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Abstract

We present a mathematical framework to provide general well-posedness and
approximation results for a laminated curved beam. The layered beam consists
of an elastic core layer, symmentric viscoelastic damping layers, symmetric
constraining layers and bonded piezoceramic patch pairs on the outer surfaces.
The model includes unbounded inputs from the piezoceramic patches, hysteresis
and shear in the viscoelastic layers. The viscoelastic layers are held in place
by sandwiching them between the elastic core and elastic constraining layers.
Families of linear and cubic splines are used to illustrate the approximation

ideas.
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1 Introduction

There is a widespread interest in the engineering and industrial community over
the past several decades in the use of composite (elastic/viscoelastic smart mate-
rial) structures such as beams, plates and complex articulated structures. There is a
large body of literature dealing with the design of viscoelastic material (VEM) lay-
ers to enhance passive damping ([MM], [YD], [R], [JK], [Ma], and references therein).
Recently, however, there is a growing interest in active constrained layer (ACL) struc-
tures ([ATW], [HWT], [RWTW], [RWTW1], [LW], [KKS], [BGM], [BMZ], [BR], [VK]]
and references therein). In such structures sensor/actuator devices such as piezoce-
ramic patches or layers with appropriate circuitry and power supply are bonded to
a parent material that is elastic. Between the parent material and the piezoceramic
patches another material, VEM is often embedded to provide passive damping.

There is very little literature on rigorous mathematical formulations for the ACL
devices mentioned above. The present paper is a continuation of the simpler model
in [BMZ]. Here we have added constraining layers to hold the viscoelastic layers in
place, and further we account for the shear in the viscoelastic layers. As in [BMZ]
we establish well-posedness and numerical approximation framework. The multilayer
curved beam configuration presented produces fully coupled transverse and longitu-
dinal vibrations. In addition to the shear we have included “integral hysteresis” in
our VEM layers. Such curved configurations with VEM hysteresis are important in
automobile and aircraft industrial applications.

Our approach, which is functional analytic in nature, combines the ideas on treat-
ment of time hysteresis and approximation in partial differential equation models
given in [BFWI1] and [BFW2] with general well-posedness (in terms of semigroup)
arguments given in [BIW] and [BKW]. These ideas and results can be generalized
and extended to treat many of the more realistic (linear) physical models found in
the literature. The resulting theoretical and computational framework can be used
in control, estimation and simulation applications.

In the next section we present our example model along with a brief outline of the
elements of its derivatives. We recast this model in abstract Cauchy system form in
Section 3 and show that it can be associated with a Cy-semigroup in appropriately
chosen spaces. In Section 4, we give convergence results for a typical family (linear
splines for longitudinal vibrations, cubic splines for transverse vibrations) of approxi-
mations. We have successfully used this family in related computational studies, the
results of which are detailed elsewhere (see [BZ]).



2 Model Development

2.1 Physical Model and Assumptions

We study a laminated beam that contains an elastic core with two viscoelastic
layers, two constraining layers, and two piezoceramic patches. The viscoelastic layers
are bonded to the elastic core, the constraining layers to the viscoelastic layers, and
the piezoceramic patches to the constraining layers. Pairs of the viscoelastic layers,
constraining layers, and piezoceramic patches are used to produce geometrical sym-
metry. Each component has a finite radius of curvature. A view of a middle section
of the composite curved beam from the side is given in Figure 1.

The transverse vibrations of the composite beam are our primary consideration.
However, due to the beam curvature there are two displacements involved: v(t,6) in
the tangential (é) direction and w(t,8) in the radial (n) direction. Any motion in
the direction of the width of the beam, %, is assumed negligible. We assume that
the radial displacement w(t,8) is the same for all layers and we derive tangential
displacements for each layer. Moreover, we make the following assumptions for our

model:

e The viscoelastic material under consideration is linear.

e Every material layer is bonded perfectly to others in contact, i.e., no slip, and

no disbonds are allowed.

e Every material layer deforms uniformly with respect to thickness; that is, dis-

placements are only functions of ¢ and .

e The thickness of the composite beam is very small in comparison with other

dimensions such as radius of curvature and length.

e Composite beam deformations are sufficiently small so as to allow higher order

motions to be neglected, i.e., we use first order models.

e Transverse normal stresses (i.e., the stresses in the direction, 7, normal to the

thin dimension) are taken to be negligible.

o A cross section which is originally normal to the reference surfaces of the elastic
core, the constraining layers, and the piezoceramic patches will remain normal

to the deformed reference surfaces and will remain unstrained.



E:Elastic Core thickness h
V E: Viscoelastic layer, thickness A
C': Constraining layer, thickness 7
P: Piezo patch, thickness 7.

Figure 1. Middle Section of the Curved Composite Beam

2.2 Mathematical Development of Model

To develop the mathematical model we treat each of the layers as a shell. Fur-
ther, we introduce four sublayers, L;;, ¢ = 1,2, 7 = 1,2, with nonzero thickness A;;,
respectively in the viscoelastic layers (see Figure 2). We would like the viscoelastic
layers to have the same circumferential displacements as the elastic core at the inter-
faces between the two materials. We would like a similar equality at the interfaces
of the viscoelastic layers with the constraining layers. However, unlike the elastic
and constraining layers, the viscoelastic layers undergo shear distortion. This can
be efficiently captured by considering sublayers of the viscoelastic layer divided by a
neutral line of zero shear which is no longer necessarily the geometrical center line.
Moreover, its location, which changes with time during deformations, is in general
unknown. By introducing equations for two sublayers in each viscoelastic layer, we
can account for this neutral shear axis without actually knowing its location. We

emphasize that this is simply a device to develop a model which allows shear in the



viscoelastic layers as well as different materials in the constraining layers and elastic

core.

The viscoelastic layers divided into sublayers L1y, L1, Loy and Los.

Figure 2.Viscoelastic Layer Subdivisions

In what follows we write d; for d/0t and 0 for d/06. In the elastic core, referring

the motion to its neutral line we write

v(t,0,z) =v(t,0)+ 2 (v(%&) — @w%,@)) \ —g <z<

Y (2'1)

b |

where R is the radius of curvature, h the thickness. The formula (2.1) comes from
standard shell theory (see [BSW]). The strain at any point on the elastic core is given
by

1 1
eo(t) = 00(L,0) + (1, 0) - %a%(t,e) (2.2)
and the corresponding stress is given by
E@
o(t) = = eq(t), (2.3)

where F° is the Young’s modulus, and v, the Poisson ratio. In (2.1) and (2.2) the
variable z is the normal distance of the point (6, z) from the neutral line.

Moving up to the viscoelastic layers Lq1, and Lq5 we treat each sublayer as a shell
and refer its motion to its geometrical center line. Since we include shear deformation
in these layers (L;;), Kirchhoff’s fourth hypothesis, which implies v,, = 75, = €, =0
is no longer valid. Denoting the circumferential displacements by V{°(¢,0, %), and

Vi¥(t,0,2) we write

A A
Vie(t,0,2) = Vi (1,0,0) + 250, ——- <E< = (2.4)



A
VEE(t,0, %) = ViE(t,0,0) — 25, _7§

gggéﬁ. (2.5)

In (2.4) and (2.5), Z denotes the normal distance of a point (6, Z) from the geometrical
centerline. The fact that Kirchhoff’s fourth hypothesis is not valid in the sublayers
L;; prohibits us from expressing S;; in terms of V;3°(2,60,0), w, and R;;, the radius of
curvature of the geometrical center line of the sublayer L;;, in a simple relationship
of the form (2.1). Thus, we have to seek an alternative way of determining the S;;’s.
This will be done later.

To express the strain (ep%;(¢,0)) and the stress (03%;(¢,0)) relationship in the

sublayer L;; we use Boltzmann superposition model. Thus,

ve Eve ve 0 ve
Ué’,ij(t> = 1,2 <€6,ij(t) - /_T 9(5)60,2']‘(75 + S)ds) ) (2.6)

where .
i)~ o (VI (1,0.2) 4 w(t,0)). @.1)
ij
and K" is a modulus of elasticity, v,. the Poisson ratio of the material.

ve
02,i]

To express the shear strain (55 ,;(Z,0)) and shear stress oj? ..(¢,0) relationship we

again use the Boltzmann superposition model. Thus,

ve Eve ve 0 ve
J@z,ij(t) = m [’Yaz,ij(t) - /_T Q(S)Vez,z‘j(t + S)ds] ) (2-8)
where
e () = g (000 = Vi (1,6,2) + (-1 ™S5 (2:9)

Next, we move up to the constraining layer. Let V°(¢,6,2) denote the circum-
ferential displacement, and R{ the radius of curvature of the neutral line. Then, we

have

<:i< (2.10)

T
27

Do =

VE(t,0,2) = Vi(1,0,0)+ 2 (V1 (,6.0) _ 0w<t,9>) o

iy Ry
where 7 is the thickness of the constraining layer and Z is the local coordinate for the

distance from its neutral line. Using a form similar to (2.2) for the elastic core layer,

the strain is given by

. 1 .
¢h1 (1, 0) = == (AVE(1,0,0) + w(l, 0)) -

R¢ (Ri)Q@Qw(t,Q). (2.11)

The strain (ej,(¢,0)) and stress (o7 ,(¢,0)) relationship is given by

O-é’c,l(tv 0) =

eg,l(tae)a (212)

1 —v?

where E° is the Young’s modulus, v. the Poisson ratio.



Finally, we move up to the piezoceramic patch. Let V{(¢,6,2) be the circumfer-
ential displacement, R}, the radius of curvature of the neutral line, 7' the thickness.

Then, we write

. [ VE(L,0,0)  Ow(t,0) T .. T
Once again the strain is given by
1 w(t,0) z
b)) = —=adV{(t,0,0 - — 0*w. 2.14
66,1( ) Rzla 1( A )+ Rgla (Rzla)g w ( )
The strain (ej,(t)) and stress (oj (1)) relationship is given by
P EP P
06,1(t) = 1_ .2 60,1(t)X1(9)7 (2-15)
P

where E? is the Young’s modulus, v, the Poisson ratio, and x7(0) = 1 where the piezo
patch is present and zero elsewhere.

We repeat the above steps for the layers below the elastic core. Starting from the
elastic core we move down to encounter the sublayer Lyy, then Lgy. Let Vi 0 =1,2
be the circumferential displacements of these sublayers relative to the geometrical

center lines. Then, we write

A A

ViE(t,0,%) = VEe(t,0,0) — 25y, —% <:< % (2.16)
A A

‘/;;(t,@,%) = ‘/21)26@7070) —I' 25227 _% S 2 S % (217)

Moving down to the constraining layer, we let Vy(¢, 8, Z) denote the circumferential

displacement, and Rj the radius of curvature of the neutral line. Thus, we write

Vy(t,0,0) B dw(t,0) T
RS R ’ 2

VE(L0,2) = VE(1,0,0) 4 2 ( <:<l )

-
57
where 7 is the thickness of the constraining layer. This constraining layer interfaces
the viscoelastic layer above it when Z = 7/2 and the piezo patch below it when
zZ=—-7/2.

Finally, we move down to the piezo patch. Let V7' (¢,0,z) be the circumferential
displacement, R} the radius of curvature of the neutral line, T' the thickness. Then,
we write
Vy(t,0,0)  Ow(t,0)

RY RS

VP(1,0,%) = VP(1,0,0) + 2 ( ) : —g <3< g (2.19)

When 2z = T'/2 the piezo patch interfaces the constraining layer above it.



Again, as we did for the layers above the elastic core, we write the stress-strain
relationships. In the viscoelastic layers we have shear displacements and have ignored
compression.

Finally the no-slippage and no-disbond conditions allow us to give the circumfer-
ential displacements and the S;;’s (see (2.4), (2.5), (2.16), (2.17)) in terms of v, w,
and V;2°(,0,0). Thus, we take v, w, and V;3°(¢,0,0) as our dynamic state variables.

2.2.1 Internal Forces, Moment Resultants and Equations of Motions

In the elastic layer, constraining layers, and piezo patches we denote the total
internal force by Ng, Ni., i@ = 1,2, and Ng,, = = 1,2 respectively. Here Nj, and
Nj, are the total internal force resultants along the neutral surfaces in the upper
constraining layer and upper piezo patch. Similarly Ng, and Ny, denote the total
internal force resultants for the lower ones. Next, the total internal force resultant
along the geometrical mid surface in the viscoelastic layer L;; is denoted by N7,
1= 1,2, 7 =1,2. The corresponding resultant shear forces in the viscoelastic layers
are denoted by Q%,, i =1,2; 7 =1,2.

We have (see [BSW],[BSW2))

Nj /m gd Eh 2.20
0= _h/QUeZ—R(l_Vg)(U‘|‘w) (2.20)
Aij /2
N, :/ oDz, (2.21)
where
ve Eue ve 0
7355 0) = T e = [ gls)eiiy i+ )ds] (222)
and |
epii(t) ~ 7 OV + w). (2.23)
g
Continuing, we have
/2
Ng, = / o¢ 5 (2.24)
b _7/2 b
2 Ee (1 1 z
— - AVe(t, 0,0 — Pw) dz
[z (govaons go-moe) o
) T/2 5
NP = / 2.25
X _T/2 0-6’2 z ( )

B T/2 EP p 1 z 9 v B

~rj2 1 —v?

The shear in the viscoelastic layer is given by

A /2 N
Qi = [ ortytdz, (2.26)

-7 /2



where

ve Eve ve 0 ve
‘795,2']‘(75) = m [’795,2']'(75) - /_T 9(5)’795,2']‘(75 + s)ds| , (2.27)
1 .
7 (1) = ow — Ve 1)+ S, 2.28
76’2,2]( ) Rij n 3 w Bij n 5 U + ( ) J ( )

Next we present the internal moments

h)2
Mg = / oS5d3 (2.29)
—h/2
ke k2 fOv  w z —E°h3
= - _ 82 NdN - - - 82 .
1—1/82/—h/2(R+R R? w)Z T hRR-2) "

The internal moments for the constraining layers about the neutral line of the

elastic core are given by

E- /2 1 w 3
MC» _= / - 'C t 0 - 2 c z dN
b 1—1/3 _T/Q(R;?a‘/l(7 70)+R;3 (R;j)Qaw)(RZ‘I'Z R)Z
TE¢ RS — R F3[e 9w
= : aVe(t, 6,0 — ]
l—w? R (OV716,0) + v) 12(1 — v2) (RS)?
Thus,
2 rE° R{—R
Mg, + Mg, = lz 17-_ % ZR@ (OVE(t,0,0) + w)]
=1 c ] (230)
TR L]
R - 08 ‘
-\t
Note that )
Ri =R _h/24+ A+ Aip+7/2
R; R ’
Ry — R —(h/2+ Ay + A +7/2)
Ry R '

The internal moments for the piezo layers about the neutral line of the elastic core

are given by (see [BSW],[BSW2])

TE? R’ —R 2EPT? X7(0)

My = — oVFE(t,0,0 — 0%w.
X 1 — l/g Rf ( z ( Y ) + w) 3(1 o l/g) (R?)Q w
Thus,
2 TEP R — R
Mg = | .0+ )
=1 2

g (2.31)
2E7T° 62w<X71)(9> X§(9))
3(1 —v}) (R1)?  (R3)?)

P
To simplify our presentation we define the following entities:

Fve A”
- (2.32)
1 —v2 Z R;;

ve 1,5

ay



Fve A”
2(1 + Z/UG) i Rij
hEUe Z
2R(1 —v2) Ri;

g

b — Eer 1 1 T_I_h
T 1w\ R, RS J\2 2

2EPT 1 1 T h
bs(0) = T-,2 (Rﬁgxg - Rﬁlaxzf) (5 + ﬁ)
V4

2EPT 1 1

P p

bi(0) = -
0 = T (zRgRg X7 3RVR; Xl) !

LT 1, 1,
1= 2 \2(Rp)? 27 (R M
EUE T
Dy = m (An, —Aqg, — Ay, A22)

_ e <A11 Aip Ay A22)T
1— 1/36 3117 3127 R217 Ry

e B (111 1y
11— v2 \ RS RS RS R

g =

61:

JUS

T
oo 20B (4 A b
1—v2 \RY RY RS RY
1An 0 0 0
. A —%Au 0 0
h=1" 0 —iA, 0
0 0 —Apn %Am
Ay 0 0 0
0 —Ay 0 0
=1 0 —Ay 0
0 0 0 Ay

D(0) = TLIY + TH(J® + J7)

Ech Ecr 1 1
)= —+ b
&) R(l—V3)+1+1—V3(Ri+RE)

5(9) B Een? N Ecr3 1 N 1
0 = mRra—a T ea- e T we
26773 ( X1 X5 )

30— ) \(R): | (B

(2.33)

(2.34)

~—~

2.35)

~—~

2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)



S - (SH, 512, 521, SQQ)T. (247)

Furthermore, define the resultant moment for the nonviscoelastic materials

My = M§ + Z Mg, + Z Mg, (2.48)

Kirchhoft’s fourth hypothesis implies 7,, = 7. = e, = 0 and hence we cannot use 7,
to compute shear stress or the associated moment. However, from moment balance
one can relate internal moment to shear stress. Let Qg be the sum of the shear stresses

in the elastic, constraining, and piezo layers. Then, we have the relationship
~ 1
Let
QU =>" Qb5 ~ az(Ow —v) + (D, S). (2.50)
]
Thus, the sum @y of all the shear stresses is given by
Qo = Qs + Qi

Next, we assemble the internal forces of the beam. Thus, the sum of the internal

force resultants Ny is given by
Ng=) Ngs; + > Ng,; + > Ny + Ny.
ij i i

Here we are treating the entire curved laminated beam as a shell and Ny as the total
internal resultant force along the middle surface of the elastic core.

Let p be the linear mass density which varies with 6 due to the presence of the
patches. If we take p®, pc, p°, p” be the volume densities of the elastic, viscoelastic,

constraining, and piezoceramic layers respectively, then we have
p=p°hb+ p"2Ab+ p°27b + pP(Tbx| + Tbx)

20 =D Ay
g
The tangential and radial displacements v and w of a curved beam are given by

[BSW],[BSW2], [M] by the equations

b b .
pofv — 7 IONg — = Qo = by (2.51)

- b b . b ..
pOEw + = Ny — = 0Qy = bq,, + E@mz (2.52)



where b is the width of the beam. We shall supplement the system (2.51) and (2.52)
by a set of equations for

V = (Vi Vag, Vau, ‘722)T, (2.53)
where (see (2.4), (2.5), (2.16), (2.17))

Vij(t,0) = Vi (¢, 0,0). (2.54)
We consider the layer L;; for which the equation of motion locally is given by

1
PRV = = Doy +

Rij—l—z

2
Bzy n 3 62 K% + a 0-92 KYN (255)
The equation (2.55) is obtained by taking an infinitesimal element and writing force
balance [M]. Again we remark that Z measures the normal distance of the point (6, 2)
from the geometrical centerline of the layer L;;.

In (2.55) set Z = 0 to obtain the equation

_ Fve 0
RV = o [a? g —I—Qw—/_r (5)(82Vis (t + 5,8) + Dw(t + s, 9))@]
kv [@w 1

- = — V. —1)* 3.
AL+ o) By | Ry~ Ry 5T

—r Rij Rij
(2.56)
Let e
A= 11— dzag(RH 7312 ) Bm aRzz ) (2.57)
ke —2 p—2 p-2 p-2\T
L= ﬁ(]%n Ry, By, Roy) (2.58)
P = diag(1,—1,—1,1). (2.59)
Then, using (2.57), (2.58), (2.59) we rewrite (2.56) as
pe0?V = 0*AV + 0wl — [°, g(s)(0*AV + Owl)ds
1 _ .
(1= ) |owl = AV + PAS (260)

— /0 g(s)(Owl — AV + PAS)dS )

-7

In (260) V is as in (253) and S = (511, 512, 521, SQQ)T.
Recalling that V;;(¢,0) = Vi2e(t,0,0) and using the no-slip condition we have

_ h
Viin = U-l-ﬁ’v—ﬁaw—l- AnSn



- h

Vie = v-l-ﬁ’v ﬁaw+A11511__A125’12
_ h
Voo = v— ﬁv -|- — @’w A21521
Vyy = i i@ Agy S lA S
22 = U—QR’U—I-QR w — Aoy 21—|-2 22022,
Let T
Jp = 1+JZ 1+11 LA
' 2R’ " 2R’ 2R’ 2R

A L Y
*“\ 2R’ 2R’'2R’2R)
Then, we rewrite (2.61) as

V = TlS + ’Ujl + awjg

(2.61)

(2.62)

(2.63)

(2.64)

Observing that 7} is invertible due to our basic assumption that A;; # 0, we then

have

S = Tflv — UTl_ljl — ale_ljg.

Next, let
P =PATT — A

Jy = L — PAT Y,

Using (2.65), (2.66), and (2.67) we rewrite (2.60) as follows

_ _ 0 _
p”eafv = 0’AV 4+ owl — g(s)(@QAV + Jwl)ds

1 _ ~ ~
—|—§ (1 — I/Ue)[PV - UPATl_ljl + @wJQ

0

— g(s)(PV — vaTl_ljl + Jw.Jy)ds].

-7

From (2.51) and (2.52) finally we have the equations

pofe — Ol (D0 +w) + &% + (D(0),95)

0
+ %(‘3 g(s){a1(0v +w) + b10%w + (J°, T105) }ds

b 1
— E[az(ﬁw —v) 4+ (Dq,5) + = O My
. % [~ () aalw — v) + (D1, 8) s = bi

PR+ Ll (00 -+ w) + & + (D(9),5))

(2.65)

(2.66)
(2.67)

(2.68)

(2.69)



0
_ b g(8){a1(dv + w) + b;0*w + (J°, T18S) }ds

R
b 1
- E@[ag(@w—v)—l— <D1,S> —|— EaMg]
b 0 b
+ = g(s)0{az(0w — v) + (Dy, S) }ds = bg, + E@mx. (2.70)

The equations (2.68), (2.69), (2.70) give a system of equations governing the
motion of the beam in terms of the variables v, w, V. Note that in (2.69) and (2.70)
the variable vector S is to be replaced according to (2.65).

We rewrite (2.69) and (2.70) by substituting for S. First we let

D(0) = bR™(TH™' D(6) (2.71)

&1 =bR7'& —(D(0),.11) (2.72)

iy = bR Y(ay — (J*°, Jy)) (2.73)

ay = (ay+ (TH™'Dy, J1))bR™ (2.74)

Dy = bR™Y(TH ™D, (2.75)

Dy = bR™' (&3 — az) + (Dy — D(6),.J) (2.76)
Ds = bR™Y((J", Jy) — (az + by)) + (D1 o). (2.77)

Then,
p02v — 960v + (bR ag + (Dy, Ji))v
— BR7A(&w) + (az + (D1, J2))dw] + H(D(6), J5) 5
— bR'9(£,0%w) — bR™2OMy + (D1, V) — A(D(h), V)
+ % g(s){@10% — av — bR (ay — aq)0w (2.78)
— bRTY(J, J)0%w + bR 00w
+ bRTY(JY,0?V) + (Dy,V)}ds
= bds
pd*w + (bR 'ay + &)0v + bR w + Dyd*w + bR™19* M,
+ (D(#) — Dy,0V)
+ 2 g(s){(@ + a2)0v — bR~ ayw + D3d*w
+ (Dy — bR™'J*,0V) }ds = bg, + LOin,.
The system we should consider consists of the equations (2.68), (2.78), and (2.79).

We ignore the underlined terms in (2.78) (see REMARK 3.1).
The system (2.68), (2.78), and (2.79) can be rewritten in the form

v v 0 v(t+s,0) b T
@f(w)—l—A(w)—l—/ g(s)B(w(t—l—s,@))ds((}n—|—1128ﬁ1x>. (2.80)
v v - V(t+s,0) P 0

(2.79)



Using (2.68) we consider the equation
0
p o7 = O*ANZ 4 0*wL — | g(s)(9*°AZ + d*wl)ds

1 . .

+5 (1 — ve)[PZ — QvPAT ) + 0%w.J) (2.81)
0 ~ ~

— | g(s)(PZ — OvPAT ' Jy + 0%w.Jy)ds.

—-T

In (2.78) and (2.79) we replace V according to the formula

av(t,0) = Z(t,0) (2.82)
and obtain a system corresponding to (2.80):
v v 0 v(t+s,0) b Go
@f w|+A | w —I—/ g(s)B1 | w(t+s,0) [ds=—] ¢ + %aﬁ% (2.83)
Z Z 7 Z(t+s,0) P 0

where the operators Ay, By (which are rather tedious to define) are given in the Ap-

pendix.

Next, let

where

Then, we rewrite (2.83) as

Rlw|+A|w —/ g(s)B1 | w(t) —wy(s) |ds == | G+ %aﬁzz . (2.84)
Z Z - Z(t) — Zy(s) P 0
where vy(s) = v(t + 3), wi(s) = w(t + ), Zi(s) = Z(t + s).

2.2.2 External Forces and Moments

We assume for our model that the external forces and moments are of a form such
as those produced by piezo materials. Thus, we ignore any contribution from external
air damping. The PZT patches can be used as both sensors and actuators, and as
actuators they can generate significant external forces and moments. We follow the
formulations in [BSW], and to aid in quantitative description of the PZT forces, we
define the indicator function

) 1 0> (0,+6,)/2
S12(0) = {

0 0=(0+6,)/2.
1 0< (6, +0,))2



Then, assuming that the two piezo patches have the same Young’s modulus, E?,
the same Poisson ratio, v,, and the same strain constant ds;, the total extended force

from the piezo patches is given by

NI = (N X5+ NE,xh) S
Ep

= 1 ds1(Vixy + VQXS)SLz-

Here V; and V;, are the voltages applied to the patches to produce deformations.

Similarly, the total external moment due to the patches is found to be

Mg = Mg x5+ Mg,x,

EP d
= 1o (VaxE - Vi)
p

h > (h 2
(§+T+A—I—T) —<§+A+7)

Finally the external forces in (2.51) and (2.52) are given by (for details, see
[BSW],[BSW2])

. o1
qs = —5172(0)E8Ng,

o = _%aMg.
3 Semigroup Formulation and Well-Posedness

3.1 System Formulation

Let
V= H3(01792) X H3(01792) X [H3(01792)]4

and introduce an inner-product on V by

<(§)7(§)X; (6 emgonou (3.1)

—|— <£282w1, 32w2> —|— <(1 - a)A@Zl, 8Z2>,
where (-,-) is an Lg-inner-product with respect to Lebesgue measure. We require
fl—a&1>0 1—a>0

in (3.1) in order for this to define an inner product for V.
Let

H = Lg(el,gg) X L2(01,02) X [Lg(el,eg)]4.



Introduce an inner-product on H by

<(Zt))11) , (5122)> = (pv1,v2) + <§pw1,w2> + (p"“ 71, Z3). (3.2)

Zl Z? H

Next, let
W = L§(—r,0; V).

We introduce an inner-product on W by

<( 1) ; (wi)> :/_ig(s){<a18v1,8v2>+<82w1,62w2>+<Aazl,822>}ds. (3.3)

w1y
7 7z
We regard the operators A and By given in (2.83) and (2.84) as elements of L(V, V).
Define
K:W—Vr

0

[g’r]:/ g(s)Bin(s)ds.

-7

(5 ) i)
d=|w]| eV, Yv=1w]|€eMH, v=| wt)—w() | €W.
7 Z(t) — Zi(*)

VA
Let d
Dn:d—n and D:dom D — W
s
and
dom D = {n € H'(—r,0;V),n(0) = 0}.
Then,

g (¢ 0 I 0\ (¢ 0
y 0 I D)\~ 0

3.2 Abstract Cauchy Problem

We can verify that
(Dn,m)w <0

: d
provided that g(—r) > 0 and 3 > 0.



Let

r = <an7Z7@7w727U(t+ '7')>T
X VL[ v < (K, |- ) x OV, [ Iw).

Thus, we have the formal abstract Cauchy problem

#(t)=Az(t)+ F in X, (3.4)
where
OA 1 Q
A= -4 0 K
0o [ D
with

e V,nedomD
—A¢ + [g’r] eEH } '

Remark 3.1 In (2.78) the underlined terms have coefficients of the same order in

h/R if, for example, 7+T 4+ A ~ h/v/R. The term dMy/R is the sum of shear stresses

in the elastic, constraining, and piezo layers. Since these layers are considered elastic,

dom A ={ (60" € X

the contribution of M/ R to the in-plane forces in these layers is considered negligible
and ignored (see [BSW], [M], [BSW2]). Thus, the underlined terms, of which dMy/R

is one, are ignored in what follows. In subsequent work we will consider these terms as

perturbations and determine the extent of their effect on the dynamics of the beam.

We now proceed with Remark 3.1 in mind. We observe that A as defined above
is the restriction of A € L(Y,Y*), where Y =V xV x W, defined by the sesquilinear
form: o(®, V) = <.,Zl<I), U)ys y so that o(®, W) = (AP, V) y for & € dom A, ¢ € X.

We can verify that

Re<A(Z)7(Z)> <o (183 + [$13 + Inl3y)

n n X
for some positive constant Ag. Here ¥) can be thought of as a constant function in W.
Now, it is clear that A4 — Ao/ is dissipative.
Let (f,g,h)T € X and consider the equation

¢ /
(AA)(%/J) = (9) (3.5)
n h

for A > Xg. This equation is equivalent to
Ap—tp =]
Mp+ Ap— Knp=g (3.6)
-+ (A—=D)n = h.



Rearranging and solving for  in terms of other variables we obtain
Né+ Ap— (K(1—e*)g) = K[(A=D) " (h= )]+ g+ (3.7)
Define a sesquilinear form (¢, ¢) — px(é,) on ¥V x V by

(6, 9) = N2, 0) + (A, 1) — (K (1 — ), ).

It is readily seen that p) is coercive. Using Lax-Milgram’s lemma we solve (3.7) for

¢. In turn we have

hp = Mp—fedom A=V
= (A— D)_l(h + ) € dom D
—A—I—R’n = g— M) €EH.

Thus, we can solve, (3.6) for (é,1,7)T € dom A. Thus, A generates a Cy-semigroup
T(t) on X which satisfies |T'(¢)| < Me*".

The above theory is adequate to treat the piezo embedded constrained layer curved
beam of Section 2 so long as there are no input voltages to the patches and the
normal external forces §, are sufficiently smooth (i.e., in Ly(61,63)). However, when
the patches are activated, the forces gy and 0, are not in Ly(6y,60;) (in this case
(g, 0mn,) is in V*) and a theory that extends the sense of equation (3.4) and the
semigroup T'(1) to a larger space containing }* is necessary. The ideas to carry
out this extension are by now rather straightforward although technically somewhat
tedious. The generic arguments for this procedure (often referred to as “Haraux
extrapolation”) are given in [BKW] for general examples and specific arguments for
second order systems written as first order abstract Cauchy systems (such as the
example of this paper) are given in detail in [BSW2]. This leads directly to an
extension of T'(¢) on X' to a Cpy-semigroup T(t) on a space V* containing Y* =
VY x V* x L*(—r,0; V*) where we have assumed the usual Gelfand triple framework
Vo H=H —V, 5 and Y — X — V* where Y =V x V x L*(—r,0;V) and
X =V xH x L*(—r,0;V). Thus, the theory above is readily extended to treat the
general case of active patches in the models of Section 2. We shall not give the details

here.

4 Approximation

The equations (2.78), (2.79), and (2.81) represent an infinite dimensional dy-
namical system, and thus whether interested in control, parameter estimation, or

just simply simulation, we desire a finite dimensional computational algorithm. For



this purpose, we need an approximation theory to serve as basis for computational
schemes. In this section we describe one class of approximations that provides a good

basis for computations.

4.1 The Approximation Spaces

After considering the function spaces in Section 3.1 we have chosen linear B-
splines and cubic B-splines to approximate the tangential and the radial motions,
v(+,0) and w(-, ) respectively. We shall use N to denote the number of subintervals
used in partitioning [0, 02]. We take the standard splines (see the Appendix of [BK]
as well as references [Sh], [Sch]) corresponding to the partition {6;}, and we obtain
N +1 linear splines and (N + 3) cubic splines. Looking at the function spaces chosen
we see that we obtain N +1—2 = N — 1 linear splines, and N +3— 4 = N — 1 cubic
splines. We denote these linear and cubic splines, {b A {b N1 respectively.

Using them as basis elements, we define the following space

N-=-1 N-1 N—1 -
VN:{(Z 127256 Z lbivl,-- Za4bN) |ai7ag’ﬂi€R}. (41)
=1 i=1 i=1

For each N, VN C V C H, and the sequence {VV} provides an approximation space
to V. Letting Séw =—gr/M, 5 =0,1,..., M, set

M 1 sM<g<sM
= I =1, 4.2
X () {0 otherwise (4.2)
Let
M N-1 " M N-1 v .
R ) ATAUNIES 3 WIS}
J=1 1=1 j=1 i=1
M N-1
N N
Z (qZ] 127"'7qz]b ))ﬂ] ( )p2]7q2]7r2]€7€)} (43)
7=1 =1

As a result, the approximation spaces to the state space X are given by
XMN — PN o PN e WMN
Let
PYH VN, PYv VN o s wMN

denote the respective orthogonal projections. Thus, for = = (¢,,7)T € X, we have
MN = (6N BN g MN) € XMV with 6N = B, o = PRy, and gMN = PNy,

In particular

(" " )T



M
m = 3 Y O (s),  nER

7=1 =1
MN M N-1
My = Z U?jbév,i(e)Xy(S)a 7]?;’ €R
7=1 =1
M,N ME o M
73 = Z U?jbu(e)Xj (s), 77?]' € R
7=1 =1

We define the operator DM-N . yWM

=
!
=
=
2
=

DMN M,N __ =X - M bN» 0
- Z (772,] 1 772]) (S) l,z( )7

=1 1

s,
Il

; > X ()B0) (0 yoa — ) (4.4)
__ Z_: ¥ (nw 1 nw) ( )bN (‘9))7

with 772'1,0 = 772'20 0, 7720 (0,0,0,0).

We can now define the approximate system dynamics state operator AMN on

dom AMN — {(¢N’¢N7UM,N)T c YMN . T]M,N c WM,N}

¢N N
AM,N ¢N _ _A¢N+[§rnM,N
nM,N ¢N + DM,NUM,N

4.2 Convergence Analysis

Lemma 4.1 The operator DN : WMN _WMN s dissipative.

Proof. Let
N-1
w;“ = anak k=1,2
N
u);’ = Zr] @bivl
=1
<8kDM7an]gM7N7akn1]gW7N> = < Z E] 1 7 (772,] 1 n},])bﬁzxyv

OF SN ST b )
= <¥(w]1 1~ W )XJ L WIX] >

We thus have
M,N M,N
J2, g(s)(@FDMN N ghytt Ny g < MM (Jk 12, — (W (2) [, g(s)x 2 (s)ds < 0.



We also note that

0
| a(s)oDMN AN )N ds

0
= [ () @M NV, 0v/Rn} Ny ds < o.

Let
~ M N-1 M -1
W = (S OB 0.3 X 08 o)
7=1 =1 7=1 =1
M N-1
Z (qzljbivz(g) ceesq 2]b (0)) E]]w( )) p2]7q2]7r2] € R}’
7=1 =1
where
M(s—sM))/r, sM, <s<sM
EM(s)=q M(sM, = s)/r, sM <s<sM,

0, otherwise

Define an isomorphism
iM,N : WM’N — WM’N

by the formula

N (]zwj

7=1 =1

N-1 N-— M N-1

M 1
pijb{\;E]]-W, Z ﬂ/[l’]‘ bJQ\;EM Z
j=1 i=1
N

= 7=1 =1

(qu IWIEER ,q”bN) J-)
—1

M N-1 M N-1 M
(E Z pl]bl ZX] 72 Z ZMZJbZ ZX] 72 E (qmbl IR 7q2]b1 2) X] ) ’

7=1 =1 7=1 =1 7=1 =1

MNEWMN DwMN DMN MN

Pi0 qlo_rzo_() For w AN W

Lemma 4.2 For A >0, (Al — DMN)y=1pMNp (AT — D)~'h, h e W.

Proof. The proof of this lemma proceeds exactly in the same manner as in [BMZ]. We
refer the reader to that paper for details.

The convergence scheme presented is adequate to treat approximate solutions of the
homogeneous version of (2.78), (2.79) and (2.81). To obtain convergence for solutions when
the right hand side of this system is in }*, one must extend the convergence scheme to the
extended semigroup 7'(¢) on ¥* that was discussed at the end of Section 3. The necessary
convergence scheme will be presented elsewhere.

5 Concluding Remarks

We have presented a general functional analytic framework that can be used to treat
a wide class of curved active constrained layer structure models. This work extends our
previous work ([BMZ]) where we did not consider the shear contribution in the viscoelastic



layers and constraining layers were absent. The inclusion of shear effect and the constrain-
ing layers makes the model more realistic. We have illustrated how to treat one type of
viscoelastic hysteresis in these models. Moreover, an approximation technique that can be
used as a foundation for computational methods has been presented.

The ideas presented here are quite general and can be used (with minor modifications
and/or extensions) to treat most of the active constrained layer structure models found in
engineering and scientific research literature.

Acknowledgement: The authors are grateful to Prof. G. Tomlinson whose discussion
first prompted our interest in ACL curved structures such as that modeled in this and our
previous paper. They are also indebted to Dr. Beth Mufioz and Dr. Lynn Yanyo of the
Thomas Lord Research Center, The Lord Corporation, for fruitful discussions related to
viscoelastic materials.

6 Appendix

We present here the matrices Ay, By used in (2.83). In (2.78), (2.79), My, the sum of the
internal moments of the elastic constraining, and piezo layers about the neutral line of the
elastic core is approximated by —9? o £ 0 0w, where &, is as in (2.46) and it is understood
that derivatives are taken in the distributional sense where necessary. Some of the entries of
the matrices need explanation, and we do that immediately after presenting the matrices.
They are given by

All A12 AlS
Al = A21 A22 AZS
A31 ASZ ABS

where

All = —%8 e} él (e} 8 + %(bR_IQQ ‘I’ <D17 j1>)7

Ay = —bRﬁ_l(? o0&y — %bR_l(ag + <D1,j2>)3+ 8<D(0),j2> 0% — Riﬁ@ 0&y00% — %%8 0&y00?,

Az = LDy, 1)~ La(D(B), "),

Agy = LR ay + £1)0),

Agg = %(bR_lfl + D;30%) + %bR_laQ 0 €007,
Ags = L(D(6) = Dy,-),

Az = pl—eEl,

1 1
Asg = p'u_eEQ + p'u_eE37

ASS = _p1682 - ple 1_2&197
and
Bll B12 B13
Bl = B21 B22 B23
B31 B32 B33

where



Bi1 = %(&182 —az),

Bz = —%bR_l(% —ay)0 — %bR_l <J”e, j2> 0* + %bR_lbl(?S,
Big = ZbR™'(J*,0-) + (D1, 1),

By = %(@1 + a3)0,

By = —LbR™ay + 2292,

By = L(Dy —bR71J™, ),

By = 2 Es + -1 F,

B3z = ple({ﬂ oA+ pleP'

We now explain the entries in Ay, By as needed. From (2.82) recall 9V (t,60) = Z(t,6).
In matrix Ay, (D1,1-)(Z) = (D1,V), where (-,-) stands for inner product in R*. We
remark that A4, and By act on the vector (v, w, Z)T. Continuing,

(D(0) = D1,)(Z) = (D(0) - D1, 7)
(Dy bR, ) (2) = (Dy— bR, Z)
1
2

Ei(v) = Z(1 = v,.)(00)PAT
Ey(w) = —(0%w)L
Eo(w) = -2 (92u),.

2

Next, we deal with matrix By. In matrix By,

(7,09(2) = (7%,07)
(D1, 1)(Z) = (D1.V)
<D1 — bRV, > (7Z) = <D1 — bRV, Z>

E4(?)) = —(8’U)PAT1_1J~1

Es(w) (0*w)L

Es(w) = (0*w)J,.
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