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Abstract

K-means clustering is a very popular clustering technique which is used in numerous
applications. Given a set of n data points in R? and an integer k, the problem is to de-
termine a set of k points R?, called centers, so as to minimize the mean squared distance
from each data point to its nearest center. A popular heuristic for k-means clustering
is Lloyd’s algorithm. In this paper we present a simple and efficient implementation
of Lloyd’s k-means clustering algorithm, which we call the filtering algorithm. This
algorithm is very easy to implement. It differs from most other approaches in that it pre-
computes a kd-tree data structure for the data points rather than the center points. We
establish the practical efficiency of the filtering algorithm in two ways. First, we present
a data-sensitive analysis of the algorithm’s running time. Second, we have implemented
the algorithm and performed a number of empirical studies, both on synthetically gen-
erated data and on real data from applications in color quantization, compression, and
segmentation.
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1 Introduction

Clustering problems arise in many different applications, such as data mining and knowl-
edge discovery [16], data compression and vector quantization [21], and pattern recogni-
tion and pattern classification [13]. One important class of clustering problems, some-
times called k-means clustering, is the following: Given a set of n data points in real
d-dimensional space, R?, and an integer k, determine a set of k points in R?, called
centers, so as to minimize the mean squared distance from each data point to its nearest
center. This measure is often called the squared-error distortion [21, 24], and this type
of clustering falls into the general category of variance-based clustering [23, 22].

The k-means problem is closely related to a number of other clustering problems,
such as the FEuclidean k-medians problem [2, 26], in which the objective is to minimize
the sum of distances, and the geometric k-center problem [1], in which the objective is
to minimize the maximum distance. Also see Capolyeas et al. [9] and Jain and Dubes
[24] for other generalizations and issues in geometric clustering problems.

An asymptotically efficient approximation for the k-means clustering problem has
been presented by Matousek [31], but the very large constant factors involved in the
construction suggest that it is not a good candidate for implementation. One of the
most popular heuristics for solving the k-means problem is based on a simple iterative
scheme for finding a locally minimal solution. This algorithm is often called the k-means
algorithm [28, 18]. There are a number of variants of this algorithm, so to clarify which
version we are using, we will refer to it as Lloyd’s algorithm. (To be even more accurate,
it would be better to call it the generalized Lloyd’s algorithm, since Lloyd’s original result
was for scalar data [27].)

Here is how Lloyd’s algorithm works. Given any set of k centers, for each center ¢;,
let V; denote the set of data points for which ¢; is the nearest neighbor. (Equivalently,
V; is the set of data points lying in the Voronoi cell of ¢; relative to the set of centers.)
For the next iteration of the algorithm, replace ¢; with the centroid of V;. These two
steps are repeated until some convergence conditions have been met. See Faber [15] for
descriptions of other variants of this algorithm.

For points in general position, the algorithm will eventually converge to a point that is
a local minimum. This is true because any local minimum for this problem corresponds to
a centroidal Voronoi configuration (see [15, 12]). However, the result is not necessarily a
global minimum. See [7, 30, 33, 35] for further discussion of its statistical and convergence
properties. Because of its simplicity and flexibility it is a very popular algorithm and is
widely used in statistical analysis, in spite of its apparent limitations. For example, it
can be used in conjunction with another more global algorithm for generating clusters as
a post-processing stage to improve the quality of the final results.

One problem shared by all the various k-means algorithms is that they take a long
time to run. There are two reasons for this. First, they are often applied in moderate-
to high-dimensional spaces, and computing nearest neighbors efficiently in such spaces
(without resorting to brute-force search) is not a trivial problem. The second reason
is that often many iterations are needed until the algorithm’s termination conditions
are satisfied. (In fact it can be shown that when the algorithm is sufficiently close to
the local minimum, the algorithm converges at a linear rate [12].) The most common
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way to improve the efficiency of Lloyd’s algorithm is to compute nearest neighbors more
efficiently, say by preprocessing the center points at the start of each stage into a data
structure for answering nearest neighbor queries.

In this paper we present a simple and efficient implementation of Lloyd’s algorithm,
which we call the filtering algorithm. This algorithm was described briefly as part of a
more complex kinetic-based k-means algorithm [25]. Unlike the kinetic algorithm, this
algorithm is very easy to implement, and only requires that a kd-tree be built for the
data points. We present the algorithm and the underlying data structures in Section 2.
The filtering algorithm differs from most other approaches in that it precomputes a data
structure for the data points, rather than the center points. Intuitively, this is a smart
thing to do because (1) the data points do not vary throughout the computation, and
hence this data structure does not need to be recomputed at each stage, and (2) there
are typically many more data points than query points, and hence the relative advantage
provided by preprocessing is greater. We should emphasize that this is not a different
clustering method from Lloyd’s algorithm, but rather a more efficient implementation of
the algorithm.

We establish the practical efficiency of the filtering algorithm in two ways. First,
we present a data-sensitive analysis of the algorithm’s running time. The algorithm
may perform as poorly as the simple brute-force algorithm in the worst case, but we
claim that in the typical situations where the algorithm will be used (in particular where
clustering is present in the data) the algorithm runs quite efficiently. Furthermore, the
efficiency improves as the clusters become more isolated from each other. These results
are presented in Section 3. Second, we have implemented the algorithm and performed
a number of empirical studies, both on synthetically generated data and on real data
from applications in color quantization, compression, and segmentation, as described in
Section 4.

2 The Filtering Algorithm

In this section we describe the filtering algorithm. We begin with a review of the data
structure that the algorithm uses. The structure is a balanced box-decomposition tree
(or BBD-tree) for the point set. The BBD-tree [4] is a balanced variant of a number
of well-known data structures based on hierarchical subdivision of space into rectilinear
regions. Examples of this class of structures include point quadtrees [34] and variants [6],
k-d trees [5], and the (unbalanced) box-decomposition tree (also called a fair-split tree)
[8, 10, 36]. A related structure is the BAR tree [14], which partitions space into regions
of bounded aspect ratio but the regions need not be rectilinear. For completeness we
review the BBD-tree, emphasizing the elements that are important for this application.
The special properties guaranteed by the BBD-tree are important for our theoretical
analysis. In practice, the simpler kd-tree is usually good enough, and was used for our
experiments.

We begin with a few definitions. By a rectangle in R? we mean a d-fold product of
closed intervals on the coordinate axes. The size of a rectangle is the length of its longest
side. We define a box to be a rectangle such that the ratio of its longest to shortest side,
called its aspect ratio, is bounded by some constant, which for concreteness we will take
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to be 2.

Each node of the BBD-tree is associated with a region of space called a cell. In
particular, define a cell to be either a box or the set-theoretic difference of two boxes,
one enclosed within the other. Thus each cell is defined by an outer box and an optional
inner box. Fach cell is associated with the set of data points lying within the cell. Cells
are considered to be closed, and hence points which lie on the boundary between cells
may be assigned to either cell. The size of a cell is the size of its outer box.

The following two lemmas summarize what we need to know about the BBD-tree and
its properties. See [4] for proofs.

Lemma 1 Given a set of n data points P in R? and a bounding hypercube C for the
points, in O(dnlogn) time it is possible to construct a binary lree representing a hierar-
chical decomposition of C' into cells of complexity O(d) such that

(i) The tree has O(n) nodes and depth O(logn).

(i) The cells have bounded aspect ratio, and with every 2d levels of descent in the tree,
the sizes of the associated cells decrease by at least a factor of 1/2.

Lemma 2 (Packing Constraint) Consider any set C of cells of the BBD-tree with pair-
wise disjoint interiors, each of size at least s, that intersect a ball of radius r. The size

of such a set is at most (1 + [%Dd.

Now we describe how the filtering algorithm implements Lloyd’s algorithm. Recall
our objective. For each of the k centers, we need to compute the centroid of the set
of data points for which this center is closest. After this, we move this center to this
centroid, and proceed to the next stage. The algorithm begins by building a BBD-tree for
the data points. This is done only once (not repeated at each stage) since the data points
do not change throughout the computation. For each node u in the tree, we compute the
centroid of its associated data points, which is then weighted (multiplied) by the number
of such points. It is easy to modify the BBD-tree construction to compute this additional
information in the same time bounds.

Next we consider the processing for each individual stage. For each node of the BBD-
tree we will maintain a set of candidate centers. These are defined to be the center points
that might serve as the nearest neighbor for some point lying within the associated cell.
These candidates are computed as follows. The candidate centers for the root consist of
all k£ centers. We then filter the candidates down using the following recursive pruning
algorithm. For each node u let C' = cell(u) denote its cell and let Z = cand(u) denote its
set of candidates. We compute the candidate z* € Z that is closest to the center of C'.
Then for each candidate z € Z — {2*}, if no point of C is closer to z than it is to z*, we
can infer that z is not the nearest center to any data point associated with u, and hence
we can eliminate z from the list of candidates. If u is associated with a single candidate
(which must be z*) then z* is the nearest neighbor of all its data points. We can assign
them to z* by adding the associated weighted centroid to an accumulator associated with
z*. Otherwise, if u 1s an internal node, we recurse on its children. If u is a leaf node,
we compute the distances from its associated data point to all the candidates in 7, and
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assign the data point to its nearest center. To aid in the process, we make use of the
following utility procedure, which can be computed easily in O(d) time. Given points z*,
z and cell C, closer(z*, z,C') returns false if if any part of C' is closer to z than to z*.

Filter(u, 7) {
C = cell(u);
z* = the closest point in Z to C’s center;
for each z € 7 — {z*} {
if closer(z*,2,C) { 7 —= {z}; }
if ((|Z] == 1)V (u is a leaf)) z*.accum += wu.centroid;
else {
Filter(u.left, 7);
Filter(u.right, 7 );

Figure 1: Filtering Algorithm.

The figure presents a more detailed description of the recursive procedure, called
Filter(u, 7). Here u is the current node and 7 are the candidates passed in from u’s
parent. The initial call is to Filter(r, Zy), where r is the root of the tree and 7, is the
set of all centers.

3 Data-Sensitive Analysis

In this section we present an analysis of the time spent in each stage of the filtering
algorithm. Traditional worst-case analysis is not appropriate here, since it is not difficult
to concoct scenarios in which virtually all of the nodes in the BBD-tree are visited, and in
which every node is associated with all & center points as candidates. Thus the running
time is O(kn) in the worst case, which is no better than the simple brute-force algorithm.

The intuition behind our analysis is based on the observation that a great deal of the
running time of Lloyd’s algorithm is spent in the later stages of the algorithm, when the
center points are close to their final locations, but the algorithm has not yet converged.
Because of the method’s relatively slow convergence rate, a significant fraction of the
method’s overall running time is spent in this mode. Our analysis will be based on the
assumption that the data set can indeed be clustered into k& natural clusters, and that
the current centers are located close to the true cluster centers. These are admitedly
strong assumptions, but our experimental results will bear out that the algorithm is
quite efficient even when these assumptions are not met.

We say that a node is visited if the filter procedure is invoked on it. An internal node
is expanded if its children are visited. A nonexpanded internal node or a leaf node is a
terminal node. Under what circumstances is a node a terminal node? Consider a cell of
the BBD-tree and the set of candidate centers that are associated with this cell. Let z*
denote the closest candidate to the center of the cell. If no point of the cell is closer to
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another candidate center than it is to z*, then the algorithm can infer that all the data
points contained within the cell can be assigned to z*, and hence it will be a terminal
node. If this condition is never satisfied, then the decomposition continues until the
leaves are reached, at which point the process will certainly terminate. Thus, a nonleaf
node whose cell intersects the Voronoi diagram cannot be a terminal node.

For example, in Fig. 2 the node with cell a is terminal because it lies entirely within
the Voronoi cell of its nearest center. Cell b is terminal because it is a leaf. However, cell
¢ 1s not terminal because it is not a leaf, and it intersects the Voronoi diagram. Observe
that in this rather typical example if the clusters are well-separated, or isolated, and
the center points are close to the true cluster centers, then a relatively small fraction
of the data set lies near the Voronoi diagram of the centers. The more isolated the
clusters are, the smaller this fraction will be, and hence the fewer of the cells of the
search structure will need to be visited by the algorithm. Our analysis will show that in
such circumstances, the filtering search algorithm performs very well.

Figure 2: Filtering algorithm analysis. Note that the density of points near the edges of
the Voronoi diagram is relatively low.

In our analysis we model this sort of situation as follows. We assume that the data
points are generated independently from & different multivariate distributions, i.e, prob-
ability distributions in R?. Consider any one such distribution. Let X = (21,23, ...,4)
denote a random vector from this distribution.

Let 1 € R? denote the mean point of this distribution and let ¥ denote the d x d
covariance matriz for the distribution [20], that is

% = B((X - 1)(X - 1)),

Observe that the diagonal elements of ¥ are the variances of the random variables that
are associated, respectively, with the individual coordinates. Let tr(X) denote the trace
of X, that 1s, the sum of its diagonal elements. We will measure the dispersion of the
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distribution by defining o = /tr(X). This provides a generalization of the notion of
standard deviation for univariate distributions.

We will characterize the degree of isolation of the clusters by two parameters. Let
1 and () denote the mean and dispersion of the ith cluster distribution. Let

Trin = lmin |;z(i) — ,u(j)| and Omax = maxol)
2 i#; i
where |g— p| denotes the Euclidean distance between points g and p. The former quantity
is half the minimum distance between any two cluster centers, and the latter is the
maximum dispersion. Intuitively, isolated clusters of points should have a large value of
Tmin and a small value of o, We define the cluster isolation of the point distribution
to be

Tmin

p:

Omax
This measure is similar to other known measures of separatedness or isolation. For
example, Coggins and Jain [11] defined a measure of isolation for a single cluster ¢ as the
ratio minjy; [t — p)|/ol0).

We will show that, assuming that the candidate centers are relatively close to the
cluster means ;) then as p increases (as clusters are more isolated) the algorithm’s run-
ning time improves. Our proof makes use of the following straightforward generalization
of Chebyshev’s inequality (see [17]) to multivariate distributions.

Lemma 3 Let X be a random vector in R? drawn from a distribution with mean p and
dispersion o (the square root of the trace of the covariance matriz). Then for all positive
t

’ d

9"

Pr(|X — p| > to) <

o~

Proof: Let (z1,22,...,2q4) and (g1, p2, ..., pq) denote the coordinates of X and g, re-
spectively. Also, for 1 <4 < d, let 0 = E((z; — p;)?). (Note that in this proof, u;
refers to a single coordinate of the vector y, as opposed to p), which stands for the jth
distribution.) Thus ¢? = Z;l:l 7. From Chebyshev’s inequality [17], for 1 <j <d

1
Pr(lz; — pil > toj) < .

Summing over all j we have

d d

d
> Pr(le; — | > toy) = Y Pr((z;— ) > 0?) < o
j:l ]‘:1

Observe that for any random variables X and Y and constants a and b,
Pr(X+Y >a+b) <Pr(X>a)+Pr(Y > b).
This follows from the fact that if X +Y > a + b then either X > a or Y > b. Applying

this to the summation above we have

d d
d
Pr (Z(%‘ — )" > 7522%2‘) ST
7=1

i=1
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The first sum is just the squared distance between X and p, and the second sum is the
trace of the covariance matrix for the distribution. Taking square roots on both sides we
have

d
Pr(|X — | > 1) < 1.

which completes the proof. O

For 6 > 0, we say that a set of candidates is d-close with respect to a given set of
clusters, if for each center ¢ there is an associated cluster mean ) within distance at
most 6rmin and vice versa. Here is the main result of this section.

Theorem 1 Consider a set of n points in R? drawn from a collection of cluster distri-
butions with cluster isolalion p = rumin/Omax, and consider a set of k candidate centers
that are 6-close to the cluster means, for some 6 < 1. Then for any 0 < e <1 —6 and
for some constant ¢, the expected number of nodes visited by the filtering algorithm is

d
cvd dn
k 291 — .
O( ( ¢ ) ! Ogn+ﬂ2(1—6)2)

Before giving the proof let us make a few observations about this result. The result

bounds the number of nodes visited. The time needed to process each node is proportional
to the number of candidates for the node, which is at most k. Thus the total running
time of the algorithm is larger by at most a factor of k. (Our experiments indicate that
the average number of candidates per node is typically a small constant, though.) Also,
the total running time includes an additive contribution of O(dnlogn) time needed to
build the initial BBD-tree.

We note that for fixed d, p, and € (bounded away from 0 and 1 — §), the number of

nodes visited as a function of n is O(n) (since the last term in the analysis dominates).
Thus the overall running time is O(kn), which seems to be no better than the brute-force
algorithm. The important observation is that as clustering isolation (p) increases, the
running time is O(kn/p?), and thus the algorithm’s efficiency increases rapidly as cluster
isolation increases. In Section 4 we will see that the algorithm is quite efficient, even if
cluster isolation is not particularly strong.
Proof: Consider the ith cluster distribution. Let ¢ denote a candidate center that is
within distance 87y, from its mean ,u("). Let o denote its dispersion. Let B denote
a ball of radius r,;, centered at /N). Observe that because no cluster centers are closer
than 2rmi, these balls have pairwise disjoint interiors. Let () denote a ball of radius
Fmin(1 — € — &) centered at 9. Because ¢\ is §-close to i b is contained within a ball
of radius rmi(1 — €) centered at ,u(i), and hence is contained within B, Moreover, the
distance between the boundaries of B and 5% is at least erp,.

Consider a visited node and let C' denote its associated cell in the BBD-tree. We
consider two cases. First, suppose that for some distribution i, C N b; # 0. We call C' a
close node. Otherwise, if the cell does not intersect any of the b; balls it 1s a distant node.

First we bound the number of distant visited nodes. Consider the subtree of the
BBD-tree induced by these nodes. If a node is distant, then its children are both distant,
implying that this induced subtree is a full binary tree (that is, each nonleaf node has
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exactly two children). It follows that the total number of nodes in the induced subtree
is not more than twice the number of leaves in the tree, which we shall bound next.
The data points associated with all the leaves of the induced subtree cannot exceed the
number of data points that lie outside b. As observed above, for any cluster distribution
i, a data point of this distribution that lies outside () is at distance from p(¥) at least

rin(1 =€) = (1 =)o) > p(1 =)ol

By Lemma 3 the probability of this occuring is at most d/(p(1 —€))?. Thus, the expected
number of such data points is at most dn/(p(1 — €))?. Since each leaf of the BBD-tree
contains at least one data point, and each point can be associated with at most one leaf,
the number of leaves in this induced subtree is bounded by the same quantity, and by
the above observation, the total number of distant nodes is at most twice as large.
Next we bound the number of close visited nodes. A visited node is said to be
expanded if the algorithm visits its children. Clearly the number of close visited nodes
is proportional to the number of close expanded nodes. For each cluster distribution
¢, consider the leaves of the induced subtree consisting of close expanded nodes that
intersect b(). The total number of close expanded nodes will be larger by a factor of k.
To bound the number of such nodes, we further classify them by the size of the associated
cell. An expanded node v whose size is at least 4ry, 1s large and otherwise it is small.
We will show that the number of large expanded nodes is bounded by O(2%logn) and
the number of small expanded nodes is bounded by O((¢v/d/€)*), for some constant c.
We first show the bound on the number of large expanded nodes. In the descent
through the BBD-tree, the sizes of the nodes decrease monotonically. Consider the set
of all expanded nodes of size greater than 4r.;,. These nodes induce a subtree in the
BBD-tree. Let L denote the set of leaves of this tree. The cells associated with the
elements of L have pairwise disjoint interiors and they intersect 59 and hence intersect
B, 1t follows from Lemma 2 (applied to B) and the cells associated with L) that there
are at most (1 + [47min/(47min)])? = 2¢ such cells. By Lemma 1 the depth of the tree is
O(log n), and hence the total number of expanded large nodes is O(2¢1logn), as desired.
Next we consider the small expanded nodes. We assert that the diameter of the
cell corresponding to any such node is at least erpy,. If not, this cell would lie entirely
within a disk of radius rym(1 — 6) of 9. Since the cell was expanded, we know that
there must be a point in this cell that is closer to some other center ¢;. This implies
that the distance between ¢(9 and ¢\ is less than 2rmin(1 — 6). Since the candidates
are 6-close, it follows that there are two cluster means p() and pl) that are closer than
27 min(1 — 8) + 267min = 27min. However, this would contradict the definition of rpy.
Armed with this observation, we apply an argument similar to the one used by Arya
and Mount [3] to bound the complexity of approximate range searching. A cell in dimen-
sion d of diameter z has longest side length at least z/v/d. Thus the size of each such
cell is at least ermin/\/g. It suffices to count the number of expanded nodes of sizes from
47 min down to ermin/\/g. To do this we partition nodes into groups according to their
size. For ¢ > 0, define size group ¢ to be the set of nodes whose cell size is in the interval
(1/2%1,1/2%]. Since small nodes are of size less than 47y, the first size group of interest
is a + 1, where 1/2°t" < 4ry;, < 1/2%, and hence a = |—lg4ryy|. Since nodes that
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are smaller than ermim/v/d are not expanded, the last size group of interest is b, where
1/2841 < ermin/\/g < 1/2°, and hence b = {— lg(ermin/\/E)J. Because a node and its
child may have the same size, we cannot apply the packing lemma directly to each size
group. Define the base group for the ¢th size group to be the subset of nodes in the size
group that are leaves or whose children are both in the next smaller size group. The cells
corresponding to the nodes in a base group have pairwise disjoint interiors, since none of
their descendants can be in the same base group. Applying Lemma 2, it follows that the
number of nodes in the ¢th base group is at most

From claim (ii) of Lemma 1 we know that at most 2d levels of ancestors above the base
group can be in the same size group, and thus the number of nodes in any size group is
at most 2d times the above quantity.

Thus, the total number of expanded nodes over all of the base groups is

Ed(Tmin, 6) < Zb: (1 + [rmeiHDd.
i=a+1

Solving this geometric series, we have

€

d
C\/E
Ed(rmina 6) S ( ) 9
for some constant ¢. This completes the analysis of the number of small expanded close

nodes. Summing this bound over all k clusters provides the desired result.
O

4 Empirical Analysis

To establish the practical efficiency of the filtering algorithm we implemented it and tested
it on a number of data sets, both synthetically generated and from real applications. We
implemented a simpler variant of the BBD-tree, which constructs a kd-tree using the
sliding midpoint rule [29]. This decomposition method was chosen because our studies
have shown that it performs better than the standard kd-tree decomposition rule for
clustered data sets. Data points were chosen from a clustered Gaussian distribution. In
particular, a given number of cluster centers were sampled from a uniform distribution
over the hypercube [—1,1]%. A Gaussian distribution was generated around each center,
in which each coordinate was generated independently from a univariate Gaussian with
a given standard deviation.

We wanted to compare our algorithm against existing implementations of k-means al-
gorithms, and Lloyd’s algorithm in particular. We found this difficult to do for a number
of reasons. Many algorithms come as part of a large software package for data analysis,
and it is not easy to modify the software to add the desired instrumentation. Also many
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of these packages do not provide the user with the ability to control termination condi-
tions or to determine the initial placements of centers. Because of the slow convergence
of k-means, many implementations seek to speed up the process or improve its clustering
performance for the application of interest by implementing an algorithm that is different
from Lloyd’s algorithm. This might involve modifying the metric, by computing approxi-
mate nearest neighbors, or by applying different update strategies. Since the algorithm’s
behavior is very sensitive to the placement of the centers, any deviation from Lloyd’s
algorithm could result in significantly different performance on a given data set.

Lloyd’s algorithm involves two basic components, computing nearest neighbors for the
data points relative to the centers, and moving the center points to the centroids of their
neighborhoods. Other than ours, all implementations that we have found that are true to
this method differ essentially only in how the nearest neighbors are computed. For our
experiments, we implemented two common methods for computing nearest neighbors.
The first is by simple brute force, computing the distance from each data point to every
center. The second is by building a nearest neighbor search structure for the centers.
We did this by computing a kd-tree for the centers [19], which we call the kd-center
algorithm. This was done using the ANN library [32], using the same decomposition
method mentioned above. Our studies compared these two methods to the filtering
algorithm. We performed two sets of experiments, one involving synthetic data and the
other involving data derived from applications in image segmentation and compression.

Each experiment involved running all three algorithms: the brute-force algorithm, the
kd-center algorithm, and our filtering algorithm. Even for the same data set, different
starting configurations of centers result in different numbers of stages. However, given
the same data set and the same starting centers, the number of stages is identical for all
three algorithms. Because we were interested in comparing the relative running times
of the three algorithms, we chose to factor out the number of stages, by dividing the
total time by the number of stages. For the brute-force and kd-center algorithms, this is
quite reasonable since the processing at each stage is virtually identical. However, this
introduces a bias for the filtering algorithm. Since the total running time includes the
one-time cost of building the kd-tree for the data points, by averaging over the stages, we
effectively amortize this one-time cost over the stages. If the algorithm converges after
only a small number of stages, then the cost per stage is artificially increased as a result.

We measured running time in two different ways. We measured both the CPU time
(using the standard clock() function), and a second quantity called the number of node-
candidate pairs. The latter quantity is a machine-independent statistic of the algorithm’s
complexity. Intuitively, it measures the number of interactions between a node of the kd-
tree (or data point in the case of brute force) and a candidate center. For the brute-force
algorithm, this quantity is always kn. For the kd-center algorithm, for each data point we
count the number of nodes that were accessed in the kd-tree of the centers for computing
its nearest center and sum this over all data points. For the filtering algorithm, we
computed a sum of the number of candidates associated with every visited node of the
tree. In particular, for each call to Filter(u, Z), the cardinality of the set Z of candidate
centers is accumulated. The one-time cost of building the kd-tree is not included in this
measure (and hence the amortization issue discussed above is not a problem here).

Note that the three algorithms are functionally equivalent. They all produce the same
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final result, and so there is no issue regarding the quality of the final output. The issue
of interest for us is the efficiency of the computation.

4.1 Synthetic Data

We ran three experiments to determine the variations in running time as a function
of cluster isolation and data set size. The first two experiments were designed to test
the validity of Theorem 1. We generated n = 10,000 data points in R? distributed
evenly among 50 clusters from a clustered Gaussian distribution. The standard deviation
varied from 0.01 (very well isolated) up to 0.7 (virtually no isolation). Because the same
distribution is used for cluster centers throughout, the expected distances between cluster
centers will be constant throughout. Thus the expected value of the cluster isolation
parameter p varies inversely with the standard deviation. For the first experiment we
chose k& = 50 centers for each run and for the second we chose k£ = 20. The initial centers
were chosen by taking a random sample of data points.

For each standard deviation we ran each of the algorithms (brute-force, kd-center,
and filter) three times. For all runs the same data points were used. For each of the
three runs a new set of initial center points was generated, and all three algorithms were
run using the same data and initial center points. The algorithm ran for a maximum of
30 stages or until convergence. The reason that we felt it safe to limit the number of
stages is that the running times tend to remain constant after the first few stages.

The average CPU times per stage for all three methods are shown in Fig. 3(a), and
the average number of node-candidate pairs per stage for the filtering algorithm is shown
in (b). The same results are shown for the case k = 20 in Fig. 4. As mentioned above,
if the algorithm runs for only a small number of stages, a significant bias is introduced
into the filtering algorithm to account for the time needed to build the initial kd-tree.
This bias was quite noticeable for highly clustered instances (small standard deviation).
In both graphs we show the average running time for the filtering algorithm, both with
and without the initialization bias included. For purposes of comparison with the results
of Theorem 1 the times without initialization are the more relevant.

The results of these experiments show that the filtering algorithm runs significantly
faster than the other two algorithms. Ignoring the initialization bias, its running time
improves when the clusters are more isolated. These experiments also show that as the
standard deviation decreases (p increases) the running time for the filtering algorithm
decreases rapidly.

The objective of the third experiment was to study the effects of data size on the
running time. We generated data points of various sizes in a clustered Gaussian distribu-
tion, again with 50 clusters and with & = 50. The standard deviation was fixed at 0.10.
The data size varied from n = 1,000 to n = 20,000. Again, the searches were terminated
when stability was achieved or after 30 stages, and in each case we made three runs with
different starting centers and averaged the results. The CPU times per stage and number
of node-candidate pairs are shown in Fig. 5 for all three methods.

The results of the third experiment show that for fixed k& and large n, all three
algorithms have running times that vary linearly with n, with the filtering algorithm
doing the best.
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4.2 Real Data

To understand the relative efficiency of this algorithm under more practical circum-
stances, we ran a number of experiments on data sets derived from actual applications in
image processing and compression. Each experiment involved solving a k-means problem
on a set of points in R? for various d’s. In each case we applied all three algorithms: brute
force (Brute), kd-center (KDCen), and filtering (Filter). In each case we computed the
average CPU time per stage in seconds (T-) and the average number of node-candidate
pairs (NC-). This was repeated for values of k chosen from {8,64,256}. The results are
shown in Table 1.

The experiments are grouped into three general categories. The first involve a color
quantization application. A color image is given and a number of pixels are sampled from
the image (10,000 for this experiment). Each pixel is represented as a triple consisting of
red, green and blue components, each in the range [0,255], and hence is a point in R?.
The input images were chosen from a number of standard images for this application.
The results are shown in the upper half of the table, under the names “balls,” “kiss,”
oo, “hallls.”

The next experiment involved a vector quantization application for data compression.
Here the images are gray-scale images with pixel values in the range [0,255]. Each
2 x 2 subarray of pixels is selected and mapped to a 4-element vector, and the k-means
algorithm is run on the resulting set of vectors. These are shown in the table under the
names “couple,”. .., “woman2.”

The final experiment involved an image segmentation problem. A 512 x 512 LandSat
image of Israel consisting of 7 spectral bands was used. The resulting 7-element vectors
in the range [0,255] were presented to the algorithms. This is shown in the table under
the name “Israel.”

An inspection of the results shows that the filtering algorithm significantly outper-
formed the other two algorithms in all cases. Plots of the underlying point distributions
showed that most of these data sets were really not well clustered. Thus the filtering
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H Image | Dim | Size ‘ k | T-Brute ‘ T-KDCen | T-Filter ‘ NC-Brute ‘ NC-KDCen | NC-Filter |
8 | 0.0542857 | 0.0804762 | 0.0157143 80 68.13 3.678
balls 3| 10000 | 64 0.20875 0.1515 0.01875 640 160.9 17.65
256 | 0.742424 0.17875 | 0.0375758 2560 180 49.77
8 0.053 0.08225 0.0165 80 71.92 10.07
kiss 3| 10000 | 64 0.209 0.14875 0.0435 640 170.4 41.76
256 0.7455 0.218 0.089 2560 243.9 111
8 | 0.0538889 | 0.0797222 | 0.0163889 80 65.18 9.767
Lena 3| 10000 | 64 0.20925 0.14575 0.046 640 164.7 43.72
256 0.75025 0.218 0.0915 2560 236.8 118.2
8 0.0535 0.0755 0.0095 80 57.27 3.859
balll_h 3| 10000 | 64 0.207 | 0.119118 0.0245 640 117.8 20.98
256 | 0.749231 0.16575 | 0.0584615 2560 167.2 69.42
8 0.0535 0.07625 0.0095 80 58.88 4.073
balll_3 3| 10000 | 64 | 0.208571 0.11641 | 0.0251429 640 115.9 20.69
256 | 0.748846 | 0.166364 | 0.0553846 2560 167.8 65.83
8 1 0.0541667 0.08 0.0225 80 62.72 2.712
balll_5 3| 10000 | 64 | 0.214688 | 0.125278 | 0.029375 640 122.4 23.16
256 0.74775 0.178 0.059 2560 175.5 71.89
8 | 0.0535714 | 0.0778571 | 0.0207143 80 64.37 3.12
balll p 3| 10000 | 64 0.2095 0.122 0.0285 640 122.2 23.02
256 | 0.743043 0.17 | 0.0608333 2560 174.2 72.93
8 0.053 | 0.0771429 0.015 80 57.95 3.497
balll_s 3| 10000 | 64 0.20875 | 0.123939 0.0275 640 123.5 24.04
256 0.745 0.17225 0.059 2560 176 74.3
8 0.37475 0.5575 0.15825 524.3 482.3 74.6
couple 41 65536 | 64 1.616 1.21925 0.3535 4194 1452 285.8
256 5.501 1.732 0.658 | 1.678e+04 2375 739.6
8 0.36875 0.57375 0.146 524.3 497.7 62.35
crowd 41 65536 | 64 1.60975 1.304 0.32175 4194 1512 244.9
256 5.49975 1.716 0.535 | 1.678e+04 2347 567.3
8 0.36675 0.59225 0.18475 524.3 558.4 99.04
lax 4] 65536 | 64 1.6085 1.3725 0.42325 4194 1772 359.7
256 5.495 1.86175 0.7055 | 1.678e+04 2776 790.6
8 0.373 0.55475 0.123 524.3 471.5 50.83
lena 4| 65536 | 64 1.615 1.19375 0.34475 4194 1339 266.9
256 5.50475 1.649 0.618 | 1.678e¢+4-04 2200 677.1
8 0.3685 0.5505 0.13925 524.3 465.9 63.16
man 4] 65536 | 64 1.609 1.20275 0.35375 4194 1392 278.1
256 5.49975 1.66125 0.60675 | 1.678e+04 2275 665.4
8| 0.370937 | 0.563125 | 0.176875 524.3 483.4 73.65
woman] 4| 65536 | 64 1.612 1.28275 0.3805 4194 1500 304.2
256 5.523 1.7945 0.64325 | 1.678e+04 2450 706.8
8 0.37175 0.544 0.1125 524.3 433.3 35.46
woman2 4| 65536 | 64 1.615 1.20075 0.30775 4194 1277 214.2
256 5.51675 1.64675 0.519 | 1.678e+04 2133 531.4
8 1.7945 2.739 1.26775 2097 2170 356.2
Israel 71262144 | 64 8.0195 6.2145 4.78825 | 1.678e+4-04 7520 1581
256 28.5027 9.76025 7.324 | 6.711e+04 | 1.367e+04 4434

Table 1: Running times for various test inputs.
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algorithm is quite efficient, even when the conditions of Theorem 1 are not satisfied.

5 Concluding Remarks

We have presented an efficient implementation of Lloyd’s k-means clustering algorithm,
called the filtering algorithm. The algorithm is easy to implement and only requires that
a kd-tree be built once for the data points. Efficiency is achieved because the data points
do not vary throughout the computation, and hence this data structure does not need to
be recomputed at each stage, and there are typically many more data points than query
points, and hence the relative advantages provided by preprocessing are greater. This
algorithm differs from most other algorithms only in how nearest centers are computed,
so it could be applied to the many of the variants of Lloyd’s algorithm.

We have demonstrated the practical efficiency of this algorithm both theoretically
through a data-sensitive analysis and empirically through experiments on both synthet-
ically generated and real data sets. The data-sensitive analysis shows that the more
well-isolated are the clusters, the faster the algorithm runs. This is subject to the as-
sumption that the center points are indeed close to the cluster centers. Although this
assumption is rather strong, our empirical analysis on synthetic data indicates that the
algorithm’s running time does improve dramatically as cluster isolation increases. These
results for both synthetic and real data sets indicate that the filtering algorithm is sig-
nificantly more efficient than the other two methods that were tested.

A natural question is whether the filtering algorithm can be improved. The most
obvious source of inefficiency in the algorithm is that it passes no information from one
stage to the next. Presumably in the later stages of Lloyd’s algorithm, as the centers
are converging to their final positions, one would expect that the vast majority of the
data points have the same closest center from one stage to the next. A good algorithm
would exploit this coherence to improve running time. A kinetic method along these
lines was proposed in [25], but this algorithm is quite complex, and does not provide
significantly faster running time in practice. The development of a simple and practical
algorithm which combines the best elements of the kinetic and filtering approaches would
be a significant contribution.
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