
Abstract— The radar cross sections (RCS) of both small 
and large ships for High Frequency Surface Wave Radar 
(HFSWR) were studied by using Numerical
Electromagnetics Code [4] and by using measurements 
from a HFSWR system at Cape Race, Newfoundland,
Canada.  The results of the study indicate that Teleost, a 
2405-ton Canadian Coast Guard ship, and large cargo-
container vessels (~36000 ton) have comparable RCS values 
at 3.1 and 4.1 MHz.  This was verified by comparing Teleost 
signals with the reflections of seven cargo-container
vessels identified during an operational evaluation of the 
HFSWR.  The conclusion of the study is that Teleost and the 
large cargo-container vessels have an angle-averaged RCS 
of ~40dBm2, while small vessels (~1000 tons) could
reasonably be characterized by an angle-averaged RCS of 
~30 dBm2, in the lower end of the HF band (3-5 MHz).

I. INTRODUCTION

One of the parameters in the radar equation that
determines the radar performance is the radar cross section 
(RCS) of the target.  High Frequency Surface Wave Radar 
(HFSWR) in a coastal surveillance role is designed mainly to 
detect ships over a sea surface.  The radar cross section of 
the ship to be detected is therefore a critical parameter in the 
design of the HFSWR.  Little is discussed in the open 
literature about the RCS of ships of various sizes and at 
different aspects for HFSWR, although the free-space radar 
cross section of a vessel in m2 is sometimes approximated by

2/32/152 Df=σ (1)

where D is the full-load displacement of the vessel in kiloton 
and f is the radar frequency in MHz.  The above empirical 
formula was derived from measurements made at X, S and L 
bands [1], and extended as a rough approximation to the HF 
band for HFSWR [2].  The formula, however, does not 
consider the significance of the effect of vessel height on 
vessel RCS.

Vertical-polarized transmission is used in HFSWR.  The 
vessels of interest could have masts that are as high as 25 m.
This means that in the HF band, the vessel RCS is in the 
Rayleigh and resonance regions [3].  In the Rayleigh region, 
the target RCS decreases rapidly with radar wavelength.  In 
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onance region, the target RCS fluctuates within a
d range with radar wavelength.  The height of the 
is therefore significant in determining the RCS for 
R.
is paper, we present the results of a study of the RCS 
ll and large commercial vessels in the lower end of the 
d (3-5 MHz) using Numerical Electromagnetics Code 
[4] and trial data from the HFSWR at Cape Race, 

undland. Here small vessels refer to those with
ements of ~1000 ton and large vessels refer to cargo-
er ships with displacements of several tens of
s.  These are two groups of ships routinely tracked by 
SWR.
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II. RADAR CROSS SECTIONS OF SMALL VESSELS

ure 1 shows a photograph of Teleost and a simple 
id model for the ship.  The length of the ship is 63 m 
 breadth is 14.2 m.  To calculate the RCS of the model, 
d is reflected in the horizontal plane, and then NEC 
tes the cross section of the entire structure.  Hence, 
lts here refer everywhere to the “net” RCS, not to the 
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spacing and 0.5-m wire radius and then with 2.2-m grid 
spacing and 0.3-m wire radius.  Including the images, the 
numbers of wire segments are 814 and 1846, respectively in 
the two models.  Because of the larger number of segments 
in the second model, the execution time to complete the RCS 
calculation using the second model is about 12 times that 
calculation using the first model.  The two models give RCS 
estimates that differ by <20% (0.8 dB), so we are confident 
that the first model with the coarser grid spacing is adequate.
The aspect dependence of the modeled RCS of Teleost at 3.1 
and 4.1 MHz is shown in Figure 2 where Φ=0° indicates bow-
on incidence.

The Cape Race HFSWR was calibrated using the strength 
of the Bragg lines in the sea-clutter spectrum.  References [5, 
6] show that, for a fully developed sea, the Bragg-line
scattering coefficient, defined as the effective echoing cross 
section per unit area of sea surface, is –20 dB.  For a patch 
area A, the radar cross section is given by

ABragg 010.0=σ (2)
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event, it would not change our conclusions, since this 
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0 knots for several hours and the significant wave
ranged from 4 to 6 m gave the same radar calibra-
d this calibration confirmed that the RCS of Teleost
80° (i.e. stern-on) has 41 dBm2 at 4.1 MHz. In
n, Teleost sailed in a 12-sided loop so we could
r the variation of RCS with aspect angle. The dots in
ttom of Figure 2 show the strength of the reflected
measured in 30° steps and estimated using the first-
ea echo. (We assume left-right symmetry, so data
180°<Φ<0° have been plotted at -Φ.) The good
ent between the dots and the numerical model shows
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Figure 1.  CCGS Teleost.  Left: photograph.  Right: wire grid model used to calculate 
RCS.  Grid spacing=3.5 m. Wire radius=0.5 m.
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Figure 2.  Numerical estimates of Teleost’s RCS at 3.1 MHz (top) and 4.1 MHz (bottom).  The dots show the 

measured angular dependence normalized to match the calculated results.  The measured value at 4.1 MHz

and φ=180° is 41 dBm2.



difference would change the estimated cross sections by at 
most 4 dB.

Analysis of the model also shows that an angle-averaged
RCS of Teleost is 38 dBm2 at 3.1 MHz and 40 dBm2 at 
4.1 MHz (2 and 1 dB below the end-on RCS respectively).

To determine the RCS of smaller vessels, the first step was 
to calculate the RCS of Teleost at frequencies from 1.8 to 
5.5 MHz.  Figure 3 shows the aspect-averaged RCS of
Teleost and also the RCS for the same model, but with the 
A-frame near the stern removed.  Examination of several 
models showed that the A-frame and its mast had a large 
effect on the RCS near 4.1 MHz, but that the mast above the 
bridge had a much smaller influence.  It is to be expected that 
all ships will have one mast and an elevated bridge, but the 
stern A-frame is likely less common, so to model small ships 
it was removed.  Note that the RCS in Figure 3 is normalized 
to (wavelength)2, not m2.

The results for the Teleost model are extended as an 
approximation to smaller vessels by using the fact that if the 
linear dimensions of a structure are multiplied by a factor α,
and the wavelength is also multiplied by α (i.e. the frequency 
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re 4 shows that an estimate of the RCS of the 1000-ton
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Figure 3.  The aspect-angle-averaged RCS for the wire-grid model of Teleost and the 
model with the A-frame near the stern removed.
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values stand 11 and 9 dB respectively below the end-on RCS 
of Teleost shown in Figure 2.  With the accuracy of
approximations used here, this could be rounded to 10 dB, so 
we use an angle-averaged RCS of a 1000-ton vessel that is 
~10 dB below the end-on RCS measured during the
controlled-ship trial with Teleost in January 2002.  To derive 
results for a 500-ton vessel, the angle-averaged RCS should 
be reduced to 25 dBm2 at 3.1 MHz and 28 dBm2 at 4.1 MHz.

III. RADAR CROSS SECTIONS OF LARGE VESSELS

Ground-truth flights on 8 and 9 Feb. 2002 established the 
identities of several large vessels that were tracked by the 
radar and recorded in radar data.  These included Bonn 
Express (35915 ton, 236m long, 32.2m beam), Hong Kong 
Express (36606 ton, 245m long, 32.3m beam), OOCL Canada 
(33662 ton, 216m long, 32.2m beam), Atlantic Cartier (30731 
ton, 250m long, 32.3m beam), Vancouver Spirit (63709 ton, 
244m long, 42m beam), Marit Maersk (4300 TEU, 244m long, 
32.3m beam), and Maria Gorthon (11491 ton, 156m long, 
21.9m beam).   Figure 5 displays the observed signal levels 
from the 7 vessels and compares to the 3.1- and 4.1-MHz
signals measured from Teleost in an end-on orientation.  The 
Teleost signals have been extrapolated from the ranges 
where measurements were made (360-400 km at 3.1 MHz and 
150-240 km at 4.1 MHz) to other ranges using the known 
attenuation of electromagnetic surface waves over a stormy 
ocean.  The data show that reflections from 7 vessels,
ranging from 150-m length and 11000 tons to 294 m and 64000 
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re 7 also shows that near broadside (Φ=90°), there is a 
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Figure 5.  The strengths of the signals from seven known cargo vessels identified by ground-truth flights on 8 and 9 
Feb. 2002.  The vessels ranged in size from 11000 to 65000 tons and from 150 m length to 294 m.  The solid red 
line shows the measured strength of reflections from Teleost in an end-on orientation. 
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Figure 7.  NEC estimate of the RCS of Bonn Express, a typical container ship (36000 gross 
tons).  The angle-averaged cross sections are 41 dBm2 at 3.1 MHz and 43 dBm2 at 4.1 MHz.  The 
dimensions of Bonn Express: length=236 m, beam=32 m, main deck height=~20 m,
bridge/funnel height=~30 m

dropping to very low values away from 90°.  This is partly a 
result of the simple wire-grid model.  A real ship would be 
expected to show nulls in the cross section, but probably not 
as deep as shown in the figure.  Similarly, the cross section
at 4.1 MHz between 120° and 150° would probably be higher 
in a model that includes more details of the vessel’s super-
structure.

IV. SUMMARY

In modeling and measuring the vessel RCS, we have 
determined that Teleost, a medium sized coast guard vessel,
and large cargo-container vessels have about the same RCS, 
and this RCS is ~40 dBm2 when it is averaged over all 

aspects.  The similar RCS for a 1000-ton small vessel is 
~30 dBm2. The computed RCS also shows an angular
variation with peaks and nulls, which were partially verified 
with measurements from Teleost and could further be
verified with measurements from Bonn Express that traveled 
across the radar beams during the ground truth flights.
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