conservatism in the design phase. In essence, this experimental and 
analysis effort will advance the technology allowing power and signal cable harnesses to be integrally 
designed into a spacecraft: Why not use the harnesses to improve structural dynamics and increase mission 
performance? 

This paper describes a free-free beam test structure used to document the effects of cables on the 
dynamic response of a flexible structure. Also included are ways that the cable dynamics can be included 
into system models within the current framework of linear finite element modeling. Cable effects also can 
be reduced to structural damping coefficients and modeled as distributed lumped parameter models, as 
detailed in this paper. Extension of these techniques may augment active areas of applied research 
including model appropriateness, confidence levels and uncertainty quantification of structural dynamic 
measurements for precision space structures. Deterministic, stochastic and “hybrid” models may be found 
as appropriate modeling techniques for predicting structural dynamics of precision structures with mounted 
signal or power cable harnesses1,2. 

II. Free-Free Beam Test Specimen and Test Setup Details 
A free-free beam of uniform cross section was chosen to quantify the effects of cable harnesses on a 

simple and modelable structure. The beam served as a test bed for model validation experiments in the 
synergistic test/analysis cable effects program. The nearly ideal free boundary condition was easily 
implemented in the laboratory; closed-form beam equations were found to agree with measurements.  

The beam was designed to have a 40 Hz first bending modal frequency. The suspension mode of the 
test set-up with the highest modal participation factor was at 1.3 Hz. The separation between the suspension 
modes and first bending mode exceeds the order-of-magnitude frequency separation rule of thumb 
commonly used for modal testing: more than one order of magnitude between the suspension and flexible 
body modes assures that suspension modes do not couple strongly with the flexible body modes.  

Low base structure damping was a design goal to assure that measured damping ratios with a cable 
mounted to the structure dominated the loss mechanisms. In addition, nonlinear design features (such as 
mechanical joints) were avoided to simplify analysis and allow straightforward estimation of harness 
nonlinear effects, if they exist. The beam was designed to have a base structure-to-cable mass ratio 
commensurate with mass ratios on Department of Defense (DoD) spacecraft. Harness-to-structure mass 
ratios are commonly in the four-to-twenty percent range for spacecraft, as determined in an industry and 
literature survey early in the cable effects program. This mass ratio range was adopted in the experiment 
plan and used for cable harness construction design.  

Figure 1 shows the excitation setup and the test article suspended on long cords in the laboratory. An 
electrodynamic shaker and a piano wire stinger were used to provide controlled, band-limited excitation. A  
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high sensitivity piezoelectric load cell measured 
the disturbance. Structural response was 
measured using either a single-point laser 
vibrometer or accelerometer at the driving 
point. The majority of the measurements 
utilized the vibrometer resulting in mobility 
frequency response functions (FRFs) with no 
influence of sensor wiring. Sampling and digital 
signal processing to acquire frequency response 
functions utilized a VXI-based data acquisition 
system. Signal types included continuous and 
burst random waveforms.  

Structural dynamic parameters, including 
natural frequencies, damping ratios and modal 
mass were estimated from measured frequency 
response functions. Figure 2 shows a 
typical driving point inertance FRF 
measured on the bare beam (i.e., with 
no cable harness attached). Modal 
damping ratios are very low and the 
resonant frequency spacing agrees 
with the closed-form relationship. The 
driving point location was chosen to 
increase the modal participation 
factors for the third and fourth modes 
and limit those in the first two modes, 
as depicted in the figure.  

Figure 3 shows this driving point 
FRF in the Nyquist plane, near the 
bare beam first bending mode. Natural 
frequency and damping ratio results 
are displayed with calculated 
parameters of the least squares fit of a 
circle to the frequency response 
function. Spectral lines in the 
measurement are shown with blue 
circles and the least squares circle fit is 
shown in a magenta solid line texture. 
The estimated natural frequency is 
shown with a green diamond and the 
“half-power points” used to determine 
the modal damping ratio are shown 
with the red diamonds in this figure. 
The light damping is evident and 
consequence of leakage on the 
measurement is evident from the 
distortion near resonance. The circle 
fitting algorithm was used extensively 
in the analysis of the beam FRFs due 
to the high degree of user interaction in 
the parameter estimation process that 
allows the engineer to reduce the 
parameter estimation errors. This 
technique was also used to extract 
cable harness test article modal parameters in the lateral “cable only” testing in another part of the cable 
effects program3.  

 
 (a) (b) 

Figure 1 Exciter set-up (a); test article configuration (b) 

 
Figure 2 Bare beam inertance frequency response function 

 
Figure 3 Bare beam Nyquist plot around 1st bending mode 
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III. Cable Construction and Mounting Details 
Cable harness construction and mounting techniques adhere to good engineering practices followed in the 
spaceflight industry, standards, and harness 
construction recommendations that appear 
in the literature4. Cables were made from 
twisted pair single-conductor wires with 
Teflon insulation, per MIL-W-22759/11, 
“stitched” with lacing cord and 
encapsulated with a Kapton tape wrap. 
Figure 4 shows details of cable 
construction. The cables did not include 
terminating connectors or strain relief 
provisions. 

Adhesively mounted tabs and lacing 
cord or cable ties were used to attach the 
cable to the beam, as is commonly done in 
spacecraft integration applications. In this 
series of experiments two sets were 
positioned on the beam: one along its 
centerline, the other set allows for a 
“serpentine” mounting pattern. Figure 5 
shows mounting details, including 
examples of the “straight” and “serpentine” 
lacing pattern. The mounting tabs were 
installed with four-inch spacing and 
provide a small standoff distance between 
the harness and the back-up structure. This 
attachment method prompted simple beam 
analysis models for the cable, connected to 
the beam at the tie down points, as 
described in following sections. 

 

IV. Harness-on-Beam Measurements 
Mobility and inertance frequency response functions at the driving point location were used exclusively 

in this test series to demonstrate the influence of a harness mounted to the lightly damped aluminum beam. 
Because modal damping ratios and natural 
frequencies are global properties, driving 
point measurements are sufficient to 
illustrate perturbations to the beam 
dynamics resulting from the harness 
mounted along the beam. 

Figure 6 shows driving point inertance 
frequency response functions, in Bode plot 
format, measured under two conditions: the 
beam “bare” and with a harness mounted 
with a straight pattern along the length of 
the free-free beam. Changes to the 
structural dynamics, caused by the cable 
harness, within the 800 Hz measurement 
band width, are clearly evident. In the low 
frequency range (below the beam’s third 
mode) there is little effect. At the third 
mode, the harness causes a noticeable 
decrease in resonant frequency (i.e., mass 

 
Figure 4 Cable construction: (a) lacing; (b) Kapton wrap 

 
Figure 5 Cable harness mounting details: 

(a) straight configuration; (b) serpentine configuration;  
(c) attachment elevation view 

 
Figure 6 Bare beam and straight harness inertance functions 
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loading), and an increase in modal damping 
ratio. The fourth mode, near 350 Hz, is 
dramatically affected, with a decrease in 
the quality factor by roughly two orders of 
magnitude. Quality factors in the fifth and 
sixth modes decrease roughly an order of 
magnitude: the modal damping ratios 
increase by approximately a factor of five 
in these modes.  

A comparison of inertance FRFs for 
straight and serpentine cable configurations 
appears in Figure 7. The responses of the 
beam with the two harness mounting 
configurations are similar, with the 
noticeable difference being higher damping 
in the modes above 500 Hz. The harness 
interacts strongly with the base beam 
structure in the 300-to-400 Hz range for 
both the straight and serpentine tie-down 
configurations. 

Measurements were made to document 
the influence release of harness extensional 
tractions on system dynamics by removing 
the last tie at each end of the harness in a 
straight lay configuration. This data, 
plotted with the straight harness mounting 
is shown in Figure 8. The two inertance 
functions illustrate similar dynamics, 
except in the vicinity of the 40 Hz first 
bending mode. Inspection of these FRFs 
shows evidence of a mode coupled to the 
first bending mode, as shown in the 
expanded view in this figure. Explanation 
of this behavior is being studied. The 
hypothesis is that the harness free ends, 
being cantilevered, have high compliance 
and result in bending resonances close to 
the beam first bending mode. The strong 
coupling is thought to be caused by high 
modal response near the last tie positions. 

FRF sensitivity to tie-down spacing 
also was evaluated. Two tie-down 
configurations of the straight cable, 
illustrated in Figure 9, were investigated. 
The measured FRFs are shown in Figure 
10. The change from four-inch to eight-
inch spacing has a marked effect on the 
FRF. Modal peaks are reduced above the first mode more consistently. The FRF from the “88444488” 
configuration is qualitatively similar to the uniform eight-inch spaced configuration.  

These data show that a lightweight harness (the harness-to-beam mass ratio was roughly 8%), affects 
the system dynamics in the following ways. 
• At low frequencies the modes shift slightly due to a mass loading; 
• At high frequencies, the harness increases the system modal damping ratios; 
• Cable dynamics that strongly couple with base structure modes can result in dramatic reduction in 

the system quality factors.  
 

 
Figure 7 Inertance FRFs - straight and serpentine mounting 

 
Figure 8 FRFs showing effects of loose harness ends 
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(a) 888888 Spacing 

 
(b) 88444488 Spacing 

Figure 9 Tie-down spacing configurations 

 
These observations indicate that a 

modeling approach must account for the 
frequency-dependent behavior of the cable on 
the base structure. Overly simplistic models 
would result in large errors predicting the 
system dynamics, and produce inaccurate 
estimates of control system performance and 
closed loop stability. Appropriate model 
formulation, benchmarking harness effects 
with linear finite element models and a study 
of the impact of neglecting cable effects on 
high-authority controllers (due to plant errors) 
are being studied in other phases of the 
program.  

V. Lumped Parameter Model 
Formulation 

In the industry, when harnesses are 
included in finite element models, the practice 
is to use a non-structural mass approach. 
While this is useful in benchmarking the 
system-level mass budget, it is clear from data 
on previous flight programs and the free-free 
beam measurements that the dynamics of a 
“dressed” structure will not be predicted 
accurately using this simplistic technique. On 
the beam test article, for example, one would 
expect that a finite element model could 
correctly estimate the low frequency 
dynamics (up to 200 Hz) with some level of 
accuracy, have large errors at high frequencies 
where loss mechanisms are significant, and be 
orders of magnitude off at frequencies where 
the structure modes couple with cable 
resonances. In short, the practice of using 
non-structural mass is appropriate at best in 
the frequency range below where the cable 
harness becomes resonant, above that frequency range the inaccuracy can be very large. 

To assist in the cable model development, the behavior of a simple Euler beam was studied using a 
linear finite element model (FEM). The underlying assumption was that a cable can be approximated by a 
beam in bending. The initial goal in this study was to determine if a linear beam finite element model is 
appropriate for a cable harness, by benchmarking the model results with “cable only” lateral dynamic 
measurements. The beam finite element model was built with “slider” end conditions: having only one 
degree of freedom released in a beam lateral direction; a 5% viscous damping ratio for all modes; a lineal 
mass like that of a cable specimen, and a first modal frequency commensurate with the measured cable 
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Figure 10 Comparison of tie-down spacing effects 

 
Figure 11 FEM beam driving point inertance FRF 
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dynamics similar to test. Figure 11 shows 
the driving point inertance FRF, simulated 
with the finite element model. The resonant 
frequency progression follows the 
quadratic relationship in elementary beam 
theory.  

Figure 12 shows an inertance FRF 
computed from a measured driving point 
mobility function on a harness under 
clamped-clamped boundary conditions. 
The similar appearance between the beam 
prediction and the measurement indicates 
that the cable is “beam-like” under lateral 
dynamic loading. Cable harness 
measurements under different simulated 
boundary conditions have shown that 
driving point inertance functions under 
different boundary conditions (e.g., 
simulated pinned-pinned, clamped-clamped 
and ends secured with cable ties) have the 
same trends as that shown in this figure: the 
resonant frequency spacing is affected, but 
the slope of the stiffness line is boundary 
condition-invariant.  

Figure 13 depicts two synthesized 
inertance FRFs: one has the natural 
frequency spacing for a simple Euler beam; 
the other frequency response function is 
based on a measured cable frequency 
progression. These functions are sums of 
single degree of freedom (SDOF) systems; 
each mode is the inertance between the 
response of the suspended mass and a co-
located force acting on the mass. Thus the 
cable driving point frequency response 
function is similar to the sum of SDOF 
inertance functions when driving the 
cable’s effective mass with a spring and 
viscous damper to ground (i.e., the mass is 
driven, not the base of the spring). 
Dynamic interaction with the cable may have “tuned mass damper-like” behavior, similar to that observed 
in the beam tests, however the cable harness is not a notional tuned mass damper (TMD) where the spring 
and dashpot are between the structure and suspended mass (i.e., the SDOF base is driven, not its mass). For 
a TMD, the low frequency asymptote is horizontal with a value of the reciprocal of the suspended mass; in 
the cable measurements the low frequency asymptote instead has a slope determined by the harness 
stiffness. The discrepancy in the frequency spacing illustrates a limitation of using beam models for 
predicting dynamics due to cable harnesses: a cable has a higher modal density than a pinned-pinned beam. 

Figure 14 shows two inertance functions on the same axes: one computed from a “cable only” mobility 
measurement, the other is simulated by four SDOF oscillators, using 5% viscous damping and the identical 
effective mass in each mode, and the measured frequencies. The close agreement between the measurement 
and the synthesized FRF has a far-reaching implication for cable model development and implementation 
in the spaceflight structures community. The cable model can be simple and follows standard structural 
dynamic models for linear structures. One goal of the cable effects applied research was to determine if 
cable harnesses can be simulated using simple and deterministic models. The results from the cable lateral 
tests indicate that this is indeed the case. Additional study is required to determine if such a model breaks 

 

 
Figure 12 Cable driving point inertance 

 
Figure 13 Inertance FRFs with pinned-pinned Euler beam 

and measured resonant frequency spacing 
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down at extreme mode number and 
determine if a stochastic or “hybrid” 
deterministic/stochastic model is required. 

The simple lumped parameter model 
formulation offers attractive options for 
simulation to spacecraft design and 
structural control teams. Implementing 
lumped parameter models in a finite 
element model is possible, as an obvious 
extension to the non-structural mass 
technique. This approach holds the promise 
of allowing structural engineers to “design-
in” harness routing to benefit system 
dynamics.  
 The cable lumped parameter model also 
could be used in a context of either test or 
analysis-based technique using either 
frequency response functions directly or in 
a state matrix formulation. The former is 
attractive if the cable model the can be shown to accurately predict the influence on performance metric 
frequency response functions. For example, an advancement to spacecraft structural design technology 
would be the ability to predict the impact on imaging sensor jitter-to-noise source FRFs measured early on 
in flight programs before harnesses are designed and integrated on the spacecraft. Development of a 
framework to implement the structural modification in a state equation formulation could fit the need 
between the finite element model and the controls team and may provide an avenue to refine both harness 
routing for benign system dynamics and increase the accuracy in the control simulations. Study of 
implementing cable dynamics in a lumped parameter formulation similar to distributed tuned mass 
dampers5,6 as appears in the literature, is in process; the free-free beam test article is being used as a test 
case.  

VI. Finite Element Modeling 
As discussed above, experience has shown that cables affect the dynamics of the underlying structure in 

at least two ways at “high” frequencies. They add damping and they dynamically interact, often in 
dissipative ways with the underlying structure. The next section discusses ways to represent the additional 
damping cables provide in a finite element model. Dynamic interactions are discussed in the subsequent 
section, followed by a discussion of finite element modeling approaches.  

A. Damping Models 
Modal Damping  

The standard approach in the satellite industry is to create a finite element (FE) model from which mass 
and stiffness matrices are obtained. Modal damping is assigned based on experience and perhaps program 
requirements (which are also experience based). Then performance models (for jitter and pointing control, 
wavefront errors, etc.) are created and exercised. Consequently, one approach is to simply assign increasing 
modal damping ratios with frequency. For example, 
 

Frequency Band Modal Damping Ratio 
0 – 50 Hz 0.25 % 
50 Hz – 150 Hz 0.5 % 
150 Hz – 300 Hz 4 % 
> 300 Hz 7 % 

 
While simple and straightforward, such an approach is only partially satisfying because modal damping 

is not physical – it is an artifact of analytical convenience that has been shown to be sufficiently accurate 
for many lightly damped structures – and therefore any damping ratio distribution would have to be based 

 
Figure 14 Measured and synthesized inertance FRFs 
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on empirical data, which do not currently exist4. Furthermore, such a damping assignment always would be 
more subject to programmatic arguments than a physically grounded approach.  
 
Structural Damping 

Another straightforward approach is to use a damping matrix proportional to the cable stiffness or mass, 
in addition to modal damping. The basic form of the dynamic equations is: 
 
 ( )

KK
FxKjKxCxM

c

c
β=

=+++ &&&
 (1) 

 
for structural damping, and  
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M
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c
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


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for mass-proportional damping. In both cases, the scalar coefficients (α and β) must be chosen 
appropriately. Strictly speaking, these forms of damping only apply to frequency domain analyses since a 
complex stiffness (or mass) matrix is not physically realizable without some active elements. Mass 
proportional damping also includes a frequency weighting term that is not present in structural (stiffness 
proportional) damping. Structural damping can be approximated with a real damping matrix which leads 
back to effective modal damping.  

Figure 15 shows a model derived driving point FRF for a cantilever beam with structural damping. The 
qualitative behavior of the FRF is consistent with the experimental data on the free-free beam. The main 
issue with this approach is determining an appropriate complex stiffness matrix from the cable properties. 
This requires knowledge of the cable harness properties (i.e., cable stiffnesses). Some insight can be gained 

from theory because β  is related to the damping ratio and frequency by the following formula, ω
ζβ 2= , 

where ζ  is the damping ratio and ω  is the natural frequency in circular frequency units. For example, if 
one desires 3% damping at 1000 Hz, then β  equals approximately 1e-5. 

 

 
Figure 15 Cantilever Beam FRF with Modal & Stiffness Proportional Damping 
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2nd Beam Bending Mode 110 Hz 

 
Cable Mode 343 Hz 

 
4th Beam Bending Mode 349 Hz 

 
Cable Mode 350.3 Hz 

Figure 16 Interations of Cable and Beam Modes 

B. Structural Interaction 
Dissipative cable effects have been 

observed at frequencies where the cables are 
resonant. Figure 16 shows two mode shapes 
of a free-free beam. At mode 2 the modal 
participation from the cable is minimal. 
Around mode 4 the cable participates 
significantly. There are cable modes around 
the fourth beam mode that affect the 
frequency response. For the beam 
experiments, it was possible to predict the 
cable’s resonant lower bound using a multi-
span beam model of the cable. For more 
complex structures, it is unlikely that a purely 
analytical method will be sufficient to predict 
the structural interaction boundary and 
modeling approaches will need to be 
developed. 

Above the interaction boundary, cable 
damping and interaction with the structure affect the system response. If cable modes are closely coupled 
with the underlying structure’s modes, energy transfer will occur and the cable may act as a damper. This is 
almost certain to occur on modally dense structures, but these types of interactions are sensitive to the 
properties of the cable (modulus, mass, and damping) and structure. Figure 17 shows FRFs of the cabled 
free-free beam generated with MSC.Nastran SOL 111 for different cable Young’s modulus values (I is 
constant) and damping levels. Also shown in the figure is a measured FRF. The shape of the FRF depends 
on the value of EI. At the smallest EI, the modal response at modes 3 and 5 is reduced by the interaction of 
the beam and cable. The model FRF synthesized with the largest EI fairly represents the measured FRF in 
which only the fourth beam mode is affected. This figure shows the need for reliable cable stiffness and 
geometric properties. Modeling cabled structure response only with higher levels of modal damping 
without considering the dynamic interaction of cable and structure is insufficient. Whether this dissipative 
dynamic interaction can be accurately predicted with models on complex structures and practically 
exploited is still under investigation.  

 
Figure 17 Model generated FRFs with various cable 

stiffnesses 
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Measured Data Straight Cable
EI = 10.11, zeta = 5%
EI = 35.52, zeta = 5%
EI = 47.42, zeta = 10%
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C. Finite Element Modeling of Cabled Structures 
One of the main objectives of the cable effects program is to evaluate whether the contributions of cable 

harnesses can be represented within the general framework of linear analysis. The desire is to be able to 
include harness models in standard (linear) spacecraft structural models, without having to resort to non-
linear modeling.  

As part of the Air Force Research Laboratory research effort, cables were tested to determine their 
structural properties. It was found that damping levels are input amplitude dependent, i.e., cables are non-
linear elements. At low input levels, commensurate with modal test and expected on-orbit disturbances, the 
effective modal damping seems to be between 3% and 6% almost independent of frequency3. Also, at low 
input levels the cables may be approximated as beams, rather than tension elements. Bigger cables were 
better represented by the beam assumption than small ones. This indicates that perhaps there is a lower 
bound on cable size that can be reasonably modeled and analyzed with linear tools.   

Clearly the cable harness must be included as a structural component in a finite element model. One 
way to do this is to represent the cables as beams, pinned at the tie-down points. The pinned connection to 
the structure can be represented with an RBE2 connection in which the rotational degrees of freedom are 
left unrestrained. Since the cable has greater damping than the bare structure and cable damping properties 
can be measured and tabulated, it is desirable to associate higher damping with the cable elements rather 
than the entire structure. If using MSC.Nastran, a structural damping coefficient may be included on the 
material property card. This approach implements the structural damping model discussed above.  

Alternatively, the cable harness may be represented as a super-element (if the FE code supports super-
element analysis) with modal damping assigned at the component level. For the free-free beam, the model 
generated FRFs are very similar – 
independent of the damping approach, as 
illustrated in Figure 18. 

Finite element models of precision 
spacecraft usually are the basis for 
performance models. These models are used 
by other groups (e.g., control systems, 
systems engineering), and are created from 
mass and stiffness matrices extracted from the 
FE model. With cables included in the 
models, a damping matrix must also be 
provided to users.  

Other parameters that influence the 
measured response of cabled structures are the 
tie down spacing and the rotational stiffness 
of the connection. Tie-down spacing is a 
relatively easy parameter to get right in FE 
models as illustrated in Figure 19.  

 

VII. Summary 
A test series was conducted using a flexible beam under simulated free-free boundary conditions with 

the following goals.  
• Document the influence of mounting a cable harness on a flexible structure, with a mass ratio 

similar to those on DoD spacecraft; 
• Assess the relative importance of mounting parameters such as tie-down spacing and routing 

(i.e., straight or serpentine) on the combined system dynamics; 
• Provide a test bed for validating modeling approaches. 

The measurements demonstrated that a cable harness with eight percent of the base structure mass has a 
frequency-dependent impact on structural dynamics that would not be accurately represented using non-
structural mass in a finite element model. At low frequencies (below the harness first resonance), the 
resonant frequencies decrease due to mass loading. Above the harness fundamental resonant frequency, two  
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Figure 18 FE generated FRFs with various cable damping 
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effects were observed: increased modal damping when the structure and harness modal frequencies are not 
coincident and a strong “TMD-like” effect if the base structure and harness resonant frequencies are the 
same.  

Leveraging “cable only” dynamic measurements from another phase of this research, a lumped 
parameter model approach has been shown to closely replicate cable harness dynamics. The model 
formulation can replicate the natural frequency progression observed in test and is a summation of single 
degree of freedom systems, relating the driving point dynamics with the spring and damper connected to 
ground. It holds promise for integrating into finite element models, as an extension to the commonly used 
non-structural mass approach to modeling cable harnesses, and use in an admittance model operating on 
either measured or synthesized frequency response functions directly. 

Finite element models of cables were investigated for modeling the “dressed” beam. Good FRF 
agreement was observed with test data. Higher modal damping may be assigned to the cable only and cable 
models may be combined with the bare structure model relatively easily. Correctly capturing the modal 
interactions in the FRFs depends on good estimates of the cable properties. The FRFs were more sensitive 
to these cable properties than to cable modal damping levels. This shows the potential complexity of 
modeling cabled structures and the need for validated cable properties. Future efforts will extend the 
modeling assessments to more parameters such as cable tie-down rotation stiffness and the modeling 
techniques to more complex structures.  

Acknowledgments 
The authors are grateful to the Air Force Office of Scientific Research and the Secretary of the Air 

Force sponsor for funding and encouragement in this effort. The authors would like to thank our contacts in 
the spacecraft industry, government agencies and academic institutions for their inputs. 

A portion of this work was performed at Sandia National Laboratories. Sandia is a multi-program 
laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department 
of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.  

References 
1 Langely, R., Contoni, V., Gardner, B., Lane, S., “Extending SEA Prediction of Mean Energy to the Prediction of 

Variance and Confidence Intervals,” AmeriPAM 2003, Troy, MI, October 2003. 
2 Langely, R., Shorter, P., Contoni, V., “A Hybrid FE-SEA Method for the Analysis of Complex Vibro-Acoustic 

Systems,” NOVEM 2005 Conference, Saint Rafael, France, 18-21 April 2005. 

 
888888 Spacing 

 
88444488 Spacing 

Figure 19 Driving point FRFs with variable tie down spacing 

0 100 200 300 400 500 600 700 800
-60

-50

-40

-30

-20

-10

0

10

20

30

Frequency (Hz)

FR
F 

M
ag

ni
tu

de
 (d

B)

F-F Beam,26g/10p cable, 88444488 in spacing

 

 

Measured Data Straight Cable
EI = 47.42, zeta = 10%

0 100 200 300 400 500 600 700 800
-60

-50

-40

-30

-20

-10

0

10

20

30

Frequency (Hz)

FR
F 

M
ag

ni
tu

de
 (d

B)

F-F Beam,26g/10p cable, 8 in tie-down spacing

 

 

Measured Data Straight Cable
EI = 47.42, zeta = 10%

0 5 10 15 20 25 30 35 40 45 500 5 10 15 20 25 30 35 40 45 50



To be presented at the 48th Structures, Structural Dynamics and Materials (SDM) Conference 
April 2007, Honolulu, HI 

 

13 
American Institute of Aeronautics and Astronautics 

 

3 Ardelean, E. V., et. al., “Dynamics of Cable Harnesses on Large Precision Structures,” 48th 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference Proceedings, Waikiki, 
Hawaii, April 2007. 

4 ------ “Crimping, Interconnecting Cables, Harnesses, and Wiring,” NASA-STD-8739.4, Change 1, February 1998. 
5 Kitis, L., Pilkey, W.D., and B.P. Wang, “Optimal frequency response shaping by appendant structures,” Journal 

of Sound and Vibration, Vol. 95, No. 2, 1984, pp. 161-175. 
6 Zuo, L. and S.A. Nayfeh, “Minimax optimization of multi-degree of freedom tuned-mass dampers,” Journal of 

Sound and Vibration, Vol. 272, 2004, 893-908. 
 


