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ABSTRACT:  This document provides an overview of species-habitat modeling approaches, including recent recom-
mendations and criticisms of model shortcomings.  Rather than provide an exhaustive treatment of species-habitat mod-
eling, this report provides enough information that an installation could hire or supervise an expert to conduct appropri-
ate modeling, and anticipate and avoid common pitfalls and errors associated with current approaches.  The overview is 
based on a hierarchical structure for organizing species-habitat modeling approaches.  Modeling approaches are grouped 
into three classes, based on data requirements, effort, expense, technical difficulty, application uses, and output character-
istics. 
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Conversion Factors 

Non-SI* units of measurement used in this report can be converted to SI units as 
follows: 

Multiply By To Obtain 
acres 4,046.873 square meters 

cubic feet 0.02831685 cubic meters 

cubic inches 0.00001638706 cubic meters 

degrees (angle) 0.01745329 radians 

degrees Fahrenheit  (5/9) x (°F – 32) degrees Celsius 

degrees Fahrenheit (5/9) x (°F – 32) + 273.15. kelvins 

feet 0.3048 meters 

gallons (U.S. liquid) 0.003785412 cubic meters 

horsepower (550 ft-lb force per second) 745.6999 watts 

inches 0.0254 meters 

kips per square foot 47.88026 kilopascals 

kips per square inch 6.894757 megapascals 

miles (U.S. statute) 1.609347 kilometers 

pounds (force) 4.448222 newtons 

pounds (force) per square inch 0.006894757 megapascals 

pounds (mass) 0.4535924 kilograms 

square feet 0.09290304 square meters 

square miles 2,589,998 square meters 

tons (force) 8,896.443 newtons 

tons (2,000 pounds, mass)  907.1847 kilograms 

yards 0.9144 meters 

 

                                                 
*Système International d’Unités (“International System of Measurement”), commonly known as the “metric system.” 
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1 Introduction 

Background 

In accordance with the Endangered Species Act (ESA), the Army is required to pro-
tect and manage threatened and endangered species (TES) that occur on property 
under its stewardship.  Of the 1,823 listed threatened and endangered species 
(USFWS 2004), 205 occur on, or adjacent to, 121 Army installations (Rubinoff et al. 
2004).  Consequently, TES represent a significant conservation and compliance 
challenge for the Army, posing numerous potential conflicts with mission require-
ments. 

Army implementation of ESA requirements is outlined in Army Regulation (AR) 
200-3 Natural Resources-Land, Forest and Wildlife Management (U.S. Army 1995).  
Recognizing that the key to a successful balance between mission requirements and 
conservation of listed species is long-term planning and effective TES management, 
AR 200-3 requires installations to develop an Endangered Species Management 
Plan (ESMP) for all listed (i.e., threatened or endangered) or proposed species.  AR 
200-3 stipulates that ESMPs must identify the TES current installation population 
size and set installation population goals.  ESMPs also must identify the species’ 
current and potential habitat (i.e., that made suitable through management) on the 
installation.  Via informal consultation, the Fish and Wildlife Service or National 
Marine Fisheries Service provides input during the development of the ESMP. 

Although seemingly straightforward, development of ESMPs can represent a sig-
nificant challenge, especially when the biology of TES is poorly understood or little 
installation-specific information is available.  In a general sense, much of ESMP de-
velopment falls under the scope of species-habitat modeling.  This report will assist 
TES managers on Army installations in defining the most effective approaches for 
species-habitat modeling on Army installations.  The types of quantitative methods 
that fall under the heading of species-habitat modeling are quite varied, both in 
terms of the complexity of the underlying models and the quantity of data deeded to 
parameterize them.  For example, a TES manager may need to: (1) identify the oc-
currence of a certain species on the installation, (2) provide a map of locations where 
species are likely to occur, (3) estimate how many individuals use installation habi-
tat, (4) calculate the number of individuals that an installation can reasonably ex-
pect to conserve over a long time period (i.e., the carrying capacity), (5) estimate the 
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probability a population will not go extinct over a given timeframe, or (6) address 
some other related question.  Widely varying questions in TES management de-
mand a variety of scientific tools and approaches to ensure that the best information 
is available for decision-making.  This report can assist in the selection and refine-
ment of the best approach to answer such questions.  Although most managers util-
ize species-habitat modeling to estimate TES abundance or distribution in some 
way or another, there is misgiving about the accuracy of model output (O’Connor 
2002).  Since the value of models should be assessed before they are applied, this 
report also addresses accuracy analysis and uncertainty. 

Objective 

The Objective of this research was to provide an overview of species-habitat model-
ing approaches, including recent recommendations and criticisms of model short-
comings.  Rather than provide an exhaustive treatment of species-habitat modeling, 
this report provides enough information so an installation could hire or supervise an 
expert to conduct appropriate modeling, and anticipate and avoid common pitfalls 
and errors associated with current approaches. 

The task of estimating TES population goals and/or viability estimates on Army in-
stallations is closely related to understanding, delineating, and characterizing habi-
tat.  Current and future TES population abundance and viability can be understood 
only through knowledge of habitat choice, carrying capacity, and fitness value to the 
species of interest.  This report focuses strongly on habitat-based modeling for the 
purposes of developing TES population goals on installations. 

Approach 

Species-habitat modeling approaches were organized into a hierarchical structure 
having three general classes, based on data requirements, effort, expense, technical 
difficulty, application uses, and output characteristics.  This report begins with a 
brief introduction to this organizational structure.  Following is a review of several 
issues that are important regardless of what particular modeling question or ap-
proach is required.  Next, this report contains a summary of the three general 
classes of modeling approaches along with their most common applications, 
strengths, and weaknesses.  Next, is a discussion of the specific issues related to 
species-habitat modeling, starting with important considerations for modeling habi-
tat, then moving into the issues of quantifying species’ response to habitat (i.e., be-
havior, reproduction), and finally, the statistical approaches for modeling the rela-
tionship between habitat and species’ response.  This report does not provide 
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detailed step-by-step instruction for methods, such as point counts or classification 
and regression tree (CART) analysis, which could fill volumes.  Instead, when a rec-
ommended approach requires careful consideration of many details, references to 
additional sources of appropriate information are included.  Lastly, there are two 
sections dealing with error, uncertainty, and validation procedures. 

Mode of Technology Transfer 

This report will be made accessible through the World Wide Web (WWW) at URL: 
 http://www.cecer.army.mil  
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2 Introduction to Three General Classes 
of Species-Habitat Modeling 
Using a hierarchical structure for organizing species-habitat modeling approaches, 
modeling approaches are grouped into three classes, based on data requirements, 
effort, expense, technical difficulty, application uses, and output characteristics.  
Each succeeding class includes many or all of the tools and approaches of the pre-
ceding classes.  TES managers can examine the descriptions of the three classes and 
identify the modeling approaches most appropriate for any particular need.  One or 
more sections of this report will be useful for each applied modeling requirement, 
depending on what class of modeling is sought. 

Class I – Predicting Species Presence and Absence 

With respect to a hypothetical area of habitat, Class I models address the question:  
“Can the species of conservation concern exist here?”  Class I approaches include 
surveys for the presence of a species, evaluation of what components of habitat are 
associated with species occurrence, and mapping of potential species presence or 
absence based on habitat characteristics.  Class I approaches are suitable when 
minimal knowledge and data are available and/or needed regarding species habitat 
use.  A Class I approach is suitable for asking “In any given habitat, what is the 
chance of finding a particular focal species?”  TES managers may wish to know 
whether a species occurs on the installation, or may need to map potential or actual 
distributions in anticipation of future conservation concerns.  Underlying these rela-
tively simple requirements are three assumptions:  (1) species are linked to their 
habitats strongly enough that presence can be predicted by habitat characteristics, 
(2) habitats can be identified and characterized, and (3) the species is detectable 
(Dreisbach et al. 2002). 

Class II – Predicting Species Abundance and Quantitative Response to 
Habitat 

With respect to a hypothetical area of habitat, Class II models address the question: 
“How many can exist here?”  Class II approaches are used when the variation of 
TES abundance across different habitat areas is of interest.  Class II approaches 
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examine the relationship between environmental variables and counts of individu-
als, or abundance or density estimates of species.  Class II approaches include esti-
mates of installation carrying capacity that are based on differential densities 
across habitats.  Class II approaches include models of population change through 
time.  This can be accomplished using data from repeated censuses to conduct a 
count-based population viability assessment (see Count-based PVA, page 31). 

Class III – Quantifying Species Demographics in Habitat 

With respect to a hypothetical area of habitat, Class III models address the ques-
tion: “How many can persist here, for how long, as conditions change?”  Class III 
approaches focus on the measurement of demographic parameters as components of 
fitness, such as survivorship, growth, and fecundity in different habitats and/or un-
der different management scenarios.  Class III approaches allow TES managers to 
predict the probability of population extinction with actual or theoretical habitat 
configurations.  They also allow analysis of underlying demographic mechanisms of 
population change and long-term population trends.  A range of possible future 
population sizes can be estimated through simulation modeling, and then used to 
define a reasonable goal for TES conservation. 
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3 Initial Modeling Considerations 
Several considerations are important for any species-habitat model, regardless of 
the classes adopted in this report or the specific methodology chosen.  Every model-
ing effort is plagued by a trade-off between generality and accuracy for a particular 
location.  General, widely applicable models are often simpler than location-specific 
models, and may be limited to broad patterns or theoretical constructs (van Horne 
2002).  Location-specific models do not consider variation throughout a species’ 
range; they focus directly on critical, local factors thought to be relevant in a specific 
place during the immediate time frame.  For example, in the northern part of their 
range, Belted Kingfishers (Megaceryle alcyon) are limited to areas having ice-free 
rivers (Kelly and van Horne 1997).  However, this is likely not an important con-
straint in southern portions of their range.  Location-specific models are recom-
mended for species management on installation lands, especially when legally bind-
ing decisions will be based on the results.  Maximum predictive ability requires 
custom-built models generated and tested with local data.  Such models should not 
be expected to predict well in different places at different times.  They are focused 
on a specific, immediate requirement.  Too much natural spatial and temporal vari-
ability exists to expect anything more.  Installation personnel will achieve maxi-
mum success by focusing on local data collection, local observation of species, and 
small, focused models for specific uses.  It may not be effective to survey existing 
(outside) modeling efforts in the hope that a completed general species model can be 
found.  Even if another model exists, it may not fit well enough to local conditions to 
make accurate predictions.  Models that have been developed via local parameteri-
zation, (e.g., using RAMAS software, Applied Biomathematics), however, are worthy 
of consideration and comparison during the development of a new model.  In some 
cases, specific local circumstances are highly relevant, yet are not included in pack-
aged software.  Installations are encouraged to maintain control over the scoping 
and development of models that focus on a specific time, place, and management 
requirement.  In most cases, this calls for model development over short time peri-
ods by in-house or closely aligned personnel (Starfield 1997).  Such an approach 
may free enough time and money to complete model testing and evaluation and to 
estimate confidence limits for the model output. 

Due to the highly variable nature of ecological systems, most of the common statis-
tical approaches to species-habitat modeling are unable to ascertain cause-and-
effect relationships.  Controlled, manipulative experiments can test only one or a 
few variables at any one time, and are thus very limited in their scope.  Van Horne 
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(2002) advises using a mixture of approaches.  For example, correlative or descrip-
tive approaches may define broad patterns of habitat use, but experiments at a par-
ticular location can uncover the causative importance of variables such as habitat 
structure or food supply.  Two additional resources on modeling causation are Pearl 
(2000) and Shipley (2000). 
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4 An Overview of Logical Approaches to 
Species-Habitat Modeling 

Correlative Approaches - Descriptions of Locations 

Correlative approaches to modeling species-habitat relationships are traditionally 
executed with multivariate statistical analyses, such as principle components analy-
sis or discriminant function analysis, to reveal characteristics of the environment 
that best explain species-related parameters.  Conceptually, the researcher at-
tempts to describe a subset of the n-dimensional axes that determine the species’ 
niche, based on Hutchinson’s (1957) niche concept (James 1971).  For example, 
Shaw and Atkinson (1990) identified the relationship between species presence and 
slope, aspect, geology, and land cover to map the distribution of Golden-cheeked 
Warblers (Dendroica chrysoparia) and Black-capped Vireos (Vireo atricapillus) in 
Texas.  Philosophically, correlative approaches to modeling species-habitat relation-
ships should reveal species response, with minimal chance of imparting researcher 
bias.  Practically, this means that all potentially important environmental variables 
must be measured across the full range of potential values.  Correlative approaches 
can be applied to data collected at random points, stratified random points, or 
points used to compare “used” sites with random or “unused” sites. 

Correlative approaches suffer from several weaknesses (van Horne 2002).  It is diffi-
cult to observe and measure habitat through the point of view of the organism stud-
ied.  The variables included in correlative analyses tend to be aspects of the envi-
ronment that are easily measured.  Traditional statistical procedures limit the 
shape of the relationship to choices that rarely reflect the theorized shape of species 
responses.  Yet another challenge is the difference in species’ response to the envi-
ronment at different spatial and temporal scales.  Therefore, it is essential to match 
the scale of the question with the scale of data collection and modeling.  A final 
problem is the fact that correlations are not the same as causal factors.  Causal fac-
tors may vary, leading to disintegration of the correlative relationship.  Most of 
these issues will be discussed in more depth below.  In addition to these weak-
nesses, O’Connor (2002) states that “limitations of current concepts are marked and 
aggravated by generally poor implementation of the available approaches.”  He ad-
vocates a shift to a new paradigm, a habitat constraint paradigm, in which differ-
ences in species abundance through space are conceptualized based on the status of 
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limiting factors, which change not only in their availability, but also in relative im-
portance, from location to location.  (The correlation between limiting factors and 
species abundance is not modeled under O’Connor’s proposed paradigm; see An Al-
ternative Paradigm – Modeling Constraints with CART, page 50, for an example of 
methods that support this approach.) 

Resource Selection Approaches – Comparisons of Habitat Use by 
Animals 

Resource selection studies compare estimated or known habitat availability with 
measured habitat use by the species in question.  Habitat types must be defined be-
forehand (Garshelis 2000), so that estimates of availability can be made in the field 
(through point counts or plot methods) or documented habitat can be measured from 
maps or remotely sensed images (Thomas and Taylor 1990).  Methods for measuring 
species response vary widely.  Sometimes, individual animals are radio-tracked.  
Alternatively, the entire population can be sampled through sign or sightings, with-
out measuring the patterns of individuals.  In either case, the proportion of habitat 
used is compared to the proportion of habitat available, for each habitat type cate-
gory.  Within this approach, it is important to guard against pseudoreplication from 
non-independence of observations (Hurlbert 1984), especially when compiling loca-
tion data points for the same individual (Thomas and Taylor 1990).  One of the 
weaknesses of use-availability studies is the inherent assumption that if habitat is 
desirable, it should always be used in increasing proportion with its availability.  In 
fact, an asymptotic relationship could exist between habitat availability and use, 
even with the highest quality habitat.  The spatial distribution of habitats and rela-
tionships between multiple habitats could be more important than simple choices 
between different habitat types (see Garshelis 2000 for an excellent discussion).  
Resource selection studies have been used to indicate long-term habitat require-
ments, model the effects of habitat change, evaluate output from other models, es-
timate population size, and estimate parameters in foraging models (Manly et al. 
2002). 

Knowledge-based Approaches 

Knowledge-based models, or “expert systems,” are built on the opinions of experts.  
Often, population viability analysis or TES recovery team workshops build knowl-
edge-based models.  In knowledge-based approaches, relationships between habitat 
types and species’ fitness (e.g., survival and reproduction) are often described 
through a combination of expert opinion/experience and available data sets.  Using 
this approach it is possible to delineate any shape to a relationship, across any 
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range of variables (van Horne 2002).  Since existing models are likely to be general 
models, based on a consensus of experts studying a range of situations, they are 
unlikely to be highly accurate in predicting species response to any particular loca-
tion (as discussed above), unless created specifically for local purposes.  In addition, 
it is important to evaluate whether such models add any value beyond that offered 
by expert human opinion alone.  For example, Meesters et al. (1998) used a combi-
nation of expert opinion and case history data to describe coral reef condition under 
the influence of seven causative factors.  Expert knowledge was captured and organ-
ized for a total of 2,187 combinations of causative factors and response variables.  
The relationships were evaluated on an iterative basis and organized in a manner 
useful for conservation management.  However, as O’Connor warns, this type of 
model “does not predict in the usual scientific sense, but rather encapsulates a 
wealth of real-world experience” (O’Connor 2000). 
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5 Quantification and/or Description of 
Habitat 

Classification of Habitat Into Types 

Austin (2002) reviews the importance of ecological theory and survey design for pre-
dicting species distributions.  How is habitat discriminated and named?  This report 
uses the term habitat in reference to habitat type, defined as “an area, delineated by 
a biologist, that has consistent abiotic and biotic attributes such as dominant or 
subdominant vegetation” (Jones 1986).  Ecological studies over time have demon-
strated that plant communities are not homogenous, co-evolved, and discrete enti-
ties.  Instead, plant species respond to environmental variables in an independent 
fashion.  Plant communities, as such, occur when combinations of environmental 
conditions occur frequently enough that the resulting species combinations warrant 
recognition as entities. 

Despite ecological theory and empirical results, resource selection studies require 
the a priori definition of discrete habitat units (Garshelis 2000).  Such studies re-
quire estimation of baseline habitat availability and therefore must begin with defi-
nitions of the different habitat types to be included.  For example, a study of escape 
cover use by California Quail (Callipepla californica) began with the delineation of 
six cover types:  pasture, disturbed cover, farmstead, riparian, shrubland, and field 
border (Stinnet and Klebenow 1986).  Traditional analyses for use-availability stud-
ies are weak since results are strongly affected by how many habitat types are de-
fined.  As the number of categories increases, sample sizes for each type are re-
duced, lowering the power of the study.  Furthermore, since all proportions must 
add to 1, differing numbers of habitat types strongly affect the resulting proportions 
of all habitat types, and affect the resulting statistical comparisons (Aebischer et al. 
1993).  Similarly, the decision to include or exclude “doubtful” habitats, such as 
common types that are not used, is problematic.  These drawbacks have been re-
duced or eliminated by alternative statistical procedures (Alldredge and Ratti 1986) 
and will be discussed further in Resource Selection Studies, page 42. 

Correlational studies intend for the data itself to define important habitat charac-
teristics.  A logical extension is that a priori categorization of habitat types would be 
unnecessary and misleading.  However, separate a priori habitat types may surface 
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in the design and interpretation of such studies, if the study is limited to a subset of 
habitat types.  For example, Young and Hutto (2002) explain that “to reduce the 
confounding effects of very different cover types, some of which we know this species 
would not occur in, we modeled the habitat associations of the Swainson’s Thrush 
(Catharus ustulatus) within the subset of conifer forest types.”  For Class I–related 
objectives, especially on legally protected species, this would not be appropriate.  
Although such a decision was acceptable for Young and Hutto’s purpose, most Class 
I efforts conducted on installations should ensure that such limiting assumptions 
are not made. 

Assessing Degree of Habitat Suitability or Quality 

In 1937, Aldo Leopold remarked that the task of habitat assessment constituted one 
of the more significant challenges for wildlife managers (Leopold 1937).  It is widely 
recognized that the process of defining habitat quality is fraught with uncertainty.  
Several non-traditional methods have been applied in an attempt to more closely 
formalize the process by which a human would judge habitat suitability or quality.  
This report considers two approaches:  fuzzy set theory and pattern recognition us-
ing Bayesian techniques, as applied to the question of habitat assessment.  These 
approaches warrant consideration for habitat quality evaluation. 

Hill and Binford (2002) argue that the underlying theory and logic of species-habitat 
relationships, such as habitat classification or habitat quality assessment, require 
non-discrete categories for predictive modeling.  Non-discrete (ambiguous) categori-
zation is based on fuzzy set theory rather than classical set theory.  Fuzzy set theory 
has been applied to habitat modeling only relatively recently.   How does fuzzy set 
theory differ from classical set theory?  A classical set depends on discrete, “crisp” 
categories.  Membership in a category is absolute; an element either belongs to the 
category or it does not, so it can be captured with a “yes/no” dichotomy.  There is a 
crisp threshold that defines the upper and lower limits of the category.  Classical 
sets can be subjected to probabilistic mathematics.  According to the discussion of 
Hill and Binford (2002), probability theory works in the following manner:  if man-
agers need to know the probability of a particular organism occurring at a particu-
lar point in space, a study would be conducted to monitor that point in space over a 
very long period of time, and eventually, the data would allow managers to calculate 
the mathematical probability of the organism’s occurrence at that point.  Uncer-
tainty in prediction would come from the state of information of the observer, in 
light of random stochasticity and degree of knowledge, regarding the occurrence of 
the organism through time.  Thus, any application of the results to predicting occur-
rence in a different location would assume that differences in occurrence could only 
result from stochastic processes, something that is biologically unrealistic.  Despite 
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the weakness of this approach, such probabilistic theory provides the basis for most 
inferential statistics (Hill and Binford 2002). 

Fuzzy set, or ambiguous, categories are defined based on similarity to a theoretical, 
absolute state of belonging to a category.  Membership in a category is often defined 
in terms of a gradient.  The gradients in degree of membership are based on the de-
gree of similarity to an absolute state, and thus, are captured with a graded, “0 to 1 
scale” valuation.  Uncertainty about membership in the category comes from the 
actual gradation in the degree to which the statement “This object belongs to class 
X” is literally true.  If either the upper or lower bounds of a category boundary are 
ambiguous, then the category must be considered ambiguous.  The theory of species’ 
niche underlies the concept of habitat quality.  Thus, membership in the category of 
“suitable habitat” would relate to the similarity of the habitat element to the niche.  
Or, alternatively, as long as species respond, in different degrees, to gradients in the 
environment, and there exists a (theoretical) optimal environmental condition 
(based on expert knowledge at any given time) for the species, the underlying logic 
of habitat evaluation is one of fuzzy set theory, including ambiguous categories and 
fuzzy set mathematical functions (Hill and Binford 2002). 

The use of discrete boundaries between categories of habitat suitability can be in-
fluential in modeling applications.  Consider the influence of slope on a hypothetical 
plant.  If a slope of 8 percent is determined to be the boundary between high quality 
and moderate quality habitat, does it make sense for plots with slope of 7 percent to 
be considered absolutely different from plots with slope of 8 percent?  Using fuzzy 
set logic, a more continuous range of quality can be represented, and it can also in-
clude uncertainties in measurement of slope (Baja et al. 2002). 

Pattern recognition advocates the use of probability theory in combination with 
Bayesian analysis to formalize an approach to habitat assessment that attempts to 
mimic the human thought process.  Pattern recognition allows model developers to 
use available data to calculate prior probabilities and conditional probabilities in 
the central formulation of the model.  For example, Sweeney and Dijak (1985) used 
observed probabilities (from earlier field studies) that forest stands of various types 
supported Ovenbirds (Seirus aurocapillus).  Nine stands of forest type 79 supported 
Ovenbirds while 8 stands did not.  The conditional probability for forest stand 79 to 
contain Ovenbirds was 0.19 and the conditional probability that forest stand 79 
would not contain Ovenbirds was 0.26.  This process was conducted for five vari-
ables (included variables were selected based on an earlier study analyzed through 
discriminant function analysis).  The prior probabilities were simply the overall 
numbers of stands of all types that contained or did not contain Ovenbirds during 
the field study (Sweeney and Dijak 1985).  An equation based on Bayes’ Theorem 
then incorporated these probabilities into one posterior (resulting) probability that 
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the forest stand is suitable Ovenbird habitat.  In this example, “suitability” was de-
fined as having a posterior probability greater than 0.5. 

Spatially Explicit Habitat Evaluation 

Living organisms are not randomly or uniformly distributed throughout their geo-
graphic range.  Geomorphologic processes and variation in energy input lead to spa-
tial structure, most commonly patches or gradients (Legendre and Fortin 1989).  It 
is important to consider the spatial arrangement of habitat patches when sampling 
in the field or modeling available habitat, current population numbers, carrying ca-
pacity, or population goals for an installation.  Schulz and Joyce (1992) estimated 
numbers of marten (Martes americana) home ranges using hypothetical spatially 
explicit habitat models (that included differences through space), and spatially neu-
tral models (that did not include differences through space).  Numbers of home 
ranges were determined by summing up the total number of sufficient home ranges 
in the spatially explicit models.  In the spatially neutral model, numbers of home 
ranges were determined by dividing the total area of habitat by home range size.  
Spatially neutral models led to higher numbers of estimated home ranges.  The dis-
crepancy was greatest for the landscape with the least amount of good quality habi-
tat.  They concluded that without spatially explicit information, small, separated 
patches of habitat were interpreted to be useful habitat, which is biologically incor-
rect (Schulz and Joyce 1992).  Based on this result, a spatially explicit approach for 
Class II and III studies is recommended.  Otherwise, population carrying capacity 
on an installation may be overestimated. 

Scale of Habitat Measurement 

The scale of habitat definition and measurement is critical (Wiens 1989).  Response 
to microhabitat and macrohabitat may or may not be similar.  An organism may 
appear to select for a particular habitat type (at the macrohabitat scale), yet actu-
ally be seeking out specific sites or characteristics (at the microhabitat scale) that 
happen to occur more commonly in that habitat (Garshelis 2000).  On the other 
hand, if a study focuses on choices within an animal’s home range, such as a teleme-
try resource selection study (see Resource Selection Studies, page 42), the results 
cannot describe the importance of the location of that home range within a larger 
context (Smallwood 2002).  Biologists commonly assume that data gathered from a 
habitat patch applies to all individuals within that patch.  Alternatively, spatially 
aggregated individuals are often treated as individual observations, which may not 
be the case.  The critical problem is that there are no natural (a priori) spatial units; 
divisions of habitat are a function of human observation.  Thus, statistical analyses 
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are highly dependent on how habitat is zoned or aggregated, and results can vary 
widely under different decisions (Henebry and Merchant 2002).  In some cases, evi-
dence of habitat quality is contradictory as scale varies.  For example, Dooley and 
Bowers (1998) found that habitat fragmentation reduced population size, but in-
creased reproduction within individual habitat patches.  It is important for manag-
ers to be very clear about what question they wish to have answered by the model 
and by the supporting field studies.  If management actions or land use questions 
are important requirements, the appropriate scale for those human-related activi-
ties must influence the choice of scale for research and modeling employed so the 
relevant species response can be identified. 

Such difficulties can be minimized by adequate information suggesting ecologically 
meaningful ways to combine or separate habitat into categories.  Pedlar et al. (1997) 
developed two models to describe variation in raccoon density; one at the macro-
habitat scale and one at the micro-habitat scale.  The two models were then com-
bined to form a more complete model relating raccoon (Procyon lotor) density to 
habitat at both scales. 

In Class I type efforts, TES managers usually will not have enough information to 
predict the most appropriate spatial scale for habitat aggregation.  If a few indi-
viduals of the species have been located, managers may consider a preliminary 
study to evaluate individual movement behavior and spatial aspects of habitat use 
and habitat distribution before designing a large survey to map species occurrences.  
Even such preliminary work should be considered at nested scales to the extent pos-
sible.  Such preliminary data, combined with clear objectives for research at Class I, 
can suggest the most appropriate scale or scales for habitat delineation, data collec-
tion, and analysis.  Additional guidelines and tutorials on these issues can be found 
in King (1991), King et al. (1991), and Rastetter et al. (1992). 

Choosing an appropriate scale becomes even more critical for Class II and III stud-
ies.  For example, Laymon and Reid (1986) found that a 16-ha cell size was ade-
quate for predicting Northern Spotted Owl (Strix occidentalis caurina) presence and 
absence, but was not appropriate for predicting habitat preferences as measured by 
frequency of use.  A cell size of 4 ha provided enough detail that high-use habitat 
was more consistently identified, although habitat data at this resolution did not 
fully explain Northern Spotted Owl behavior.  Similarly, Wiens et al. (1987) found 
that measured relationships between bird species presence, density, and habitat 
characteristics varied with virtually every change in spatial scale at which the sys-
tem was studied.  Following Wiens et al. (1987), it is suggested that: 
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1. Correlations of species counts with habitat features (Class II) should include the 
measurement of variation between plots, with plots placed across a wide range of 
environmental gradients, 

2. Research at Classes II or III be conducted over more than 1 year, so consistency 
in habitat selection can be assessed and temporal stochasticity can be considered, 

3. Detailed behavioral studies should be conducted to the extent possible, so the 
meaning of habitat associations can be assessed. 

Selecting and Sampling Variables 

Point and Plot Sampling 

Alldredge et al. (1998) lists assumptions that should be considered in studies that 
correlate habitat variables with organism response.  First, it is assumed that the 
locations available to the organism have been accurately identified.  For example, if 
some locations are not accessible due to barriers or distance limitations, they should 
not be included in a habitat study.  Second, it is assumed that the study accurately 
identifies used areas and unused areas.  Third, it is assumed that the environ-
mental variables measured influence habitat selection, and that these variables do 
not vary in their distribution during the study timeframe. 

Sampling of habitat for a correlative study begins with a hypothesis identifying the 
major limiting factors in the environment.  Sample design should encompass gradi-
ents of all primary environmental controls in order to sample the complete range of 
possible values.  It is imperative to include all conditions and the full potential 
range of values if the results will be used to make predictions outside of the study 
area boundaries, for example, to create a map of species occurrence for the entire 
installation. 

Austin’s (2002) review of environmental gradients in ecological modeling concludes 
that even for individual species, relevant environmental gradients and predictor 
variables vary from region to region.  Successful modeling relies on capturing the 
essential combinations of biotic and abiotic conditions through a rigorous survey de-
sign in the location of interest. 

Gradsect sampling (Austin and Heyligers 1989, 1991) is a gradient-directed form of 
sampling that aims to provide a description of the full range of variation over an 
area while minimizing survey costs.  Gradsects are simply transects arranged to 
contain the strongest environmental gradients in an area.  The technique maxi-
mizes variation between plots and has been shown to capture more information 
about habitat than random transects of similar length (Gillison and Brewer 1985).  
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However, it is a non-random technique, and is intended to characterize (survey) the 
landscape for variation, not to obtain unbiased estimates of mean values for the 
landscape (Austin 2002).  This type of survey would be useful for studies at Class I 
to identify rare species presence or absence, or at Class II to estimate relative den-
sity across habitat types. 

Boundary conditions are found on the edges of a species range, and describe the 
states in which habitat values are consistent with species occurrence to the states in 
which habitat values are not consistent with species occurrence.  Boundary condi-
tions and environmental gradients are perceived by organisms, and will affect spe-
cies response to habitat, especially as the variable becomes limiting.  For example, 
the Venus flytrap (Dionaea muscipula), a Federal Species of Concern found on sev-
eral southeastern Army installations, requires a soil pH range of 3.9 to 4.5 (Roberts 
and Oosting 1958).  These values for the environmental variable “pH” are boundary 
conditions.  A study design incorporating the maximal range of values for habitat 
characteristics allows the determination of boundary conditions for important vari-
ables (van Horne 2002).  This approach also makes it much easier to determine if a 
related model can be extended for use in a new location.  Such information reduces 
the risk of model application in an inappropriate environment (van Horne 2002) and 
assists in mapping the results. 

Remotely Sensed Data as Habitat Variables 

Availability, comprehensive coverage and interest in landscape-level phenomenon 
have all contributed to the popularity of remote sensed data in habitat modeling.  
Remotely sensed data support the examination of landscapes (see Landscape Met-
rics as Habitat Variables, page 19), which is critical for investigating species-habitat 
relationships of TES that are highly mobile or have large home ranges.  Data across 
large extents of land provide a means to map natural heterogeneity, regardless of 
the specific application.  Clark et al. (1993) used forest cover and stand maps from 
the U.S. Forest Service to develop a map of black bear (Ursus americanus) habitat 
with high potential for use.  Condition classes (phases of forestry production such as 
mature saw timber, pole timber, etc.) and forest type (pine, hardwoods, etc.), roads, 
streams and elevation were processed into new geographic categories using a geo-
graphic information system.  These habitat variables were then used to predict the 
probability of habitat use using a technique based on the Mahalanobis distance sta-
tistic. 

How useful is remote sensed data?  Can it substitute for data gathered in the field?  
One study from the California Mojave Desert reported that digital elevation models 
and derived variables such as slope could substitute for fine-scale field observations 
when remote sensed imagery resolution was approximately 5 ha.  The same study 
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found mixed results when trying to compare landform categories defined from re-
mote sensed imagery and from field observations, in part due to observer error in 
the field (Thomas et al. 2002). 

Corsi et al. (2000) conducted a literature review of 82 papers discussing species dis-
tribution models that utilized geographic information and GIS tools.  They include 
issues related to remote sensed data in their review.  There are two types of error 
inherent to remotely sensed images:  geometric and radiometric.  Geometric error 
results in a point on the image occurring in the wrong position relative to other 
points in the image.  Some causes of this error include movement in the sensing 
platform, distortion caused by terrain and the earth’s curvature, the earth’s rota-
tional skew, etc.  This type of error is routinely corrected during pre-processing.  
Radiometric error leads to differential distortion among electromagnetic bands.  It 
is caused by imperfections in equipment and differential scattering of different 
wavelengths for various reasons, such as irradiance variation and terrain topogra-
phy.  For more information on these types of error, see Richards (1986) and Colwell 
(1983).  For details about using remote sensed data in habitat modeling, see Corsi et 
al. (2000), Tso and Mather (2001), and Skidmore (2002). 

Assessment of error in remotely sensed data estimates the proportion of correctly 
mapped pixels in the image, a process that requires independent sampling of 
ground conditions for comparison.  Congalton (1988) explored optimal sampling de-
sign for error assessment by simulating five sampling schemes (simple random, 
stratified random, cluster, systematic, and stratified systematic unaligned [area-
weighted] sampling patterns) with different sample sizes across three different im-
age types (forest, rangeland, and grassland). He concluded that systematic sampling 
and stratified systematic unaligned sampling can overestimate parameters.  He con-
cluded that cluster sampling can be used, provided a maximum of 10 sample pixels 
per cluster are selected, and that stratified random sampling can be used when 
small areas are needed in the sampling scheme.  He also found that simple random 
sampling worked well in all situations. 

The number of samples must be traded off with the area covered in each sample, 
based on limited time and money available for error assessment work.  Curran and 
Williamson (1986) recommend that in a highly variable habitat type, such as a rain-
forest, many small-area samples are best, while in more homogenous habitat types, 
fewer, larger sample sites are more effective.  Toll (1984) specifies that heterogene-
ous image classes (i.e., forest, residential areas) are more accurately mapped at a 
resolution of 80 meters when compared to a resolution of 30 meters.  The converse is 
true for image classes that are more homogenous, such as agricultural land or 
rangeland (Toll 1984). 
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It is important to consider using fuzzy set theory when selecting or manipulating 
remotely sensed data, GIS applications, and the use of GIS data in modeling efforts.  
Fuzzy logic has been shown to be superior at representing the gradual transition of 
land characteristics during land evaluation processes.  For example, if an important 
boundary condition exists at 10 km from forest edge, Boolean logic would dictate 
that the locations at 9.5 km and 10.5 km be treated as totally separate conditions.  
With fuzzy logic, the difference between the two locations could be handled in a 
gradual manner that more closely resembles many ecological boundaries.  The use 
of fuzzy logic promises to reduce the level of information loss as compared to the use 
of Boolean logic for retrieval and overlay of GIS data (Zadeh 1994).  When appropri-
ate, fuzzy logic should be used to process data within GIS. 

Any error in the original remote sensed data is preserved, and sometimes increased, 
when layers are combined, something that is inherent to most species modeling ef-
forts.  Estimating the accuracy of final model output is called error propagation 
analysis.  The error within each layer must be measured.  The interdependence of 
data across layers, the interdependence of errors across map layers, and errors in 
any rules used to process (i.e., categorize) mapped data all affect the accumulated 
error of final spatial output. 

Landscape Metrics as Habitat Variables 

Landscape metrics describe heterogeneity across distances of land at a greater ex-
tent than most traditional field data collection.  Data often originate with remote 
sensing, either airplane photography or satellite imagery.  Landscape metrics are 
potentially useful any time heterogeneity through space is important.  For example, 
species that are highly mobile or have large home ranges (e.g., large predators, bats, 
and migratory herbivores) sample their environment over large extents (e.g., the 
endangered lesser long-nosed bat [Leptonycteris curasoae] may forage nightly across 
distances of 20 to 30 miles from day roosts; USFWS 1997).  In these cases landscape 
metrics should be examined as relevant habitat variables. 

In addition, it is often important to understand the context within which a survey 
point or habitat patch occurs.  Variables based on landscape metrics provide a quan-
tified description of the surrounding land.  Landscape configuration can influence 
organism movement, home range, and habitat choices, as well as survival and re-
production. 

There are many different landscape metrics.  A landscape is defined here as a mo-
saic of habitat patches in which a patch of interest is embedded (as articulated by 
Dunning et al. 1995).  Patch size, patch type, and patch context (spatial arrange-
ment, diversity) are major categories of metrics often used in species management 
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modeling.  Most metrics are not independent, and all are affected by resolution (see 
below) and boundary effects (see Point and Plot Sampling, page 16).  For more in-
formation, see Riitters et al. (1995). 

Most species-habitat models that incorporate landscape metrics will include a 
measure of patch size and some basic measure of distance between patches, con-
cepts taken from island biogeographic theory.  Walker et al. (2003) found that a sim-
ple model using patch size and distance between patches was not adequate to pre-
dict species distribution in the mountain vizcacha (Lagidum viscacia), a rodent.  
The reasons for this result were that (1) vizcacha habitat patches varied in habitat 
quality independent of patch size, and (2) features in the habitat matrix between 
patches (e.g., rivers) affected the ability of the species to move between patches 
(Walker et al. 2003).  Moilanen and Hanski (1998) came to a similar conclusion 
when trying to predict the distribution patterns of the Glanville fritillary butterfly 
(Melitaea cinxia).  Their most complex model included habitat classes derived from 
44 categories of land cover types from 25-m resolution Landsat imagery.  Habitat 
quality was influenced by perimeter type, presence of grazing, density of flowering 
plants, and abundance of larval food species.  The median patch size was 300-m2, 
less than half the area of each pixel of Landsat data.  This resolution clearly did not 
adequately characterize the matrix characteristics most important to the species.  
For some butterfly and beetle species, isolated patches surrounded by inhospitable 
matrix qualities are much less likely to be occupied than patches that are equally 
isolated, but surrounded by a more hospitable matrix (Ricketts 2001). 

In another study, patch size and a measure of isolation explained the distribution of 
the Florida scrub lizard (Sceloporus woodi) across a naturally fragmented environ-
ment.  Aerial color photos with 2-m resolution were used.  The measure of isolation 
included distance between patches, as well as matrix permeability and the area of 
occupied neighboring patches.  However, the model did not perform well in predict-
ing the distribution of a more widely distributed lizard, even though the two species 
are similar in body size, food habits, and habitat requirements.  The more common 
species has greater dispersal abilities and may be more tolerant of dense vegetation 
(Hokit et al. 1999). 

A much more complex model was used to predict the distribution and abundance of 
32 avian species across 57 cottonwood (Populus deltoides Bartr. ex Marsh.)patches, 
ranging in size from 0.4 ha to 205 ha (Saab 1999).  Here, landscape patterns were 
the most important variables predicting occurrence of many bird species.  The habi-
tat variables utilized were:  woody plant stem density, canopy cover, and ground 
cover.  Patch-level variables included:  patch size, perimeter to area ratio of each 
patch, length of patch, width of patch, edge contrast, and core area.  Matrix vari-
ables included:  percent of landscape the patch represented, Simpson’s index of di-
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versity, relative patch richness (including 10 nearby patches), Simpson’s evenness 
index, and an interspersion index.  Landscape structure was captured with distance 
to contiguous riverine forest, distance to nearest neighbor patch, and landscape 
edge contrast.  These variables were processed using principle components analysis 
(see Correlative Approaches, page 37) since many of them were correlated.  Multiple 
linear regression was used to evaluate the effect of the resulting variables on bird 
species occurrence and abundance.  The most influential variable overall was a 
measure of landscape composition (habitat types).  Landscape heterogeneity was 
also important, as was patch size and edge characteristics (Saab 1999). 

The resolution (pixel size) used to calculate landscape metrics is an important con-
sideration.  Trani (2002) calculated four measures of spatial heterogeneity, eight 
measures of fragmentation, and two measures of edge for 22 forested landscapes, 
each at 14 different resolutions, ranging from 30 m to 420 m.  Her results, below, 
suggest that some landscape metrics are better than others at maintaining values 
close to their original, most-detailed landscape value (in this case, 30 m) as coarser 
versions of the landscapes are generated. 

When measuring spatial heterogeneity, the landscape evenness index (as defined by 
Romme 1982) and the Simpson Index (as defined by Pielou 1977) change value less 
dramatically at coarse scales (pixel sizes above 270 m) than the interspersion index 
(as defined by Eastman 1997) and the binary comparison matrix (as defined by 
Murphy 1985).  The first two indexes display a change in value of less than 10 per-
cent when compared to the most detailed map of 30-m resolution.  In contrast, the 
latter two indexes display a change in value of 600 to 800 percent (Trani 2002). 

Fragmentation metrics lost information more dramatically following a decrease in 
grid size resolution in this order (from least to greatest):  forest cover (as defined by 
Lauga and Joachim 1992), contiguity (as defined by LaGro 1991), number of patches 
(as defined by Trani 1996) (patch size [as defined by Dunn et al. 1991] and inter-
patch distance [as defined by Urban and Shugart 1986] displayed similar re-
sponses), forest interior (as defined by Dunn et al. 1991), fragmentation index II 
(mean distance to non-forest pixels; as defined by Ripple et al. 1991), and fragmen-
tation index I (ratio between polygon count and pixel count; as defined by Monmo-
nier 1982).  Thus, if a study is limited to low-resolution spatial data, it may be best 
to utilize metrics such as forest cover or contiguity rather than either of the frag-
mentation indexes.  The specific responses of some metrics depended upon the com-
plexity of the original landscape or the presence of specific elements on the original 
landscape (Trani 2002). 

The two edge metrics performed similarly.  Both the total length of edge (as defined 
by Ranney et al. 1981) and the convexity (perimeter to area ratio; as defined by 
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Berry 1991) displayed a change in value of 50 percent when the value from the 420-
m landscape is compared to the value from the 30-m landscape.  Both indexes lost 
information with each successive increase in pixel size (Trani 2002). 

Incorporation of Uncertainty in Habitat Measures 

Variables measured in the field and characterized by sample means include uncer-
tainty around the mean, which is usually expressed as a standard deviation.  Al-
though the mean value is often input into models, the variation is often ignored.  
However, the variation captures both the sampling error and natural heterogeneity.  
Natural heterogeneity is comprised of temporal, spatial and individual variation 
(White 2000). 

White (2000) argues that temporal and individual variation must be included in the 
basic model, and spatial variation should be as well, whenever the habitat is spa-
tially structured.  To assess the underlying natural variation in habitat measures, it 
is first necessary to remove sampling error.  A procedure is provided by White 
(2000), citing Burnham et al (1987).  Although White (2000) utilizes animal demo-
graphic data in his example, he adequately demonstrates that sampling error can 
be removed to reveal unbiased estimates of natural variation. 

The use of confidence intervals explicitly includes variation in a habitat-based 
model, more accurately reflecting the range of possible, even likely outcomes, in 
model output.  Bender et al. (1996) demonstrated two methods to estimate confi-
dence intervals around habitat suitability index (HSI) model output:  Monte Carlo 
and nonparametric bootstrapping. 

In the Monte Carlo approach, the mean and standard deviation were used to gener-
ate 1,000 random values fitted to a normal distribution.  This was repeated for each 
variable.  Then values for each variable were randomly selected for input into 1,000 
runs of the HSI model to produce 1,000 estimates of the final HSI score.  Since the 
underlying distribution of variables may not be known, nonparametric bootstrap-
ping was conducted as a second method of generating confidence intervals.  One 
thousand random subsamples were generated from the original data samples, (with 
replacement) and then used to run 1,000 iterations of the HSI model, as above.  Ap-
proximate 90 percent confidence intervals were created by eliminating extreme val-
ues from both ends of the final distribution of HSI scores (Bender et al. 1996). 

Bootstrapped confidence intervals were always tighter than Monte Carlo confidence 
intervals due to small sample sizes and large variation.  In this example, mean HSI 
scores ranging in value from 0.38 to 0.81 were not statistically different (Bender et 
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al. 1996).  Such an overlap indicated that varying HSI scores were not correlated 
with actual differences in habitat quality, and thus, a model validation study would 
not expect to report high estimates of HSI accuracy (Bender et al. 1996).  However, 
it is useful to know that this apparent lack of accuracy could be entirely due to vari-
ability in input variables, not necessarily incorrect model relationships.  Managers 
should include confidence intervals as an important aspect of the modeling exercise, 
whenever input variables consist of mean values with some inherent variation.  For 
more details on these two methods of calculating confidence intervals, see Bender et 
al. (1996). 
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6 Quantification of Species Responses 

Sampling Schemes 

There are two important aspects to sampling design.  First, the sampling universe 
should be identified.  The sampling universe defines the area in which samples will 
be chosen; it also defines the area in which results can be applied.  For Army TES 
management, a sampling universe as large as possible is recommended.  Canton-
ment and, in some cases, dudded live fire areas, likely will be excluded.  But all 
likely or possible habitat areas, as well as nearby lands and plant communities that 
are not known to necessarily harbor the focal species should be included.  The sec-
ond aspect is development of the sampling scheme for examination of the sample 
universe.  This second aspect requires many decisions that affect the choice of sta-
tistics, and the strength of results and interpretations.  The following paragraphs 
summarize issues in point and plot sampling, territory mapping, and present cau-
tions related to the use of density estimates.  See Thompson (2002) for more details. 

Point Sampling 

Completely random and completely non-random, intentional designs are rarely used 
(Pendleton 1995).  The most common sampling schemes for point sampling are 
stratified, cluster, or systematic sampling (for more details, see Cochran 1977).  
Stratified sampling and cluster sampling are hierarchical schemes.  Stratification 
occurs when the largest area is divided into naturally-defined blocks, possibly based 
on vegetation type or a geomorphological feature, such as a drainage basin.  Within 
each block, a certain number of sampling points are placed randomly.  Stratified 
sampling is best used when you suspect large between-block variation and small 
within-block variation.  Cluster design starts out with a random selection of large 
blocks of space, followed by intentional allocation of points within the selected 
blocks, usually to minimize travel time.  Cluster design works well in the study of 
landscapes with small between-block variation and large within-block variation.  
More complex statistical analyses are often needed for these two hierarchical 
schemes compared to a simple random point design or a systematic design.  Sys-
tematic sampling should always be started at a random point.  Random sampling 
and systematic sampling are not recommended for rare species surveys, measuring 
characteristics of populations with clumped distributions, or measuring characteris-
tics of populations with known temporal fluctuations.  However, comprehensive 
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mapping of a species’ local distribution would benefit from systematic sampling 
(Pendleton 1995).  For this purpose, selected points are often considered the center 
of a fixed circle, and sign of the focal organism is sought throughout the circle plot, 
as in most avian point count studies. 

For very rare sessile species, or mobile species dependent upon a specific, very lim-
ited resource, such as a specialized shelter type, sampling units can be located pur-
posefully at known places of species occurrence or resource occurrence.  For exam-
ple, van Manen et al (2002) quantified habitat conditions at all known butternut 
tree (Juglans cinerea L.) locations in the Great Smokey Mountains National Park to 
develop a predictive model for use in pinpointing further survey efforts.  Projects 
that are categorized as Class I that are fortunate enough to possess some limited 
occurrence data should utilize this methodology as an initial step toward developing 
species-habitat information.  This approach can be used to develop a correlative 
study or a resource selection study.  This approach can be combined with expert 
opinion regarding habitat requirements and habitat conditions.  Field results as 
well as species expert opinion can be used to identify locations of potential species 
occurrence. 

Point sampling is adequate for surveys that are categorized as Class I.  Since it is 
much less time consuming than territory mapping or radio-tracking individuals, 
point sampling is recommended for initial distribution surveys at Class I.  However, 
point sampling is not recommended for projects that are categorized as Classes II or 
III.  Difficulty in detecting the focal organism can weaken the power and accuracy of 
point count methods.  Sauer et al. (1994) reported more than 50 percent of all birds 
are missed at any point during avian point counts.  Estimation of detection prob-
abilities using variable circle plots or mark-recapture studies, especially across dif-
ferent habitat types, allows for the adjustment of counts.  A further reference on 
how to incorporate detection probabilities into field studies of this nature can be 
found in MacKenzie and Kendall (2002).  Preliminary detection studies are very ex-
pensive and not practical for extensive surveys (Pendleton 1995).  However, unless 
it is possible to calculate appropriate detection probabilities, and such probabilities 
are considered in the analysis, point counts are not considered rigorous tools for es-
timating abundance (Burnham 1981).  The variability of detection can be reduced 
by rigorously standardizing the sampling protocol used.  It is not known how effec-
tive such efforts are, but it is unrealistic to think that all factors affecting detection 
probabilities can be controlled (Pendleton 1995).  Many additional issues deserve 
careful attention when designing point count census surveys (see Ralph et al. 1995 
for many specific considerations for point count survey design). 
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Territory Mapping 

Territory mapping has been considered the standard against which less intensive 
census methods are compared (Cyr et al. 1995).  Territory mapping can focus on 
home range estimation, core area estimation, and utilization distribution:  Home 
range is defined as the area used during an individual’s normal activities (Burt 
1943).  Core area is defined as the area used most frequently by an individual 
(Samuel et al. 1985).  The utilization distribution (UD) describes the most detailed 
pattern of space use by individuals and can be used to derive core areas (Andreas-
sen et al. 1993).  The following techniques have been applied for calculating area 
use patterns:  minimum convex polygon (MCP; Dalke and Sime 1938, Mohr 1947), 
cluster analysis (Kenward 1987), harmonic mean (Dixon and Chapman 1980), and 
the Kernel-UD (Worton 1989). 

Carter et al. (1999) documented home range sizes and characteristics of bog turtles 
(Clemmys muhlenburgii) at three sites in Virginia.  A total of 29 adults were radio-
tracked; 10 adults were tracked for both years of study.  Two different procedures 
were used to estimate home range size:  minimum convex polygon (MCP) and clus-
ter analysis.  Cluster analysis describes intensity of use by defining one or more core 
areas of use.  MCP is the traditional method of choice, and offers the possibility of 
comparing new research results to older research results.  MCP is known to be bi-
ased towards overestimation of area, whereas cluster analysis can underestimate 
area if the number of locations is relatively small (Kenward 1987).  The home range 
sizes were similar for bog turtles of both sexes and for turtles at all three sites, re-
gardless of estimation method used.  The study was small in scale and duration, 
and thus offers limited value for making management recommendations.  However, 
studies of this scale can be useful when conducted in the management area of con-
cern, and can produce useful estimates of habitat carrying capacity and population 
estimates for planning purposes.  It is recommended that home range studies utilize 
more than one estimation procedure, and interpret results explicitly in light of 
known ecological considerations to assist in application for management purposes. 

Hansteen et al. (1997) reported a more detailed comparison in which 47 root voles 
(Microtus oeconomus) were radio-collared and relocated every 30 minutes over 1 to 3 
days, with total sightings ranging from 40 to 144 for each individual animal.  Three 
estimators were compared in this study:  the MCP, the cluster, and the kernel.  The 
kernel provided a nonparametric approach to home range analysis.  It does not as-
sume any underlying spatial distribution.  It yields a smoothed bivariate distribu-
tion representing the animal’s UD.  This study also looked at the effect of increasing 
grid cell size on home range estimates.  Results indicated that the kernel estimator 
was not affected, while polygon estimators (MCP and cluster analysis) resulted in 
larger home range estimates with increasing grid cell size (Hansteen et al. 1997). 
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An organism may find itself in its home range in a particular habitat for a variety of 
reasons, and its subsequent choices may have little to do with habitat quality or op-
timal choices across a larger spatial area (Smallwood 2002).  Any study of habitat 
choice by individuals should evaluate the demographic status and spatial relation-
ship of those individuals to the entire population so the resulting conclusions about 
habitat quality and habitat use can be used at the scale needed (probably the scale 
of the whole installation). 

Radio-tracking studies must be designed with an awareness of pseudoreplication 
(Hurlbert 1984) and its effects on the chosen statistical tests.  For example, in the 
bog turtle study, the sampling interval was kept at 1 day or longer, which is known 
to be enough time for a turtle to move across its entire home range.  Thus, the re-
searchers were able to consider each observation as independent from the others 
(Carter et al. 1999).  Hansteen et al. (1997) used Schoener’s ratio (Schoener 1981, 
Swihart and Slade 1985, 1997) to assess autocorrelation, which in this case means 
pseudoreplication based on resighting intervals that are too small and are thus not 
independent.  Swihart and Slade (1985, 1997) also provide a method for identifying 
the minimal time interval between non-autocorrelated intervals and for identifying 
activity rhythms that may be present in the data.  In the vole study, Hansteen et al. 
(1997) found that the two shortest time intervals (30 and 60 minutes) created auto-
correlated data, probably because the animals did not have time to move sufficient 
distances.  They found higher degrees of autocorrelation in male movements com-
pared to female movements. 

There is an inherent tradeoff between risks of autocorrelation and sample size, in 
radio-tracking data.  Increasing the frequency of resightings may increase autocor-
relation, but also provides a larger sample size and more apparent statistical power 
in the study.  Statistical power is weakened if there is strong spatial or temporal 
autocorrelation, due to a reduction in the “effective” sample size of the data set.  
Hansteen et al. (1997) evaluated the importance of sample size by subsampling a 
data set using resampling procedures. Their results indicated that all resampled 
data sets grossly underestimated home range and core area sizes, due to lowered 
sample sizes, and this was especially true for the MCP method. 

Estimating Abundance and Density of Species Populations 

Class II research and modeling II attempts to understand the differences in species 
abundance and/or density among different habitats.  For example, it is often desir-
able to know whether species at risk, such as migratory songbirds, experience lower 
breeding populations in areas managed for timber harvest compared to areas man-
aged for natural values.  When addressing such questions, a great deal of caution 

 



28 ERDC/CERL TR-05-30 

must be exercised in interpretation and application of results.  Although it seems to 
be simple at first glance, understanding quality of habitat based on numbers of in-
dividuals is problematic.  Studies at Class II should be grounded in knowledge of 
species natural history, intraspecific social behavior and, in particular, territorial 
habits, when applicable.  Van Horne (1983) insisted that multi-year intensive demo-
graphic studies (Class III) are truly needed to differentiate between source and sink 
habitat areas for management purposes. 

Today, it is recognized that estimates of animal density are not good indicators of 
habitat quality.  Van Horne (1983) alerted researchers to the following concerns: 

1. In temperate zones, winter habitat may dictate the carrying capacity of the land, 
so observations in summertime may not have significant ecological meaning.  
Site fidelity could result in patterns reflecting past habitat conditions. 

2. If dominant individuals secure territories in high quality habitats, subdominants 
and juveniles may be forced to concentrate in low quality habitat. 

3. At least one theoretical model of behavior implies that new immigrants would 
settle into lower quality habitats to avoid interactions with established individu-
als. 

4. Patchy habitat that allows for movement of individuals as conditions change, 
habitat generalist species with high reproductive capacity, and habitat that is 
unpredictable through time all exacerbate potential problems with using simple 
density estimates for assessing habitat quality (van Horne 1983). 

Density may still be a good indication of habitat quality for rare species, especially if 
seasonal issues are accounted for, and habitat is not patchy (which would increase 
the likelihood of demographic-based localized extinction, unrelated to habitat qual-
ity). 

Vickery et al. (1992) tested the hypothesis that population density indicates habitat 
quality by also measuring reproductive success across habitats of varying densities 
for three grassland sparrows.  At the scale examined, the relationship between den-
sity and reproductive success differed among all three species.  For the Grasshopper 
Sparrow (Ammodramus savannarum), reproductive success was lowest in habitats 
associated with lowest density, and was highest in medium-density habitats.  For 
Savannah Sparrows (Passerculus sandwichensis), as density of territories increased, 
reproductive success declined significantly.  For Vesper Sparrows (Pooecetes 
gramineus), there was no significant relationship between density and reproductive 
success, although the pattern was such that density could have been used as an in-
dex of habitat quality (Vickery et al. 1992). 

 



ERDC/CERL TR-05-30 29 

Based on such empirical data, as well as numerous theoretical reasons, managers 
should not place high value on simple estimates of density when evaluating habitat 
quality for conservation and management purposes. 

Demographic Response 

Detailed demographic data are needed for many Class III questions and analyses, 
whether correlative models or population viability analysis (PVA; see Population 
Viability Analysis, page 30).  An example of demographic modeling is the Fort Hood 
Avian Simulation Model (FHASM) developed to aid in habitat management of the 
golden-cheeked warbler and the black-capped vireo on Fort Hood, Texas.  In this 
complex model, different habitat types were associated with different probabilities 
of avian presence, reproductive success, and survival, based on a combination of ex-
pert knowledge and correlative data from field studies (Trame et al. 1997). 

In most cases, demographic models are based upon multi-year studies of marked 
individuals, in which certain vital rates are measured.  The age or size (some meas-
ure of “state”) of each individual must be measured, along with survival data, and 
rate of reproduction, over a period of many years.  It is important that the method of 
marking individual animals does not alter their rate of survival or reproduction.  
The marked individuals should be representative of the population as a whole, so it 
may be necessary to use a stratified sampling scheme to capture potentially impor-
tant, but rare, individuals, such as large, old individuals.  Each year, the youngest 
cohort of individuals must be marked and added to the study. 

All marked individuals should then be repeatedly located and measured at a regular 
interval, usually once a year, (unless management questions lead to censuses at 
multiple seasons).  Special procedures may be needed to capture information about 
certain aspects of species’ life histories, for example, data about seed banks and ju-
venile dispersal and survival require experimental manipulation or special census 
efforts.  Data collection should be repeated as many times as possible.  With ade-
quate sampling, the variation in vital rates can be estimated, providing more realis-
tic results to support management decisions. 

When sample sizes are small, estimates of survival are likely to be in error.  Morris 
and Doak (2002) advocate a two-step procedure for calculating survival rates for 
classes of structured populations, as would be needed in a structured population vi-
ability analysis (in which more than one demographic state is recognized).  First, 
perform a logistic regression of survival vs. age (or stage or size) with all or most of 
the data.  Then use the regression equation to calculate survival for each class sepa-
rately.  In many cases, the smallest or youngest class(es) should be withheld from 
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this procedure.  The youngest individuals are likely to experience significantly 
higher mortality rates during weaning and/or dispersal, and that information 
should be maintained separately with an independent calculation of survival for the 
class or classes for which that is pertinent.  Scatter plots can reveal sharp disconti-
nuities in vital rates and guide classification decisions when population structure is 
considered explicitly in a model. 

The fertility rate is equal to the average number of offspring produced by individu-
als (in each class, if population structure is considered) during the interval between 
census visits.  The number must reflect the number of offspring born, regardless of 
how many survive until the next census following their birth.  This normally re-
quires extra visits between census intervals.  Some organisms use more than one 
method of reproduction.  Many plants have both sexual and vegetative reproduction, 
and this may be best handled with separate classes that reflect meaningful differ-
ences in survival and growth rates (Morris and Doak 2002). 

Population Viability Analysis 

Population viability analysis can be used to predict population responses to habitat, 
environment, and other factors, such as management, for research in Class II and 
Class III.  Discussion of PVA is included in this section of the document because the 
output of PVA is focused on population size and viability over time.  For extensive, 
useful instruction on conducting PVA, see Morris and Doak (2002). 

PVA should not be conducted with sparse data.  It is advisable to have at least 10 
years of data before conducting a PVA if the results will be used for important deci-
sions such as legal commitments (Morris and Doak 2002).  If a species has a good 
possibility of becoming a significant management issue in the future (e.g., a species 
of concern), it is wise to start collecting viability-oriented data as soon as possible so 
informed scientific decisions can be made later.  PVA is appropriate when signifi-
cant conflicts between conservation and land use exist, when regulatory require-
ments demand simulation results as a basis for decision-making, and when ade-
quate data has been gathered over a period of time to support such simulation.  As 
discussed later, a PVA with extremely wide confidence intervals may be useful, be-
cause it can demonstrate just how little confidence exists in any decision related to 
species management, and can demonstrate priorities for additional data collection.  
It is helpful and realistic to adopt the attitude that PVA is never finished and that 
there is no final word. 
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Count-based PVA 

The term “count-based PVA” is used for an analysis of Class II research.  The model 
requires counts of a population over time, but not necessarily in consecutive years.  
A subset of the population can be used, such as breeding females, but an assump-
tion is made that the proportion of breeding females remains relatively stable 
through time.  Ten census efforts are considered the minimum needed, even for this 
relatively simple PVA procedure.  If census counts were made at regular intervals, 
an arithmetic mean and sample variance can be calculated on the change in count 
numbers (Morris and Doak 2002).  This will yield metrics associated with popula-
tion viability and variance in population count changes over time. 

If censuses do not occur at regular intervals, linear regression can be used to esti-
mate viability, quantify variance, construct confidence intervals around viability 
metrics, and assess temporal autocorrelation and outliers in the count data.  It of-
fers more information than the arithmetic mean method, and thus, is recommended 
over the arithmetic mean method even for annual census data. 

Count-based PVA methods contain six important assumptions: 

1. Negligible density-dependent effects over the predicted timeframe. 
2. An absence of demographic stochasticity. 
3. An absence of temporal trends in environmental conditions. 
4. Environmental conditions are uncorrelated from one year to the next. 
5. Environmental variation is small to moderate (no catastrophes, no bonanzas). 
6. Error in observation during census counts is negligible (Morris and Doak 2002). 

Assumptions 1, 3, and 4 above can be tested through methods that are described in 
Morris and Doak (2002).  When users understand violations of assumptions, the in-
terpretation of results can be modified accordingly.  For example, results can be 
thought of as “optimistic” or “pessimistic,” based on any violations of assumptions 
that are found.  Demographic stochasticity can be managed by setting an appropri-
ately high quasi-extinction threshold. 

Count-based PVA offers an initial assessment of long-term population viability with 
low data requirements and simple calculations.  It is recommended for Class II 
management questions when repeated census data are reliable and an initial sense 
of viability is desired.  It is not a procedure for making conservation decisions.  How-
ever, careful assessment of assumptions allows some insight into the risks posed to 
populations of conservation interest, especially when used to make comparisons be-
tween different populations (Morris and Doak 2002).  More sophisticated count-
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based PVAs can be executed as well, which are more robust with respect to the as-
sumptions listed above, and are covered in detail by Morris and Doak (2002). 

Demographic PVA 

Demographic (Class III) PVA includes a range of analyses.  The following sections 
discuss single population PVA, multi-site PVA, and spatially explicit, individual-
based PVAs.  Each type of PVA uses demographic response data of different groups 
within populations (such as male/female or age-based groups) to predict viability of 
populations through time.  Models in Class III can provide detailed management-
oriented results, such as:  determining that increasing survival of young is more 
important for long-term population viability than increasing reproduction of adults. 

Single Population PVA 

Working with the structure of populations (i.e., different subsets within popula-
tions) requires choosing a basis for classifying individuals into categories.  The 
choice most often is between size, stage, or age.  Usually, practical life-history con-
siderations lead to a choice that reflects meaningful differences between classes.  
For example, species that are indeterminate in growth (e.g., gopher tortoise) are of-
ten classified based on size.  Species displaying obvious morphological differences 
during different life history stages, such as larval or juvenile stages, are categorized 
by stage.  A combination of approaches can be used, such as age or stage classes 
that end with a large class of all individuals above a certain age.  An ideal classifi-
cation choice would be representative of the age/stage structure in nature, be highly 
correlated with vital rates for the population, and be easy to measure with accuracy 
and repeatability (Morris and Doak 2002).  If a classification metric and discrete 
classes are difficult to identify, statistical analyses can be used to assist in the proc-
ess, as well as provide the estimates of vital rates that are needed for the PVA itself.  
Details about these statistical tests are found in Morris and Doak (2002). 

Typical output from PVA includes the population growth rate, or the proportion by 
which the population will change in size from year to year, and the extinction risk, 
or “the probability of a population hitting a quasi-extinction threshold by a given 
time ‘t’”(White 2000).  Another measure, estimating the amount of time before 
quasi-extinction is reached, can be misleading (Ludwig 1996).  Single population 
PVA can identify important life stages that are critical for population stability or 
growth.  For example, a size-structured demographic model for the desert tortoise 
(Gopherus agassizii) revealed that survival of large adult females was critical to 
population stability or growth.  In contrast, large improvements in other vital rates 
would not be nearly as effective (Doak et al. 1994). 
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When random processes affecting survival and fertility rates are included in a PVA, 
random numbers must be generated from a distribution of values in order to pro-
duce specific representative vital rates from each step in the simulation.  The under-
lying distribution of values must be chosen.  Morris and Doak (2002) discuss three:  
the beta distribution, the lognormal distribution, and the stretched beta.  The beta 
distribution is correct when vital rates represent binary events, such as survival 
and even growth rates.  Melton et al. (2001) used beta distributions to generate val-
ues for adult Red-cockaded Woodpecker (Picoides borealis) survival, juvenile sur-
vival, and probability of nesting success.  The lognormal distribution, which is 
bounded by zero and positive infinity, is often used to simulate fertility rates.  But, 
Morris and Doak (2002) recommend use of the stretched beta distribution for this 
parameter.  The stretched beta distribution is a rescaled beta function, having an 
upper and lower limit defined by the modeler.  It provides more realistic values for 
fertility rates than the lognormal distribution. 

Random variable generators can be used to produce vital rate values for individual 
organisms at each time step.  In a Monte Carlo simulation, selection of survival, 
growth, and fertility replicates is decided by a set of independent random choices, 
based on the mean vital rates for the appropriate subpopulation class.  Often, Monte 
Carlo simulations are performed when the population or class size is below a certain 
level, due to calculation constraints.  Modelers commonly choose to perform Monte 
Carlo simulations when numbers of individuals drops to 20 to 100.  Morris and 
Doak (2002) recommend using 50 individuals as a reasonable cutoff value. 

Multi-site PVA 

Multi-site PVAs are required when TES management questions concern differences 
among sites or when tradeoffs between sites are contemplated and managers need 
to know the importance of protecting different sites.  When more than one popula-
tion (or metapopulation) is included in a model, simulations get very complex.  Of-
ten, the proper data is not available to support the complexity included in such 
models.  It is essential to work within the context of realistic data limitations as 
modeling becomes more complicated and detailed.  Stith et al. (1996) describe an 
exercise in multi-site PVA for the Florida Scrub-Jay (Aphelocoma coerulescens).  
Their book chapter summarizes a state-wide survey to document the distribution of 
the species, extensive field efforts to quantify dispersal behavior, difficulties in clas-
sifying and organizing metapopulation patterns across large distances, the incorpo-
ration of field data into a complex multi-site PVA, and specific conservation results 
(Stith et al. 1996).  A relatively simple application of a multi-site model was devel-
oped by Doak (1995) to examine the movement between source and sink habitat for 
the Yellowstone population of grizzly bears (Ursus arctos).  This is not a spatially 
explicit model, but rather incorporates different vital rates for source habitat vs. 
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sink habitat and considers movement of bears between the two habitat types and 
the conversion of source habitat into sink habitat through time.  This model re-
vealed that ongoing, slow habitat degradation can result in long lag periods between 
critical levels of habitat deterioration and detectable change in population sizes, 
even in the presence of excellent monitoring data (Doak 1995). 

Ideally, all of the data needed for a single-site PVA is available for each site, plus 
movement rates between sites, plus estimates on how fluctuations through time in 
all vital rates and movement rates are correlated among sites.  Since ideal data is 
rarely if ever available, the practical aspects of data availability in the context of 
multi-site PVA efforts are discussed below. 

Since separate data on survival, growth, and fertility rates are usually not available 
for multiple sites, modelers often assume that vital rates are the same at all sites, 
but that carrying capacities differ among sites.  In this case, carrying capacity 
would be estimated for each site through some sort of correlative or expert opinion 
model, as discussed previously.  The simplifying assumption about vital rates un-
derestimates the value of any site contributing significantly more towards species 
fitness than the site(s) used for vital rate data collection.  Another simplifying tactic 
is to allow many vital rates to be equal across sites, but to gather new data on a 
subset of vital rates and model those differences explicitly.  For example, reproduc-
tion may be closely linked to site size and location in passerine birds, and multi-site 
data could be incorporated for this important factor.  With certain well-studied 
processes, such as reproductive success in passerines, a generally documented rela-
tionship could be used in the model in place of gathering new data from the sites of 
interest.  However, this assumption reduces accuracy in the model, since reproduc-
tive rates would be based on data from different locations and possibly from differ-
ent species. 

Modelers rarely have sufficient data from multiple sites over sufficient time periods 
to calculate correlations in vital rates among sites.  However, surrogate variables, 
such as weather data, are often substituted.  For example, Lahaye et al. (1994) 
looked at the correlation between rainfall measured at different weather stations, 
and then assumed that the strongest possible correlation in growth rates between 
populations of California Spotted Owl (Strix occidentalis occidetnalis)would be 
equivalent to the correlation in rainfall patterns.  However, the modelers also ran 
simulations with lesser degrees of correlation and simulations without any correla-
tion in growth rates.  Considering all such possibilities can provide a “rough guess 
as to which populations are most correlated and which are less so” (Morris and 
Doak 2002).  An alternative method is to use data on catastrophic events or bonan-
zas (very rare events with disproportionate impacts on demographic rates, negative 
or positive, respectively).  Finally, it is reasonable to assume that populations in 
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closer proximity will have more correlated vital rates compared to populations 
across longer distances.  Akcakaya and Atwood (1997) used a multi-site model for 
the California Gnatcatcher (Polioptila californica).  They assumed that correlations 
in vital rates would decline exponentially with distance.  They ran several different 
versions of the model using alternative guesses for the rate of decline.  The most 
conservative overall strategy when guessing about spatial or environmental rela-
tionships in vital rates is to assume no negative correlations, and then vary the 
magnitude of positive correlation rates over a reasonably large range of values. 

Multi-site PVAs require data on the rate of movement of individuals between sites.  
Movement data can be derived from mark-recapture studies that document rates of 
individual movement between sites.  Complications such as different movement 
rates for males, females, different age classes, or size classes of individuals, and the 
effects of intervening habitat types are all important.  These can be analyzed and 
incorporated if sufficient sampling effort has occurred.  Unfortunately, dispersal 
rates are often so low that even an aggressive effort will document only a few in-
stances of between-site movement.  Individual movement behavior can be used to 
estimate movement behavior between subpopulations.  The calculations are very 
technical.  Turchin (1998) contains details on various methods that can be used to 
estimate animal movement.  In all cases, the very aspect of movement needed for 
the PVA process, movement across the longest possible distances, is problematic.  
First of all, the farther an individual moves, the higher the probability of mortality.  
Difficulty in monitoring movement increases roughly proportionate to the square of 
the distance (Robert Melton, Ecologist, U.S. Army Engineer Research and Develop-
ment Center/Construction Engineering Research Laboratory, professional commu-
nication, August 2004).  Dispersal mortality often must be estimated and included.  
Secondly, movement behavior across different habitat types, and at the ecotones be-
tween them, may be needed for some methods (Morris and Doak 2002). 

Spatially Explicit PVA 

Spatially explicit PVAs can be based on population counts or on demographic data.  
This section describes PVA procedures for models in which the spatial relationships 
between sites are explicitly defined, usually in a GIS.  The count-based, multi-site 
PVA is based on a transition matrix that includes numbers of individuals at differ-
ent sites.  It is comparable to a demographic transition matrix that would be based 
on numbers of individuals in different subsets of the population, such as different 
age classes.  Dispersal between sites would be included as well.  The results of spa-
tially explicit PVA include output such as the quasi-extinction risk of the population 
at each site over a specified period of time, making it possible to compare the risks 
posed at individual sites.  Managers can examine the relative effectiveness of con-
serving different combinations of sites.  TES managers can also see how the risk of 
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comprehensive extinction declines with the addition of subsequent sites to an over-
all conservation strategy. 

Demographic, spatially explicit PVAs simply include location data for multiple sub-
populations to the type of PVA discussed as a single population PVA, above.  How-
ever, all other parameters may differ among subpopulations.  This variability cre-
ates considerably more complex models.  It is very important to understand the 
possible correlations in demographic rates among different sites.  The model exists 
as a large transition matrix, including both class- and site-specific demographic 
rates, and movement probabilities, that also can be class- and site-specific.  Analysis 
is by simulation.  Details on spatially explicit demographic PVA are found in Morris 
and Doak (2002). 

The most complex PVA discussed here is the individual-based model.  In such a 
model, the movements and demographic fates of individual organisms are modeled 
explicitly by computer simulation, usually across a detailed GIS-based habitat map.  
In this way, the complexity of habitat interrelationships, realistic movement paths, 
barriers, and responses to habitat can be explicitly considered in the simulation.  
There is the potential to include more ecological and biological realism.  The draw-
backs are related to data limitations.  This issue is especially critical with the highly 
complex nature of individual-based models.  It is always more important to create 
an accurate model than it is to include many realistic elements based on guesswork.   

An individual-based, grid-based population viability model was created to evaluate 
the population response of Bachman’s Sparrow (Aimophila aestivalis) to various 
habitat management plans.  This model was used to evaluate the effects of a habitat 
management plan for the conservation of Red-cockaded Woodpeckers, since the two 
species exist in the same habitat type (Liu et al. 1995).  The model included sparrow 
population dynamics, spatial distributions, dispersal behavior, response to habitat 
types, and forest growth.  Each (simulated) individual sparrow was followed from 
birth, through dispersal, reproduction, and death.  Three alternative forest harvest 
plans were simulated:  random harvest pattern, harvesting oldest stands first, and 
harvesting clumps of adjacent stands.  Important differences were seen in the re-
sponse of sparrow population dynamics to the three different harvest plans.  Simu-
lation results led to specific recommendations for making modifications in habitat 
management planning to support both Bachman’s Sparrow and the Red-cockaded 
Woodpecker (Liu et al. 1995).  Another individual-based population viability model 
for the Red-cockaded Woodpecker was developed by Walters et al. (2002). 
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7 Modeling the Relationship Between 
Habitat and Species 

Correlative Approaches 

James (1971) introduced the idea of the niche-gestalt as a way to think about spe-
cies habitat, and she used multivariate analysis to operationalize Hutchinson’s 
(1957) multi-dimensional niche theory in evaluating habitat.  This conceptual link 
underlies the application of multivariate correlative statistical procedures in evalu-
ating species habitat relationships.  The following paragraphs briefly discuss a 
number of linear multivariate approaches:  cluster analysis, discriminant function 
analysis, principle components analysis, and multiple regression. 

Cluster analysis, which encompasses a number of different algorithms, can be used 
to classify different samples in terms of shared characteristics.  For example, 100 
habitat locations could be measured for 15 characteristics.  Cluster analysis would 
reveal the degree of similarity among those characteristics and aggregate locations 
together such that within-group similarity is maximized and between-group simi-
larities are minimized.  This type of analysis can determine if a given group can be 
divided into subgroups based on statistical differences.  Cluster analysis is most ap-
propriate for categorical (descriptive) rather than continuous data (James and 
McCullough 1990).  Conservation biologists most frequently use cluster analysis to 
identify combinations of species with similar habitat requirements.  Often, cluster 
analysis will be imbedded in a larger statistical effort, when grouping is desired.  
Cluster analysis will create clusters whether or not natural groupings exist, and can 
be over-interpreted as a result (James and McCullough 1990).  Variables all should 
be of a similar data type (e.g., continuous interval, categorical, etc.), since mixing 
data types is problematic in cluster analysis.  Missing data points are also problem-
atic, so every location must be characterized with the same set of variables.  Cluster 
analysis is also sensitive to outliers.  Therefore, exploratory data analysis to locate 
and remove outliers is highly recommended.  Most clustering procedures are biased 
towards finding hyperspherical or hyperovoid clusters, and are not good at detecting 
U-shaped or other odd-shaped clusters, even though there is no reason to assume 
that any data will cluster in a particular shape.  In addition, the many different 
choices among clustering procedures make it difficult to identify the most powerful 
test for any given application.  Performing several different clustering techniques 

 



38 ERDC/CERL TR-05-30 

and comparing the results is worthwhile.  For more details on choice and applica-
tion of cluster analysis, see McGarigal et al. (2000). 

Discriminant function analysis (DFA) tests for multivariate differences among 
groups determines which variables are most useful for discriminating among 
groups, determines whether one subset of variables performs equally well as an-
other, and identifies which groups are most alike and most different.  As an exam-
ple, DFA was used to identify characteristics of preferred roost habitats for northern 
long-eared bats (Myotis septentrionalis) by Menzel et al. (2002).  The researchers 
located 12 roost trees by following 7 radio-tagged lactating bats.  They measured 24 
variables at the 12 roost locations and at random sites.  Stepwise DFA was used to 
determine which of the 24 variables discriminated among roost and random sites.  
They identified three variables (i.e., roost height, roost diameter and basal area of 
nearby snags) that differed among roost and random sites and could be used in fu-
ture predictive models (Menzel et al. 2002). 

Discriminant function analysis requires one or more categorical grouping variables 
(random vs. roost site in the above example), and two or more continuous discrimi-
nating variables (the 24 variables measured).  Discriminating variables should be 
continuous for the technique to work efficiently.  The discriminating variables can 
be dependent or independent.  The sampling groups must be mutually exclusive and 
every sampling location, regardless of group membership, must be measured on the 
same set of variables.  It is not required that the number of sampling entities in 
each group be the same, but, generally, the greater the disparity in group sample 
sizes, the lower the effectiveness of the DFA in distinguishing among groups.  Each 
data set needs to have at least two sampling locations per group and at least two 
more sampling locations than the number of discriminating variables (note that this 
last requirement was violated by Menzel et al. 2002).  For more details on choice 
and application of discriminant analysis, see McGarigal et al (2000). 

Principal components analysis (PCA) is used to condense information from a large 
number of (potentially) explanatory variables into a smaller set called principal 
components that are defined as linear combinations of the original variables de-
scribing maximum variation among individual sampling locations.  In PCA, the dis-
criminating factors are calculated to capture variation within the data set as a 
whole, rather than being calculated to maximize discrimination among pre-defined 
groups.  For example, 23 potential explanatory variables were assembled from vege-
tation structure and composition data to support a management goal of identifying 
thresholds in forest bird response to habitat alteration.  After screening via PCA 
and Pearson’s correlation analysis, the number of relevant variables was reduced to 
16 (Guénette and Villard 2005).  In this example, the data were assumed to be mul-
tivariate normal, with independent samples, careful elimination of true outliers, 
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and linearity among variables.  Since PCA is used as an exploratory data reduction 
method, violation of these assumptions may be tolerated.  PCA is most appropriate 
when applied to data describing narrow, linear environmental gradients.  If more 
complex patterns in environmental gradation are suspected, alternative ordination 
procedures such as detrended correspondence analysis or canonical correspondence 
analysis are more appropriate.  Two specific sample size requirements have been 
suggested for PCA:  N = 4P (Hair et al. 1987) and N = 20 + 3P (Johnson 1980), 
where P is the number of variables and N is the number of samples.  For more de-
tails on choice and application of PCA, see McGarigal et al (2000). 

Multiple regression examines the strength of relationship between one dependent 
variable and multiple potential explanatory (independent) variables.  Saveraid and 
others used multiple regression to elucidate the relationship between bird occur-
rences and abundances and independent variables from remotely sensed landscape, 
or habitat-level data (Saveraid et al. 2001).  They concluded that satellite data is 
appropriate for determining broad areas where species are likely located.  However, 
multiple regression established that both landscape metrics and habitat-level data 
are needed to predict species presence or absence. 

When using multiple regression, it is necessary to implement a procedure to select 
the best single model out of all possibilities.  Currently, use of information-theoretic 
criteria procedures (e.g., Akaike Information Criterion or Bayesian Information Cri-
terion) are recommended over the alternatives because they control for violations of 
assumptions better than other procedures (MacNally 2000).  See Burnham and 
Anderson (2002) for more details. 

Several design requirements are important when using multiple regression.  Sam-
ple sizes must be at least five times the number of independent variables.  True out-
liers in the data must be removed.  The independent variables cannot be highly cor-
related (i.e., multicollinear).  Multicollinearity can seriously limit the ability of the 
model to make accurate predictions.  When independent variables are highly corre-
lated, final models retain variables that do not actually have any ecological mean-
ing, which increases Type I error rates.  For more details on choice and application 
of multiple regression, see McGarigal et al (2000). 

Autologistic regression can model spatial autocorrelation explicitly by including an 
extra covariate that is derived from data in neighboring areas (grid cells), and thus 
offers a significant improvement over other correlation techniques.  Augustin et al. 
(1996) introduced this procedure in a grid-based model to predict deer distribution.  
Since autologistic methods require data in every grid cell, Augustin et al (1996) also 
reported on use of the Gibbs sampler and a modified version of the Gibbs sampler, 
to populate unsurveyed grid cells.  Their assessment (comparison of random 20 per-
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cent census data with full census data) showed that the autologistic model, paired 
with the modified Gibb’s sampler, was superior to the ordinary logistic model for 
estimating the spatial distribution of deer.  The ordinary logistic model performed 
better at predicting the overall number of squares occupied by deer.  The use of 
autologistic regression models is recommended for predicting species distributions 
following grid-based census efforts.  The procedure reported by Augustin et al. 
(1996) is appropriate when resources are limited, such as survey and mapping stud-
ies at Class I. 

General linear models (GLMs) extend classical linear regressions by offering a 
greater variety of relationships between explanatory and response variables, and 
without assuming a normal distribution.  The important advantage is that relation-
ships can be described that are potentially much more consistent with ecological 
theory (Austin 2002).  For example, class variables (such as 0,1 categorical classes) 
can be used as independent variables.  However, a functional form must be declared 
before the analysis is run.  In some other techniques, this is not necessary and the 
form of the relationship can be derived from the data itself (Elith and Burgman 
2002).  GLMs are used to model resource selection patterns (see Resource Selection 
Studies, page 42) as well as correlations between environmental data and species 
occurrence.  The common structure of GLM relates the probability of a particular 
resource (habitat) being used to multiple quantifiable conditions. 

Data with error distributions that depart from normality may be analyzed with 
general additive models (GAMs).  GAMs express the relationship between explana-
tory and response variables in nonparametric, smooth functions that are fitted to 
the data.  Thus, GAMs can be useful when the relationship is not easily defined in 
parametric form and the form need not be specified (Elith and Burgman 2002).  
Austin and Meyers (1996) found that GAM was preferable to GLM for modeling tree 
occurrences, due to its flexible nature and smoothing function.  An example of GAM 
application is found in Leathwick (1998), in which 12 tree species presence/absence 
data is analyzed against many different environmental and spatial variables.  The 
presence/absence data was assumed to display a binomial error distribution.  The 
results were interpreted to indicate that four focal species could potentially occur 
over much larger areas than they currently occupy.  These species also displayed 
weak spatial patterns in their relationship to the environment, leading to the hy-
pothesis that the species are not at equilibrium with their environment.  The spe-
cies are most likely existing in locations where they have been able to persist over 
time, rather than exploiting new locations. 

Neural networks (using a back-propagation algorithm) can be used to develop 
nonlinear relationships between multiple variables, and do not require prior knowl-
edge about the nature of the relationship between variables (Lusk et al. 2002).  

 



ERDC/CERL TR-05-30 41 

Through “brute-force” computing power, random attempts eventually fit the data to 
the best function, always a very complex, nonlinear, and non-intuitive equation.  
Functions are not constrained to simple curve form, and the process is nonparamet-
ric.  Thus, neural networks provide a satisfactory option for analysis in the natural 
sciences.  A reasonable introduction to neural network processes can be found in 
Lusk et al. (2002).  Lek et al. (1996) provides an example paper on the use of neural 
networks and compares their output to that of linear multiple regression.  Eleven 
independent variables were measured in 205 different study units of a river system.  
In this example, neural network analysis outperformed the multiple regression, 
even with transformed variables, when the R-squared values are compared (R-
squared = 0.96 vs. R-squared = 0.72; comparisons of the neural net were made using 
a subset of the training data).  Lusk et al. (2002) report a similar comparison be-
tween multiple regression and neural network simulation for data relating North-
ern Bobwhite counts to weather data.  Although their criteria for comparison indi-
cated that the multivariate regression model explained more variation in observed 
patterns, the neural network provided valuable insight into the importance of all 
utilized variables.  For example, the multivariate regression model heavily weighted 
winter precipitation (more than 54 percent of the total R-squared value came from 
this one variable).  Only two other variables contributed more than 10 percent of the 
total R-squared.  The neural network worked with 5 different variables rather 
evenly, each contributing between 10 and 20 percent of the total R-squared value.  
This provided valuable insight into the responses of Northern Bobwhite (Colinus 
virginianus) to many different weather variables.  Austin (2002) reminds us that 
comparisons of statistical modeling procedures are only possible when the actual 
“truth” is known.  For greater insight into the dangers of comparing statistical tech-
niques, see Austin (2002).  There exists an important risk of over-fitting a neural 
network to data points, decreasing accuracy in any application. 

Heglund (2002) cautioned that advances in analytical, correlative techniques are of 
questionable use if the true underlying relationship between habitat and response is 
non-linear.  Several authors have recommended non-linear means of modeling or-
ganism response (Austin 1976, Gauch and Chase 1974, Heglund et al. 1994, 
Whittaker 1975).  In addition, if modeling is based only on correlation, it offers no 
insight into the underlying mechanisms for species response, and thus cannot pro-
vide trustworthy input into management plans.  Improved understanding of causa-
tive mechanisms will modify the choice of variables to be examined and most likely 
will lead to improved correlative models as well (Heglund 2002).  In 1980, Karr 
(1980) warned that biologically important relationships are the important goal we 
seek in our data, not just statistical relationships. 
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For more information on predictive habitat modeling techniques, see Guisan et al. 
(2002), Guisan and Zimmermann (2000), Morrison et al. 1998, and Munoz and Feli-
cisimo (2004). 

Resource Selection Studies 

Resource selection studies attempt to compare the availability of habitat to the se-
lection and use of habitat, thus providing an indication of habitat requirements for 
the organism of interest.  Results of resource selection studies can be used to map 
probabilities of species occurrences, predict abundance in different habitats, esti-
mate local population size, or project demographic responses in different habitats.  
However, in all cases, the main objective is to measure the degree of use of habitat 
and to compare it to “available” habitat.  The following discussion distinguishes 
among three types of resource selection studies based on important differences in 
study design.  First, habitat selection can be evaluated for the entire population, 
without knowledge of individual animal choice.  Haney and Solow (1992) used this 
design type when they compared the relative amount of sampling effort in each of 
four habitat types with the proportion of marine bird numbers in each of the four 
habitats.  Second, individual animals are monitored for habitat choice, but the 
availability of habitat is measured at an aggregate, population level.  Roy and Dor-
rance (1985) compared the availability of various habitat types within individual 
coyote home ranges with overall habitat availability across the entire extent of the 
study.  Third, individual choices of habitat type are measured and compared to the 
habitat available at an individual level (for example, that found within each indi-
vidual home range).  Rolley and Warde (1985) used this method when they moni-
tored the home range habitat use of individual bobcats (Lynx rufus) and compared 
those choices with the proportions of available habitat within each of those same 
home range areas.  Thomas and Taylor (1990) and Alldredge et al. (1998) review a 
variety of design approaches and statistical procedures used in resource selection 
studies.  One good source of information is Manly et al. (2002). 

Manly et al. (2002) provide a comprehensive list of hypothesis tests used to evaluate 
whether or not resources have been selected preferentially, along with important 
references for each test.  Several hypothesis tests are discussed later in this section.  
Alternatively, data from resource selection studies can be used to develop mathe-
matical resource selection functions (RSFs; Boyce and McDonald 1999).  RSFs are 
mathematical equations that are proportional to the probability of use of a habitat 
type (or any resource unit). 

Resource selection studies may sample habitat through random plots or points, or 
may use maps to delineate and measure the area of various habitat types.  Measur-
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ing habitat availability can be more problematic than measuring animal use.  Re-
source selection studies assume that all individuals have free and equal access to 
resources.  If habitat availability and use are measured separately for each individ-
ual animal, this assumption causes no concern.  However, when studies are at-
tempting to measure choices over areas larger than home ranges, such as choices 
related to placement of home ranges in a larger landscape, this assumption becomes 
problematic (Garshelis 2000).  This latter objective is likely to be fairly common in 
the context of Army TES management studies.  In these cases, all habitat types in 
the area chosen for study will be considered available to the individual organisms.  
In these studies, several ecological processes can invalidate the assumption of uni-
form habitat availability.  For example, home ranges may become established near 
natal areas based on familiarity with the resources and nearby individuals.  Thus, 
only a small portion of “potential” habitat may be searched when choices are made 
(Garshelis 2000). 

More significantly, each individual may not have all habitat types in their home 
ranges.  The only choices available to individual animals are the particular combi-
nations of habitat types currently existing on the landscape.  Individuals cannot 
create an ideal home range by combining types and amounts of habitat to suit their 
needs (Garshelis 2000). 

A random sample of animals is assumed, which usually means that animals cap-
tured or surveyed are assumed to be representative of the entire population.  Avail-
ability of habitat is assumed to be known (when habitat types are mapped) and to 
be constant through time.  It is important to evaluate this assumption if data are 
gathered over long timeframes compared to the biology of the habitat or species of 
interest.  It is important that resightings are accurate, so observed habitat use is 
correct.  For example, if habitat patches are very small, the triangulation error in 
relocating radio-collared animals may cover more than one habitat type (Alldredge 
et al. 1998). 

When individual animals are not marked, it is problematic to assume that evidence 
of greater density correlates with higher true densities of animals.  Just as with 
point count surveys, differences in detectability among habitat types can affect ap-
parent densities and create misleading results.  Therefore, it is prudent to first as-
sess detectability in different habitats and then adjust results so a corrected esti-
mate of density is considered (Thomas and Taylor 1990). 

If animals are gregarious (attracted to habitats because they are attracted to each 
other), related (and affected by common learning experiences), or from the same so-
cial group (in which a dominant animal determines the habitat use for all mem-
bers), the assumption of individuals reflecting independent habitat choices is vio-
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lated.  In this case, groups such as herds can be used as the sampling unit.  Like-
wise, locations of pack animals that are dependent upon each other for hunting 
should not be considered as independent sampling of the environment (Garshelis 
2000).  In contrast, Millspaugh et al. (1998) state that when individual animals are 
located together due to the presence of a resource (rather than simply the presence 
of other animals), the sightings should be considered independent.  This could occur, 
for example, in winter, when food, water, or shelter resources become scarce.  Mill-
spaugh et al. (1998) recommend tests to evaluate the independence of habitat 
choices of associated individuals. 

It is best if the ecological and behavioral factors affecting habitat selection are iden-
tified before resource studies are designed.  Demographic survival and/or reproduc-
tive data can be collected and compared among habitat types (Alldredge et al. 1998, 
Garshelis 2000) to better estimate the ecological significance of habitat choices.  
However, relationships between habitat factors and fitness are likely complex, char-
acterized by thresholds, asymptotes, and inflection points.  Studies often are compli-
cated by unexpected variation and confounding factors (Garshelis 2000).  Based on 
these requirements, resource selection studies are inherently Class II or Class III 
efforts. 

Pooling individual selection (response) data for analysis is not recommended.  When 
pooling individual data is avoided, variation in selection rates can be identified, and 
differences among different ages or sexes may be revealed, both of which greatly fa-
cilitate Class III modeling efforts (see Thomas and Taylor 1990 for discussion).  
When individual choices are examined for variation, it becomes possible to posit 
whether the population as a whole is making similar resource selection decisions 
(Alldredge et al. 1998).  Estimates of variation within individuals and among indi-
viduals are also possible (R.Melton, professional communication, August 2004). 

In resource selection studies, like all other studies, it is important to match the 
scale of the study to the management goal, so that relevant results can be gener-
ated.  For the purposes of learning habitat associations, studies that track individ-
ual animals will be most useful if they avoid focusing on detailed choices within 
TES home ranges or territories.  The more common goal for TES management on 
military installations is to predict relative abundances among different habitats.  
This reflects decisions that individual animals make in defining territories and 
home ranges within the larger landscape.  The best way to ensure a relevant scale is 
to compare resource choices against habitat options at an extent larger than home 
range size, rather than comparing resource choices against the available habitat 
within home ranges. 
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If a resource selection study is going to be used to estimate population size, it is as-
sumed that the limiting factors that influence the distribution and abundance of the 
organism are known; the relevant data on key habitat variables is needed (Manly et 
al. 2002).  Additionally, the study requires the significant assumption that the ex-
tent of habitat use is positively associated with fitness of the organism in that habi-
tat.  It is recommended that managers confirm habitat value with fitness data to 
support any decision process using habitat selection patterns to predict abundance 
or population estimates. 

Alldredge and Ratti (1986) compared four statistical tests for resource selection 
studies.  They found that regardless of test, a sample size of 20 individual animals 
was needed to reduce Type II errors to an acceptable level.  They also recommended 
that limiting the number of habitats types to less than 10 would reduce error rates. 

Several statistical tests can be used to evaluate resource selection (see Table 1).  If 
individual animals are not marked and relocated, then one of the Chi-squared tests 
is required.  If habitat availability is known and completely mapped, then it is ap-
propriate to use the Chi-square goodness-of-fit test and related multiple compari-
sons (Byers et al. 1984, Cherry 1996, Neu et al. 1974).  The Chi-squared goodness-
of-fit test, log-linear model test (Heisey 1985), and the large sample normal test 
(Iverson et al. 1985) should not be used if the habitat is sampled with points or 
plots.  In this case, the Chi-square test of homogeneity is always appropriate (with 
or without tracking of individual animals).  The Johnson (1980), Friedman (1937; 
see Conover 1980), Quade (1979), or compositional analysis procedures (Aebischer et 
al. 1993) are possible when individual animals are marked and re-surveyed (Tho-
mas and Taylor 1990, Alldredge et al. 1998). 

The Chi-squared goodness-of-fit test requires independence of observations, when 
relocating the same animal.  The Johnson procedure, the Friedman test, and com-
positional analysis do not require independence in relocation data (Alldredge et al. 
1998). 

Dasgupta and Alldredge (1998) review the misuses of the Chi-square goodness-of-fit 
test, including situations in which it should not be used at all.  They introduce a 
“dependency” parameter for use when multiple animal sightings can occur, and dis-
cuss its use in a Columbian Sharp-tailed Grouse (Tympanuchus phasianellus 
columbianus) study.  Friedman’s, compositional analysis and Johnson’s tests as-
sume that individual animals make habitat choices independently.  However, the 
Johnson procedure and compositional analysis have extensions that can be used to 
consider social organisms. 
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Table 1.  Statistical methods for testing resource selection by animals. 

Consideration Neu et al. Johnson Friedman’s Quade Compositional 
Habitat  
availability 

Must be known 
(mapped 
completely) 

Can be  
estimated 

Can be  
estimated 

Can be  
estimated 

Can be  
estimated 

Independence 
of relocations 

Required Not required Not required  Not required 

Individual  
animals must 
be relocated? 

no yes yes yes yes 

Questionable 
habitat types 

Poses a  
problem 

Do not pose 
a problem  

Do not pose 
a problem 

Do not pose 
a problem 

Do not pose  
a problem 

Unit sum  
limitation 

Poses a  
problem  

Poses a 
problem 

Poses a  
problem 

 Does not pose 
 a problem 

Replicate unit Relocations Animal Animal  Animal 
Dependencies 
in animal 
choices 

 Assume 
independent 
choices 

Assume  
independent 
choices 

 Assume  
independent 
choices 

The most commonly used test, the Chi-squared goodness-of-fit method, is influenced 
by the somewhat arbitrary decision to include or exclude habitat types from analy-
sis.  If a highly avoided habitat type is included, it can lead to the conclusion that 
other habitats are preferred.  If the avoided type is taken out of the analysis, the 
results may change dramatically for the remaining habitat types (Thomas and Tay-
lor 1990, Alldredge and Ratti 1986).  One technique for handling this situation is to 
analyze results with and without any questionable habitat types, to understand its 
impact on results. 

In discussing this problem for compositional analysis, Aebischer et al (1993) suggest 
merging habitat types, eliminating types that are not used by many animals in the 
study, and/or substitution of a very small value in place of some zero values.  See 
Aebischer et al. (1993) for more details. 

Johnson (1980) introduced an alternative, rank-based method to avoid problems 
with inclusion of habitat types that are common in the environment, but rarely used 
by animals.  Johnson’s test requires resource use observations of individual ani-
mals, although independence of relocations of an individual animal is not required 
(Alldredge et al. 1998).  A rejection of the null hypothesis using Johnson’s method 
should be followed by the Waller-Duncan simultaneous comparison procedure 
(Waller and Duncan 1969; Alldredge and Ratti 1986). 

Friedman’s and Quade’s tests also are rank-based methods requiring observations 
of individual animals, and are resilient to inclusion or exclusion of questionable 
habitat types in the design.  Fisher’s least significant difference procedure for pair-
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wise comparisons should follow the rejection of the null hypothesis (Alldredge and 
Ratti 1986). 

The unit-sum constraint refers to the fact that use of all habitat types must sum to 
1.0 for each individual animal.  Thus, choice of one habitat type automatically af-
fects use of all other habitat types.  Aebischer et al. (1993) asserts that the proce-
dures of Friedman, Quade, and Neu et al. are undesirable since they fail to explic-
itly treat this issue.  Compositional analysis utilizes a log-ratio transformation on 
habitat use ratios to render them independent with regard to the unit-sum for habi-
tat choices (Aebischer et al. 1993).  Johnson’s test is also capable of dealing with this 
issue. 

When performing compositional analysis, the choice of test depends in part upon the 
distribution of data.  Compositional analysis can test the same range of hypotheses 
as MANOVA and multiple regression, but when applied to habitat selection data 
such as those described in Aebischer et al (1993), it closely resembles Johnson’s 
(1980) procedure.  Unlike Johnson’s method, compositional analysis can be extended 
to assess differences between blocks of elements such as sex, age, and seasonal tim-
ing, or the relationship between habitat use and continuous variables such as food 
supply (Aebischer et al. 1993). 

Compositional analysis assumes that each animal provides an independent sam-
pling of habitat.  If the number of radio locations varies among animals, the log-
ratios should be weighted accordingly.  Aebischer et al. (1993) recommends weight-
ing the log-ratios by the square root of n, when n is the number of locations for that 
animal. 

Alldredge and Ratti (1986) compared the statistical basis and performance of four 
methods:  the Chi-squared goodness-of-fit test, the Friedmans’ test, the Johnson test 
and the Quade test.  Details about hypotheses tested, further discussion of assump-
tions, and sample size requirements can be examined in Alldredge and Ratti (1986).  
The choice of statistical test should be made based on the hypothesis tested and the 
necessary assumptions.  Among the four compared tests, there was no clear choice 
of superior method in all simulated cases.  All four methods effectively controlled 
Type I error rates.  The occurrence of Type II error rates was dependent upon the 
number of habitats, number of animals, number of observations per animal, and the 
magnitude of differences detected.  The Chi-squared goodness-of-fit test and the 
Quade method performed well in simulations with few habitats (less than 10), at 
least 20 individual animals marked, and 50 locations per animal.  When the number 
of habitat choices was large, Johnson and Friedman’s tests performed best.  John-
son’s method failed to detect differences when the differences between availability 
and selection were large, but the relative rank orderings were identical.  All meth-
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ods led to larger Type II errors as greater numbers of habitats are included in the 
analysis.  All methods suffered from high Type II error rates when few animals 
were located 15 or fewer times (Alldredge and Ratti 1986). 

For compositional analysis, Aebischer et al. (1993) recommend an absolute mini-
mum total sample size of 6 animals.  It is preferable to use more than 10 individu-
als, and, ideally, more than 30 individuals.  If subpopulations are to be compared, 
each category must have more than 10 individuals.  All sampling must be done “at 
the same time,” unless time of year is modeled explicitly (or can be ignored).  Opti-
mal allocation of sampling effort between numbers of animals tagged and number of 
relocations is based upon between-animal variation in habitat use, and subsampling 
efficiency (i.e., how well habitat use is estimated).  If animal choices are highly vari-
able, it is best to tag more animals and use fewer relocations in order to adequately 
capture between-animal variation.  If home ranges are to be calculated, it is useful 
to know how many radio points are needed to achieve stability in home range esti-
mates.  A pilot study is helpful on both of these accounts (Aebischer et al. 1993). 

Knowledge-based Models 

Knowledge-based modeling relies on partial data (usually gathered together from 
published literature and local data sources) and the experienced opinions of species 
and/or habitat experts.  Such information is captured through interviews and work-
shops, and implemented via a wide variety of simulation environments and com-
mercial or custom-developed software.  There is no inherent limit to how species re-
sponse is modeled using knowledge-based methods.  Any shape to the relationship 
can be used.  Modeling can be based upon environmental constraints rather than 
correlations or ideal conditions.  The following discussion is limited to knowledge-
based models that are spatially explicit in some form. 

Two examples of knowledge-based models are provided for illustration purposes:  
(1) a model at Class I to predict likely occurrence of the Yellow-billed Cuckoo (Coc-
cyzus americanus occidentalis; Greco et al. 2002), and (2) a model at Class II of Lou-
isiana Waterthrush (Seirius motacilla) habitat (Brooks 1997). 

Greco et al. (2002) utilized the following (spatially-explicit) variables to develop a 
knowledge-based model of Yellow-billed Cuckoo habitat:  species of vegetation, 
patch area, patch width, patch distance-to-water, the ratio of high vegetation to me-
dium/low vegetation within patch, and the ratio of young floodplain to old floodplain 
within patch.  Variables were quantified and the model was implemented within a 
GIS.  In this instance, species of vegetation was taken from a 1997 land cover sur-
vey.  If the land cover category was called “riparian” and was known to be a certain 
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successional age, it was assumed to be the vegetation type of interest, willow-
cottonwood floodplain forest (Greco et al. 2002).  The variable related to forest struc-
ture (high vegetation vs. medium and low vegetation) was based on two separate 
research studies.  The two studies found that Yellow-billed Cuckoo nesting was 
most frequent in vegetation below 20 m high.  Therefore, the model specifies that 
each patch must possess some amount of vegetation in the category of “medium” or 
“low” height in order to support breeding Yellow-billed Cuckoos.  Yet another inde-
pendent study of the breeding territories of four pairs of Yellow-billed Cuckoos was 
used to calibrate the forest structure variable.  After all variables were assessed, the 
geometric mean was calculated with equal weighting to determine a habitat quality 
score, which was then visualized on a grid-based overlay for comparison with the 
original land-cover map. 

The knowledge-based model of Louisiana Waterthrush habitat developed by Brooks 
(1997) was initially based on a literature review and consisted of nine variables.  
Fifty-three sites were surveyed for vegetation type and presence-absence of Water-
thrush.  Results led to modifications of the model.  An entirely new set of 26 sites 
was surveyed the same year to validate the revised model.  Additional projects were 
planned to compare model output with breeding activity and nesting success of the 
species, to provide further refinement (Brooks 1997).  As this example demon-
strates, knowledge-based models have raised awareness of the importance of valida-
tion, calibration, and issues of uncertainty in application of models for conservation 
decisionmaking.  Even models that are based on some statistical analysis usually 
include expert opinion and judgment as well, leading to the need for validation. 

The most important risk in using knowledge-based models is the potential for each 
model to become large, complicated, and impossible to truly test for accuracy.  Since 
many different variables and equations can be easily included, it is difficult to keep 
track of uncertainty in the various components of the model.  Once output is gener-
ated, it is difficult to decide what it means or how much it should be trusted.  When 
using knowledge-based models, it is best to develop small, tightly focused models on 
an ad hoc basis.  These models would be developed in-house or with a closely affili-
ated organization, and should be relatively inexpensive due to their limited scope.  
This approach will help maintain installation familiarity with the model’s compo-
nents, assist in validation and error assessment, and ensure that models are ap-
plied to questions the underlying data and model structure were designed to ad-
dress. 
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An Alternative Paradigm – Modeling Constraints with CART 

O’Connor (2002) advocates using classification and regression tree (CART) analysis 
for modeling species distributions because it supports a paradigm of modeling con-
straints rather than a paradigm of modeling ideal conditions for predicting species 
response to the environment.  CART recursively divides the data set into subsets, 
based on constraints, not correlation.  He gives a typical example whereby species 
occurrence may be based upon July temperatures exceeding 25 degrees C, elevation 
below 500 m, croplands forming no more than 15 percent of local land cover, and/or 
average forest patches greater than 2500 ha (O’Connor 2002). 

Mapping Spatial Data and Understanding Spatial Structure in Data 

It is possible to follow point sampling with various techniques to interpolate point 
data over a continuous surface (map).  Legendre and Fortin (1989) provide a more 
complete discussion than can be included in this report.  Geostatistical and other 
spatial interpolation procedures consider the data collected at all random or sys-
tematic points in a region, and generate estimates for points not sampled.  Many 
programs use a smoothing procedure that produces results for a uniform grid over 
the region of interest.  The use of two such procedures, inverse distance weighting 
and kriging, is discussed by Sauer et al. (1995) specifically for use with bird abun-
dance mapping following point count surveys.  For developing distribution maps of 
TES from a point count data, systematic sampling may produce better results than 
random sampling.  Greater sampling effort through replications and more sampling 
points will reduce sampling bias during point surveys.  If an area is known to sup-
port higher densities of organisms, then sampling effort should be higher in the vi-
cinity of that area (Sauer et al. 1995).  The following details about spatial interpola-
tion of ecological data are important: 

1. Extrapolation between known points must be viewed with caution since detection 
problems can distort results significantly (see Sauer et al. 1995 for examples). 

2. Phenomena that occur at higher resolution than the survey will not be accurately 
modeled.  For example, rare species or species sampled at the edge of their range 
will be poorly mapped. 

3. Trend surface analysis can be structured to accommodate spatial variation in 
sampling intensity and different observers and the existence of missing data.  
Many ecologists use trend surface analysis to remove large spatial trends, and 
follow with additional spatial analysis, such as kriging, on the residual (unex-
plained) variation through space (Legendre and Fortin 1989).  Many other inter-
polation methods cannot adjust for these common biases (Sauer et al. 1995). 
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4. Kriging utilizes local data to estimate the value of unsampled locations, by con-
sidering data autocorrelation.  It is a more refined method than trend surface 
analysis (see examples in Legendre and Fortin 1989).  Kriging results include a 
map of estimated values and a map of standard deviation, which can be used to 
optimize additional field sampling for areas with higher uncertainty. 

It is important to consider the spatial structure (lack of independence in point data 
through space) in ecological data.  Many statistical procedures (e.g., all parametric 
statistical tests) assume a lack of spatial structure, while other procedures (such as 
interpolation procedures) make use of the information.  Understanding the spatial 
structure of data is important if data is collected for a specific reason (i.e., mapping) 
and then later extended for additional purposes (i.e., characterizing habitat). 

Two forms of spatial independence exist among sample points:  conditional inde-
pendence and unconditional independence.  Conditional independence is related to 
the presence (or absence) of individuals at one point affecting the probability of 
presence (or absence) of individuals at nearby points.  For example, if vocalizations 
of male birds at one point affect the probability of vocalizations of male birds at the 
next nearest sample point (in this case, negatively), there is a lack of conditional 
independence.  Adequate spacing of points is required to prevent this problem.  Un-
fortunately, determining adequate distances requires pilot empirical studies.  Un-
conditional independence, or autocorrelation, is caused when pairs of nearby points 
exhibit more similar responses compared to pairs of more distant points (Pendleton 
1995).  Semivariograms can be used to determine optimum spacing distances to re-
duce this dependence. 

Spatial analysis should always be included as an integral part of Class II and III 
research projects.  All sampled data should be tested for autocorrelation, and spatial 
structure should be described and considered in further analysis.  In some cases, 
spatial structure should be removed (i.e., detrending) and statistics should be com-
pleted on residuals.  However, in any effort to map species distributions, spatial 
structure should not be removed, it should be explicitly utilized in refining and un-
derstanding species response to environmental variation. 
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8 Sources of Error and the Importance of 
Accuracy Assessment 
Error in models of species habitat relationships can be caused by many factors, in-
cluding: 

1. insufficient sample size, 
2. measurement error in species survey data and mapped environmental data 

(sampling error), 
3. incorrect scale of sampling or of spatial data, and 
4. failure to incorporate critical ecological variables in the model. 

Quantification of model accuracy helps managers to determine the applicability of 
models for various purposes, especially legal decisionmaking.  It also may identify 
weaknesses that require correction with further effort.  Different techniques and/or 
models can be compared through accuracy assessment, as well. 

Sometimes, sensitivity analysis is offered as a substitute for full model validation.  
However, a model that does not demonstrate sensitivity to changes in parameter 
values may not be sensitive enough to make accurate predictions (Conroy and 
Moore 2002).  Sensitivity analyses are recommended for the identification of vari-
ables requiring further refinement and calibration to fit the model more closely to a 
specific situation.  Validation should be performed to meet a goal of accuracy as-
sessment. 

Fielding (2002) reminds us that ecology is a challenging science, contending, as it 
does, with many stochastic factors and interacting events.  Even if accurate and un-
biased variables can be identified, they may not be measurable.  Thus, one should 
not be surprised or discouraged by moderate levels of accuracy from modeling ef-
forts.  Yet, it is essential to assess and discuss accuracy considerations when man-
agement decisions must be made and defended. 

The best measure of accuracy assessment is always to apply the model to entirely 
independent, novel data and assess how well the model functions to predict results.  
Often, independent data is not available, and the single available data set is divided 
into uneven parts; the larger portion is used to develop or train the model, while the 
smaller set is used to test the model.  Huberty (1994) offers a formula for determin-
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ing the optimal ratio of training set to testing set.  The reduction in training sample 
size created by this process often reduces the accuracy of the resultant model.  Al-
ternatively, resampling procedures such as the jackknife can be used to estimate 
confidence limits for models (Fielding 2002).  Significant references on resampling 
procedures include Davison and Hinkley (2003) and Efron and Tibshirani (1993).  A 
summary of resampling methods for the purposes of validation can be found in Ver-
byla and Litvaitis (1989).  In important cases with significant ecological, political, or 
legal risks, it is recommended that installations always develop an independent 
data set for accuracy assessment. 

Accuracy of Results from Class I Studies 

Confusion Matrices and Derived Measures 

Distributional studies incur two types of mistakes:  errors of commission and omis-
sion.  Commission errors occur when the model predicts species presence in a loca-
tion where the species does not occur.  Omission errors occur when the model pre-
dicts absence where the species does in fact occur.  The occurrence of such errors is 
evaluated through the use of confusion matrices.  Confusion matrices list the pro-
portion of results predicted correctly (both present and absent), and the proportion 
of results predicted incorrectly (both commission and omission errors; see Table 2; 
Fielding 2002).  Notice that this exercise requires the continuous “probability of oc-
currence” values output from a model to be divided into a group that predict occur-
rence and a group that predicts absence.  This entails setting an arbitrary threshold 
value for dividing the range of output.  Several derived measures can be used to 
quantify accuracy from a confusion matrix (Fielding 2002).  Although such meas-
ures are simple to calculate, they are not necessarily the best method to use.  These 
measures are all dependent upon the threshold value chosen.  It is better to choose 
a means of assessing accuracy that is independent of the threshold for predicting 
occurrence, (such as the graphical methods below; Fielding 2002). 

The correct classification rate (CCR) is very simple, but includes ratios of commis-
sion and omission errors to calculate the overall rate of correct classification.  The 
positive predictive power measures the ratio of true positives to the total number of 
positive predictions (both correct and incorrect).  Kappa (K) is the proportion of spe-
cific agreement, and is often used to assess whether a model performed better than 
chance.  Landis and Koch (1977) suggested that a value of K > 0.4 indicated “good 
agreement”.  The normalized mutual information (NMI) measure may be preferable 
over Kappa in cases where one class dominates the sample.  Kappa is sensitive to 
sample size and unreliable if class sizes are very uneven; NMI does not share these 
limitations (Fielding 2002). 
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Modelers can gain insight into commission errors by calculating likelihood-of-
occurrence-ranks (LOOR) before running a validation exercise (Schaefer and Krohn 
2002).  LOOR values indicate which species are likely to be missed during field vali-
dation surveys, based on rarity or a reclusive nature (Boone and Krohn 1999).  In 
some cases, rates of commission errors may appear substantially higher than they 
truly are, and model accuracy may be doubted in cases when accuracy is much 
higher, possibly at acceptable levels.  Careful examination of such a situation is rec-
ommended whenever a model appears to have high commission errors and the focus 
species is not abundant and easily detected. 

 
Table 2.  Example of a confusion matrix and some derived accuracy measures (taken from 
Fielding 2002). 

Predicted Actual 
+ - 

+ 95 20 (omission) 
- 5 (commission) 80 

CCR 0.875 
PPP 0.826 
Kappa 0.750 
NMI 0.480 

Logistic Regression 

Logistic regression can be run, fitting a line to the relationship between probability 
of occurrence values and the observation of whether the species was present or ab-
sent from the corresponding site.  This method was used to evaluate a (different) 
logistic regression model and a Mahalanobis distance model, each predicting avian 
species presence for multiple species over a large area of the southern United 
States, as part of a larger study to compare modeling approaches and validation 
methods (Dettmers et al. 2002).  For most species, model accuracy appeared higher 
when evaluated through logistic regression compared to measures such as CCR 
(probably due to the problems with threshold values, mentioned above; Dettmers et 
al. 2002). 

Graphical Methods 

Several graphical methods can be used to examine the accuracy of Class I model 
output; those discussed here are illustrated in Pearce et al. (2002).  A graph can be 
made by plotting predicted probabilities associated with occupied sites against the 
predicted probabilities associated with unoccupied sites.  The probability of occur-
rence is plotted on the x-axis, while the proportion present (or absent) is plotted on 
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the y-axis.  Discrimination plots provide two types of information.  They reveal the 
range of predicted values obtained from the validation exercise; a well-refined model 
will make predictions spanning the entire zero-to-one range of probabilities.  A dis-
crimination histogram reveals how well a model discriminates between occupied 
and unoccupied sites (Pearce et al. 2002).  A good model will lead to relatively 
higher predicted values for occupied sites compared to unoccupied sites. 

Receiver operating characteristic (ROC) plots were developed as a signal processing 
technique.  The plot is obtained by plotting all true positive proportions on the y-
axis against the values for proportion of commission errors on the x-axis.  A curve is 
generated by running the model repeatedly, using a large number of different 
threshold values.  The area under this curve expresses the model’s discrimination 
ability.  An area measure of 0.5 indicates that the model performed the same as a 
random model.  As discrimination ability increases, the area measure will increase 
up to a maximum of 1.0.  Values of 0.7 or 0.75 and above are often associated with 
acceptable model performance (Pearce et al. 2002, Elith and Burgman 2002).  
Pearce and Ferrier (2000) provide additional details for interpretation and use of 
the ROC plot curve. 

A calibration plot is created by first dividing the values for predicted probability 
into equally sized classes, such as 10 equal classes from 0 to 1.  Then, the proportion 
of occupied sites within each class is plotted (on the y-axis) against the median pre-
dicted value for the class (on the x-axis).  A well-calibrated model will lead to a plot 
that closely follows a 45-degree line, where the observed proportion of occupied sites 
equals the median predicted value for the class.  To quantify the degree of calibra-
tion, three statistics can be calculated:  the Cox statistic, the bias measure, and the 
spread measure (Pearce et al. 2002). 

Accuracy of Class II and III Results 

There are two forms of variability in counting organisms within habitat patches:  
within-site variability and between-site variability.  Between-site variability derives 
from the differential use of habitat by the organisms themselves.  Within-site vari-
ability lies in the counting process itself:  sampling error, bias, and miscounts.  Two 
counting efforts of the same patch of habitat would not necessarily lead to the same 
counts, even if the same number of organisms were present each time.  This form of 
variability contributes error in statistical tests and conclusions.  Link et al. (1994) 
estimated that at least 14 out of 98 species of birds displayed greater within-site 
variability than between-site variability, when estimated by repeated breeding bird 
survey counting procedures during one season.  Species with lower counts tended to 
have higher proportion of variability coming from within-site variability. 
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Habitat suitability, abundance, or density indices can be validated by comparing 
index values with mark-recapture derived population size estimates.  One review of 
HSI validation efforts found that the most common types of statistical tests for com-
paring model output (habitat quality values ranging from 0.0 to 1.0) with validation 
data were correlation and regression analyses (Roloff and Kernohan 1999).  It is im-
portant that validation take place across the entire range of possible output values 
from the model.  This enables a test of predictive power across different habitat con-
ditions, demonstrating model robustness. 

Laymon et al. (1985) presented initial validation results for their spotted owl HSI 
model.  First, the HSI values were compared between 70 sites in which owls were 
known to occur, and 70 random sites.  Sites known to support spotted owls had sig-
nificantly higher HSI values.  Second, a vocal survey imitating spotted owl calls was 
conducted across sites with a range of HSI values:  14 sites each scoring unsuitable, 
low, moderate, or high HSI scores.  The results showed a significant increasing 
trend in owl call response with increasing HSI values (Laymon et al. 1985). 

Morrison et al. (1987) validated bird abundance models by collecting new data the 
following 2 years; first on the same plots (not independent data) and second, on dif-
ferent plots within the same forest (independent data).  Validation consisted of com-
paring the percentage of plots for which the original model over- or under-estimated 
bird abundance.  Confidence intervals were calculated on model output and the re-
lationship between field data and output confidence intervals was noted and consid-
ered.  The authors judged that the model was adequate for predicting the pres-
ence/absence of a species, but not abundance.  Using the second year’s data, the 
model underestimated abundance in 17 of 21 bird species, although validation data 
fell within the confidence intervals for every species for which a confidence interval 
could be calculated.  Predictions ranged from 100 percent underestimate to 194 per-
cent overestimates; the three predictions with the most extreme errors were present 
in very low abundances across all years of the study (Morrison et al. 1987). 

Due to the difficulties in interpreting abundance data, studies of research in Class 
II should be validated with surrogates for estimating fitness, such as reproduction 
or survival (Roloff and Kernohan 1999).  See the Appendix for specific recommenda-
tions related to study design and validation considerations. 

Reducing Observation Error 

Observation error is variation in census counts caused by researcher inability to 
count precisely the numbers of individuals within a designated observation area.  
General guidelines (Morrison and Doak, 2002) for reducing observation error for 
count-based censuses (and other field studies as well) include: 
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1. Use the first year of data collection as a trial run on which to base long-term 
sampling strategy and allocation of effort.  During this first year, repeat sampling 
through time, and oversample through space to gain insight into the incremental 
reduction in variation offered by additional efforts.  Use several different sam-
pling designs and compare results. 

2. Maximize consistency with careful documentation of protocol.  The same person 
should be in charge of training field crews over time for as long as possible.  Suc-
ceeding leaders also need careful training by the previous leader.  It is helpful if 
specialized skills are not needed by field crews.  Also, measure inter-observer 
variation. 

3. A stratified random sample handles spatial variation in density estimates well, 
whether that variation is due to actual difference in density, or due to habitat-
specific differences in detectability. 

4. If it is not possible to count all individuals, choose the most visible subset of the 
population to census. 

5. Methods for collecting and recording data should be easy to understand and easy 
to quantify.  (All taken from Morris and Doak 2002). 

It is important to quantify errors while the census occurs.  Data should be main-
tained at the finest degree of detail possible (such as replicate transects).  Some de-
gree of replication should be included at least in some years.  By repeating sampling 
in the same location at very close intervals of time, variation can be safely assumed 
to be due largely to observation error (though pseudoreplication must be avoided).  
Such exercises are needed at periods of high species population density and low spe-
cies population density, to account for differences in error related to density.  Sam-
pling effort, such as number of person-days spent searching, should be recorded.  
The identity of different observers should always be recorded and maintained as 
well (Morris and Doak 2002).  Morris and Doak (2002) provide some specific formu-
lae and directions to account for observation error in count-based censuses. 

Managing Uncertainty 

Morris and Doak (2002) list several recommendations for handling uncertainty in 
PVA models; the list is helpful for planning any complex Class II or III modeling 
effort. 

1. Avoid building a complex model if available data is sparse.  Ten years of census 
data are recommended for developing a count-based PVA, as “this amount of data 
stands a reasonable chance of providing at least a qualitative sense of population 
viability”.  It has been recommended that 5 to 10 years of demographic data be 
collected to make predictions regarding extinction for each year into the future 
that you want to make predictions.  Thus, to make predictions for 5 years into the 
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future, managers need 25 to 50 years of data (Fieberg and Ellner 2000).  Morris 
and Doak (2002) recommend a minimum of 4 years of data (three annual transi-
tions in vital rates) for a demographic PVA.  Multi-species models should be 
based on at least 2 surveys on at least 20 sites.  For stochastic models that in-
clude migration between subpopulations, 4 years of data are recommended.  For 
spatially explicit models, “the bar must be set substantially higher than for any 
other kind of PVA model” (Morris and Doak 2002). 

2. Model output should always be presented with confidence intervals.  Confidence 
intervals can be calculated by sampling variable values from the appropriate 
probability distributions, by using bootstrapping techniques or by using Bayesian 
techniques.  Very broad confidence intervals suggest that adequate data is not 
available for the development of a formal model. 

3. Do not attempt to project population viability far out into the future.  The confi-
dence intervals around probability of extinction, for example, expand to encom-
pass all values from 0 to 1 as the timeframe expands into the future.  Simple, 
well-justified models are better when used to make fairly short-term predictions. 

4. Always consider how potential factors that have been omitted might cause output 
to be pessimistic or optimistic.  If the model is kept simple, it is particularly im-
portant to think about the factors omitted.  This helps to ensure proper interpre-
tation and application of results. 

5. Whenever possible, consider multiple models to assess uncertainty.  It is best to 
use all well-fitting models to make management decisions.  This approach recog-
nizes the fact that we really don’t know what model best describes a population. 

6. Always consider the modeling process to be a work in process, not the final word.  
Additional data should always be collected.  This allows reconsideration of as-
sumptions, improved estimates of the model variables, and possibly the addition 
of new factors into the model structure. 

Accuracy of Class III Modeling Results 

Validation of Class III models is difficult.  Just as with simpler species-habitat rela-
tionship models, a subset of the data can be used to develop the model.  A second 
subset of data can then used to validate the accuracy of the model output.  However, 
this method can greatly reduce the ability of the model because data sets are often 
small, due to the labor-intensive nature of demographic data collection.  Alterna-
tively, output from a model can be used to make predictions about a novel popula-
tion.  The fact remains that we don’t know what model best describes a population, 
and when multiple models are fitted with the same data, they often do not produce 
similar predictions related to population viability or extinction probabilities.  The 
best method for managing this uncertainty is to never consider absolute model re-
sults.  It is essential to bear in mind that model results are not completely accurate 
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and should not be interpreted as absolute measures of TES viability.  Results pro-
vide a means for comparison, exposing relative degrees of risk and viability for 
management consideration. 

 

 



60 ERDC/CERL TR-05-30 

Literature Cited 

Aebischer, N.J., P.A. Robertson, and R.E. Kenward.  1993.  “Compositional analysis of habitat use 
from animal radio-tracking data.”  Ecology 74: 1313-1325. 

Akcakaya, H.R. and J.L. Atwood.  1997.  “A habitat-based metapopulation model of the California 
gnatcatcher.”  Conservation Biology 11: 422- 434. 

Alldredge, J.R. and J.T. Ratti.  1986.  “Comparison of some statistical techniques for analysis of 
resource selection.”  Journal of Wildlife Management 50: 157- 165. 

Alldredge, J.R., D.L. Thomas, and L.L.McDonald.  1998.  “Survey and comparison of methods for 
study of resource selection.”  Journal of Agricultural, Biological and Environmental 
Statistics 3:237-253. 

Andreassen, H.P., R.A. Ims, N.C. Stenseth, and N.G. Yoccoz.  1993.  “Investigating space use by 
means of radiotelemetry and other methods: a methodological guide,” pp 589-618 in N.C. 
Stenseth and R.A. Ims, eds, The Biology of the Lemmings.  Academic Press, London. 

Augustin, N.H., M.A. Mugglestone and S.T. Buckland.  1996.  “An autologistic model for the spatial 
distribution of wildlife.”  Journal of Applied Ecology 33: 339-347. 

Austin, M.P.  2002.  “Case studies in the use of environmental gradients in vegetation and faunal 
modeling: theory and practice in Australia and New Zealand,” pp 73-82 in Scott, M.J., P.J. 
Heglund and M.L. Morrison, eds, Predicting Species Occurrences: Issues of Accuracy and 
Scale.  Island Press, Washington, DC. 

Austin, M.P.  1976.  “On non-linear species response models in ordination.”  Vegetatio 33:33-41. 

Austin, M.P. and P.C. Heyligers.  1989.  “Vegetation survey design for conservation: gradsect 
sampling of forests in north-eastern New South Wales.”  Biological Conservation 50: 13-
32. 

Austin, M.P. and P.C. Heyligers.  1991.  “New approach to vegetation survey design: gradsect 
sampling,” pp 31-36 in C.R. Margules and M.P. Austin, eds, Nature conservation: cost 
effective biological surveys and data analysis.  CSIRO Australia, Melbourne, Australia. 

Austin, M.P. and J.A. Meyers.  1996.  “Current approaches to modeling the environmental niche of 
eucalypts: implication for management of forest biodiversity.”  Forest Ecology and 
Management 85: 95-106. 

Baja, S., D.M. Chapman, and D. Dragovich.  2002.  “A conceptual model for defining and assessing 
land management units using a fuzzy modeling approach in GIS environment.”  
Environmental Management 29: 647-661. 

 



ERDC/CERL TR-05-30 61 

Bender, L.C., G.J. Roloff and J.B. Haufler.  1996.  “Evaluating confidence intervals for habitat 
suitability models.”  Wildlife Society Bulletin 24: 347-352. 

Berry, J.K.  1991. “You can’t see the forest for the trees…but on the other hand, you can’t see the 
trees for the forest.”  GIS World Magazine, GIS World, Inc., Fort Collins, Colorado 
October, 1991 

Boone, R.B and W.B. Krohn.  1999.  “Modeling the occurrence of bird species: are the errors 
predictable?”  Ecological Applications 9: 835-848. 

Boyce, M.S. and L.L. McDonald.  1999.  “Relating populations to habitats using resource selection 
functions.”  Trends in Ecology and Evolution 14: 268-272. 

Brooks, R.P.  1997. “Improving habitat suitability index models.” Wildlife Society Bulletin 25: 163-
167. 

Burnham, K. P.  1981.  “Summarizing remarks: Environmental influences.” pp 324-325 in C. J. 
Ralph and J. M. Scott, eds. Estimating numbers of terrestrial birds. Studies in Avian 
Biology No. 6.  

Burnham, K. P., and D. R. Anderson.  2002.  Model Selection and Multimodel Inference: a Practical 
Information-theoretic Approach.  2nd ed.  Springer, New York. 

Burnham, K.P., D.R. Anderson, G.C. White, C. Brownie, and K.H. Pollock.  1987.  “Design and 
analysis experiments for fish survival experiments based on capture-recapture.”  
American Fisheries Society Monograph 5: 260-278. 

Burt, W.H.  1943.  “Territoriality and home range concepts as applied to mammals.”  Journal of 
Mammology 24: 346-352. 

Byers, C.R., R.K. Steinhorst, and P.R. Krausman.  1984.  “Clarification of a technique for the 
analysis of utilization-availability data.”  Journal of Wildlife Management 48: 1050-1053. 

Carter. S.L., C.A Haas, and J.C. Mitchell.  1999.  “Home range and habitat selection of bog turtles 
in southwestern Virginia.”  Journal of Wildlife Management 63:853-860. 

Cherry, S.  1996.  “A comparison of confidence interval methods for habitat use-availability 
studies.”  Journal of Wildlife Management 60: 653-658. 

Clark, J.D., J.E. Dunn, and K.G. Smith.  1993.  “A multivariate model of female black bear habitat 
use for geographic information systems.”  Journal of Wildlife Management 57(3): 519-526. 

Cochran, W.G.  1977.  SamplingTechniques.  Wiley Press, New York, NY. 

Colwell, R.N.  1983.  Manual of Remote Sensing.  Falls Church, VA. 

Congalton, R.G.  1988.  “A comparison of sampling schemes used in generating error matrices 
using remote sensing and geographic information systems.”  Geocarto International  3: 23-
33. 

 



62 ERDC/CERL TR-05-30 

Conover, W.J.  1980.  Practical Nonparametric Statistics.  John Wiley and Sons, New York, NY. 

Conroy, M.J. and C.T Moore.  2002.  “Wildlife habitat modeling in an adaptive framework: the role 
of alternative models,” pp 197-204 in Scott, M.J., P.J. Heglund and M.L. Morrison, eds, 
Predicting Species Occurrences: Issues of Accuracy and Scale.  Island Press, Washington, 
DC. 

Corsi F., I. De Leeuw, A. Skidmore, 2000. “Species distribution modelling with GIS” pp. 389-434 in 
Boitani L. and T.K. Fuller eds. Research Techniques in Animal Ecology. Columbia 
University Press, New York. 

Curran, P.J. and H.D. Williamson.  1986.  “Sample size for ground and remotely sensed date.”  
Remote Sensing of the Environment 20: 31-41. 

Cyr, A., D. Lepage, and K. Freemark.  1995.  “Evaluating point count efficiency relative to territory 
mapping in cropland birds,” pp 69-74 in C.J. Ralph, J.R. Sauer, and S. Droege, eds, 
Monitoring bird populations by point counts.  U.S. Department of Agriculture, Forest 
Service General Technical Report, PSW-149. USDA Pacific Southwest Research Station, 
Albany, CA. 

Dalke, P.D. and P.R. Sime.  1938.  “Home and seasonal ranges of the eastern cottontail in 
Connecticut.”  Transactions of the North American Wildlife Conference 3: 659-669. 

Dasgupta, N. and J.R. Alldredge.  1998.  “A multivariate X2 analysis of resource selection data.”  
Journal of Agricultural, Biological, and Environmental Statistics 3: 323-334. 

Davison, A. C., and D. V. Hinkley.  2003.  Bootstrap methods and their application. Reprinted with 
corrections. ed. Cambridge University Press, Cambridge, UK ; New York, NY, USA. 

Dettmers, R., D.A. Buehler, and J.B. Bartlett.  2002.  “A test and comparison of wildlife-habitat 
modeling techniques for predicting bird occurrence at a regional scale,” pp 607-616 in 
Scott, M.J., P.J. Heglund and M.L. Morrison, eds, Predicting Species Occurrences: Issues of 
Accuracy and Scale.  Island Press, Washington, DC. 

Dixon, K.R. and J.A. Chapman.  1980.  “Harmonic mean measure of animal activity areas.”  
Ecology 61: 1040-1044. 

Doak, D.F.  1995.  “Source-sink models and the problem of habitat degradation: general models 
and applications to the Yellowstone grizzly.”  Conservation Biology 9: 1370-1379. 

Doak, D., P. Kareiva and B. Klepetka.  1994.  “Modeling population viability for the desert tortoise 
in the western Mojave desert.”  Ecological Applications 4: 446-460. 

Dooley, J.L., Jr. and M.A. Bowers.  1998.  “Demographic responses to habitat fragmentation: 
experimental tests at the landscape and patch scale.”  Ecology 79: 969-980. 

Dreisbach, T.A., J.E. Smith, and R. Molina.  2002.  “Challenges of modeling fungal habitat: when 
and where do you find chanterelles?”  pp 475-482 in Scott, M.J., P.J. Heglund and M.L. 
Morrison, eds, Predicting Species Occurrences: Issues of Accuracy and Scale.  Island Press, 
Washington, DC. 

 



ERDC/CERL TR-05-30 63 

Dunn, C.P., D.M. Sharpe, G.R. Guntenspergen, F. Stearns, and Z. Yang.  1991.  “Methods for 
analyzing temporal changes in landscape pattern,” pp 173-198 in M.G. Turner and R.H. 
Gardner, eds, Quantitative Methods in Landscape Ecology.  Springer-Verlag, New York, 
NY. 

Dunning, J.B.Jr., D.J. Stewart, B.J. Danielson, B.R. Noon, T.L. Root R.H. Lamberson, and E.E. 
Stevens.  1995.  “Spatially explicit population models: current forms and future uses.”  
Ecological Applications 5:3-11. 

Eastman, J.R.  1997.  Idrisi.  Clark Labs for Cartographic Technology and Geographic Analysis, 
Worcester, England. 

Efron, B., and R. Tibshirani.  1993.  An introduction to the bootstrap. Chapman & Hall, New York. 

Elith, J. and M. Burgman.  2002.  “Predictions and their validation: rare plants on the central 
highlands, Victoria, Australia,” pp 303-314 in Scott, M.J., P.J. Heglund and M.L. 
Morrison, eds, Predicting Species Occurrences: Issues of Accuracy and Scale.  Island Press, 
Washington, DC. 

Fieberg, J. and S.P. Ellner.  2000.  “When is it meaningful to estimate an extinction probability?”  
Ecology 81: 2040-2047. 

Fielding, A.H.  2002.  “What are the appropriate characteristics of an accuracy measure?” pp 271-
280 in Scott, M.J., P.J. Heglund and M.L. Morrison, eds., Predicting Species Occurrences: 
Issues of Accuracy and Scale.  Island Press, Washington, DC. 

Friedman, M.  1937.  “The use of ranks to avoid the assumption of normality implicit in the 
analysis of variance.” Journal of the American Statistical Association 32: 675-701. 

Garshelis, D.L.  2000.  “Delusions in habitat evaluation: measuring use, selection and importance,” 
pp 111-164 in Boitani, L. and T.K. Fuller, eds, Research Techniques in Animal Ecology: 
Controversies and Consequences.  Columbia University Press, New York, NY. 

Gauch, H.G., Jr. and G.B. Chase.  1974.  “Fitting the Gaussian curve to ecological data.” Ecology 
53: 446-451. 

Gillison, A.N. and K.R.W. Brewer.  1985.  “The use of gradient directed transects or gradsects in 
natural resource surveys.”  Journal of Environmental Management 20: 103-127. 

Greco, S.E., R.E. Plant, and R.H. Barrett.  2002.  “Geographic modeling of temporal variability in 
habitat quality of the yellow-billed cuckoo on the Sacramento River, miles 196-219, 
California,” pp 183-196 in Scott, M.J., P.J. Heglund and M.L. Morrison, eds, Predicting 
Species Occurrences: Issues of Accuracy and Scale.  Island Press, Washington, DC. 

Guénette, J.S. and M.A. Villard.  2005.  “Thresholds in forest bird resonse to habitat alteration as 
quantitative targes for conservation.”  Conservation Biology  19: 1168-1180. 

Guisan, A., T. C. Edwards, and T. Hastie.  2002.  “Generalized linear and generalized additive 
models in studies of species distributions: setting the scene.”  Ecological Modelling, 
157:89-100. 

 



64 ERDC/CERL TR-05-30 

Guisan, A., and N. E. Zimmermann.  2000.  “Predictive habitat distribution models in ecology.” 
Ecological Modelling, 135:147-186.  

Hair, J. F., R. E. Anderson, and R. L. Tatham. 1987. Multivariate data analysis. Second edition. 
Macmillan, New York, New York, USA.  

Haney, J. and A. Solow.  1992.  “Testing for resource use and selection by marine birds.”  Journal 
of Field Ornithology 63: 43-52. 

Hansteen, T.L., H.P. Andreassen, and R.A. Ims.  1997.  “Effects of spatiotemporal scale on 
autocorrelation and home range estimators.”  Journal of Wildlife Management 61: 280-
290. 

Heglund, P.J.  2002.  “Foundations of species-environment relations,” pp 35-42 in Scott, M.J., P.J. 
Heglund and M.L. Morrison, eds, Predicting Species Occurrences: Issues of Accuracy and 
Scale.  Island Press, Washington, DC. 

Heglund, P.J., J.R. Jones, L.H. Fredrickson, and M.S. Kaiser.  1994.  “Use of boreal forested 
wetlands by Pacific loons (Gavia pacifica Lawrence) and horned grebes (Podiceps auritus 
L.): relations with limnological characteristics.”  Hydrobiologia 279/280: 171-183. 

Heisey, D.M.  1985.  “Analyzing selection experiments with log-linear models.”  Ecology 66: 1744-
1748. 

Henebry, G.M. and J.W. Merchant.  2002.  “Geospatial data in time: limits and prospects for 
predicting species occurrences,” pp 291- 302 in Scott, M.J., P.J. Heglund and M.L. 
Morrison, eds, Predicting Species Occurrences: Issues of Accuracy and Scale.  Island Press, 
Washington, DC. 

Hill, K.E. and M.W. Binford.  2002.  “The role of category definition in habitat models: practical 
and logical limitations of using Boolean, indexed, probabilistic, and fuzzy categories,” pp 
97-106 in Scott, M.J., P.J. Heglund and M.L. Morrison, eds, Predicting Species 
Occurrences: Issues of Accuracy and Scale.  Island Press, Washington, DC. 

Hokit, D.G., B.M. Stitch and L.C. Branch.  1999.  “Effects of landscape structure in Florida scrub: a 
population perspective.”  Ecological Applications 9(1): 124-135. 

Huberty, C.J.  1994.  Applied Discriminant Analysis. John Wiley and Sons, New York, NY. 

Hurlbert, S.H.  1984.  “Pseudoreplication and the design of ecological field experiments.” Ecological 
Monographs 54: 187-211.  

Hutchinson, G.E.  1957.  “Concluding remarks.”  Cold Harbor Symposium on Quantitative Biology 
22: 415-427. 

Iverson, G.C., P.A. Vohs, and T.C. Tacha.  1985.  “Habitat use by sandhill cranes wintering in 
western Texas.”  Journal of Wildlife Management 49: 1074-1083. 

James, F.C.  1971.  “Ordinations of habitat relationships among breeding birds.”  Wilson Bulletin 
83: 215-236. 

 



ERDC/CERL TR-05-30 65 

James, F.C. and C.E. McCullough.  1990.  “Multi-variate analysis in ecology and systematics: 
panacea or Pandora’s box?”  Annual Review of Ecology and Systematics 21: 129-166. 

Johnson, D.H.  1980.  “The comparison of usage and availability measurements for evaluating 
resource preference.”  Ecology 61:65-71. 

Jones, K.B.  1986.  “Data types,” pp 11-28 in A.Y. Cooperrider, J.B. Raymond and H.R. Stuart, eds, 
Inventory and Monitoring of Wildlife Habitat.  U.S. Department of the Interior, Bureau of 
Lands, Denver, CO. 

Karr, J.R.  1980.  “History of the habitat concept in birds and the measurement of avian habitats,” 
pp 991-997 in R. Nohring, ed, Acta Internationalis Congressus Ornithologici, Verlag der 
Deutschen Ornithologen-Gesellschaft, Berlin, Germany. 

Kelly, J. F., and B. Van Horne. 1997. “Effects of food supplementation on the timing of nest 
initiation in Belted Kingfishers.” Ecology 78: 2504–2511. 

Kenward, R.  1987.  Wildlife Radio-tagging: Equipment, Field Techniques and Data Analysis.  
Academic Press, London. 

King, A.W.  1991.  “Translating models across scales in the landscape,” pp 479-517 in M.G. Turner 
and R.H. Gardner, eds, Quantitative methods in landscape ecology.  Springer-Verlag, New 
York, New York. 

King, A.W., A.R. Johnson and R.V. O’Neill.  1991.  “Transmutation and functional representation 
of heterogeneous landscapes.”  Landscape Ecology 5: 239-253. 

LaGro, J.Jr.  1991.  “Assessing patch shape in landscape mosaics.”  Photogrammetric Engineering 
and Remote Sensing 57: 285-293. 

Lahaye, W.S., R.J. Gutierrez and H.R. Akcakaya.  1994.  “Spotted owl metapopulation dynamics in 
Southern California.”  Journal of Animal Ecology 63: 775-785. 

Landis, J.R. and G.C. Koch.  1977.  “The measurement of observer agreement for categorical data.”  
Biometrics 33: 159-174. 

Lauga, J. and J. Joachim.  1992.  “Modelling the effects of forest fragmentation on certain species 
of forest-breeding birds.”  Landscape Ecology 6: 183-193. 

Laymon, S.A., H. Salwasser, and R.H. Barrett.  1985.  Habitat Suitability Index Models: Spotted 
Owl.  United States Fish and Wildlife Service, Biological Resources Program, Biological 
Report 82(10.113), Washington, DC. 

Laymon, S.A. and J.A. Reid.  1986.  “Effects of grid-cell size on tests of a spotted owl HSI model,” 
pp 93-96 in J. Verner, M.L. Morrison, and C.J. Ralph, eds, Wildlife 2000: Modeling 
Habitat Relationships of Terrestrial Vertebrates.  University of Wisconsin Press, Madison, 
WI. 

Leathwick, J.R.  1998.  “Are New Zealand’s Nothofagus species in equilibrium with their 
environment?”  Journal of Vegetation Science 9: 719-732. 

 



66 ERDC/CERL TR-05-30 

Legendre, P. and M-J. Fortin.  1989.  “Spatial pattern and ecological analysis.”  Vegetatio 80: 107-
138. 

Lek, S., M. Delacoste, P. Baran, I. Dimopoulos, J. Lauga and S. Aulagnier.  1996.  “Application of 
neural networks to modeling nonlinear relationships in ecology.”  Ecological Modelling 90: 
39-52. 

Leopold, A.  1937.  “A conservationist in Mexico.”  American Forests 43: 118-120. 

Link, W.A., R.J. Barker, J.R. Sauer, and S. Droege.  1994.  “Within-site variability in surveys of 
wildlife populations.”  Ecology 75: 1097-1108. 

Liu, J., J.B. Dunning, Jr., and H.R. Pulliam.  1995.  Potential effects of a forest management plan 
on Bachman’s Sparrows (Aimophila aestivalis): linking a spatially explicit model with 
GIS.”  Conservation Biology 9: 62-75. 

Ludwig, D.  1996.  “Uncertainty and the assessment of extinction probabilities.”  Ecological 
Applications 6: 1067-1076. 

Lusk, J.J., F.S. Guthery, and S.J. DeMaso.  2002.  “A neural network model for predicting northern 
bobwhite abundance in the rolling red plains of Oklahoma,” pp 345-356 in Scott, M.J., P.J. 
Heglund and M.L. Morrison, eds, Predicting Species Occurrences: Issues of Accuracy and 
Scale.  Island Press, Washington, DC. 

MacKenzie, D.I. and W.L. Kendall.  2002.  “How should detection probability be incorporated into 
estimates of relative abundance?”  Ecology 83: 2387-2393. 

MacNally, R.  2000.  “Regression and model-building in conservation biology, biogeography, and 
ecology: the distinction between — and reconciliation of — “predictive” and “explanatory” 
models.”  Biodiversity and Conservation 9: 655-671. 

Manly, B.F.J., L.L. McDonald, D.L. Thomas, T.L. McDonald, and W.P. Erickson.  2002.  Resource 
Selection by Animals: Statistical Design and Analysis for Field Studies.  Kluwer Academic 
Publishers, Boston, MA. 

McGarigal, K., S. Cushman and S. Stafford.  2000.  Multivariate Statistics for Wildlife and Ecology 
Research.  Springer-Verlag, New York, NY. 

Meesters, E.H., R.P.M. Bak, S. Westmacott, M.Ridgley and S. Dollar.  1998.  “A fuzzy logic model 
to predict coral reed development under nutrient and sediment stress.”  Conservation 
Biology 12: 957-965. 

Melton, R. H., L.A. Jette, T.J. Hayden, and T. A. Beatty.  2001.  Population Viability of Avian 
Endangered Species: the PVAvES Program.  U.S. Army Corps of Engineers Engineer 
Research and Development Center Technical Report ERDC/CERL TR-01-7, ADA388185 
ERDC/CERL, Champaign, IL. 

Menzel, M.A., S.F. Owen, W.M. Ford, J.W. Edwards, P.B. Wood, B.R. Chapman, and K.V. Miller.  
2002.  “Roost tree selection by northern long-eared bat (Myotis septentrionalis) maternity 
colonies in an industrial forest of the central Appalachian mountains.”  Forest Ecology and 
Management 155: 107-114. 

 



ERDC/CERL TR-05-30 67 

Millspaugh, J.J., J.R. Skalski, B.J. Kernohan, K.J. Raedeke, G.C. Brundige, and A.B. Cooper.  
1998.  “Some comments on spatial independence in studies of resource selection.”  Wildlife 
Society Bulletin 26: 232-236. 

Mohr, C.O.  1947.  “Table of equivalent populations of North American small mammals.”  American 
Midland Naturalist 37: 223-249. 

Moilanen, A. and I. Hanski.  1998.  “Metapopulation dynamics: effects of habitat quality and 
landscape structure.”  Ecology 79: 2503-2515. 

Monmonier, M.S.  1982.  Computer-assisted Cartography: Principles and Prospects.  Prentice Hall, 
Englewood Cliffs, NJ. 

Morris, W.F. and D.F. Doak.  2002.  Quantitative Conservation Biology: Theory and Practice of 
Population Viability Analysis, Sinauer Associates, Inc., Sunderland, MA. 

Morrison, M.L., I.C. Timossi, and K.A. With.  1987.  “Development and testing of linear regression 
models predicting bird-habitat relationships.”  Journal of Wildlife Management 51: 247-
253. 

Morrison, M. L., B. G. Marcot, and R. W. Mannan.  1998.  Wildlife-habitat relationships: concepts 
& applications. 2nd ed. University of Wisconsin Press, Madison, WI. 

Munoz, J., and A. M. Felicisimo.  2004.  “Comparison of statistical methods commonly used in 
predictive modelling.”  Journal of Vegetation Science, 15:285-292. 

Murphy, D.L.  1985.  “Estimating neighborhood variability with a binary comparison matrix.”  
Photogrammetric Engineering and Remote Sensing 51: 667-674. 

Neu, C.W., C.R. Byers, and J.M. Peek.  1974.  “A technique for analysis of utilization-availability 
data.”  Journal of Wildlife Management 38: 541-545. 

O’Connor, R.J.  2000.  “Expert Systems, Fuzzy Logic, and Coral Reef Development under 
Environmental Stress.” Conservation Biology 14: 904-906. 

O’Connor, R.J.  2002.  “The conceptual basis of species distribution modeling: time for a paradigm 
shift?” pp 25-34 in Scott, M.J., P.J. Heglund and M.L. Morrison, eds., Predicting Species 
Occurrences: Issues of Accuracy and Scale.  Island Press, Washington, DC. 

Pearce, J.L. and S. Ferrier.  2000.  “Evaluating the predictive performance of habitat models 
developed using logistic regression.”  Ecological Modelling 133: 225-245. 

Pearce, J.L., L.A. Venier, S. Ferrier and D.W. McKenney.  2002.  “Measuring prediction 
uncertainty in models of species distribution,” pp 383- 390 in Scott, M.J., P.J. Heglund and 
M.L. Morrison, eds., Predicting Species Occurrences: Issues of Accuracy and Scale.  Island 
Press, Washington, DC. 

Pearl, J.  2000.  Causality:  models, reasoning, and inference. Cambridge University Press, 
Cambridge, U.K. and New York. 

 



68 ERDC/CERL TR-05-30 

Pedlar, J.H., L. Fahrig, and H.G. Merriam.  1997.  “Raccoon habitat use at two spatial scales.”  
Journal of Wildlife Management 61: 102-112. 

Pendleton, G.W.  1995.  “Effects of sampling strategy, detection probability, and independence of 
counts on the use of point counts,” pp 131-133 in C.J. Ralph, J.R. Sauer, and S. Droege, 
eds., Monitoring bird populations by point counts.  USDA Forest Service General 
Technical Report, PSW-149.  USDA Pacific Southwest Research Station, Albany, CA. 

Pielou, E.C.  1977.  Mathematical Ecology.  John Wiley and Sons, New York, NY. 

Quade, D.  1979.  “Using weighted rankings in the analysis of complete blocks with additive block 
effects.”  Journal of the American Statistical Association 74: 680-683. 

Ralph, C.J., J.R. Sauer, and S. Droege.  1995.  Monitoring Bird Populations by Point Counts USDA 
Forest Service General Technical Report, PSW-149. USDA Pacific Southwest Research 
Station, Albany, CA. 

Ranney J.W., M.C. Bruner, and J.B. Levenson.  1981.  “The importance of edge in the structure 
and dynamics of forest islands,” pp 67-96 in R.L. Burgess and D.M. Sharpe, Forest island 
dynamics in man-dominated landscapes, Springer-Verlag, New York, NY. 

Rastetter, E.B., A.W. King, B.J. Cosby, G.M. Hornberger, R.V. O’Neill, and J.E. Hobbie.  1992.  
“Aggregating fine-scale ecological knowledge to model coarser-scale attributes of 
ecosystems.”  Ecological Applications 2:55-70. 

Richards, J.A.  1986.  Remote Sensing: Digital Analysis.  Springer-Verlag, Berlin. 

Ricketts, T.H.  2001.  “The matrix matters: effective isolation in fragmented landscapes.”  The 
American Naturalist 158: 87-99. 

Ripple, W.J., G.A. Bradshaw, and T.A. Spies.  1991.  “Measuring landscape pattern in the 
Cascades Range of Oregon, USA.” Biological Conservation 57: 73-88. 

Riitters, K.H., R.V. Oneill, C.T. Hunsaker, J.D. Wickham, D.H. Yankee, S.P. Timmins, K.B. Jones, 
and B.L. Jackson.  1995.  “A factor analysis of landscape pattern and structure metrics.”  
Landscape Ecology, 10:23-39. 

Roberts P.R., and H.J. Oosting. 1958. “Responses of venus fly trap (Dionaea muscipula) to factors 
involved in its endemism.” Ecological Monographs 28: 193–218. 

Rolley, R.E. and W.D. Warde.  1985.  “Bobcat habitat use in southeastern Oklahoma.” Journal of 
Wildlife Management 49: 913-920. 

Roloff, G.J. and B.J. Kernohan.  1999.  “Evaluating reliability of habitat suitability index models.”  
Wildlife Society Bulletin 27: 973- 985. 

Romme, W.H.  1982.  “Fire and landscape diversity in subalpine forests of Yellowstone National 
Park.”  Ecological Monographs 52: 199-221. 

 



ERDC/CERL TR-05-30 69 

Roy, L.D. and M.J. Dorrance.  1985.  “Coyote movements, habitat use, and vulnerability in central 
Alberta.” Journal of Wildlife Management 49: 307-313. 

Rubinoff, J., Sescienski, S. and W. Woodson.  2004.  Installation Summaries from the FY 2003 
Survey of Threatened and Endangered Species on Army Lands.  SFIM-AEC-TS-TR 
2004005, Army Environmental Center, Aberdeen Proving Ground, MD. 

Saab, V.  1999.  “Importance of spatial scale to habitat use by breeding birds in riparian forests: a 
hierarchical analysis.”  Ecological Applications 9(1): 135-151. 

Samuel, M.D., D.J. Pierce, and E.O. Garton.  1985.  “Identifying areas of concentrated use within 
the home range.” Journal of Animal Ecology 54: 711-719. 

Sauer. J.R., B.G. Peterjohn, and W.A. Link.  1994.  “Observer differences in the North American 
Breeding Bird Survey.”  Auk 111: 50-62. 

Sauer, J. R., G. W. Pendleton, and S. Orsillo. 1995. “Mapping of bird distributions from point count 
surveys.” pp 151-160 in C. J. Ralph, J. R. Sauer, and S. Droege, eds., Monitoring Bird 
Populations by Point Counts, USDA Forest Service, Pacific Southwest Research Station, 
General Technical Report PSW-GTR-149. 

Saveraid, E.H., D.M. Debinski, K.Kindscher and M.K. Jakubauskas.  2001.  “A comparison of 
satellite data and landscape variables in predicting bird species occurrences in the 
Greater Yellowstone Ecosystem, USA.”  Landscape Ecology 16: 71-83. 

Schaefer, S.M. and W.B. Krohn.  2002.  “Predicting vertebrate occurrences from species habitat 
associations: improving the interpretation of commission error rates,” pp 419-428 in Scott, 
M.J., P.J. Heglund and M.L. Morrison, eds., Predicting Species Occurrences: Issues of 
Accuracy and Scale.  Island Press, Washington, DC. 

Schoener, T.W.  1981.  “An empirically based estimate of home range.”  Theoretical Population 
Biology 20: 281-325. 

Schulz, T.T. and L.A. Joyce.  1992.  “A spatial application of a marten habitat model.”  Wildlife 
Society Bulletin 20: 74-83. 

Shaw, Denice M., and Samuel F. Atkinson. 1990. “An Introduction to the Use of Geographic 
Information Systems for Ornithological Research.” The Condor 92: 564-570. 

Shipley, B.  2000.  Cause and Correlation in Biology : a User's Guide to Path Analysis, Structural 
Equations and Causal Inference.  Cambridge University Press, Cambridge, U.K. and New 
York. 

Skidmore, A.  2002.  Environmental Modelling with GIS and Remote Sensing.  Taylor & Francis, 
New York. 

Smallwood, K.S.  2002.  “Habitat models based on numerical comparisons,” pp 83-96 in Scott, M.J., 
P.J. Heglund and M.L. Morrison, eds., Predicting Species Occurrences: Issues of Accuracy 
and Scale,  Island Press, Washington, DC. 

 



70 ERDC/CERL TR-05-30 

Starfield, A.M.  1997.  “A pragmatic approach to modeling for wildlife management,” Journal of 
Wildlife Management 61: 261-270. 

Stinnet, D. and D. Klebenow,  1986.  “Habitat use of irrigated lands by California Quail in 
Nevada.”  Journal of Wildlife Management, 50: 368-372. 

Stith, B.M., J.W. Fitzpatrick, G.E. Woolfenden, and B. Pranty.  1996.  “Classification and 
conservation of metapopulations: a case study of the Florida scrub jay,” pp 187-215 in 
McCullough, D.R., ed., Metapopulations and Wildlife Conservation.  Island Press, 
Washington, DC. 

Sweeney, J.M. and W.D. Dijak.  1985.  “Ovenbird habitat capability model for an oak-hickory 
forest.”  Proceedings of the Annual Conference of the Southeast Association of Fish and 
Wildlife Agencies 39: 430-438. 

Swihart, R.K. and N. A. Slade.  1985.  “Testing for independence of observations in animal 
movements.”  Ecology 66: 1176-1184. 

Swihart, R. and N. Slade.  1997.  “On testing of independence of animal movements.”  Journal of 
Agricultural, Biological, and Environmental Statistics, 2: 48-63. 

Thomas, D.L. and E.J. Taylor.  1990.  “Study designs and tests for comparing resource use and 
availability.”  Journal of Wildlife Management, 54: 322-330. 

Thomas, K., T. Keeler-Wolf and J. Franklin.  2002.  “A comparison of fine- and coarse resolution 
environmental variables toward predicting vegetation distribution in the Mojave Desert,” 
pp 133- 40 in Scott, M.J., P.J. Heglund and M.L. Morrison, eds., Predicting Species 
Occurrences: Issues of Accuracy and Scale.  Island Press, Washington, DC. 

Thompson, S. K.  2002.  Sampling. 2nd ed. Wiley, New York. 

Toll, D.L.  1984.  “An evaluation of simulated Thematic Mapper data and Landsat MSS data for 
discriminating suburban and regional land use and land cover.”  Photographic 
Engineering and Remote Sensing 50: 1713-1724. 

Trame, A., S.J. Harper, J. Aycrigg and J. Westervelt.  1997.  The Fort Hood Avian Simulation 
Model: a Dynamic Model of Ecological Influences on Two Endangered Species. USACERL 
Technical Report 97/ 88.  U.S. Army Construction Engineering Research Laboratory, 
Champaign, IL. 

Trani, M. K. 1996. Landscape pattern analysis related to forest wildlife resources. Blacksburg, VA: 
Ph. D. Dissertation, Virginia Polytechnic Institute and State University. 183 pp  

Trani, M.K.  2002.  “The influence of spatial scale on landscape pattern description and wildlife 
habitat assessment,” pp 141-156 in Scott, M.J., P.J. Heglund and M.L. Morrison, eds., 
Predicting Species Occurrences: Issues of Accuracy and Scale.  Island Press, Washington, 
DC. 

Tso, B., and P. M. Mather.  2001.  Classification Methods for Remotely Sensed Data.  Taylor & 
Francis, New York. 

 



ERDC/CERL TR-05-30 71 

Turchin, P.  1998.  Quantitative Analysis of Movement: Measuring and Modeling Population 
Redistribution in Animals and Plants.  Sinauer Associates. Inc., Sunderland, MA. 

Urban, D.L. and H.H. Shugart, Jr.  1986.  “Avian demography in mosaic landscapes: modeling 
paradigm and preliminary results,” pp 273-279 in J. Verner, M.L. Morrison, and C.J. 
Ralph, eds., Wildlife 2000: Modeling Habitat Relationships of Terrestrial Vertebrates.  
University of Wisconsin Press, Madison, WI. 

U.S. Army.  1995.  Army Regulation 200-3, Natural Resources – Land, Forest and Wildlife 
Management.  Headquarters, U.S. Army, Washington, DC.  28 February 1995. 

U.S. Fish and Wildlife Service (USFWS).  1997.  Lesser long-nosed bat recovery plan.  Albuquerque, 
New Mexico. 

US Fish and Wildlife Service.  2004.  Threatened and endangered species system.  
http://ecos.fws.gov/tess_public/TESSWebpage. 

van Horne, B.  1983.  “Density as a misleading indicator of habitat quality.”  Journal of Wildlife 
Management, 47: 893-901. 

van Horne, B.  2002.  “Approaches to habitat modeling: the tensions between pattern and process 
and between specificity and generality,” pp 63-72 in Scott, M.J., P.J. Heglund and M.L. 
Morrison, eds., Predicting Species Occurrences: Issues of Accuracy and Scale.  Island 
Press, Washington, DC. 

van Manen, F.T., J.D. Clark, S.E. Schlarbaum, K. Johnson and G. Taylor.  2002.  “A model to 
predict the occurrence of surviving butternut trees in the southern Blue Ridge 
Mountains,” pp 491-498 in Scott, M.J., P.J. Heglund and M.L. Morrison, eds., Predicting 
Species Occurrences: Issues of Accuracy and Scale.  Island Press, Washington, DC. 

Vickery, P.D., M.L. Hunter, Jr., and J.V. Wells.  1992.  “Is density an indicator of breeding 
success?”  Auk 109: 706-710. 

Verbyla, D.L. and J.A. Litvaitis.  1989.  “Resampling methods for evaluating classification accuracy 
of wildlife habitat models.”  Environmental Management 13: 783-787. 

Walker, R.S., A.J. Novaro and L.C. Branch.  2003.  “Effects of patch attributes, barriers, and 
distance between patches on the distribution of a rock-dwelling rodent (Lagidum 
viscacia).”  Landscape Ecology 18: 185-192. 

Waller, R.A. and D.B. Duncan.  1969.  “A Bayes rule for the symmetric multiple comparisons 
problem.”  Journal of the American Statistical Association 64: 1484-1503. 

Walters, J. R., L. B. Crowder, and J. A. Priddy.  2002.  “Population viability analysis for red-
cockaded Woodpeckers using an individual-based model.”  Ecological Applications, 12:249-
260. 

White, G.C.  2000.  “Population viability analysis: data requirements and essential analyses,” pp 
288-331 in L. Boitani and T.K. Fuller, eds., Research Techniques in Animal Ecology: 
Controversies and Consequences.  Columbia University Press, New York. 

 



72 ERDC/CERL TR-05-30 

Whittaker, R.H.  1975.  Communities and Ecosystems.  MacMillan Press, New York, NY. 

Wiens, J.A.  1989.  “Spatial scaling in ecology.”  Functional Ecology 3: 385-397. 

Wiens, J.A., J.T. Rotenberry, and B. van Horne.  1987.  “Habitat occupancy patterns of North-
American shrub-steppe birds: the effect of spatial scale.”  Oikos 48: 132-147. 

Worton, B. J.  1989.  “Kernel methods for estimating the utilization distribution in home-range 
studies.”  Ecology 70: 164-168. 

Young, J.S. and R.L. Hutto.  2002.  “Use of regional-scale exploratory studies to determine bird-
habitat relationships,” pp 107-122 in Scott, M.J., P.J. Heglund and M.L. Morrison, eds., 
Predicting Species Occurrences: Issues of Accuracy and Scale.  Island Press, Washington, 
DC. 

Zadeh, L.A.  1994.  “Fuzzy logic can help GIS cope with reality.” GIS World, September, pp. 50-53. 

 

 



ERDC/CERL TR-05-30 73 

Appendix A:  A Checklist for Study Design 
and Validation 
Considerations When 
Evaluating Model 
Performance 

This list is from Roloff and Kernohan (1999) and is most appropriate for Class II 
and III models, but it is also worth reviewing for all modeling efforts. 

Application of a model to a new location 

1. The model is appropriate to the geographic locations under consideration. 
2. Input parameters and depicted relationships coincide with the planning area un-

der consideration. 
3. Are there local ecological characteristics that need to be incorporated into the 

model before it will be useful? 
4. Habitat depiction within the model corresponds to the seasonal data available at 

the site under consideration. 

General Study Design for Model Input 

1. Resolution of land or habitat classification is at a biologically relevant scale for 
the organism and model application of interest. 

2. Vegetation sampling must be statistically sound and provide evaluation of the 
confidence in estimates. 

3. Spatial information is quantified from maps or GIS with acceptable accuracy. 
4. Inclusion of a complete range of habitat conditions in sampling strategy. 

Testing the Model 

1. Identify model assumptions. 
2. Identify model input variables. 
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3. Identify relationships between variables within model. 
4. Develop a mechanism to test or at least substantiate the assumptions, validity of 

input variables, relationships and output. 
5. Calculate the minimum home range for the spatial scale of model output. 

Characterization of Organism Response 

1. Identify an indication of population fitness to use as response to habitat. 
2. Include the ability to monitor changes in population numbers. 
3. Adequate replicates to determine organism response. 
4. Field data based on 3 breeding cycles of organism 

Documentation of Results 

1. Estimate confidence limits around model output and species response. 
2. Maintain the complete, detailed description of all replicate data used in analysis. 
3. Evaluate statistical assumptions and power. 
4. Document range and distributions of organism response (validation) data com-

pared to model output. 
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