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ABSTRACT 
 
 
MEMS technology is rapidly taking an important role in today’s and future 

military systems. MEMS are able to lower the device size from millimeter to micrometer 

and maintain and sometimes surpass the performance of conventional devices. This thesis 

encompasses the knowledge acquired throughout the MEMS courses to design a two-axis 

capacitive accelerometer. The required acceleration and operating temperature range 

were 50g± in each axis and    −40oC to + 85oC , respectively. The accelerometer was also 

needed to survive within a dynamic shocking environment with accelerations of up to 

225g. The parameters of the accelerometer to achieve above specifications were 

calculated using lumped element approximation and the results were used for initial 

layout of it. A finite element analysis code (ANSYS) was used to perform simulations of 

the accelerometer under various operating conditions and to determine the optimum 

configuration. The simulated results were found to be within about 5% of the calculations 

indicating the validity of lumped element approach. The response of the designed 

accelerometer was 7 mV/g and with sensitivity of 1.3g at 3dB. It was also found that the 

accelerometer was stable in the desired range of operation including under the shock.  

Two axes sensing can be achieved using two identical accelerometers having their 

sensing axes perpendicular to each other. 
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I. INTRODUCTION  

A. BACKGROUND 
The use of microelectronic processing techniques to fabricate miniature 

mechanical devices has attracted considerable attention during the last decade [1].  These 

devices are generally known as micro electro mechanical systems or MEMS [2][3]. The 

current MEMS technology allows integration of mechanical, optical, fluidic, and 

electrical components [4]. Because of the advantage of size ranging from millimeter to 

micrometer, MEMS devices broaden their applications to many fields from commercial 

to medical and military products. There are many successful commercial MEMS products 

available in the market, such as inertial guide system, accelerometer, pressure and 

chemical sensors, micro-optics and micro fluidic pumps [5].  

Accelerometers are part of the most successful MEMS products available since 

1980’s.The basic mechanism of sensing the acceleration is to monitor the displacement of 

a proof mass attached to a spring as schematically illustrated in Figure 1.  

 

 
Figure 1.   Basic accelerometer operation mechanism. 

 

If the displacement of the proof mass is δx for a given acceleration (a), the 

relationship between a and dx can be written as Equation (1)[6], 
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              2
o

ama k x xδ δ
ω

= ⇒ =                                     (1) 

where k is the spring constant and ωo is the resonant frequency of the system. It can be 

seen from Equation (1) that for higher sensitivity it is necessary to have a lower resonant 

frequency or a softer spring for a given mass. However, such a system would have a 

slower response time and sudden changes of acceleration may not be measured accurately 

[6]. Note that the above quasi-static derivation is true only for acceleration changes are 

slower than the resonant frequency [6]. For applications involving rapid changes of 

acceleration, a higher resonant frequency is needed which can lower the resolution as 

expected from Equation (1). There are several approaches of sensing the amount of 

displacement of the proof mass that include as piezoresistive [7], capacitive [8][9], 

tunneling [10] [11] and optical [12][13] changes. The capacitive accelerometers play an 

important role due to their good temperature stability, high sensitivity and low power 

consumption [14]. In the following, a brief description of different acceleration sensing 

mechanisms employed to date will be presented. 

 

1. Capacitive Accelerometer 
In a capacitive accelerometer, the displacement of the proof mass is monitored by 

changes in capacitance of a parallel plate capacitor where one of the plates is attached to 

a spring as schematically illustrated in Figure 2. When the external acceleration is applied 

to the accelerometer, the moving plate (proof mass) will move from its rest position that 

changes the capacitance between the moveable and fixed plates. The change in 

capacitance is usually measured using bridge circuit and will be discussed in detail later. 
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Figure 2.   Capacitive accelerometer operation. 

   

2. Tunneling Accelerometer 
Tunneling accelerometer utilizes the tunneling current between a tunneling tip 

attached to the proof mass and counter-electrode to sense the displacement as shown in 

Figure 3. 

 

 
Figure 3.   Basic tunneling accelerometer operation mechanism. 

 

The operation tunneling accelerometer requires the tip and the counter-electrode 

separation within a few angstroms. During the operation a constant tunneling current is 

maintained between the tip and electrode using an external circuit. Under acceleration the 

separation between the tip and electrode changes which in turn affects the tunneling 

current and the circuit will respond to the current change and adjust the voltage to restore 
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the tunneling current. The amount of voltage needed can be correlated with the 

acceleration [10]. This type of accelerometer yields very high sensitivity due to the fact 

that the tunneling current is very sensitive to the displacement [11]. The drawbacks of 

this design are large noise levels at low frequencies as well as requirement for a high 

voltage power supply for maintaining tunneling current. Lately there have been some 

efforts to develop a low-voltage version of the tunneling accelerometer with the hope of 

mitigating some of the aforementioned problems [15]. 

 

3. Piezoresistive Accelerometer 
The piezoresistive accelerometer is based on strain gauge technology and is best 

suited for low frequency applications [7]. It was the first micromachined accelerometer 

produced and one of the first to be commercialized [7]. The operation principle is based 

on the change of resistance due to stress generated by deflection of Si beams attached to 

the proof mass as illustrated in Figure 4. By positioning the silicon piezoresistors at the 

highest stress point (usually where the beam attaches the substrate) the resistance change 

can be maximized. Subsequently, a resistive half-bridge or full bridge can be formed by 

employing two or four piezoresistors to measure the resistance change [7]. 

 
Figure 4.   Schematic diagram of a piezoresistive accelerometer. 
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The main advantages of piezoresistive accelerometers are their simple structure and 

fabrication processes. However, comparing to capacitive accelerometers, the larger 

temperature sensitivity and smaller overall sensitivity are its drawbacks [16]. 

 

4. Thermal Accelerometer 
Thermal accelerometers take advantage of heat transfer characteristics between two 

plates of which one acts as a heater and the other as the heat sink [13]. The heat flow rate 

is inversely proportional to their separation distance [13]. If one plate can move relative 

to the other during the acceleration, the heat flow will change which affects the 

temperature of the heat sink. This temperature can be measured using thermopiles which 

can be correlated to the amount of acceleration. Another type of thermal accelerometer 

that does not have any moving mechanical parts, it instead uses free-convection heat 

transfer of a small hot air bubble in a seal chamber as its fundamental working function 

[13]. Thermally isolated heaters in this device form a hot air bubble. Because of the 

acceleration, the heat distribution of the bubble will be changed and becomes asymmetric 

with respect to the heater. By utilizing two symmetrically placed temperature sensors, the 

heat profile and acceleration can be measured. The initial prototype’s sensitivity can 

approach 0.6 mg, but has a theoretical limit of sub-µg sensitivity [13]. 
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II. REQUIREMENTS AND EVALUATION 

A. REQUIREMENTS 
This work involved the design of a two-axis (x, y) accelerometer, which can sense 

the acceleration on a plane with specific parameters. The accelerometer should have the 

ability to measure the acceleration of  ± 50g while able to maintain a 20 kHz frequency 

response for each axis. The accelerometer should also survive a maximum shock of ±

225g in any direction. The design’s layout should fit within an area of 1 cm2. The 

operating temperature for the accelerometer was -40°C to +85°C, but should be able to 

survive in temperatures from -45°C to +125°C. To reduce operational costs, a self-test 

function should be designed in place and not required an operator. All of these 

requirements make up the limitations of the accelerometer designed in this thesis. Table 1 

summarized these requirements. 

 

Table 1. Requirements for capacitive accelerometer design. 
 

 Requirements of Design 

Axis Acceleration 
Surviving 

shock 

Surviving 

Temperature 

Operating 

Temperature 

X ± 50g ± 225g -45°C to +125°C -40°C to +85°C 

Y ± 50g ± 225g -45°Cto+ 125°C -40°C to +85°C 

 

B. DESIGN TOOLS 

The entire design was carried out using MEMS Pro software available to us and 

the fabrication to be compatible with the PolyMUMPs process available via MEMSCAP 

[17]. It included L-edit, S-edit, T-spice and ANSYS for layout and various simulations. 

Each tool has its unique function. The MEMS library came with the design software 
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provided a number of components and schematics to assemble and to conduct simulations. 

The following were the main tools used to perform the work in this thesis. 

 

1. L-Edit 
L-Edit was a graphical layout editor for MEMS devices. The use of different 

colors, predefined in the system, represented different layers, which correlate to the 

various microfabrication processes. The design process was drastically simplified, to the 

point that it appeared, at times, that we were simply drawing a picture. In addition to the 

fundamental components such as: box, polygon, circle, line and wire; the library also 

provided complex models, such as: suspension elements and electro-mechanical 

transducers. The powerful 3-D model simulation function clearly constructed the device 

step by step as if undergoing the actual microfabrication processes; this made very easy 

to identify design flaws in the early stages.  

  

2. ANSYS 
ANSYS was a finite element analysis software capable of performing multi-

physics simulations. In other words, ANSYS provided the ability of performing structural, 

thermal, electrostatic, electromagnetic, and fluidic analysis all at once. Using the 

graphical user interface in conjunction with an ANSYS scripting language, we could 

program customized functions to build the computer models and/or transfer the CAD 

models, into the simulation environment, properly mesh the MEMS devices, assigned 

boundary conditions, solved the problems and viewed the results. [18]. Therefore, it was 

possible to quickly change the model’s dimensions, material properties, displacements 

and stresses. 

 

C. EVALUATION 
The literature search on different accelerometer designs revealed that all the 

approaches have their unique characteristics with both advantages and shortcomings. The 

simplicity of design and high reliability when compared to other designs prompted us to 

use differential capacitive accelerometer concept over others [8]. 
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The fundamental operating principle for capacitive accelerometer was as follows: 

a moveable proof mass connected between two fixed springs (see Figure 5) would be 

activated when an acceleration was applied to create a force. Hence, under this 

acceleration, the gap between the two different voltage electrodes would change and 

create a differential capacitor. Thus the change in capacitance could be measured which 

can be translated to the amount of acceleration. This was the most popular approach and 

has been adopted working function used in all of the commercial airbag sensors due to its 

ruggedness and high sensitivity [14]. The design presented in this thesis geared towards 

the use of a multi-user microfabrication facility/process known as PolyMUMPS. The 

decision to design the accelerometer with this predefined process in mind was tied down 

to the low costs involved when using such multi-user facilities and also due to the very 

high reliability of this microfabrication process, which has turned out over 69 different 

fabrication runs with outstanding success [19].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.   Schematic of Accelerometer. 

 

The PolyMUMPS process, started in 1992, was a surface micromachining process 

containing a series of coating and etching procedures [17]. It contained three-layers of 

doped polysilicon, which worked as both structural and conducting layers. The 

 
anchor 

self-test region 

sensing region

C 

+V(DC) 

0V 
+V(AC) 

-V(AC) 

ground
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polysilicon layers were separated by silicon dioxide layers that acted as sacrificial layers.  

In addition there was a silicon nitride layer at the bottom for isolation and metal on the 

top for making electrical contacts. This was the most popular process that can be used for 

fabricating variety of MEMS designs. Other more complex processes involving up-to 5 

structural layers were available (such as the Summit IV process from SANDIA National 

labs,) but the extra layers were deemed not necessary for our accelerometer design. The 

three structural layers were sufficient for to the current design of the two-axis 

accelerometer and preliminary calculations indicate that 3 layers were also sufficient for 

extending the design to 3-axes. 

Since both the x and the y-axis laid on the same plane it made sense to create 

identical accelerometers for both axes but position them orthogonal to each other. In 

addition to simplifying the accelerometer design and device layout, it also effectively 

reduced the possible errors during the design. In order to maximize the sensing area of 

the device, the x and y-axis accelerometer were designed to be long and contained a large 

number of differential capacitor units. Before drawing the accelerometer in L-Edit, hand 

calculations and spreadsheet computations in EXCEL played a major role in this work. 

Subsequent finite element simulations in ANSYS were performed to verify the results 

and to come-up with an optimized design. 

It was a common practice to include a test section where an internal force can be 

applied for self-testing of the performance. This can be achieved by using a capacitor 

with a moving plate as illustrated in Figure 2.   

The accelerometer was composed of a center plate (proof mass) that was 

suspended between a pair of springs. Comb fingers (called electrodes) attached to the two 

sides of the plate created a differential capacitor by interacting with the outside fixed 

electrodes as shown in Figure 5. The moveable and fixed electrodes were the two 

fundamental components of differential capacitor sensor. The former electrodes attached 

to the central plate were responsible for sensing acceleration. The latter ones were the 

voltage suppliers. Movement of the electrodes changed the differential capacitance, 

which was measured by the chip circuitry. 
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III. DESIGN METHODOLOGY 

In the previous chapter, we have described the operational principle of capacitive 

accelerometers and various components necessary for sensing the acceleration as well as 

self-testing.  This chapter presented the analysis of the design of various components to 

satisfy the design requirements. 

 

A. SPRING 
Under acceleration, the proof mass of the accelerometer experienced a force.  The 

displacement of the proof mass will compress one spring and stretch the other until the 

force due to acceleration cancelled by the spring forces. Thus, the combined spring 

constant of the springs will determine the amount of proof mass displacement and hence 

the signal generated by the sensing capacitors. Therefore, how to choose a suitable spring 

became a key piece of this work. In MEMS the most convenient way to make a spring 

was to use a folded structure as shown in Figure 6. 

Figure 6.   Schematic diagram of a folded spring made of polysilicon [From: Ref. 20]. 

 

The spring was composed of four beams made of polysilicon layers. The red 

square area in Figure 6 was the anchor, fixing the spring on to the substrate. The central 

plate (proof mass) was connected from the bottom black area to the other symmetrical 
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spring. The spring constant ( K ) determined the extent of displacement of the proof mass 

and could be calculated by the formula in Equation (2) [21] 

 

              
4 3

3 3
1 2

( )[ ]
6 (2 ) (2 )

EWHK
L L

π
=

+
                                    (2) 

 

Where E was the Young’s modulus of plysilicon, W was the beam width, H was the 

beam thickness and L1, L2 were the beam lengths as shown in Figure 6. 

From the above formula it can be seen that the spring constant was controlled by the 

lengths (L1 and L2) if the H and W were fixed. Other important parameter in the design of 

an accelerometer was the proof mass (m) since the spring constant and proof mass 

determined the resonant frequency (ω0) as given in Equation (3): 

             0 2
0

2 K Kf m
m

ω π
ω

= = → =                               (3) 

The resonant frequency determined how fast the accelerometer can responds to a 

changing acceleration or the bandwidth of operation. Our design required the bandwidth 

to be 20 kHz and it was necessary to set the resonant frequency to be higher than the 

bandwidth to avoid unstable operation [22]. In the present design, the resonant frequency 

was set to be about five times the bandwidth or 100 kHz. For simplicity, lengths L1 and 

L2 assumed to be the same and the dimensions of W and H were also taken to be the 

same as the polysilicon layer thickness (2 µm). In order to estimate the proof mass and 

that gives resonant frequency of about 100 kHz, we have first calculated the total spring 

constant due to the two springs (2K) using Equation (3) and the results were shown in 

upper section of Table 2. Next, we have calculated the resonant frequency using the 

calculated spring constants and varying the proof mass and the results were shown in the 

lower section of Table 2.   
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Table 2. Calculation of spring constant for different combination of length, spring 
constant and mass. 

L1(�m) 35 60 70 80 90 100 

L2(�m) 35 60 70 80 90 100 

2*k (N/m) 1.14E+02 2.25E+01 1.42E+01 9.51E+00 6.68E+00 2.44E+00

m fn fn fn fn fn fn 

(kg) (kHz) (kHz) (kHz) (kHz) (kHz) (kHz) 

1.76E-10 127.8633 56.9668 45.2066 37.0010 31.0088 18.7212 

1.86E-10 124.3786 55.4143 43.9745 35.9926 30.1637 18.2110 

1.96E-10 121.1641 53.9821 42.8381 35.0624 29.3841 17.7403 

2.06E-10 118.1867 52.6556 41.7854 34.2008 28.6621 17.3044 

2.16E-10 115.4184 51.4223 40.8067 33.3997 27.9907 16.8991 

2.26E-10 112.8360 50.2717 39.8936 32.6524 27.3645 16.5210 

2.36E-10 110.4196 49.1951 39.0393 31.9532 26.7784 16.1672 

2.46E-10 108.1520 48.1848 38.2376 31.2970 26.2285 15.8352 

2.56E-10 106.0186 47.2344 37.4833 30.6796 25.7111 15.5228 

2.66E-10 104.0067 46.3380 36.7720 30.0974 25.2232 15.2282 

2.76E-10 102.1051 45.4908 36.0997 29.5471 24.7620 14.9498 

2.81E-10 101.193 45.0842 35.7771 29.2831 24.5408 14.8162 

2.86E-10 100.3042 44.6884 35.4629 29.0260 24.3253 14.6861 

 

The analysis showed that in order to achieve 100 kHz resonant frequency, it 

necessary to have L1 = L2 = 35 µm and proof mass of 2.81 × 10-10 Kg (less than 0.3 ng).  

 

B. PROOF MASS AND ELECTRODES 

The proof mass included the masses of the central plate and all the moving 

electrodes as illustrated in Figure 7. In order to perform the self-test function, the whole 

structure was separated into two parts, the sensing region and the self-test region.  

 

 



 14

 
Figure 7.   Schematic diagram of proof mass with sensing and self-test electrodes. 

 

1. Sensing  Region              
Sensing region was responsible for detecting motion when the acceleration was 

applied. According to Table 2, the proof mass including the central plate and all of the 

connected electrodes should be limited to about 2.81×10-10 Kg. The attached finger-like 

polysilicon structure in the central plate was the sensing element.  .  

The moving and fixed fingers formed a parallel plate capacitor and the 

capacitance can be estimated using Equation (4). 

0

ap

AC
g
ε

=                                                                      (4) 

Where ε0 was the permittivity, A was the total overlap area between all the fingers in the 

sensing region and apg  was the separation between adjacent fingers. Since the changing 

capacitance was proportional to the area (A), for achieving higher signal it was necessary 

to increase the area or number of fingers. By setting the value of the capacitance to be 

about 100 fF, the number of fingers required was found to be about 112. The parameters 

used in this estimation were summarized in Table 3. These electrodes can be placed on 

either side of the proof mass as illustrated in Figure 7. 
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Table 3. Parameters of electrodes attached to central plate. 
 

 
Sensing Electrodes 

Design Data 

Total Length (µm) 120 

Overlap Length (µm) 100 

Width (µm) 2 

Depth (µm) 2 

Gap between fingers (µm) 2 

ε0  (F/m) 8.854 × 10-12 

Density of Polysilicon (Kg/m3) 2330 

 

The readout of the capacitance change was typically achieved by applying an AC 

voltage to the sensor capacitor. The frequency of the AC voltage was chosen to be away 

from the resonant frequency of the accelerometer (usually higher to reduce 1/f noise) to 

minimize the displacement of the fingers by electrostatics forces within the sensor 

capacitor.  

 

2.         Self-Test Region 
In this region, the design considerations were the same as that in the sensing region 

except for the applied voltages and number of electrodes. Initially, 20% of the sensing 

electrodes (24) were selected for generating an internal electrostatic force for self-testing. 

These were located on both sides of the central plate and were separated into 4 regions as 

shown in Figure 5. Each region was made of 6 electrodes and the dimensions were all the 

same as those found in Table 3.  
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3.         Proof Mass 

To achieve the required total mass, the dimensions of the central plate was 

determined by subtracting the mass of all the fingers (including the ones used for testing) 

and found to be 812 µm for length and 34 µm for width. The calculation of mass of the 

central plate and 136 electrodes was shown as below.  

3 10

3 10
112

10
136

812 34 2 2330 / 1.29 10

136 2 2 120 2330 / 1.52 10

2.31 10

central

fingers

proof central fingers

m V um um um Kg m Kg

m um um um Kg m Kg

M m m Kg

ρ −

−

−

= = × × × = ×

= × × × × = ×

= + = ×

 

  

Force on the proof mass was achieved by applying a DC voltage to the self-test 

capacitor. The amount of force as a function of DC voltage can be estimated using the 

stores energy (W) on the capacitor as followed: 

                21
2

W CV=                                                                (5) 

Using Equation (5) the electrostatic force F can be found as  

     
2

0
22ap ap

AVWF W
g g

ε∂
= −∇ = − =

∂
                                               (6) 

If one plate was free and the other one was fixed in the parallel capacitor, it would 

mean that the free plate could be driven by electrostatic force. And the force controlled 

by voltage was inversely proportional to 2
apg  and directly proportional to V2. The force 

between each pair of movable and fixed electrodes was given by  

 

2 12 2
0

2 2

8

(8.854 10 / ) (100 2 ) (15)
2 2 (2 )

4.98 10

ap

AV F m m mF
g m

Nt

ε µ µ
µ

−

−

× × × ×
= =

×

= ×

. 
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Combining Hook’s Law and Newton’s Second Law (Equation (7) as well as the 

effective spring constant, one could compute the displacement of the proof mass under 

the conditions of self-test, and under 50g and 225g of acceleration.   

             F kx Ma= =                                                       (7) 

Using the total mass of the proof mass of 2.81 × 10-10 Kg, the deflections under 50g 

and 225g were found to be 1.20 ×  10-9 m and 6.01 ×  10-9 m, respectively. The 

corresponding voltages required for achieving above displacements using the self-test 

capacitor can be estimated using Equation (6) and found to be about 5 V and 11 V, 

respectively. 

At this point, all of the preliminary design parameters as well as operating 

consideration have been completed. The estimated design parameters of the 

accelerometer were used to lay out the design using L-Edit in MEMSPro software as 

shown in Figure 8. In addition to layout, L-edit also provided the parameters needed for 

finite element modeling using ANSYS software. ANSYS was then used to run 3-D 

simulations that took into account all nonlinearities in our design and the results were 

used to optimize and perform a system analysis of this accelerometer design. The 2-D 

and 3-D views of the various components of the accelerometer were shown in Figure 9 to 

Figure 12. 
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Figure 8.   Schematic of accelerometer in L-edit. 

 

 
Figure 9.   3-D highlight view of folded spring. 

 

Self-Test Region 
(24 electrodes) 

Sensing Region 
(112 electrodes) 

-15V AC 

0V DC 

+15V AC 

+5V DC 

Overlap length: 100 µm 
Gap: 2 µm 
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Figure 10.   3-D highlight view of fixed electrodes. 

 

 
Figure 11.   3-D highlight view of moveable electrodes attached to central plate. 
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Figure 12.   Highlight view of self-test and sensing region. 
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IV. SIMULATION AND COMPARISON 

A. PROCESS 
In order to perform a realistic simulation of the performance of the accelerometer, 

it was required to export the 3-D model file including boundary conditions from L-edit 

into ANSYS. Second, the ANSYS would perform the simulation depending on the 

various forces applied by the user. Since the proof mass activated the movement due to 

acceleration, the supplied force was also put on the central plate body and denoted as a 

force point in ANSYS. The simulated results would show displacements and stresses in 

each axis. However, the axial direction of the applied force should have a much larger 

displacement than the other two axes. The off-axis effects were important for the stability 

analysis, which will be discussed in detail later. According to the requirements described 

in Section I, the device should survive 225g of acceleration – note that measurements at 

these high acceleration levels were not required, but it should survive such shocks. The 

easiest way to make sure that it worked was to check whether the structure exceeded its 

stress limits under 225g. 

 

B. RESULTS 

1. 50g Force 

The Figures 13-17 showed the ANSYS simulation of the designed accelerometer 

under a 50g force applied on the proof mass. In Figures 13-17, the amount of deflection 

was color corded with red being the highest deflection. The maximum deflection was 

found to be about 1.06×10-9 m. If we highlighted the local area of the springs, it can be 

easily seen that the deflection was minimum near the anchors and increased gradually 

towards the center of the spring where the proof mass was connected. All of these results 

showed similar trends as the preliminary calculations presented in the previous chapter. 

Comparing to the deflection along the force direction (y-axis), the deflection of x-axis 

and z-axis were very small, 2%and 0.2%respectively. The difference between the 

preliminary calculations and the ANSYS full simulations was less than 5%. The 

calculated and ANSYS simulated deflections for 50g force were summarized in Table 4. 
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9 9

9

1.21 10 1.16 10% 4.3%
1.16 10

difference
− −

−

× − ×
= =

×
 

 

Table 4. Displacement of three axes under 50g force. 
 

Condition Result 
Item 

Applied Calculation Simulation 

Acceleration 50 g 

Force 1.37×10-7 Nt 
 

ux  2.53×10-11 m 

uy 1.21×10-9 m 1.16×10-9 m Deflection 

uz 

 

 2.40×10-12 m 

 

 

 
Figure 13.   Displacement along x-direction for 50g force using ANSYS. 
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Figure 14.   Displacement along z-direction for 50g force using ANSYS. 

 
 

 
Figure 15.   Displacement along y-direction for 50g force using ANSYS. 
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Figure 16.   Expanded view of  the spring compression along  y-direction  under 50g force. 

 
 

 
Figure 17.   Expanded view of the spring expansion along y-direction under 50g force  
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2. 225g Force 

Similarly to the 50g simulation, one could put the force of 225g on the central 

plate. In this simulation, it was necessary to pay attention to stresses in the beams of the 

springs in addition to displacements. Because the connecting region of springs to proof 

mass displayed the maximum displacement, the ANSYS simulations were carried out 

highlighting these sections as shown in Figures 18-19. The simulated results yielded 

displacement of about 95.79 10 m−×  along the direction of the force (y direction). This 

was about a factor of 5 larger than the displacement under 50g force. The calculated 

value was higher than the simulation by almost 4%. The Table 5 summarized the 

calculated and simulated displacements.  

9 9

9

6.01 10 5.79 10% 3.8%
5.79 10

difference
− −

−

× − ×
= =

×
 

 

Table 5. Displacement of three axes under 225g force. 
 

Condition Result 
Item 

Applied Estimation Simulation 

Acceleration 225 g 

Force 6.85×10-7 Nt 
 

Ux  1.25×10-10 m 

Uy 6.01×10-9 m 5.79×10-9 m Deflection 

Uz 

 

 1.08×10-11 m 

Stress Y  
Specification 

130 Mpa 
2.30Mpa 

 

For the other two axes (x and z) yielded displacements of about 101.25 10 m−×  and 
111.08 10 m−× , respectively. The ratio of displacement comparing to y-axis was the same 

as obtained for 50g force, 2% and 0.2% respectively. Meanwhile, the maximum stress in 

the anchor using the data in Figures 20-21 was about 2.3 MPa. It was still smaller than 
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material elastic limit of 130 MPa. This suggested that the springs can withstand forces 

larger than 225g.   

 
Figure 18.   Expanded y-displacement for compression side under 225g. 

 
Figure 19.   Expanded y-displacement for extension side under 225g. 
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Figure 20.   Stress in y-direction for compression side under 225g  

 

 
Figure 21.   Stress in y-direction for extension side under 225g 
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V.  FUNCTIONAL ANALYSIS 

A. OUTPUT VOLTAGE AND DISPLACEMENT 
The basic working principle of this accelerometer was based on the fact that under 

an external acceleration a proof mass was displaced a small distance which changed the 

gap distance between electrodes, which behaved as varying capacitors. Since the 

moveable electrodes were located between two fixed electrodes which were biased using 

two voltage supplies with equal magnitudes and opposite the device could be described 

by the following equivalent electrical circuit [23], where the 1C and 2C  were variable 

capacitors.  

 
Figure 22.   Equivalent electrical circuit of the accelerometer [From: Ref. 23]. 

 

It could be easily shown that the output voltage (Vo) of the circuit in Figure 22 

was given by: 

1
)

1 2

[ ( ]out s s s
CV V V V

C C
= − + − −

+  

1 2

1 2
s

C C V
C C

−
=

+
                                                            (8)                                            

The capacitances 1C  and 2C  were not fixed due to the motion of the electrodes 

attached to the proof mass. When the moveable electrodes were at rest position, the two 

capacitances were equal and the output voltage was zero. However, under acceleration 
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the movable electrodes displaced and the gaps between fixed and movable electrodes will 

change by amount of xδ as shown in Figure 23.   

 

 

 

 

 

 

 

 

 

Figure 23.   Displacement of moveable electrode due to acceleration. 
 

Thus, the output voltage as a function of displacement ( xδ ), original gap ( apg ) 

and input voltage magnitude ( sV ) weres given by: 

1

2

2 1

1 2 1 2 1 2

2 11 2

1 2 1 2

ap

ap

out s s s

g g x

g g x

g gA A
C C g g g gV V V VA A g gC C

g g g g

δ

δ

ε ε

ε ε

= −

= +

−
−

−
= = =

++ +

 

  s
ap

x V
g
δ

=                                                                           (9)                                           

Since the displacement was related to the acceleration via 

                                   2
2 0( )

a ax
k
m

δ
ω

= =  ,                                                          (10) 

Displaced direction 

apg

2g

1gxδ

2C

1C
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one could find that the output voltage and the applied acceleration has a linear 

relationship given in Equation (11).  

                                          2
0

out s s
ap ap

x aV V V
g g
δ

ω
= =                                              (11) 

The Vout was calculated using the design parameters for a given acceleration (0 to 

50g) and the results were shown in Figure 24. In addition, the output voltage was also 

estimated using ANSYS simulation to obtain the displacement as shown in Table 6.  

From the Figure 24, it can be seen that the calculated and simulated output voltages 

matched with 5%. The linear relationship in Figure 24 was resulted from the linear 

dependence of output voltage with displacement. 

 

 

Table 6. Calculated and simulated Output voltages for different accelerations (input 
voltage to the sensing capacitor is 15V). 

Output Values 

Displacement 

(m) 

Voltage 

(volt) 

Acceleration 

(g) 

Mass 

(Kg) 

Calculation ANSYS Calculation ANSYS 

Voltage 

Difference 
% 

0 0 0 0 0 0 

10 2.42×10-10 2.33×10-10 1.81×10-3 1.75×10-3 4.0% 

20 4.83×10-10 4.67×10-10 3.62×10-3 3.50×10-3 3.8% 

30 7.25×10-10 6.99×10-10 5.44×10-3 5.24×10-3 4.0% 

40 9.66×10-10 9.30×10-10 7.25×10-3 6.98×10-3 4.3% 

50 

2.81×10-10 

1.21×10-9 1.16×10-9 9.09×10-3 8.70×10-3 4.5% 
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Calculated vs ANSYS Output Voltage
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Figure 24.   Comparison of calculated and simulated output voltages. 
 

 

B. STABILITY ANALYSIS 

The purpose of a stability analysis was to check whether the movable electrodes 

could remain within the stable equilibrium range when the various accelerations were 

applied. If the net force approached an unstable point, the electrodes would have the 

possibility to hit the fixed structures and arc and/or brake away. We could use the graph 

in Figure 25 to understand the stability of an accelerometer design [22]. It showed the 

normalized electrostatic and spring forces as a function normalized displacement. The 

equilibrium points correspond to when the two forces were the same as shown in Figure 

26 by dark circles. For the parameters used in this example, there were two equilibrium 

points (P1 and P2). The stability of these points can be analyzed as follows. 
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Figure 25.   Electrical and spring forces for voltage-controlled parallel-plate capacitor in 

normalized coordinates [From: Ref. 24]. 
 
 

The point P1 was stable since the any increase of the displacement will increase 

the repulsive spring force compared to the attractive electrostatic force that tended to 

reduce the displacement. Similarly for any reduction of displacement at this point will 

increase the attractive electrostatic force compared to the repulsive spring force, which 

tended to increase the displacement. Thus the point P1 was stable. The opposite was true 

for the point P2 making it unstable. However, as the bias voltage increased the curve for 

electrostatic force moves upwards as indicated in Figure 26 and the two points merged at 

a critical voltage known as the pull-in voltage [24]. Beyond this bias there were no 

equilibrium points and the accelerometer was unstable. At pull-in voltage, the 

displacement is equal to / 3apg and the magnitude of the pull-in voltage can be obtained 

by [24] 

                           
28

27
ap

pi

Kg
V

Aε
=                                                 (12) 

The Figure 26 showed the two forces as a function of displacement for our 

accelerometer when the bias was equal to the pull-in voltage. Using Equation (12), it was 

found that the pull-in voltage of our device was 390 V. Thus, the input DC voltage of 11 

P1

P2
Unstable point
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V to achieve 225g during the self-test will not push the accelerometer into the unstable 

region. 
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Figure 26.   Electrostatic and spring forces at pull-in voltage. 

 

 

C.        ACCELERATION VS. SELF-TEST VOLTAGE 
During the self-testing of the accelerometer, a DC bias was applied to the 24 self-

test electrodes to exert an electrostatic force on the moving electrodes. Note that the 

voltage was applied to one of the fixed electrodes that sandwiched each moving electrode 

(see Figure 5) to avoid the cancellation of electrostatic forces if both the electrodes are 

biased. This force will move the proof mass along with the moving electrodes and 

equilibrium will reach when the spring and electrostatic forces were the same. The force 

generated by the DC bias can be calculated using Equation (13). 

                                         
2

2

(24)
2 ap

AVF ma
g

ε
= =                                                    (13) 
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The blue curve of Figure 27 showed the calculated acceleration as a function of 

DC bias. It can be seen that the 50g of acceleration can be obtained by applying about 5 

V bias. 
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Figure 27.   Acceleration as a function of self-test voltage. 

 

D.        SENSITIVITY  
The sensitivity of the accelerometer for a given acceleration can be estimated 

using 

                                       2
0

out s
ap

aV V
g ω

= .                                                           (14) 

Using the design parameters, the sensitivity of the accelerometer was found to be 

about 7 mV/g. This corresponded to an output voltage of 0.36 V at 50g acceleration. It 

can be seen from Equation (14) the sensitivity was strongly dependent on the resonant 

frequency that depended on the required bandwidth of operation. 
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E.        SIGNAL-TO-NOISE RATIO 

There were two primary noise sources intrinsic to the accelerometer; displacement 

of the proof mass due to thermally driven vibrations and change in output voltage as a 

result of charge fluctuations on the sensing capacitor. These two effects can be analyzed 

using the energy stored in the spring and the sensing capacitor as follows: 

21 1
2 2NC BCV K T=                                                (15) 

21 1(2 )
2 2 BK x K T=                                            (16) 

where VNS was the noise coming from mechanical vibrations and VNC was the noise 

associated with charge fluctuations on the sensing capacitor. Using the Equation (15) and 

(16), the corresponding voltage fluctuations can be obtained as  

B
NC

K TV
C

=                                                     (17) 

2
B

NS
K TV

K
=                                                      (18) 

It can be seen that the dominant noise comes from the thermal fluctuation of 

charge on the capacitor. The output signal for a given acceleration can be obtained from 

Equation (19) and thus the signal-to-noise ratio could be estimated using  

                                                   20 log out

N

VdB
V

=                                                  (19) 

Assuming the worse case of scenario, where a temperature of 85°C was reached 

and when the total capacitance of the device (100 fF) was used, NV  was about 225 µV.  

Figure 28 showed the calculated signal to noise ratio (SNR) as a function of acceleration 

assuming gap = 2 µm and Vs = 15 V. From Figure 28, it can be seen that a signal to noise 

ratio of 3 to 1 could be obtained when the acceleration is 1.3g. 
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Figure 28.   SNR value for 15V in sensing region. 

 

The above analysis showed that the designed accelerometer could be operated 

with good stability in the 0 to 50g ranges. It also can withstand the required 225g shocks 

without damaging the springs or pushing the accelerometer to unstable region. The two-

axes operation can be achieved by placing identical accelerometers with displacement 

axes perpendicular to each other. 
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VI. CONCLUSION 

Two main functions were performed in this accelerometer design. First, the 

sensing region was designed to measure the acceleration, which produced a change in 

displacement of the proof mass, which changed the distance between electrodes and it 

produced a change in capacitance – easily measured. Second, a self-test region was 

designed within the accelerometer to facilitate self-tests/diagnostics of each individual 

accelerometer.   

Finite element simulations were performed and their results indicated that when 

ignoring second and higher order terms result in very good agreement. The simple 

calculations results ranged from 2.7% to 4.3% away from the highly complex and time-

consuming simulations.   

The current design resulted in a very high spring force, which was strong enough 

to prevent the movable electrodes from hitting the fixed electrodes under the largest 

foreseeable accelerations (225g). This was favorable for stability, as the current design 

will never reach the unstable region of operations. Under the current design, a sensitivity 

of only 7 /mV g  was achieved.  

Since PolyMUMPS provideds three layers to construct the device and since only 

two layers (poly0 and poly1) were used in the current design, there was one more layer 

available to extend the accelerometer design.  

Future work was also required to extend the 2-axis accelerometer into a 3-axis 

design. Building the third axis on the same planar design space will require some 

innovation. 
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