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Abstract

Micro-Electro-Mechanical Systems (MEMS) technology holds great promise

for future navigation systems because of the reduced size and cost of MEMS inertial

sensors relative to conventional devices. Current MEMS devices are much less accu-

rate than standard inertial sensors, but they can still be useful. In this thesis, data

was recorded from an inexpensive MEMS inertial measurement unit and integrated

with GPS measurements using a tightly-coupled Kalman filter. The overall goal of

this research is to investigate the usefulness of MEMS sensors for a small, real-time,

low-cost INS/GPS integration.

A golf cart was used to collect dynamic data, along with a commercial INS/GPS

system to provide reference data. This data was then post-processed, and the fil-

ter’s performance in the position, velocity, and attitude outputs were evaluated by

comparing them to the reference system. The important system features of system

alignment, bias feedback, and INS resets are described, and the filter’s performance

is analyzed using its estimate and covariance outputs and comparing them to the

true error. Filter residuals are also shown and discussed.

The final results show that, with adequate processing available, the INS/GPS

filter using the MEMS instruments provides good position, velocity, and attitude

results over a period of up to 15 minutes, as long as the data is at least somewhat

dynamic. Without vehicle motion, the vehicle yaw state tends to wander exces-

sively, due to the bias and noise of the MEMS gyroscopes. Over a long static period,

the filter’s position outputs would most likely diverge and become unstable. Rec-

ommendations are made to combat this problem, among them to conduct more

characterization of the MEMS sensors, and to add GPS velocity measurements as

an input to the filter.

xi



A TIGHTLY-COUPLED INS/GPS INTEGRATION USING A

MEMS IMU

I. Introduction

1.1 Background

1.1.1 Inertial Navigation Systems. Navigation technology in the form of an

Inertial Navigation System (INS) is a well-known and well-defined technology, having

been used in United States military equipment such as ships, submarines, and aircraft

since the 1960’s [33]. On a basic level, an INS works by measuring acceleration and

rotation in all three directions. By knowing its starting location and attitude, it

can determine its present location. However, current inertial technology is limited

in its accuracy; an INS with a position drift of 1/2 to 1/4 nautical miles/hour is

considered quite good for an inertial system, and is typically the standard accuracy

level used on a vehicle such as a long-range aircraft [33]. Such a system can also be

quite expensive to purchase, on the order of tens of thousands of dollars (see Section

2.6.2). Gimballed systems tend to have higher maintenance costs because of their

mechanical complexity (strapdown inertial systems naturally have lower maintenance

costs and breakdown rates because of many fewer moving parts).

1.1.2 Global Position System. The advent of the Global Positioning System

(GPS) has provided users with an accurate and cheap navigation system (compared

to an INS), although one that is vulnerable to jamming or other signal outages. The

GPS consists of a number of satellites that orbit the earth, monitored and operated

by a network of ground stations. These satellites transmit signals that are received

by GPS receivers, which use the signals to determine the receiver’s range to the
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satellite. If enough satellites are available (four minimum), the receiver performs

multilateration to determine its position on (or above) the earth. A basic, affordable

GPS receiver (on the order of a hundred dollars) can obtain position accuracies of

10 meters or less on a regular basis [23].

1.1.3 Integrated INS/GPS. By combining a GPS receiver with an INS using

a Kalman filter, the more accurate navigation solution of GPS can be obtained while

still having the robust capability of an INS, which provides attitude measurements

and system functionality in the presence of GPS signal outages. Another benefit of

combining the two systems is that each system complements the other’s weaknesses

very well. GPS has excellent low-frequency performance but poor high-frequency

performance; from one second to another the error in the indicated position may

change by up to several meters, but over longer periods of time the position error

remains relatively constant. An INS has very good high-frequency performance but

poor low-frequency performance; over a very short period of time (seconds), the error

in indicated position changes very little, but within minutes or hours the position

drifts significantly, on the order of kilometers. A combined INS/GPS has the benefits

of both systems and displays very good low and high-frequency performance. The

Kalman filter is a common way of implementing this integration [20], and there

are several different levels of integration [14]. A loosely-coupled system is one that

integrates the position solution from both the INS and the GPS receiver. This

is the easiest coupling to implement, but it sacrifices some of the advantages of

a tighter integration. A tightly-coupled system uses raw pseudorange data from

the GPS receiver and acceleration and angular rate measurements from the Inertial

Measurement Unit (IMU), the accelerometer-gyroscope triad at the heart of an INS.

Combining the two systems in such a tightly-coupled manner provides improved

performance, allowing the INS to aid the GPS receiver tracking loops, and allowing

the overall solution to use GPS data even when fewer than four satellites are available.

A notional block diagram of a tightly-coupled implementation can be seen in Figure
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1.1. This figure shows a feedforward implementation, which means that the INS

is allowed to run freely once it is initialized. A feedback implementation would

periodically provide the INS with filter corrections.

INS

GPS
receiver

Kalman
Filter

+

-

INS position, velocity,

and attitude

Corrected position, 
velocity, and attitude

Estimates of error 
in INS position, 
velocity, and attitude

GPS pseudoranges

Figure 1.1 Block Diagram of Typical Tightly-Coupled INS/GPS

There is also ultra-tight coupling, which uses the IMU and GPS receiver data in its

rawest form [14]. The goal is to wring even more performance out of a combined

INS/GPS system, but this ultra-tight technique is still fairly new and not fully

developed. It also requires access to the internal GPS receiver tracking loops, which

is not always feasible. A combined system, integrated in one of the ways described,

is much more accurate than a stand-alone INS, but because of the cost of a standard

IMU, its cost is still too prohibitive to be practical for common usage.

1.1.4 MEMS. The advent of Micro-Electro-Mechanical Systems (MEMS)

technology has great potential for the navigation field. One big advantage of MEMS

technology is low cost. MEMS devices are batch-produced in very large quanti-

ties, making the cost per unit very cheap. Another advantage is weight and volume

savings. Gyroscopes and accelerometers can be somewhat large and heavy devices,

and the MEMS versions of these instruments are orders of magnitude smaller and

lighter. MEMS inertial instruments also have much lower power requirements than
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their full-size counterparts, making them ideal for mobile applications. The main

disadvantage to MEMS devices, at least at this stage in their technological devel-

opment, is their poor performance when compared to standard inertial instruments.

Gyroscope performance tends to be the limiting factor in the accuracy of an INS,

and MEMS inertial sensors are no different, with MEMS gyroscopes currently lim-

iting MEMS navigation performance. However, MEMS technology is improving at

a rapid rate with much ongoing research. Several MEMS IMUs are currently being

developed for military uses (such as the Honeywell HG-1900), and others are already

available in the regular commercial market [22] [39].

1.1.5 Potential Applications. An INS/GPS combination that uses a MEMS

IMU provides great cost savings that allow such a system to be used in many dif-

ferent applications. One such application is vehicle navigation. GPS systems are

already in use for such navigation systems, but as vehicles travel under bridges, near

or under natural obstructions like trees, or through “urban canyon” environments,

GPS signals drop out or are blocked from view. With a combined INS/GPS sys-

tem, the INS could continue tracking the vehicle’s position until the GPS signal is

reacquired (and it also would provide information about the vehicle’s heading and

attitude, if desired). Another possible application is ejection seat testing, for which

the trajectory and attitude of an ejection seat need to be tracked and logged. An

INS/GPS system would be much more efficient, and much cheaper, than the cur-

rent camera-based tracking system used by the Air Force [34]. A third application

is for tracking the orientation and attitude of large shipboard antennas that are

used for precision landing systems for aircraft carriers [26]. A fourth application is

for night-vision goggles that have pre-mapped terrain information overlaid on the

wearer’s vision, because such a system would need to know the position and attitude

of the wearer’s head [4]. In short, any system that could benefit from navigation

information would have a low-cost solution available.
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1.2 Problem Definition

The long-term objective of this line of research is to develop a real-time, tightly-

coupled INS/GPS integration using a MEMS IMU. MEMS is desirable because of its

cost and size advantages. A tightly-coupled integration is to be used because of the

performance advantage it provides over a loosely-coupled system. Tight coupling is

also less computationally intense than ultra-tight coupling—an important consider-

ation in a real-time system. The ideal end result is a component that can easily be

integrated into another system, providing position, velocity, and attitude data in a

standardized digital format to allow maximum interoperability. Such a system would

be unique in the fact that little, if any, other research has analyzed the broad navi-

gation performance of a general-purpose real-time INS/GPS integration that uses a

low-quality MEMS IMU as a foundation. Cost, power, and size, as well as accuracy,

are all important factors in the development process of such a device.

To that end, this thesis describes the development and testing of the MEMS

IMU/GPS Kalman filter integration algorithm, implemented in a post-processing

mode. Implementing these algorithms in a real-time system is left for future devel-

opment.

1.3 Related Research

1.3.1 Tightly-coupled INS/GPS. Vallot, et al [35] contains an excellent

example of a Kalman filter INS/GPS integration very similar to the one developed

in this research. In demonstrating a Differential INS/GPS system for aircraft landing

guidance, they built a tightly-coupled integration that differs in only a few respects.

Their approach was to use an error state filter with eighteen states: three position,

three velocity, three attitude, one pressure altitude, user clock frequency, user clock

phase, three accelerometer biases, and three gyroscope biases. Their Kalman filter

processed and updated the error estimates every ten seconds, while using prefiltered

GPS data taken at a 1 Hz data rate. This prefiltered GPS data consisted of pseudo-
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range and pseudorange rate. The most obvious difference is that Vallot et al’s system

used a high-quality IMU (with ring-laser gyroscopes), so the poor performance of a

MEMS IMU was not an issue.

1.3.2 MEMS Sensors in Navigation Applications. With the improving

quality of MEMS inertial sensors, interest is high and much new research is occur-

ring in the area of MEMS INS/GPS integration. One example is Martin, et al [19],

who examined the performance of a MEMS INS/GPS integration for the vehicle nav-

igation application mentioned in Section 1.1. Using a low-cost MEMS IMU in their

tightly-coupled INS/GPS, they received good results by using the INS/GPS to cali-

brate the vehicle’s odometer and magnetometer attitude reference. Another example

is Ford, et al [12], who document the loosely-coupled integration of a GPS receiver

and a Honeywell HG-1900 MEMS IMU. Their system was tested in a vehicle on a

road course, and their results show the significant benefits an INS provides during

GPS signal outage. Van Graas and Farrell [36] developed a tightly-coupled MEMS

INS/GPS integration that “differs radically from all other approaches reported up to

this time.” Their system processes GPS code and carrier measurements separately,

and uses double or even triple-differencing in their measurements (depending on the

mode of operation). The INS portion of the system focuses only on the dominant

error characteristics and uses segmented processing, separating the dynamics and

position estimators. Their final results showed that centimeter/second velocity ac-

curacy was feasible while using a low-cost MEMS IMU. There are numerous other

examples of MEMS INS applications [7] [8] [9] [29], a notable example being a MEMS

Attitude and Heading Reference System (AHRS) in the process of gaining FAA flight

certification [38].

Interest is also high in methods to compensate for the comparatively poor per-

formance of MEMS inertial instruments. Hide, et al [17] explored three methods

of implementing a Kalman filter to compensate specifically for this. These meth-

ods are covariance scaling, the Adaptive Kalman Filter (AKF), and Multiple Model
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Adaptive Estimation (MMAE). Covariance scaling applies an artificial scale factor

to the predicted covariance in order to weight the measurements. The AKF at-

tempts to make the filter’s residuals “consistent with their theoretical covariances”.

The MMAE method uses several filters that run simultaneously, each with different

stochastic properties. Their simulations show that it is possible to cut INS dynamic

alignment time by 5-10 times by using these methods. Wagner and Kasties [37] ex-

perimented with multiple GPS antennas combined with long lever arms between the

inertial instruments and the antennas. According to their results, the increased state

observability given by the multiple antenna-long lever arm configuration has signif-

icant potential to improve MEMS INS/GPS performance. Another unique method

was proposed by El-Diasty and El-Rabbany, who used a modular neural network to

suppress successfully MEMS sensor high-frequency noise components [11].

The relatively new technology of MEMS holds great promise for the future

of navigation. The expectation of the navigation community is that MEMS low-

cost navigation will soon begin to approach and even surpass conventional inertial

instruments in performance and utility [3] [24].

1.4 Methodology

The first step in the system development was to learn the basics of a tightly-

coupled Kalman filter INS/GPS integration. This was accomplished by using and

modifying previously existing MATLAB code [27] to test and refine the system al-

gorithm (and also to provide some preliminary filter tuning). The next step was

to transfer the algorithm to the C++ programming language, in the hopes that the

C++ code could be used in the future real-time system with little modification. Once

the code was completed, testing and tuning were conducted as detailed in Chapter

4.
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1.5 Thesis Overview

Chapter 2 provides more in-depth background information and appropriate

theory about INS, the GPS, and Kalman filter integrations. Chapter 3 presents

and develops the Kalman filter dynamics and measurement models, and details the

overall software structure. Chapter 4 presents test results, including final tuning

parameters and final system performance. Finally, Chapter 5 contains the overall

conclusion and suggests the next steps to be taken in this line of study.
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II. Background

2.1 Overview

This chapter provides background information and basic theory for all of the

systems integrated and studied in this research. First, the relevant reference frames

are defined. Next, the basic operation of an inertial navigation system (INS) is

discussed, along with a description of the dominant error characteristics. The third

section describes the Global Positioning System (GPS), the fourth section describes

Kalman filter theory and operation, and the final section describes the MEMS IMU

and the truth reference system used in testing.

2.2 Navigation Coordinate Systems

All navigation solutions are expressed in some reference frame, which is merely

a way of relating a user’s position to the earth. The two frames used in this research

are the Latitude-Longitude-Height (LLH) reference frame and the North-East-Down

(NED) frame. The LLH frame uses Latitude and Longitude in degrees and height in

meters to describe a position relative to the earth. The NED frame is a local-level

Cartesian frame that uses a point on the earth as the origin, and uses North, East,

and Down as its X, Y, and Z axes respectively (units are in meters).

2.3 Inertial Navigation Systems

The development in this section is taken largely from [33], which is an excellent

source of further information about INS theory and operation.

2.3.1 INS Principle of Operation. Inertial navigation is based on a basic

law of physics—that a body in motion in a straight line will continue its uniform

motion unless an external force acts on the body. This external force, when acting
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on the body, produces an acceleration proportional to the force. If this acceleration

can be measured, when integrated once (with respect to time) it gives information

about the body’s change in velocity, and when integrated again, the body’s position

change is obtained. This principle can be expanded to three dimensions if the angular

rotation of the body can be measured. With knowledge of a body’s acceleration and

rotation in three dimensions, the body’s change in position, velocity, and attitude

relative to an external reference frame can be calculated. The only requirement is

that the initial starting point and orientation relative to the external reference frame

(also called the navigation frame) is known.

The basics of an INS algorithm can be seen in Figure 2.1. The rotation sen-

sors (gyroscopes) measure the vehicle’s rotation and allow the INS to “know” its

orientation with respect to the navigation frame. The accelerometers measure the

specific forces (the combined effects of gravity and acceleration) acting on the vehi-

cle. Because the vehicle’s orientation is known, the effects of gravity can be removed

from the specific force measurements, and what remains is the vehicle’s actual accel-

eration caused by changes in its motion. Two integrations are performed—the first

providing the vehicle’s velocity, and the second providing position.
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Figure 2.1 INS Operation [33]

2.3.2 INS Implementation. The sensors that provide the INS with its

measurements are accelerometers and gyroscopes. Each sensor measures acceleration

or rotation in one dimension, so an INS has a triad of each kind of sensor, with the

sensitive axes of each sensor usually mounted orthogonally to the others. There are

two basic ways to implement an INS: a platform mechanization and a strapdown

system. A platform INS relies on its gyroscopes to stabilize a gimballed platform

on which the sensors are mounted, and to keep it at a certain attitude with respect

to the navigation frame. In this manner, a vehicle can keep track of its orientation
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with respect to the navigation frame by referencing the vehicle’s orientation with

respect to the INS platform. A strapdown system operates in much the same way,

but keeps track of the vehicle’s orientation with respect to the navigation frame by

continuously calculating a direction cosine matrix (DCM), which is a matrix that

relates two separate measurement frames. In this case, the DCM relates the vehicle

frame to the navigation frame.

Platform INS’s were the first to gain widespread use (in the 1960s), with strap-

down systems gaining wider use as processing power and gyroscope accuracy in-

creased. Modern INS’s tend to use a strapdown implementation, although for the

most accurate systems, platform mechanizations are still used (see Figure 2.2 [33]).

This research uses a strapdown implementation.
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Figure 2.2 INS Implementations [33]

2.3.3 INS Errors. The two main INS error sources for a low-quality INS

are initial alignment error and inertial sensor errors. Once an INS has an an error

in its DCM relating the vehicle’s orientation with respect to the navigation frame

(whether from incorrect rotation measurements or from an alignment error), gravity

is not correctly removed from the specific force measurements. This corrupts the

measurements of what the INS “believes” is purely vehicle acceleration, and the

system’s position and velocity error grows. Because of the integration process used

to keep track of position and velocity, even a small error can grow quickly. An

unaided INS has no corrective mechanism, so its position solution can quickly reach

a useless state. To give some perspective on the effect these errors can have on an INS
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position solution, an INS in a commercial aircraft, which has to provide a meaningful

solution over a period of several hours, has an error on the order of 1 nautical mile of

error growth per hour [33]. This error growth rate is considered better than average

INS performance (but is not as accurate as INS used in submarines or spacecraft).

Two common inertial sensor errors are noise and bias. Obviously, a high noise

on any instrument makes its individual measurements unreliable. An instrument’s

bias directly causes error as well. An accelerometer’s bias is the amount of accelera-

tion that is measured in the absence of any true acceleration. This bias feeds directly

into the measurement of specific forces, and is a large contributor to error growth. A

gyroscope’s bias is the rotation rate it measures in the absence of any true rotation.

This is also a large contributor to error growth, because it introduces errors directly

into the DCM. However, high noise and bias levels are not the true problem, because

noise can be removed by averaging, and if known, the bias can be removed from each

measurement. One big potential problem, particularly with gyroscopes, is a lack of

turn-on stability. Turn-on stability refers to how stable a gyroscope’s bias is over

time, as the instrument is turned on and off. If this bias is unknown from one turn-on

to the next it will be difficult to remove from the sensor’s measurements. Another

big problem can be caused by a bias that changes unpredictably during operation,

making it very hard to estimate and remove from incoming measurements.

2.3.3.1 MEMS Sensor Errors. MEMS inertial sensors, which are

examined in this research, generally can not approach the quality of non-MEMS

sensors. MEMS accelerometers provide measurements that are good enough to make

MEMS gyroscopes the limiting factor in INS performance. The majority of MEMS

accelerometers work by using a proof mass that is displaced by acceleration along a

certain axis, with the displacement of the proof mass being detected by measuring

the change in capacitance between the proof mass and a non-moving electrode [15].

Figure 2.3 shows a cross-section of a MEMS accelerometer [2], with the proof mass

suspended between two sensing electrodes.
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Figure 2.3 A MEMS Accelerometer [2]

MEMS gyroscopes are the source of the majority of the error in MEMS naviga-

tion applications. MEMS gyroscopes use the same principal as traditional mechanical

gyroscopes, the Coriolis effect [33], to measure angular rotation. They do this by

using a vibrating construct, similar to a tuning fork, to sense angular rotation and,

as MEMS accelerometers do, using a change in capacitance to detect the magnitude

of the rotation [5]. Figure 2.4 shows a photograph of a MEMS gyroscope [21], with

the vibrating mass in the center of four electrodes.
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Figure 2.4 A Vibratory MEMS Gyroscope [21]

Both MEMS gyroscopes and accelerometers typically have much higher noise

and bias levels than non-MEMS instruments, not to mention greater problems with

bias instability. Two large sources of error are electrical noise and mechanical

noise [15]. Electrical noise is the noise of the detection circuity, and mechanical

noise is caused by the Brownian motion of the air [15]. Temperature changes can

also cause accuracy problems. Because MEMS sensors rely on the mechanical charac-

teristics of the sensing materials, any changes in temperature that cause the materials

to react differently can cause large errors. Also, it is readily apparent that because

of MEMS small size, forces that do not cause problems for larger instruments can

cause major errors. Electrical or magnetic fields, as well as forces on the atomic level,

are all error sources that make MEMS sensors much less accurate than their larger

counterparts. Much research is ongoing to improve MEMS gyroscope performance.

However, the motivation for this research is to examine the accuracy potential of

current commercially available MEMS inertial sensors.
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2.4 Global Positioning System

The Global Positioning System, as mentioned previously, consists of a number

of satellites that orbit the earth, monitored and operated by a network of ground

stations. This network of satellites transmits signals meant for both military and

civilian use. These signals are captured by a receiver, and used to calculate the

receiver’s position. The code generally used by civilians, called C/A code (for

Coarse/Acquisition), provides the measurements that are used in this research.

2.4.1 GPS Principle of Operation [23]. The basic principle of operation

(see Figure 2.5) is that each GPS satellite sends out a navigation signal, along with a

set of orbital parameters called ephemeris data. A GPS receiver captures this data,

and can use the ephemeris to calculate the position of the satellite at any point

in time during a four-hour window. (The ephemeris data each satellite transmits is

updated regularly by the ground stations that monitor the satellites.) The navigation

signal, time-stamped with the satellite’s time of transmission, is used to calculate

the receiver’s range to the satellite. This is done by multiplying the time difference

between the signal reception and the signal transmission by the speed of light. This

measurement of range is called pseudorange because it is not a true range: the

receiver’s clock is not perfectly synchronized with the satellite’s clock, and this causes

an error in the receiver’s time of signal reception. With a minimum of four GPS

pseudorange measurements, a receiver can calculate its position. Four satellites are

needed for a position solution, because four variables are solved: the position of the

receiver in three dimensions, and the clock error of the receiver (which is needed to

remove the large error it induces in the pseudoranges).
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Figure 2.5 Satellite Navigation [23]

2.4.2 Errors in the Pseudorange Measurement. The pseudorange can be

described as the true range between the satellite and receiver plus the effects of a

number of error sources [6]. This is expressed as: [6] [31]

ρ = r +4ρ + c(δtu − δtsv) + T + I + mρ + ερ (2.1)
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where

ρ = GPS pseudorange measurement (meters)

r = true range from the user to satellite (meters)

4ρ = satellite ephemeris error (meters)

c = speed of light (meters/second)

δtu = receiver (user) clock error (seconds)

δtsv = transmitter (space vehicle) clock error (seconds)

T = errors due to tropospheric delay (meters)

I = errors due to ionospheric delay (meters)

mρ = errors due to pseudorange multipath (meters)

ερ = receiver errors - noise, interchannel bias, quantization, etc. (meters)

The satellite’s transmitted ephemeris causes an error, because the orbital parameters

contained in the ephemeris provide a close approximation, not a perfect solution, of

the satellite’s true position. The receiver clock error (δtu) is calculated and its effects

are removed from the final solution. The satellite clock, though extremely accurate,

also induces a small error (δtsv). There are also errors caused by two different parts

of the atmosphere, the troposphere and the ionosphere. The troposphere consists of

all non-charged atmospheric particles, and the error it causes (T ) can be estimated

using a model that takes the relative humidity as an input. The ionosphere, which

consists of ionized particles, creates problems that are difficult to correct by using

modeling, and much of its error (I) depends upon the time of day and the amount of

ultraviolet light coming from the sun. Ionospheric error can be totally removed using

dual frequency measurements, because the two GPS frequencies are affected by the

ionosphere in different ways, allowing the ionospheric error to be isolated. Multipath

(mρ) is simply the error induced by the satellite signal reflecting off obstacles near

the receiver (buildings, trees, vehicles, etc.) The receiver error due to circuit noise,
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quantization, etc., is all lumped together in the last term (ερ). A basic estimate of

the error caused by each of these sources is shown in Table 2.1 (not including user

clock error, since its effects are removed).

Table 2.1 Approximate Magnitudes of Pseudorange Errors [18] [25] [28] [32]

Error Source Pseudorange Error Magnitude - C/A code (m)

Transmitter clock error 2.1

Satellite ephemeris error 1.2

Ionospheric delay error 1− 30

Tropospheric delay error 2− 8

Receiver errors 0.5

Multipath error 1.4

The largest error, ionospheric error, is very volatile and hard to predict, although its

effects tend to be reduced at night. To address the other large error, tropospheric

delay, the basic modeling function mentioned previously can be used to correct for

the majority of the this error. With only this correction done, a basic GPS receiver,

using pseudorange measurements, can reasonably achieve an accuracy of 5 to 7.5

meters RMS [23].

2.5 Kalman Filters

A Kalman filter is a technique based on stochastic system modeling that can

be applied to a controls or data processing problem when deterministic models and

techniques are not sufficient. There are several reasons why a deterministic model

would be inadequate [20]. Firstly, no mathematical model of a system is perfect; a

stochastic system model provides some allowances for system variations and unmod-

eled effects. Secondly, dynamic systems are driven not only by control inputs, but

by internal and external disturbances that cannot be modeled or controlled deter-

ministically. Thirdly, system sensors do not provide perfectly accurate data. Data
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is corrupted by noise, and sensors provide incomplete information and have inherent

errors such as bias or non-linearity. Stochastic modeling is much more effective than

deterministic techniques when dealing with these system realities.

A Kalman filter is best described as an “optimal recursive data processing

algorithm” [20]. It is optimal in many ways, one of which is that it uses all available

data, regardless of its quality. It is recursive in that it takes into account the effects

of all previous data, without requiring all old data to be stored and re-processed

every time new data is available. It is also a data processing algorithm, usually

in the form of a computer program run by a central processor, not a “black-box”

electrical filter.

One main assumption provides the basis for the Kalman filter [6]. This assump-

tion is that an adequate model of the real-world system exists (in the form of a linear

dynamics model), from which linear measurements are taken. With a poor model

of the actual real-world system, a Kalman filter will not perform well. This system

model is assumed to be driven by white Gaussian noise of known statistics, and the

measurements are also corrupted by white Gaussian noise of known statistics. The

complete set of models that the filter needs consists of a system dynamics model,

the various measurement models for system sensors, and the stochastic models for

model uncertainties, measurement noises and errors, and system noises [6].

Because all Kalman filters are implemented using a digital computer, a sampled-

data version of the filter is used. This sampled-data Kalman filter uses a propagate-

update cycle. The propagation cycle takes the filter’s estimate of the system state

from a previous sample time and provides a new estimate of the system state at

the current time, based upon the dynamics model. The update cycle occurs when

new measurements are available and updates the system state based upon the new

measurements and the system measurement model. A complete derivation of the

Kalman filter may be found in [20].

2-13



2.5.1 State Model Equations. The development in this and the following

sub-section is largely based on [6], which is itself based on [16] and [20]. Upper case

bold letters indicate matrices, lower case bold letters indicate vectors, and normal

or italics represent scalar variables. Random vectors are denoted by boldface sans

serif type.

The system dynamics of the real-world system are modeled linearly, with a

state differential equation of the form

.
x(t) = F(t)x(t) + B(t)u(t) + G(t)w(t) (2.2)

where

x(t) = the n-dimensional system state vector

F(t) = the n-by-n system dynamics matrix

B(t) = the n-by-r control input matrix

u(t) = the r-dimensional control input

G(t) = the n-by-s noise input matrix

w(t) = the s-dimensional dynamics driving noise vector

The noise vector w(t) is white and Gaussian with a strength of Q(t) and statistics

E{w(t)} = 0 (2.3)

E{w(t)wT (t′)} = Q(t)δ(t− t′) (2.4)

(In this research, no control inputs need to be modeled, so the B and u terms will be

dropped from any subsequent equations.) At discrete times, the solution to Equation
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2.2 can be written as:

x(ti+1) = Φ(ti+1, ti)x(ti) +

[∫ ti+1

ti

Φ(ti+1, τ)G(τ)dβ(τ)

]
(2.5)

where β is a vector-valued Brownian motion process of diffusion Q(t) [20], and

where Φ(ti+1, ti) is the state transition matrix from time ti to time ti+1. This state

transition matrix (assuming a time-invariant F matrix) is given by

Φ(ti+1, ti) = Φ(∆t) = eF∆t where ∆t ≡ ti+1 − ti (2.6)

The equivalent discrete-time model for Equation 2.2 is expressed by the stochastic

difference equation

x(ti+1) = Φ(ti+1, ti)x(ti) + wd(ti) (2.7)

where

wd(ti) =

∫ ti+1

ti

Φ(ti+1, τ)G(τ)dβ(τ) (2.8)

The discrete-time white Gaussian dynamics driving noise (wd(ti)) has the statistics:

E{wd(ti)} = 0 (2.9)

E{wd(ti)w
T
d (ti)} = Qd(ti) =

∫ ti+1

ti

Φ(ti+1, τ)G(τ)Q(τ)GT (τ)ΦT (ti+1, τ)dτ (2.10)

E{wd(ti)w
T
d (tj)} = 0, ti 6= tj (2.11)

2.5.2 Measurement Model Equations. The real-world systems and prob-

lems to which Kalman filters are usually applied can be defined by continuous-time

dynamics processes. Sensors then produce sampled-data measurements which are

modeled as a linear, discrete-time equation of the form

z(ti) = H(ti)x(ti) + v(ti) (2.12)
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where z(ti) is the modeled measurement, H(ti) is the measurement model matrix,

and v(ti) is the measurement noise, with statistics

E{v(ti)} = 0 (2.13)

E{v(ti)v
T (tj)} =





R(ti) for ti = tj

0 for ti 6= tj
(2.14)

The dynamics driving noise wd(ti) and the measurement corruption noise v(ti) are

assumed to be independent, so

E{wd(ti)v
T (tj)} = 0 for all ti and tj (2.15)

2.5.3 System Propagate and Update Equations. As previously mentioned,

a discrete-time Kalman filter uses a propagate-update cycle to provide its system

estimates. The filter must be provided initial conditions for the system states, in

the form of the vector x̂(t0), and the state covariances, with the matrix P(t0). Once

these are provided, the filter can start propagating forward in time until the first

update cycle. The propagation equations are: [20]

x̂(t−i ) = Φ(ti, ti−1)x̂(t+i−1) (2.16)

P(t−i ) = Φ(ti, ti−1)P(t+i−1)Φ
T (ti,ti−1) + Gd(ti−1)Qd(ti−1)G

T
d (ti−1) (2.17)

where the superscript “+” represents the filter state and covariance estimates after

an update cycle, and the superscript “-” denotes the filter states prior to an update

cycle.
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When sensor measurements become available, they update the state estimates

using the following equations: [20]

K(ti) = P(t−i )HT (ti)[H(ti)P(t−i )HT (ti) + R(ti)]
−1 (2.18)

r(ti) = zi −H(ti)x̂(t−i ) (2.19)

x̂(t+i ) = x̂(t−i ) + K(ti)r(ti) (2.20)

P(t+i ) = P(t−i )−K(ti)H(ti)P(t−i ) (2.21)

The matrix K(ti) is the Kalman filter “gain”, and it determines how much the filter

relies on its own internal dynamics model versus relying on new measurements. K(ti)

is directly affected by the values set in the measurement noise matrix R. The vector

r(ti) is called the residual vector, and it represents the difference between the actual

measurement values and the filter-predicted measurements.

“Tuning” a filter involves adjusting the dynamics process noise strength Q

and the measurement noise covariance R for the best filter performance. A filter’s

performance can be measured by how well it models and predicts the performance

of the real-world system, and by how well its covariance matrix P, which gives

the filter’s estimate of its own accuracy, matches the filter’s actual accuracy. A

well-designed, well-tuned filter will have residuals that are zero-mean, white, and

Gaussian in nature (and of covariance [H(ti)P(t−i )HT (ti) + R(ti)]), indicating that

the filter is making the best possible use of the measurements.

2.6 Test Equipment

2.6.1 XSens MT-9B. Because the ultimate goal of this research is an

actual real-time system, extensive research was accomplished on MEMS IMUs. The

MEMS IMU chosen for actual data collection was the XSens MT-9B [39] (Figure

2.6). The MT-9 was initially chosen for its price (at the time of purchase, its cost

was approximately $1,500 US) and for ease of acquisition. Although there were other
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MEMS IMUs available, most were significantly more expensive or very difficult to

purchase for secrecy or supply reasons. The MT-9 was compared to another IMU,

the MicroStrain 3DM-G [22], and was chosen because it had much less quantization

and drift with its gyroscope measurements.

XSens is a small Netherlands-based company that designed the MT-9 specif-

ically for body-tracking applications, although its navigation potential was recog-

nized. The MT-9 contains nine MEMS sensors: three each of gyroscopes, accelerom-

eters, and magnetometers. It can sense up to 900 degrees/second of rotation and 100

meters/second2 of acceleration. Its output options include raw and calibrated data,

all time-stamped with an internal counter. The raw data consists of the sampled

measurements converted to digital form, and the calibrated data is compensated

for instrument misalignment and bias (both measured in the factory). It is capable

of output rates up to 256 Hz, and its power requirements are low (220 mW). It is

very small (approximately 3.6 cubic inches) and weighs only 35 grams. The output

interface uses the common RS-232 serial standard.

Figure 2.6 XSens MT-9B IMU

2.6.2 NovAtel Black Diamond System. To provide a reference system with

which to compare the MEMS system, the NovAtel Black Diamond System (BDS)

was used. The BDS is an Kalman filter-integrated INS/GPS that provides 100
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Hz output data. The IMU used in the BDS is a Honeywell HG-1700. The HG-

1700 uses ring-laser gyroscopes, which are much more accurate than the MT-9’s

MEMS gyroscopes. After it was purchased, the IMU’s gyroscopes were tested and

found to have approximately 0.1 degrees/hour drift (see Figure 2.2), with an overall

performance in the tactical-grade level (a tactical-grade INS would be accurate over

a period of minutes). This level of performance makes it ideal to provide the truth

data for the MEMS-based system. The BDS is currently out of production, but at

the time of purchase the cost was well over $30,000 US.

Figure 2.7 NovAtel Black Diamond System (INS/GPS)

2.7 Summary

This chapter provided a basic overview of INS and GPS principles, operation,

and errors. The Kalman filter was described along with the appropriate state, mea-

surement model, and propagate and update equations. Finally, an overview was

given of the test equipment used to provide data.
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III. System Development

3.1 Overview

This chapter contains a detailed description of the algorithm that implements

this tightly-coupled INS/GPS integration. This includes descriptions of the system

states, dynamics model, and measurement model, and also provides necessary details

about the software structure.

3.2 Algorithm

3.2.1 Filter states. The Kalman filter used in this research is an “error-

state” implementation. This means that the filter does not explicitly estimate the

variables of interest (in this case, position, velocity, and attitude), but rather it esti-

mates the errors in the INS indicated position, velocity, and attitude. An error-state

model is useful because even in a high-dynamic environment, where position, veloc-

ity, and attitude are rapidly changing, the errors in these states change slowly when

compared to the high frequency dynamics. The slowly-changing nature of the esti-

mated variables enhances filter stability [20], providing better overall performance.

The seventeen states implemented in the Kalman filter are listed following:

x1 = δlat = error in INS indicated latitude (degrees)

x2 = δlon = error in INS indicated longitude (degrees)

x3 = δalt = error in INS indicated altitude (meters)

x4 = δVN = error in INS indicated North velocity (meters/second)

x5 = δVE = error in INS indicated East velocity (meters/second)

x6 = δVD = error in INS indicated Down velocity (meters/second)

x7 = δα = error in INS indicated tilt about the x-axis (roll) (radians)
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x8 = δβ = error in INS indicated tilt about the y-axis (pitch) (radians)

x9 = δγ = error in INS indicated tilt about the z-axis (yaw) (radians)

x10 = δt = GPS receiver clock bias (meters)

x11 = δṫ = GPS receiver clock drift (meters/second)

x12 = biasxAccel = x-axis accelerometer bias (meters/second2)

x13 = biasyAccel = y-axis accelerometer bias (meters/second2)

x14 = biaszAccel = z-axis accelerometer bias (meters/second2)

x15 = biasxGyro = x-axis gyroscope bias (radians/second)

x16 = biasyGyro = y-axis gyroscope bias (radians/second)

x17 = biaszGyro = z-axis gyroscope bias (radians/second)

In addition to the nine fundamental INS error states, the filter explicitly models

eight instrument errors: two GPS receiver clock states, three accelerometer biases,

and three gyroscope biases (even though the gyroscope’s output is an angular rate,

there is a bias in this rate output). The clock states have units of meters and

meters/second because it is numerically simpler to model these states in terms of

distance and speed rather than time. The decision to model eight instrument errors

was made because it was hoped that this would provide the system with better

performance at a minimal cost in processing time. Chapter 4 presents a deeper

discussion of the results of this decision.

3.2.2 System Dynamics Model. The system dynamics model provides the

Kalman filter with its “picture” of how the system is expected to behave over time.

This model consists of the F matrix and the Q matrix. The F matrix relates the

time derivatives of each system state to the system state vector, in the manner

shown by Equation 2.2. The model for the first nine states (time derivatives of

errors in position, velocity, and attitude) comes from the Pinson error model, a well-

documented and tested dynamics model which is discussed in detail in [30] and [33].
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The Pinson model for the velocity error states is augmented by using a body-to-

navigation frame DCM to relate the velocity states to the accelerometer bias states.

Similarly, the attitude error states are related to the gyroscope bias states using a

body-to-navigation frame DCM. The equations for the Pinson error model are shown

following in Equation 3.1. The full F matrix is shown in Equation 3.2.

FPinson =




0 0 −VN

R2
1
R

0 0 0 0 0

VE tan L
R cos L

0 −VE

R2 cos L
0 1

R cos L
0 0 0 0

0 0 0 0 0 −1 0 0 0

F41 0 F43
VD

R
F45

VN

R
0 −fD fE

F51 0 F53 F54 F55 F56 fD 0 −fN

2ΩVE sin L 0 F63
−2VN

R
F65 0 −fE fN 0

−Ω sin L 0
−V 2

E

R2 0 1
R

0 0 F78
VN

R

0 0 VN

R2 − 1
R

0 0 F87 0 F89

F91 0 VE tan L
R2 0 − tan L

R
0 −VN

R
F98 0




(3.1)

where

F41 = −VE

(
2Ω cos L +

VE

R cos2 L

)

F43 =
1

R2
(V 2

E tan L− VNVD)

F45 = −2

(
Ω sin L +

VE

R
tan L

)

F51 = 2Ω(VN cos L− VD sin L) +
VNVE

R cos2 L

F53 = −VE

R2
(VN tan L + VD)

F54 = 2Ω sin L +
VE

R
tan L

F55 =
1

R
(VN tan L + VD)
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F56 = 2Ω cos L +
VE

R

F63 =
1

R2
(V 2

N + V 2
E)

F65 = −2

(
Ω cos L− VE

R

)

F78 = −Ω sin L− VE

R
tan L

F87 = Ω sin L +
VE

R
tan L

F89 = Ω cos L +
VE

R

F91 = −Ω cos L− VE

R cos2 L

F98 = −Ω cos L− VE

R

and where R is the radius of the earth, VN , VE, and VD are the INS indicated north,

east, and down velocities, fN , fE, and fD are the IMU’s north, east, and down

specific force measurements, L is the INS indicated Latitude, and Ω is the earth’s

rate of rotation.

3-4



F17x17 =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0

FPinson−9x9 0 0 DCM3x3 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 DCM3x3

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

06x17




(3.2)

States ten through seventeen use fairly simple dynamics models. The derivative

of state ten, the GPS receiver clock bias state, is directly modeled by state eleven,

the GPS receiver clock drift state (represented by a “1” in the tenth row, eleventh

column). The derivatives of the last ten states are represented by using a random-

walk model [20], which does not have a component in the F matrix. Mathematically,

a random-walk model is the output of an integrator driven by an input of white

Gaussian noise [20]. This is represented in the Kalman filter by allowing the modeled

state to be driven purely by the value set in the noise matrix Q. The intent is that

the filter will quickly assign a (hopefully correct) error value to the state, and then

allow this value to vary slowly or quickly depending on the corresponding value in

Q [20]. Ideally, each instrument’s assigned Q value will match the instrument’s

actual noise characteristics.
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3.2.3 Measurement Model. The measurement model, contained in the H

matrix, relates the measurements to the filter states. The model chosen for this

implementation uses the GPS pseudorange minus what can be called the “INS pseu-

dorange” as the measurement z. The INS pseudorange is simply the range to the

satellite as calculated from the INS-indicated position. (Each satellite’s position is

known from the ephemeris data it transmits.) By forming the measurements this

way, the states are linear with respect to the measurements, and a standard lin-

ear Kalman filter measurement model can be used. Equations 3.3 and 3.4, shown

following, describe the various components of the INS and GPS pseudorange:

ρgps = ρtrue + δt + v (3.3)

ρins = ρtrue + δρins (3.4)

The GPS pseudorange is modeled as the true range (ρtrue) plus the effects of GPS

clock error (δt) plus measurement noise v. The INS pseudorange is modeled as the

true range (ρtrue) plus INS range error (δρins), which consists of the effects of INS

position drift on the range between the INS and the satellite. The measurement

vector z is then calculated as shown in the following equation:

z = ρgps − ρins = δt− δρins + v (3.5)

Equation 3.5 is of the form z = Hx + v (see Section 2.5.2), where

Hx = δt− δρins (3.6)

The right-hand side of Equation 3.6 is the quantity that the H matrix must relate

to the filter states. The δt portion of the equation is represented by state 10 in the

x vector, so this is easily represented by putting a “1” in the 10th column of the

H matrix. It is more complicated to relate δρins to the states. See Figure 3.1 for
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a diagram which will be referenced to explain how this is done. (Note: Figure 3.1

is greatly exaggerated for purposes of illustration. All quantities on the illustration

are scalars unless they have a −→ over them.)

Figure 3.1 Filter Measurement Model

The pseudorange provided by the GPS receiver is assumed to be the true

pseudorange (ρtrue). The line from the INS-indicated position to the GPS satellite is

the INS pseudorange (ρins). The darkened portion of this line, the INS range error
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(δρins), is the desired measurement (it can be positive or negative, depending on

where the INS-indicated position is in relation to the true position). This quantity

can be obtained by taking the projection of the INS position error vector (
−−→
δpins,

obtained from the first three states in the state vector) onto the unit line-of-sight

vector from the INS to the satellite. Note that this model assumes that the lighter

portion of ρins is the same length as the true range (ρtrue), which is a good assumption

as long as the INS position error (
−−→
δpins) does not grow too large (it would take an error

of tens of kilometers or more for this assumption to cause problems). The equation

to relate the states to the measurements and perform this projection (which is a dot

product operation, with some reference frame conversions added) is shown following.

δρins = eN(NED)(Rn + altins)δlat + eE(NED)(Re + altins)cos(latins)δlon− eE(NED)δalt

(3.7)

The e terms are components of the unit line-of-sight vector from the INS to the

satellite in the NED frame. The coefficients of the δlat, δlon, and δalt terms are

needed to convert them to the NED frame (Rn and Re are the osculating earth

radii in the north and east directions, respectively, calculated using the current INS

latitude). The last term of Equation 3.7 is negative because the NED frame has the

opposite sign of the LLH frame in the vertical direction. This equation forms one

row of the H matrix, with one row for each pseudorange measurement from a GPS

satellite. An example row of the H matrix is shown following.

( −en(NED)(Rn + altins) −ee(NED)(Re + altins)cos(latins) ed(NED) 0 0 · · ·

· · · 0 0 0 0 1 0 0 0 0 0 0 0 )

The signs are reversed from Equation 3.7 because in the Hx equation (Equation

3.6), δρins is subtracted from δt. The “1” in the 10th column represents the δt term

of Equation 3.6.
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The structure of the measurement model highlights an advantage of a tightly-

coupled Kalman filter integration: even if only one satellite were available, GPS data

could still be used to provide corrective measurements. This favorably contrasts with

a loosely-coupled integration which uses the actual GPS position solution as a filter

measurement, requiring a minimum of four satellites to be available to get any use

from GPS.

3.3 Code Structure

Because the long-term goal of this thesis research is to pave the way for a

real-time system, the filter software was written with code efficiency, speed, and

software portability as the primary goals. Good code efficiency and speed will lower

power and price requirements for the computing hardware, while portable code will

allow the software to be run on a wide range of possible hardware configurations.

To provide portability, the code was written using C++, with an AFIT contractor

supplying code libraries for matrix math (C++ does not have native matrix libraries).

Figure 3.2 is a flowchart of the code structure. It does not completely represent each

calculation sequentially or temporally, but the overall concept is depicted accurately.
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Calculate z and H

If time for KF propagate or
propagate/update,

interpolate INS data to proper
time-stamp

DCM re-orthogonalization
(every 10 seconds)
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GPS data?

Start
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KF parameters

Read in next set of IMU
and/or GPS data

Calculate local gravity

Calculate rates of change
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Propagate DCM forward,
taking into account

transport rate & earth rate
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to Lat-Lon-Height frame

Integrate to get position

Integrate once to
get velocity

Calculate acceleration
in NED frame

Calculate specific
force in NED frame

Calculate Phi and Qd

Propagate states
and covariances

Perform measurement
update

Perform (optional) INS
reset and measurement

error feedback if KF states
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Stop

Propagate/update, or 
propagate only?

Compare data timestamps:
INS propagate,

or KF propagate/update?

yes

no

KF

Propagate
only

INS

Propagate
/update

Figure 3.2 Code Flowchart

Because of the emphasis on a future real-time implementation, a number of

compromises were made in the software. Firstly, although the INS provides its

position solution at a 100 Hz rate, the Kalman filter only propagates and updates

its error estimates at a 1 Hz rate (if measurement gaps exist in the 1 Hz GPS

data, a propagate-only cycle is performed instead of a full propagate-update cycle).

This means that the filter’s error estimates are not kept current with the INS state;

they are truly valid only at the actual update time, though they are used until

the next filter cycle. This was deemed reasonable because the error states change

relatively slowly, and should thus still be fairly accurate over a one second period,
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even though they are not completely mathematically correct. This implementation

trades minimal accuracy loss for a a significant savings in processing time.

The dynamics matrix F is affected by this disparity between the INS rate and

the Kalman filter cycle rate. This matrix is re-calculated during each filter cycle,

because it uses data taken directly from the INS state. However, the DCMs contained

in the F matrix (which relate velocity and attitude error states to instrument errors)

can vary dramatically over one second (during movement); to use the most current

INS-indicated DCM would not be a very accurate view of the entire one-second

period. Therefore, average DCMs are calculated and used in the F calculation. The

average DCM is simply a mathematical mean; all of the DCMs between filter cycles

are added up and then divided by the number of additions. Similarly, average values

for the specific forces fN , fE, and fD are also used when generating F (again, the

specific force averages are mathematical means). The rest of the INS values used

in F, such as the INS-indicated velocities and positions, use the current INS values.

These last statements about INS values reveal an invalid assumption, namely that

F is time-invariant over the period between filter cycles. In reality, many INS values

change over the interval between two F calculations. However, this assumption is

useful because it allows a linear Kalman filter to be used, and it does not cause

serious problems because the golf cart used to collect data has fairly low dynamics.

The other major compromises in the code are the use of first-order approximations

to calculate the state-transition matrix Φ and the discrete-time noise matrix Qd.

The full, mathematically correct equations for Φ and Qd (see Equations 2.6 and

2.10) use matrix exponential calculations, which are very processor-intensive. Thus,

the following, much less processor-intensive, first-order equations were used [20]:

Φ = I + F4t (3.8)

Qd = Q4t (3.9)
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where 4t is the time since the last filter propagation (this should be very close to

one second in most cases). The use of these approximations was deemed reasonable

because of the computing advantage, and also because the errors caused by this

approximation were considered of a lower magnitude than the other errors introduced

by using comparatively noisy and error-prone MEMS inertial instruments.

3.4 Summary

This chapter provided a system overview, starting with the Kalman filter’s state

description. The system dynamics model and measurement model were explained in

detail. Lastly, the software code structure was described, with performance-related

compromises specifically addressed.
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IV. Testing and Analysis

4.1 Overview

This chapter describes the testing that was used to examine the design of the

Kalman filter. Key filter features are described, and the final tuning parameters are

listed and explained. Finally, the filter’s performance is examined over a wide range

of scenarios including short-term accuracy, long-term accuracy, and GPS outages.

Filter residuals are also shown and discussed.

To prevent confusion, terms are clarified as follows: when the term “MT-9” or

“INS” is used, this refers to the overall system’s unaided INS, driven by the input

from the MT-9 IMU. The term “filter” refers to the final system output: the MT-9

INS output with the Kalman filter’s error estimates applied to it.

Out of the five data sets created, three data sets are referenced in this chap-

ter. “Figure Eights” is a short (less than 80 seconds) data set in which repeated

figure eights were driven in a golf cart. “Short-term” is approximately 170 seconds

in length. This is a data set in which the golf cart was driven with random direction

changes and much stopping and starting. “Long-term” is slightly over 13.1 minutes.

This data set encompasses all the other data sets, including several static time peri-

ods intended to provide starting points for the other data sets. Figures 4.1 through

4.3 show position tracks for these three data sets, and Table 4.1 provides a brief

summary of this information. See Appendix A for the complete position, velocity,

and attitude plots of these three data sets.
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Figure 4.1 BDS North and East Position Track, “figure eights”
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Figure 4.2 BDS North and East Position Track, “short-term”
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Figure 4.3 BDS North and East Position Track, “long-term”

Table 4.1 Data Set Summary

Name Length Description

Figure Eights ≈ 80 seconds Repeated figure eights

Short-term ≈ 170 seconds Random high-dynamic driving

Long-term ≈ 13.1 minutes Entire data set

4.2 Data Methodology

In order to test the system filter design, experimental data needed to be gath-

ered and processed. As discussed in Section 2.6.1, the MEMS IMU that was used

in this research was the XSens MT-9B. The NovAtel Black Diamond System (BDS)

(Section 2.6.2) was used to provide reference truth data.

Ideally, the experimental data set used to evaluate this filter design would be

from a vehicle capable of highly dynamic motion. This is desirable because it would

provide a wide range of real-world conditions for testing the dynamic range of the

filter, and also because dynamic data provides the filter with more information about

4-3



its system states, leading to better performance. In this case, the only available

vehicle with the necessary power supply and computing resources was a specially

modified electric golf cart. While not ideal, the cart is dynamic enough to provide a

data set that can give a basic evaluation of the design.

4.2.1 Data Collection. To collect the data, the BDS was mounted on the

back of the cart, with its GPS antenna mounted approximately a meter above its

IMU. Although it would have been ideal to have the antenna mounted directly on

top of the IMU, the error introduced by the one meter vertical offset was considered

small enough to be of negligible effect. The MT-9 was then mounted on top of the

BDS IMU using a Velcro strip. With this setup, the BDS experienced the exact

same dynamics as the MT-9 (within a range of error caused by the inexact mounting

process). The BDS recorded its own data (time-stamped with GPS time) on an

internal memory card, and a MATLAB script run on a laptop PC simultaneously

recorded the MT-9 data. This MATLAB script recorded the raw accelerometer,

gyroscope, magnetometer, and temperature readings from the MT-9, as well as the

the internal MT-9 timer at each measurement interval. These readings were to be

time-stamped with the GPS system time in order to correlate them with the data

from the BDS. However, during data collection a software malfunction caused this

time-stamp to be inaccurate. The method used to time-stamp the data correctly

after the fact will be discussed shortly.

In order to provide several different data sets containing various dynamics, as

well as one long data set, the MATLAB script that recorded the data was set to run

for approximately fifteen minutes. During this time, the cart performed a series of

right-hand circles, left-hand circles, and figure eights, as well a period of driving about

randomly. This last period included starting and stopping frequently and forcefully,

turning quickly in different directions, and riding up and down inclines to provide

variation in pitch and roll. Between the various sets of maneuvers, the cart was

stopped and remained still for thirty seconds or more. This was to provide the data
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with several different “starting points”, because the Kalman filter software needed

stationary data in order to initialize itself and perform self-alignment. The end result

was a data set that could be broken down into the various sets of maneuvers, or used

whole in order to provide a long-term analysis of the filter’s performance (this was

the “long-term” data set).

4.2.2 Data Correction. Because of a software error in the MATLAB script,

the MT-9’s data was not time-stamped correctly in real-time. In order to correct this

and make the data usable, data from both the MT-9 and the BDS were examined.

Along common axes, accelerometer data from both systems shared obvious peaks

and valleys. When an identical peak or valley was found in both data sets, the BDS-

recorded GPS time-stamp at this point was assigned to the MT-9 data at the same

point. Once one MT-9 data point had a time-stamp, the MT-9’s internal timer data,

which incremented once per millisecond, was used to time-stamp the rest of the data

set accordingly. Once this was done, other unique peaks and valleys were used to

compare the new MT-9 time-stamp to the BDS time-stamp: over the smallest data

sets (usually around eighty seconds), the time-stamp variation was approximately 2

ms. Over the largest data set (13+ minutes), the maximum variation grew to roughly

11 ms. This variation is not ideal, but it was considered an acceptable error because

of the relatively low dynamics of these tests (there were also significant technical

problems in creating a replacement data set).

The Kalman filter also needs raw GPS pseudoranges and satellite ephemeris

data, so the BDS-recorded GPS data was used. This means that some of the same

raw data was used as an input to both the filter and the BDS (which provided the

truth reference data). While this correlation between the filter data and the truth

data is not ideal, the difference between two sets of single-frequency pseudoranges

provided by different GPS receivers should be minimal (the ephemeris would be

identical because it is directly downloaded from the satellites). Also, the techni-
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cal complexity would have greatly increased with an attempt to record a separate,

independent set of GPS measurements for the filter.

4.2.3 Data Processing. The computer that processed the input data and

provided the filter output was a desktop PC with a Pentium 3 processor running

at 1.4 GHz with 256 Megabytes of RAM. The largest data set (“long-term”), con-

sisting of 100 Hz IMU data and 1 Hz GPS data over a 13.1 minute period, took an

average (5-run average) of 48 seconds to process. This equates very roughly to a

16-1 speedup over real time. In a mobile, real-time implementation of the filter, a

less powerful, much more space- and power-efficient processor would be used. The

real-time code would also not just contain the INS mechanization and Kalman fil-

ter, but would also include data collection routines, time-stamp routines, and data

output routines. However, the real-time code would also most likely be run on a

stripped-down operating system to minimize other loads on the processor. All of

these factors combine to make it very difficult to predict whether or not a small

mobile processor can handle the filter’s computing requirements, although the high

speedup of the desktop machine is an encouraging sign.

4.3 Filter Features

The system code has several important features that are not really relevant

to Kalman filter theory or to the code structure (discussed in Chapters 2 and 3

respectively), so they will be discussed in this chapter. Figure 4.4 gives an overall

system block diagram that shows some of the features to be discussed.
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Figure 4.4 System Block Diagram

4.3.1 System Alignment. Before the Kalman filter begins estimating INS

errors, the INS must first be aligned (that is, know its starting position and attitude).

The starting position used for each data set was provided by the BDS truth position.

This is realistic because in an actual real-time implementation the system’s GPS

receiver would be able to provide this starting position. However, a GPS receiver

does not provide angular orientation, so for each data set the system had to calculate

its own starting orientation.

The angular alignment calculations performed by the system are relatively

simple. While this is partly because the focus of this research is on the system’s

performance after alignment, it was also somewhat of a necessity because the MT-

9’s instruments were not accurate enough to allow a very precise alignment. One

important requirement of an accurate gyro-compassing INS alignment is that the gy-

roscopes sense the rotation rate of the earth, which is 0.00418 deg/s [10]. The MT-9’s

gyroscopes have a noise level of 0.745 deg/s [39], so it cannot accurately sense earth

rate using a single measurement. While this noise level problem can be mitigated

by averaging measurements over time, the bias instability that plagues MEMS gy-

roscopes (see Section 2.3.3) is the real problem. With the gyroscope bias unknown
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from turn-on to turn-on, the earth rate can not be sensed even with averaging to

remove the instrument noise.

A typical navigation-grade INS performs a “coarse” align, which provides a

rough starting attitude, and then a “fine” align, which tightens up the alignment

accuracy [30]. For this system, essentially a very coarse alignment is performed.

During the first 5 seconds of data, the IMU must be sitting still (this is done to

determine an initial gyroscope bias, as well as for alignment). During this time,

all accelerometer, gyroscope, and magnetometer measurements in all three axes are

recorded and average values are calculated (in order to reduce the effects of instru-

ment noise). Because the INS is stationary, all sensed accelerations are due to gravity.

With this knowledge, the initial roll and pitch determinations are easily calculated

using the accelerometer averages. For the yaw angle, the MT-9’s magnetometers are

used to sense the heading in relation to Earth’s magnetic field. This rough heading

then has the magnetic variation (5.18 degrees at the starting position for the data

sets [1]) subtracted from it, and the result is used as the initial heading for the INS.

This subtraction is justifiable because the GPS receiver under consideration for a

real-time implementation is the Garmin GPS-35, which, along with providing the

system’s starting location, is capable of providing the magnetic variation for that

location. Once the roll, pitch, and yaw angles are determined, a DCM is generated

which relates the INS orientation to the navigation frame of reference.

The average error (using four different alignment data sets) for this angular

alignment method, when compared to the BDS truth data, was 0.331 degrees in the

roll axis and 0.105 degrees in the pitch axis. The yaw axis, which is the most difficult

to align (because of the lack of gravity in this axis), had an average error of 4.62

degrees.

4.3.2 Instrument Error Feedback. In the system code there are separate

variables that are subtracted from every gyroscope and accelerometer measurement.
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These variables represent the estimated instrument biases. During the five-second

stationary alignment period, the gyroscope measurements are summed and an aver-

age value is formed (one for each gyroscope). With perfect instruments, these values

would be zero, because the IMU is not rotating (other than the very small earth

rate rotation). Because of instrument noise and bias, with bias being the greatest

contributing factor, these values are not zero. They are placed into the variables

that are subtracted from every gyroscope measurement.

Accelerometers cannot use the same process to identify their biases (unless

the attitude of the IMU is known accurately), because gravity causes them to sense

accelerations even when the IMU is static. Their bias variables are therefore set to

zero initially. Once the filter begins operation, and its estimate of any of the three

accelerometer biases grows above 0.08 m/s2, these bias estimates are inserted into

the variables that are subtracted from every accelerometer measurement. The filter’s

accelerometer bias estimates are then reset to zero, and this reset process continues

the whole time the filter is running. The gyroscope bias states are not fed back in

this manner. The justification for not feeding back the gyroscope biases can be seen

in Figure 4.5, which shows filter estimates of the Z-axis accelerometer and gyroscope

biases from data set “long-term”. The accelerometer bias state adjusts quickly from

its value of zero, and remains fairly constant once it settles on a value. This seems to

indicate that the filter has settled on a reasonable value for the accelerometer bias.

In contrast, the gyroscope error state wanders continuously, giving an indication that

a solid bias value has not really been discovered (assuming that the true gyroscope

bias is not as fast-changing as the filter is indicating).
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Figure 4.5 Filter Estimates of Z-axis Accelerometer and Gyroscope Biases, “long-

term”

This feedback process is implemented in order to provide more accurate mea-

surements to the filter’s INS mechanization, which will help its error to grow more

slowly. A very obvious effect of this feedback is shown by Figure 4.6, which shows

two sets of data, one with accelerometer bias feedback and one without (this data

is from the “Figure Eights” data set). The BDS-recorded down velocity is used as

the truth data (black line), and the MT-9’s indicated down velocity (green or gray

line) ideally would track this truth data. It can be seen that about 25 seconds into

the “feedback” data, the MT-9 suddenly stops its drift away from the truth down

velocity. From this point on, the “feedback” MT-9 down velocity tracks the truth

data much closer than the non-feedback data. This is an indication that a bias state

reset occurred, with the result that the MT-9’s error growth was slowed.
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Figure 4.6 MT-9 and BDS Indicated Down Velocities, with and without Feedback,

“figure eights”

4.3.3 INS Resets. As time progresses, the INS position, velocity, and

attitude outputs drift away from the truth. As these errors grow larger, it becomes

more and more difficult for the Kalman filter to estimate them correctly. One reason

is because a large INS error violates a key assumption of the filter measurement

model (see the explanation for Figure 3.1). To address this problem, the INS is

reset after every filter cycle, whether it is a state propagate/update cycle or just

a propagate cycle. A reset is when the INS mechanization essentially starts over,

using as new starting values its previous outputs corrected by the Kalman filter’s

estimated errors. These filter error estimates are then reset to zero (all other filter

states remain as they were before). Initially, the INS was going to be reset whenever

the filter’s error estimates grew above certain bounds, but it was found that, as

the INS was reset more and more frequently, the overall system accuracy increased.
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Figure 4.7 shows a simple comparison between the filter with and without INS resets

implemented (both using the same data set, “long-term”). The results are clear; with

the INS resets, the filter’s indicated north position tracks right along with the BDS

truth data, whereas without them the filter’s indicated north position is off by 50

kilometers by the end of the data set.
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Figure 4.7 North Position Filter Performance, with and without Feedback, “long-

term”

While the Kalman filter performs its position calculations for latitude and

longitude using decimal degrees, the plots of these errors make much more sense

when meters are used as the scale. Therefore, all of the position plots seen in this

chapter (such as Figure 4.7) show north and east position in meters. To convert

latitude and longitude in degrees to north and east in meters, the filter outputs were

multiplied by scale factors before plotting. The scale factors are calculated as shown

in the following equations, where L is the latitude and Re is the equatorial radius of
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the earth (6,378,137 meters [10]).

Latitudefactor =
Reπ

180
(4.1)

Longitudefactor = Re cos

(
Lπ

180

)
π

180
(4.2)

A final note on the plots is that altitude is referenced in meters above the WGS-84

ellipsoid.

4.4 Filter Tuning

4.4.1 Initial State Covariances. The Kalman filter’s initial state variances

are shown in Table 4.2. They are shown as squared standard deviations. Practically,

these numbers tell the filter that the true initial error states have a 68.3 percent

probability of being within (plus or minus) these standard deviation values.
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Table 4.2 Initial Filter State Covariances

Filter State Initial State Covariance

δlat (10 m)2

δlon (10 m)2

δalt (10 m)2

δVN (1 x 10−10 m/s)2

δVE (1 x 10−10 m/s)2

δVD (1 x 10−10 m/s)2

δα (0.4 deg/s)2

δβ (0.4 deg/s)2

δγ (4.0 deg/s)2

δt (20 m)2

δṫ (0.1 m/s)2

biasxAccel (0.5 m/s)2)2

biasyAccel (0.5 m/s2)2

biaszAccel (0.5 m/s2)2

biasxGyro (0.1 deg/s)2

biasyGyro (0.1 deg/s)2

biaszGyro (0.1 deg/s)2

The initial position standard deviations are 10 meters because this is a reason-

able accuracy for a GPS position solution, which is used to provide the INS starting

point. The velocity standard deviations are zero for all practical terms, because of

the extreme confidence that the system was not moving when initialized. The pitch,

roll, and yaw standard deviations reflect the accuracy of the INS alignment routine

(see the end of Section 4.3.1). The time state and accelerometer bias state standard

deviations are somewhat high because of uncertainty in these values at the start.

The gyroscope bias standard deviations are relatively low, because during the align-
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ment phase a preliminary value was already calculated, giving the filter a reasonably

accurate start.

4.4.2 Noise Values. The Kalman filter’s system dynamics noise values are

shown in Table 4.3. They are shown as squared standard deviations. These values

were chosen after much time spent tuning the filter.

Table 4.3 System Dynamics Noise (Q matrix)

Filter State Noise Value

δlat (6.286 x 10−10 m)2sec

δlon (6.286 x 10−10 m)2sec

δalt (6 m)2sec

δVN (1 x 10−6 m/s)2sec

δVE (1 x 10−6 m/s)2sec

δVD (1 x 10−6 m/s)2sec

δα (2 x 10−9 deg)2sec

δβ (2 x 10−9 deg)2sec

δγ (2 x 10−9 deg)2sec

δt (1.0 m)2sec

δṫ (0.2 m/s)2sec

biasxAccel (8 x 10−4 m/s2)2sec

biasyAccel (8 x 10−4 m/s2)2sec

biaszAccel (8 x 10−4 m/s2)2sec

biasxGyro (0.01 deg/s)2sec

biasyGyro (0.01 deg/s)2sec

biaszGyro (0.01 deg/s)2sec

These filter noise values affect how much error the filter assigns to each state

as it propagates forward in time. They also heavily influence the filter covariances,
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which describe how confident the filter is in each state estimate. Plots comparing

the filter’s error estimates and covariances to the true errors are shown later in this

chapter.

The filter’s measurement noise variance value controls how much the filter

“trusts” the measurements it receives. This value was set at (7 meters)2, a reasonable

uncertainty for the measurement model described in Section 3.2.3.

4.5 Test Results

In this section, the filter’s performance is examined over a wide range of scenar-

ios. Short-term accuracy and long-term accuracy is examined, as well as performance

during a significant GPS outage.

4.5.1 Short-term Performance. The data set chosen to analyze the fil-

ter’s short-term performance was “short-term”, referenced in the chapter overview.

Figures 4.8 through 4.11 show comparisons between the BDS data and the filter

outputs. The BDS indicated truth for each state are the black lines, and the filter’s

indicated values are the green or gray lines. Figures 4.12 through 4.14 compare the

filter’s error to its covariance-derived standard deviation estimates, with the error

calculated by subtracting the filter’s results from the BDS results. For these error

plots, the error is black and the filter’s standard deviations are green or gray. Table

4.4 summarizes the plotted data. Truth data is only available for the first nine states,

so those states are what is shown (see Section 4.5.2.1 for plots and analysis of the

other filter states).
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Figure 4.8 North, East, and Altitude Filter Performance, “short-term”
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Figure 4.9 North, East, and Down Velocity Filter Performance, “short-term”
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Figure 4.10 Roll and Pitch Filter Performance, “short-term”
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Figure 4.11 Yaw Filter Performance, “short-term”
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Figure 4.12 Position Errors and Standard Deviations, “short-term”
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Figure 4.13 Velocity Errors and Standard Deviations, “short-term”
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Figure 4.14 X, Y, and Z-Axis Tilt Errors and Standard Deviations, “short-term”

Table 4.4 Short Term Performance Errors

Filter Output Mean Error Error Std. Dev. Pct. within 1σ

North Position 6.31 m 2.56 m 23.1

East Position 1.32 m 2.01 m 82.5

Altitude 33.6 m 3.13 m 0.43

North Velocity 0.126 m/s 0.678 m/s 78.3

East Velocity 0.0225 m/s 0.621 m/s 70.4

Down Velocity -0.0718 m/s 0.225 m/s 99.6

X-tilt 0.0230 deg 0.585 deg 53.6

Y-tilt 0.103 deg 0.546 deg 54.3

Z-tilt -3.70 deg 3.17 deg 67.9

In Figure 4.8, a very pronounced altitude bias is visible. This is further con-

firmed in Table 4.4, as the average altitude error is 33.6 meters. Thinking that such
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a bias would most likely be introduced by faulty GPS processing, the output of the

system’s GPS code was double-checked against output from verified MATLAB code

(both using the same inputs), and the positions were all the same. Therefore, this

altitude bias is most likely due to some extra GPS processing the BDS does that the

system code does not replicate. Dual-frequency pseudoranges or a more elaborate

troposphere or ionosphere correction model could be the source of such a discrep-

ancy (the MEMS-based system does use a tropospheric correction model, a modified

Hopfield model [13]). Aside from this altitude error, the rest of the error statistics

seem reasonable. Most of the errors are at least somewhat close to zero-mean, with

the north position, altitude, and z-tilt errors showing the largest error means. The

standard deviations all show reasonably tight error distributions.

The filter’s standard deviations are the measure of the filter’s confidence in its

outputs. Kalman filter theory says that, with a well-tuned filter, the filter’s outputs

should be within one standard deviation of the truth 68.3 percent of the time [20].

Most of the filter outputs (see the fourth column of Figure 4.4) are reasonably close

to this number, with the exception of the north, altitude, and down velocity errors.

The altitude errors have already been discussed. The north errors, seen in Figure

4.12, are all very close to one standard deviation, even if a majority of them fall

outside this boundary. The down velocity error, seen in Figure 4.13, is very small.

Attempts to reduce the system dynamics noise for this state resulted in little or no

change to the filter covariances. Basically, with other tuning parameters remaining

the same, the filter is as confident as it will get when it comes to the down velocity

state. This test was successful in showing that the filter’s performance is adequate

over a short time. Each error state was roughly constant over the entire data set,

which is what would be expected over a short period of time. However, the true test

of the system’s performance comes when a longer data set is examined.

4.5.2 Long-term Performance. The long-term performance of the filter

was examined using data set “long-term” (13.1 minutes long). Figures 4.15 through
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4.18 show comparisons between the BDS data and the filter outputs. Figures 4.19

through 4.21 compare the filter’s error to its covariance estimates, and Table 4.5

summarizes the data. Again, truth data is only available for the first nine states.
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Figure 4.15 North, East, and Altitude Filter Performance, “long-term”
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Figure 4.16 North, East, and Down Velocity Filter Performance, “long-term”
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Figure 4.17 Roll and Pitch Filter Performance, “long-term”

4-23



0 100 200 300 400 500 600 700 800
−200

−150

−100

−50

0

50

100

150

200

Time (seconds)

Y
aw

 a
ng

le
 (

de
g)

BDS and KF indicated Yaw angle KF
BDS

Figure 4.18 Yaw Filter Performance, “long-term”
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Figure 4.19 Position Errors and Standard Deviations, “long-term”
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Figure 4.20 Velocity Errors and Standard Deviations, “long-term”
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Figure 4.21 X, Y, and Z-Axis Tilt Errors and Standard Deviations, “long-term”
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Table 4.5 Long Term Performance Errors

Filter Output Mean Error Error Std. Dev. Pct. within 1σ

North Position 4.33 m 3.01 m 46.5

East Position 0.752 m 2.53 m 75.3

Altitude 32.3 m 2.36 m 0.057

North Velocity -0.0174 m/s 0.923 m/s 73.4

East Velocity -0.229 m/s 0.986 m/s 52.7

Down Velocity 0.162 m/s 0.371 m/s 94.4

X-tilt 0.237 deg 0.786 deg 38.8

Y-tilt -0.0999 deg 0.604 deg 60.6

Z-tilt 13.3 deg 25.4 deg 30.3

The filter statistics contained in Table 4.5 are very similar to those from data

set “short-term”. Most error means did not change significantly, though the standard

deviations for the velocity and X and Y tilt states all grew slightly. The X and Y

tilt error state percentages are also somewhat low, considering that the same tuning

values were used for data set “short-term” with better results. However, it is not

a good idea to tune the filter just to optimize one data set. The most significant

change is the mean error and error standard deviation for the MT-9’s Z-axis tilt,

which are 13.3 and 25.4 degrees respectively. The main reason for these large errors

is that this data set had a lot of time during which the golf cart was static. In

Figure 4.18 (especially between 500 and 600 seconds) it is apparent that the yaw

error growth is the most rapid during these static periods, and the filter takes quite a

while to correct this error. Figure 4.21 demonstrates that during static periods, the

filter’s angular covariances grow, indicating less confidence in its estimates. While the

covariances grew enough to account for the X and Y-tilt errors, the Z-tilt covariances

did not grow enough to account for the large error growth in that axis. This is

partially because the filter is tuned more for dynamic data than stationary data, but
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the covariance numbers in this axis could probably be improved with better filter

tuning. Another way to improve them would be to add GPS velocity as another

filter measurement (see the next paragraph for an explanation). During motion, the

covariances shrink, because motion allows the filter to discriminate between various

error sources, and thus more accurately estimate the appropriate states. Figure 4.22,

which is a zoomed-in version of Figure 4.18, shows a graphic example of this. It shows

that the filter’s estimate of the yaw gets closer and closer to the truth as the cart’s

motion continues. The inability of the MT-9 to sense earth rate, aggravated by the

lack of motion, causes the large yaw error growth seen during the static periods.
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Figure 4.22 Zoomed-in Yaw Filter Performance, “long-term”

It is also interesting to note Figure 4.20, which shows the error in the north and

east velocity error estimates. At the 300-second point, these two velocity errors are

oscillating wildly, with error magnitudes of nearly 5 meters/second (this period of

motion was the golf cart going continuously in tight circles). The filter covariances
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do not match the errors correctly, as they are much too optimistically low. The

probable source of this error can be seen in Figure 4.21 in the Z-axis tilt error. At

the 300-second mark, the filter’s heading estimate is off by close to 50 degrees. This

causes the filter’s north and east axes to be misaligned with the true north and east

axes, causing the large velocity error oscillations. Another interesting thing to note

is that, although the cart is in motion at this time, the filter does not recognize that

there is a large heading error; in fact, the heading error is just as big at the end of the

motion as it was at the beginning. Only when the cart starts moving again (around

460 seconds, the “figure eights” data set), does the filter realize the heading is off

and start assigning error to this state. A possible explanation for this is that the

cart’s circles at the 300-second point were small enough to be within the GPS margin

of error, while the “figure eights” data set contained enough change in position for

the filter to realize that it had a large heading error. One way that this problem

would have been avoided was if the filter used GPS velocity measurements. During

the cart’s tight circles, the GPS velocity would have allowed the filter to realize its

errors and correct them. The GPS position alone was not enough to do this when

the position change during motion was so small.

The results of this long-term data set lead to some guardedly optimistic conclu-

sions. The filter performed well during dynamic conditions, and showed an ability to

correct any heading errors that appeared during static periods. However, this head-

ing drift was quite large at certain points and further tuning should be attempted

to try to correct this problem.

4.5.2.1 Filter Clock and Bias States. Although no truth data is

available for the last eight filter states, they are still important to understanding

the filter’s performance. It was clear during the tuning process that the bias noises

in particular were critical to filter performance, as they provided the greatest im-

provements when changes were made. Figures 4.23 through 4.28 show these states

and their covariance-derived standard deviations. It is important to remember that

4-28



these states do not show the error in the estimates as the other plots do, but just

the filter estimates themselves (the error estimates and standard deviations have

been plotted separately because of this). The standard deviations show the filter’s

confidence level, but there is no way of knowing actually how good these estimates

are.
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Figure 4.23 Clock Bias and Clock Bias Drift Estimates, “long-term”
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Figure 4.24 Clock Bias and Clock Bias Drift Standard Deviations, “long-term”
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Figure 4.25 X, Y, and Z Accelerometer Bias Estimates, “long-term”
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Figure 4.26 X, Y, and Z Accelerometer Bias Standard Deviations, “long-term”
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Figure 4.27 X, Y, and Z Gyroscope Bias Estimates, “long-term”
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Figure 4.28 X, Y, and Z Gyroscope Bias Standard Deviations, “long-term”

Both the clock bias and bias drift states appear to be reasonable, although

their is no way to verify them. The accelerometer biases undergo a reset at about

the 40-second point, just as their covariances are converging from their initial values.

After this reset they stay very steady, which is an encouraging sign that these states

have a good connection to reality. On the other hand, the gyroscope biases wander

and never settle on steady values. One possible reason for this behavior is that the

noise for these states could be too high, causing the filter to assign too much error to

these states. Better tuning would be the answer if this was the case. Another reason

could be that there are other types of gyroscope error that are causing problems,

such as scale factor error. In this case, more detail would need to be added to the

filter’s dynamics model.

One point of interest is the Z gyroscope bias from about 270 to 320 seconds.

This is the period of “tight circles” discussed in the previous section, when the filter
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failed to correct the heading error during motion. From viewing the Z gyroscope

bias, it appears that the filter was aware of a problem, and was rapidly lowering

its Z gyroscope bias estimate to try to fix it, to no avail. This possibly points to

the conclusion that better tuning could fix this problem. If the relationship between

the angular state noise and the gyroscope bias state noise was different, perhaps the

filter would have assigned the error to the heading error state, instead of improperly

assigning it to the Z-axis gyroscope bias state as it did here.

This long data set was a serious test for this MEMS-based system. The success

of the filter at maintaining a reasonable output proves that an inexpensive MEMS-

based solution is a viable option for short to medium-term accuracy. However, the

filter’s accuracy is best when the system is moving. A long static period could

possibly result in the yaw output becoming unstable, with the filter being unable to

correct itself.

4.5.3 GPS Outage. To analyze the filter’s performance with a GPS outage,

data set “short-term” was again used, but with GPS data removed so that there was

a 31-second gap where no pseudoranges were available. The filter’s north and east

direction and velocity states show the greatest effects of the outage, so these are the

states discussed in this section. Figures 4.29 through 4.32 show the performance of

these states, and Table 4.6 shows the filter’s error statistics. The period of GPS

outage is indicated approximately by the two vertical black lines in all four plots.
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Figure 4.29 North and East Filter Performance, GPS Outage

0 20 40 60 80 100 120 140 160
−10

−5

0

5

10

N
or

th
 v

el
. (

m
/s

)

BDS and KF indicated North velocity

0 20 40 60 80 100 120 140 160
−6

−4

−2

0

2

4

6

Time (seconds)

E
as

t v
el

. (
m

/s
)

BDS and KF indicated East velocity
KF
BDS

Figure 4.30 North and East Velocity Filter Performance, GPS Outage
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Figure 4.31 North and East Errors and Standard Deviations, GPS Outage
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Figure 4.32 North and East Velocity Errors and Standard Deviations, GPS Outage
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Table 4.6 GPS Outage Performance Errors

Filter Output Mean Error Error Std. Dev. Pct. within 1σ

North Position 11.3 m 13.9 m 24.4

East Position -2.10 m 10.9 m 71.4

Altitude 33.5 m 3.10 m 8.14

North Velocity 0.379 m/s 1.07 m/s 63.5

East Velocity -0.154 m/s 0.944 m/s 64.3

Down Velocity -0.0720 m/s 0.224 m/s 99.6

X-tilt -0.000114 deg 0.592 deg 56.2

Y-tilt 0.127 deg 0.528 deg 59.8

Z-tilt -3.26 deg 3.11 deg 76.5

When Table 4.6 and Table 4.4 (data set “short-term” without a GPS outage)

are compared, it is apparent that the north and east direction and velocity error

statistics are the only ones that changed significantly. The rest of the errors are

essentially unchanged.

During the outage, the filter’s north and east position errors grow quickly until

they are greater than 50 meters. Once GPS returns, the filter quickly corrects itself

back to a good solution. The north and east velocity errors (Figure 4.30) also grow

fairly quickly (compare with Figure 4.9 to see the differences). Again, once GPS

returns, the filter’s velocity error quickly shrinks back down to a reasonable level.

The error in these states is expected because GPS provides the filter with its most

reliable position and velocity information. The filter raises its covariances for these

states (Figures 4.31 and 4.32) when GPS is missing, showing the decreased confidence

in its error estimates. Once GPS returns, the filter quickly lowers them to a more

confident number. The results of this data set show that this system is viable in an

environment where short GPS outages may occur. For an outage 30 seconds long,
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the filter’s position error grows to 50 or more meters, and over a longer period of

time this error would only continue to grow.

4.6 Residuals

A sample of the filter’s residuals from the “short-term” data set are shown in

Figure 4.33. With a perfect model and perfectly tuned filter, the residuals would

look like white Gaussian noise with a mean of zero. However, obvious patterns exist

in these residuals, suggesting some sort of correlation with the golf cart’s motion or

an IMU error, and revealing a weakness in the system model. One way to correct this

problem would be to improve/tweak the tuning of the filter and the content of the

systems dynamics model, as long as too much complexity was not added. Another

explanation for the patterns could be correlated errors in the GPS pseudorange

measurements. During the last ten or fifteen seconds of the data set, the golf cart

was sitting still, suggesting that a large part of the visible patterns is due to these

unmodeled correlated errors in the GPS measurements.
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Figure 4.33 Filter Residuals, “short-term”

4.7 Summary

This chapter first described the methods used to collect and validate the IMU

and GPS data. Next, the data processing was discussed and the filter’s alignment

process, bias feedback and INS resets were explained. The filter’s noise and initial

covariance values were listed and explained to set the background for the performance

results. The short-term filter performance showed that the filter was capable of short-

term accuracy, and the long-term data set validated the filter’s performance over a

much longer period of time. The filter was further tested with the introduction of

a short GPS outage, with decent, predictable results. Finally, a sample of filter

residuals was shown not to be white as a perfect filter’s residuals would be.
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V. Conclusions and Recommendations

5.1 Conclusions

The main conclusion that can be drawn from this research is that MEMS

inertial instruments now exist that are accurate enough to be useful in a practical,

comparatively low-cost INS/GPS integration. This conclusion has some caveats:

• The MT-9 has great utility for providing attitude. Its pitch and roll outputs are

reasonably accurate, usually within 1 or 2 degrees, but its heading output tends

to have much more error (up to 35-40 degrees a minute). Its ability to track

heading is compromised by its unpredictable bias and high noise (especially in

the gyroscopes), which prevent it from sensing earth’s rotation rate. See the

next section for recommendations about improving its heading performance.

• The MT-9 is not capable of performing stand-alone for more than a minute or

so. After 60 seconds, the position error can be off by hundreds of meters, and

it grows so quickly after this point that the solution quickly becomes useless.

This limits its usefulness as a backup solution in case of a GPS signal outage.

However, even a 30-second window can still be useful in case of signal blockages

by buildings or trees, providing a reasonable solution until the GPS receiver

regains signal lock.

• A weakness of this Kalman filter integration is that the filter is good at cor-

recting the heading error only when the system is moving. Even if the system

remains still for less than a minute, the overall heading error still grows signifi-

cantly (see Figure 4.18). When in motion, the filter is quite good at correcting

any existing error and then keeping the heading error less than five degrees or

so.
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A final conclusion is that the use of a tightly-coupled integration was a good

choice for this system. The filter can use any number of satellites, not just a minimum

of four. This somewhat mitigates the MT-9’s poor stand-alone performance, allowing

the filter still to use GPS measurements when a loosely-coupled system would be

totally relying on the MT-9. A tightly-coupled system also helps determine INS

error more efficiently because it uses data that has not been pre-processed as much.

5.2 Recommendations

This system performed well enough that further research and improvements

would be useful. The following recommendations are provided as starting points for

future work.

• Conduct more filter tuning. In its current incarnation, the filter’s static head-

ing performance leave much to be desired. As mentioned in Section 4.5.2.1, it

appears that the relationship between the angular state noises and the gyro-

scope bias state noises is at least slightly wrong. If the right balance between

these two noises is found, perhaps the static heading drift could be reduced.

• Test the system more thoroughly, this time using data time-stamped in real-

time (as an actual system would use). It would also be an improvement to use

GPS data provided by a separate receiver from the BDS, in order to remove

any correlation with the truth data. More dynamic data would also be useful,

such as that provided by a car or a small aircraft (which would be ideal because

of the wide attitude variations during flight).

• Use all of the instruments available on the MT-9, specifically the magnetome-

ters, which were only used in the alignment process in this research. There

were two reasons the magnetometers were not used in this system. Firstly, this

system development was originally intended to be used with any IMU, and in

general, IMUs designed specifically for navigation do not have magnetometers.
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Secondly, the long-term goal of this research is a component that can be em-

bedded in other systems (see Section 1.1.5 for a list of potential applications)

to provide navigation outputs. These types of environments can potentially

be high in magnetic variations caused by electrical equipment or large metal

structures, which would disrupt the readings of the magnetometers. Even with

these potential disruptions, however, the magnetometer readings would be use-

ful because any data, no matter how noisy, can be used by a Kalman filter [20].

The measurement model and measurement noise value can be tuned to allow

some useful information to be gleaned from even the noisiest measurements.

The most obvious benefit from the magnetometer measurements would address

the weakest area of performance for the filter, which is the heading performance

during static periods. The magnetometer readings would most likely greatly

reduce the heading drift during these static periods, because the magnetic field

would be unchanging, telling the filter that the perceived heading changes of

the INS are actually due to the gyroscope drift.

• Add GPS pseudorange rate as a filter measurement. This would provide an-

other velocity input to the system, and could also potentially improve its head-

ing performance (see Section 4.5.2 for the rationale).

• Improve the alignment technique. One way to do this would be to perform

the current static align, but then to perform some maneuvers that would allow

the filter to figure out the heading error (the filter was effective at determining

heading error when the system was in motion). The INS could then be reset

using the filter’s heading error estimate. Combining a more accurate alignment

with the magnetometer data has the potential to improve greatly the filter’s

heading performance.

• Investigate the usefulness of simplifying of the Kalman filter’s dynamics model.

The large errors introduced by the MT-9’s biased, noisy instruments may be

so dominant that certain elements of the dynamics model could be simplified
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without adverse effects. This would potentially allow smaller processors to run

the code, which would use less power and be more practical for actual real-

time implementation. Another benefit to a smaller model would be to allow the

filter to update at a faster rate than 1 Hz, potentially improving its accuracy.

• Conduct more experiments to characterize the error of the MT-9. In this

research only one gyroscope error was modeled. If more IMU data were to be

collected and analyzed, different error characteristics might emerge, allowing

for a more accurate system dynamics model.
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Appendix A. Position Track of Relevant Data Sets

This appendix contains the position and altitude tracks, velocity data, and attitude

data as recorded by the truth reference system (the NovAtel BDS).
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Figure A.1 BDS North and East Position Track, “figure eights”
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A-4



−100 −80 −60 −40 −20 0 20 40 60

−30

−20

−10

0

10

20

30

40

50
BDS North and East Position Track, "short−term"

East Position (m)

N
or

th
 P

os
iti

on
 (

m
)

Figure A.5 BDS North and East Position Track, “short-term”
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Figure A.6 BDS Altitude Track, “short-term”
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Figure A.7 BDS North, East, and Down Velocities, “short-term”
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Figure A.8 BDS Roll, Pitch, and Yaw, “short-term”
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Figure A.10 BDS Altitude Track, “long-term”
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Figure A.11 BDS North, East, and Down Velocities, “long-term”
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14. Gutiérrez, José R. Multipath and GPS Signal Jamming Mitigation through Mul-
tiple Model Adaptive Estimation Applied to Ultra-Tightly Coupled GPS/INS Ar-
chitecture. MS thesis, Air Force Institute of Technology, 2003.

15. Han, Ki-Ho and Young-Ho Cho. “Self-Balanced Navigation-Grade Capacitive
Microaccelerometers Using Branched Finger Electrodes and Their Performance
for Varying Sense Voltage and Pressure,” Journal of Microelectromechanical Sys-
tems , 12 (1):11–20 (February 2003).

16. Henderson, Paul E. Development and Testing of a Multiple Filter Approach for
Precise DGPS Positioning and Carrier-Phase Ambiguity Resolution. MS thesis,
Air Force Institute of Technology, 2001.

17. Hide, Christopher, et al. “Adaptive Kalman Filtering for Low Cost INS/GPS.”
Proceedings of the ION GPS 2002 . 1143–1147. September 2002.

18. Klobuchar, J. A. “Ionospheric Effects on GPS.” Global Positioning System:
Theory and Applications 1 . Progress in Astronautics and Aeronautics, edited by
Bradford W. Parkinson and James J. Spilker Jr., Washington, DC: American
Institute of Aeronautics and Astronautics, Inc., 1996.

19. Martin, Dr. Michael K., et al. “Benefits of Low-Cost INS/GPS to Augment
Land Navigation.” Proceedings of the ION GPS 1999 . 1121–1132. September
1999.

20. Maybeck, Peter S. Stochastic Models, Estimation, and Control, Volume 1 . Math-
ematics in Science and Engineering, Vol. 141-1, Arlington, Virginia: Navtech
Book and Software Store, 1994.

21. M’Closkey, Robert T., et al. “System Identification of a MEMS Gyroscope,”
Journal of Dynamic Systems, Measurement, and Control , 123 :201–210 (June
2001).

22. MicroStrain, Inc. 3DM-G User Manual . Technical Report. Williston, Vermont,
2003.

23. Misra, Pratap and Per Enge. Global Positioning System Signals, Measurements,
and Performance. Lincoln, Massachusetts: Ganga-Jamuna Press, 2001.

24. Mueller, Conrad E. and Joel G. Hanse. “Honeywell MEMS Inertial Systems:
Requirements and Development.” Proceedings of the ION 55th Annual Meeting .
451–461. June 1999.

25. Parkinson, Bradford W. “GPS Error Analysis.” Global Positioning System: The-
ory and Applications 1 . Progress in Astronautics and Aeronautics, edited by
Bradford W. Parkinson and James J. Spilker Jr., Washington, DC: American
Institute of Aeronautics and Astronautics, Inc., 1996.

BIB-2



26. Pervan, Boris, et al. “Performance Analysis of Carrier-Phase DGPS Navigation
for Shipboard Landing of Aircraft,” NAVIGATION: Journal of the Institute of
Navigation, 50 (3):181–191 (Fall 2003).

27. Raquet, John F. MATLAB code distributed in EENG 735: Integrated Naviga-
tion Systems, Summer Quarter 2003.

28. Raquet, John F. and David L. M. Warren. “Broadcast vs. Precise GPS
Ephemerides: a Historical Perspective,” GPS Solutions , 7 (3):151–156 (Decem-
ber 2003).

29. Rios, Jose A. and Elecia White. “Fusion Filter Algorithm Enhancements For a
MEMS GPS/IMU.” Proceedings of the ION GPS 2001 . 1382–1393. September
2001.

30. Rogers, Robert M. Applied Mathematics in Integrated Navigation Systems .
AIAA Education Series, Reston, Virginia: American Institute of Aeronautics
and Astronautics, Inc., 2000.

31. Snodgrass, Britt and John Raquet. “The CIGTF High Accuracy Post-Processing
Reference System (CHAPS).” Proceedings of the ION GPS 1994 . 755–763.
September 1994.

32. Spilker Jr., J. J. “Tropospheric Effects on GPS.” Global Positioning System:
Theory and Applications 1 . Progress in Astronautics and Aeronautics, edited by
Bradford W. Parkinson and James J. Spilker Jr., Washington, DC: American
Institute of Aeronautics and Astronautics, Inc., 1996.

33. Titterton, David H. and John L. Weston. Strapdown Inertial Navigation Tech-
nology . IEE Radar, Sonar, Navigation and Avionics Series 5, Stevenage, Herts.,
UK: Peter Peregrinus Ltd., 1997.

34. Tredway, Reece, et al. “Using the GPS to Collect Trajectory Data for Ejec-
tion Seat Design, Validation, and Testing.” Proceedings of the ION GPS 2001 .
September 2001.

35. Vallot, Lawrence, et al. “Design and Flight Test of a Differential GPS/Inertial
Navigation System for Approach/Landing Guidance,” NAVIGATION: Journal
of the Institute of Navigation, 38 (2):321–340 (Summer 1991).

36. van Graas, Frank and James L. Farrell. “GPS/INS - A Very Different Way.”
Proceedings of the ION 57th Annual Meeting/CIGTF Biennial Guidance Test
Symposium. 715–721. June 2001.

37. Wagner, Jorg F. and Gunther Kasties. “Improving the GPS/INS Integrated
System Performance by Increasing the Distance Between GPS Antennas and
Inertial Sensors.” Proceedings of the ION NTM 2002 . 103–115. January 2002.

BIB-3



38. White, Elecia and Jose A. Rios. “FAA Certification of a MEMS Attitude and
Heading Reference System.” Proceedings of the ION GPS 2001 . 1349–1360.
September 2001.

39. XSens Technologies B.V. MT-9B Data Sheet . Technical Report. Enschede, The
Netherlands, 2003.

BIB-4



Vita

Jonathan M. Neu grew up in Logansport, Indiana, where he was homeschooled

for much of his education. He graduated from Logansport High School in 1996 and

then attended Cedarville University in Cedarville, Ohio. In 2001, he graduated with

a Bachelor of Science in Electrical Engineering.

Jonathan currently works for the Engineering Directorate of the Aeronautical

Systems Center at Wright-Patterson AFB, Ohio, doing logistics studies using the

Logistics Composite Model. He is married with one daughter.

Permanent address: ON FILE

VITA-1



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other 
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information 
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other 
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

14-09-2004 
2. REPORT TYPE  

Master’s Thesis  
3. DATES COVERED (From – To) 
June 2003 – September 2004 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

4.  TITLE AND SUBTITLE 
 
A TIGHTLY-COUPLED INS/GPS INTEGRATION USING 
A MEMS IMU 
 

5c.  PROGRAM ELEMENT NUMBER 

5d.  PROJECT NUMBER 
 
5e.  TASK NUMBER 

6.  AUTHOR(S) 
 
Neu, Jonathan M. 
 
 
 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/EN) 
 2950 Hobson Way, Building 640 
 WPAFB OH 45433-8865 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT/GE/ENG/04-19 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
AFRL/HEPA 
John A. Plaga 
2800 Q Street                                  DSN: 785-1166 
WPAFB OH 45433                         email: John.Plaga@wpafb.af.mil 

11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
       
        APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

 
13. SUPPLEMENTARY NOTES  
 
 
14. ABSTRACT  
  Micro-Electro-Mechanical Systems (MEMS) technology holds great promise for future navigation systems because of 
the reduced size and cost of MEMS inertial sensors relative to conventional devices. Current MEMS devices are much less 
accurate than standard inertial sensors, but they can still be useful.  In this thesis, data was recorded from an inexpensive MEMS 
inertial measurement unit and integrated with GPS measurements using a tightly-coupled Kalman filter.  The overall goal of this 
research is to investigate the usefulness of MEMS sensors for a small, real-time, low-cost INS/GPS integration. 
 
A golf cart was used to collect dynamic data, along with a commercial INS/GPS system to provide reference data.  This data was 
then post-processed, and the filter's performance in the position, velocity, and attitude outputs were evaluated by comparing them 
to the reference system. The important system features of system alignment, bias feedback, and INS resets are described, and the 
filter's performance is analyzed using its estimate and covariance outputs and comparing them to the true error.  Filter residuals 
are also shown and discussed. 
 
The final results show that, with adequate processing available, the INS/GPS filter using the MEMS instruments provides good 
position, velocity, and attitude results over a period of up to 15 minutes, as long as the data is at least somewhat dynamic. Without 
vehicle motion, the vehicle yaw state tends to wander excessively, due to the bias and noise of the MEMS gyroscopes.  Over a 
long static period, the filter's position outputs would most likely diverge and become unstable.  Recommendations are made to 
combat this problem, among them to conduct more characterization of the MEMS sensors, and to add GPS velocity measurements 
as an input to the filter. 
15. SUBJECT TERMS 
      GPS, INS, INS/GPS, integration, MEMS, IMU, Kalman filter, tightly coupled 

16. SECURITY CLASSIFICATION 
OF: 

19a.  NAME OF RESPONSIBLE PERSON 
Dr. John F. Raquet, AFIT/ENG 

a. 
REPORT 
 

U 

b. 
ABSTRACT 
 

U 

c. THIS 
PAGE 

 
U 

17. LIMITATION 
OF ABSTRACT 
 
 

UU 

18. 
NUMBER  
OF PAGES 
 

112 
19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-3636, ext 4580 
(John.Raquet@afit.edu) 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18




