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1. INTRODUCTION 
 
Adaptive filtering is a very powerful technique that is currently used for many military and 
commercial applications.  This technique allows one to change the control or interface as a function 
of the surrounding environment.  The basic idea is to extract enough information from particular 
signals to create a plant/model that emulates the resultant output signal as close as possible.  One of 
most common uses of this type of digital signal processing (DSP) is for signal identification.  Figure 
1 shows a very basic example of this type of system. 

   
Figure 1. Basic system identification using adaptive filters block diagram. 

The objective is to adjust the adaptive finite-impulse response (AFIR) filter’s coefficients until the 
error signal e(n) is minimized to some predetermined level.  This error signal is simply the 
magnitude difference sum of the unknown signal to be identified, y(n), and its corresponding 
emulated signal y’(n).  Statistical algorithms such as the least mean square (LMS) algorithm, or 
deterministic approaches, such as the recursive least-squares (RLS), are usually employed inside the 
AFIR block shown in Figure 1 to adjust the finite-impulse response (FIR) coefficients. 
 
Most adaptive filtering applications concentrate on optimizing the coefficients of FIR filters.  
Various iterative techniques (e.g., LMS using gradient descent) are employed to search for the 
optimal solution.  In the current investigation, a new adaptive filtering method is introduced that 
uses GAs to modify the coefficient sets representing a selected wavelet to minimize the quantization 
error of the reconstructed signal.  Unlike the signal identification process, however, this process 
requires access to all signal information.  Consequently, this approach establishes a new method for 
using GAs to evolve sets of wavelet coefficients that outperform standard wavelet transforms used 
for reconstruction of one-dimensional (1-D) and two-dimensional (2-D) data subjected to 
quantization noise.   
 
This research purposely chooses to concentrate all efforts on the lossy compression of signals, due 
to the fact that original signal information is permanently lost during the quantization process.  This 
approach consistently identifies coefficient sets that significantly reduce MSE and improve PSNR 
for lossy compression systems based on the wavelet transform.  A simple block diagram of our 
system is depicted in Figure 2. 

 

F(?) 
-

+

 

AFIR

x(n) y(n) e(n) 

y’(n)
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Figure 2.  Basic block diagram of adaptive wavelet filtering system. 

 
The main objective of the system shown in Figure 2 is to minimize the error signal, e(k), which is a 
function of the magnitude differences between the original uncorrupted signal v(k) and the 
transformed, downsampled, quantized, dequantized, upsampled, and finally inverse transformed 
v(k)’ signal.  In this effort, the results of the error signal e(k) is used by a GA to adjust the filter 
coefficients of a preselected wavelet.  The results of the GA process are then used to generate v(k)’.  
This entire process is contained within what is called the “Adaptive Discrete Wavelet Transform” 
(ADWT) plant shown in Figure 2. 
 
Following the introduction, a background about previous DWT research is presented along with 
basic DWT and Quantization noise theory.  The main research objective is then stated followed by a 
short demonstration of how sensitive the DWT reconstruction process is to changes in its filter 
coefficients.  Then a brief introduction into basic GA theory is presented.  Finally, the experimental 
results are presented followed by conclusions and proposed future research.  
 
Note that, throughout this report, any reference to the wavelet forward and inverse transforms is 
termed as "standard" transforms such as the Harr and Daub4 wavelet transforms.  Whereas the term 
“evolved” pertains only to the altered wavelet coefficients used during the inverse transform 
process. 
 

 
2. BACKGROUND 

 
The image processing research conducted at the AFRL/IFTA Reconfigurable Computing 
Laboratory has been successful in several areas. For example, several CAD programs have been 
developed to provide a means of efficiently evaluating various wavelet-based compression 
algorithms.  This software permits the user to manually select standard wavelets for a particular 
application (e.g., SAR image compression).  The hope is that the results are ultimately deemed 
acceptable for utilization in various unmanned aerial vehicle imaging systems.  Once airborne, the 
transforms are to be used on-board the airframe to compress and transmit imagery to the remote 
ground station for viewing and evaluation.  
 

-

+v(k) e(k) 

v’(k) 

ADWT
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The applications developed in this research effort use wavelet filters that have been previously 
discovered by other works such as that accomplished by, for example, Harr in 1920 and Daubechies 
in 1992.  The wavelet selection criterion is traditionally a subjective decision based upon both the 
type of data to be processed and the type of processing.  With a limited number of wavelet filters, it 
is unknown whether other filters may perform much better, depending upon the particular 
environment through which the system is operating and the mission to be accomplished. 
Furthermore, a previously selected wavelet may not work as well in a particular environment where 
other wavelets may be better suited.  Thus, a chosen wavelet may only work satisfactorily for 
specific periods of time, and the wavelet may not be optimized when scenes change (e.g., from 
ground to air or ground to water).  This problem is the main impetus behind the current research.   
 
 

3. THE DISCRETE WAVELET TRANSFORM 
Fourier analysis (Stein and Weiss 1971) is based upon the idea that all continuous signals may be 
represented by a sum of infinitely repeating sines and cosines. Fourier transforms and their variants 
[e.g., the Fast Fourier Transform (Cooley and Tukey 1965)] provide information about the 
frequencies present in a signal, but fail to describe where and when those frequencies occur in either 
time or space. In contrast, wavelets transform time-domain signals to a joint time-frequency 
domain. A wavelet transform convolves a given signal with particular instances of the wavelet at 
various time scales and positions. Since changes in frequency may be modeled by changing the time 
scale, and time changes may be modeled by shifting the position of the wavelet, wavelets allow us 
to represent both the frequencies within a given signal and the location of those frequencies. 
However, unlike the sinusoidal functions involved in the Fourier transform, wavelets exist only 
within finite intervals, and are zero-valued outside of those intervals.  

The DWT is used to redistribute the energy of a given signal.  The two main components of the 
classical DWT are (1) the scaling function )(tφ  and (2) the wavelet function )(tψ , which are defined 
as follows: 

)2()( ntht n
n

−=∑ φφ            (1) 

)2()( ntgt n
n

−= ∑ φψ           (2) 

where 

 nh  = impulse response of the scaling filter, 

ng = impulse response of the wavelet filter, 

n  = denotes the scale and shift of these functions. 

Moreover, nh contains the set of filter coefficients corresponding to the projection of the basis 
functions for the low-pass filtering section of the DWT, and ng contains filter coefficients 
corresponding to the projection of the basis functions for the high-pass filtering section of the DWT. 
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Once transformed, the analysis of signal input x(t) results in discrete sets of data in the wavelet 
domain.  
The inverse DWT (DWT-1) is used to transform coefficients from the wavelet domain back into the 
original signal domain.  In other words, the inverse transform produces the original signal x(t) from 
the wavelet and scaling coefficients.  

)()( ,, tdtx nk
n

nk
k

ψ∑∑
+∞

−∞=

+∞

−∞=

=          (3) 

where 

dttxtd nknk )()(,, ∗= ∫
+∞

∞−

ψ         (4) 

A DWT perfectly describes a continuous-time signal x(t) using a countable set of coefficients. The 
DWT shown in Figure 3 is a multi-pass process that uses a scaling function and a wavelet function 
to separate the high-pass and low-pass information content of a given signal. 

The low-pass sub-band produced by the previous transform is then subdivided into its own low and 
high sub-bands by the next level of the transform. Using the multiresolution analysis (MRA) 
technique (Mallat 1989), this process could be repeated as many times as the signal length can be 
divided by two (Walker 1999, p. 16); in practice, however, it is common to perform only a 
relatively small number of iterations (i.e., levels of decomposition), since nearly all of the energy of 
the decomposition coefficients is concentrated in the lower subbands (Rajoub 2002). 

 

Figure 3. (Forward) DWT with Multi-resolution 
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Standard wavelets may be described by sets of coefficients (Daubechies 1992, p. 54-56), commonly 
named g and h for the high-pass and low-pass filters, respectively. For example, the Haar and 
Daubechies-4 (Daub4) wavelets are defined in Table 1.  
 

Table 1. Mathematical Definitions for Haar and Daub4 Wavelets 
Haar Daub4 

][1)(
2

1,
2

1

nPhng

h

n −−=
⎭
⎬
⎫

⎩
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⎧=
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8
)31(*2,

8
)33(*2,

8
)33(*2,

8
)31(*2

nPhng

h
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⎭
⎬
⎫−−+

⎩
⎨
⎧ +

=
 

 
where n is the (spatial) position, and P is the filter length. (P = 2 for the Haar wavelet and P = 4 for 
the Daub4 wavelet.) Although Haar wavelets (Haar 1910) are the simplest wavelets to describe, 
Daubechies wavelets (Daubechies 1992) are more commonly used in certain applications. Figure 4 
is a graphic illustration of the time-domain behavior of each of the wavelets defined in Table 1. 
Daub4 wavelets use filter banks (Vaidyanathan 1992) containing exactly four elements.  
 

 
Figure 4.  Time-Domain Representation of Wavelet and Scaling Function of Haar and Daub4 

Wavelets 
 
An N-stage 1-D DWT is depicted in Figure 5.  
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Figure 5. N-Stage, 1-D Analysis DWT Filter 
A forward wavelet transform can be performed via matrix multiplication.  As an illustrative 
example, consider a 1-D scenario that uses a Daub4 filter and an input signal x of length eight.  If 
the four vectors (a and d) comprising the low-pass and high-pass sections are combined to make a 
single eight-row vector, then the following matrix product defines the forward DWT: 
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The equivalent C language algorithm that illustrates a single step of a 1-D forward DWT utilizing a 
Daub4 wavelet is as follows: 

N = 8; 
for (i = 0; i < (N/2); i++) 
{ 
 a = (2i + 2) % N; 
 b = (2i + 3) % N; 

a[i] = x[2i]*h[3] + x[2i+1]*h[2] + x[a]*h[1] + x[b]*h[0]; 
d[i] = x[2i]*g[3] + x[2i+1]*g[2] + x[a]*g[1] + x[b]*g[0]; 

} 

AN 

DN 

A2 

G(z) 

H.P.
↓2 

H(z) 

L.P.
↓2 

D1 

A1 

G(z) 

H.P. 
↓2 v(k) 
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D2 G(z) 
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H(z) 
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↓2 
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where x is the input signal, N is the length of that signal, g is the wavelet filter, and h is the scaling 
filter.  The resulting high-pass (d) and low-pass (a) signals each contain N/2 values.  Additional 
steps repeat this process using only the low-pass data; for each additional step, n will be half its 
value from the previous step. 
An n-stage 1-D inverse DWT-1 is depicted in Figure 6. 

 
Figure 6. N-Stage, 1-D Analysis Synthesis DWT-1 Filter. 

 
Similarly, the 1-D inverse DWT-1 for our previous matrix example can be expressed as follows:  
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The following C language algorithm describes the 1-D inverse DWT-1 for a Daub4 wavelet used in 
this matrix example:  

N = 8; 
for (i = 0; i < (N/2); i++) 
{ 
 x[2i  ] = a[i-1]*h[1] + a[i]*h[3] + d[N-1]*g[1] + d[N]*g[3]; 
 x[2i+1] = a[N-1]*h[0] + a[N]*h[2] + d[N-1]*g[0] + d[N]*g[2]; 
} 
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where x is the reconstructed output signal, N is the discrete length of that signal, g is the wavelet 
filter, and h is the scaling filter.  The resulting high-pass (d) and low-pass (a) signals each contain 
N/2 values.  Additional steps repeat this process using only the low-pass data.  For each additional 
step, N will be half its value from the previous step.  It is important to note that a separable 2-D 
transform on, for example, visible images is accomplished by performing a 1-D transform on each 
row, followed by a 1-D transform on each column. 
Lossy Wavelet-based compression methods are capable of much greater compression gain than can 
be achieved by lossless methods.  However, a fundamental theorem from information theory 
(Shannon and Weaver 1964) places limits on the amount of compression that can be achieved by a 
lossless encoding technique.  This additional compression comes at the price of introducing 
inaccuracies into the reconstructed signal (Walker 1999, p. 19).  As such, wavelets (Graps 1995) 
provide a powerful technique for efficiently representing large amounts of data. 
Note that “perfect reconstruction” of 1-D signals or 2-D images is only possible due to the 
properties of the orthonormal basis vectors used by the DWT process.  Examples of orthogonal 
functions are trigonometric and exponential functions (trigonometric functions are currently being 
used for DCT-based compression methods such as JPEG). 
 
Two or more vectors are orthonormal if and only if their total dot product is zero, i.e., each vector 
must have a zero component in the direction of every other vector.  Assume that we are working in 
2-D rectangular space and we define that space with two unit basis vectors: 
 

yx aa ,              (5) 
 
The two unit vectors form an orthonormal set if, for all x, y: 
 

0=• yx aa            (6) 
 
 

4. QUANTIZATION NOISE 
 

For DSP applications, quantization of data is an absolute necessity through analog-to-digital 
conversion.  In these situations, quantization noise occurs when the number of bits used is 
insufficient for representing the full dynamic range of the signal.  In lossy compression methods, 
quantization is used to decrease the dynamic range of the signal reducing the amount of data 
necessary to represent the signal.  For example, a 32-bit signed integer (whose value may range 
from -231 to +231 – 1) may be quantized to 16-bit values (ranging from -215 to +215 – 1); in this case, 
quantization reduces the amount of information of the resulting signal up to a factor of 65536.  In 
effect, the information contained in the least significant 16 bits of the original signal is lost.  Figure 
7 shows a 1-D example of this process. 
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Figure 7. Quantization example. 

As can be seen, the staircase function resulting from quantization is not equivalent to the original 
continuous function.  The difference between the original function’s magnitude and the quantized 
one at each discrete point is defined as the quantization error.  

Quantization usually involves one of two processes: either (1) truncation or (2) rounding.  To 
truncate, one simply discards bits to the right of the least significant bit.  To round, one looks at the 
value of the most significant bit of that portion of the signal which is being eliminated; the value of 
the remaining signal is incremented if and only if this bit is set.  Quantization is not an additive 
process and in fact discards (sometimes valuable) information.  In addition, quantization is 
inherently a non-linear process which makes accurate reconstruction of the original signal more 
difficult. 
Haar, Daubechies, and other families of wavelets have certain desirable properties that make them 
very useful for image compression.  First, these wavelets conserve energy: that is, the total amount 
of energy from the original signal is retained in the wavelet domain (Walker 1999, pp. 6-7, 9, 38-
40).  Second, these wavelets redistribute the energy from the original signal, such that nearly all of 
that energy is stored in the first trend subsignal, a1; most of the remaining values of the wavelet 
coefficients will be insignificant, and may be eliminated without significant loss of information 
(Saha 2000).  
 
In a typical wavelet application, a signal is forward wavelet transformed by a wavelet and is then 
quantized (Q) immediately prior to an encoding step (E) for compression.  The results are then 
transmitted over a wire, air, etc, medium.  On the receiving end, the incoming signal is decoded (D), 
dequantized (Q-1) and then an inverse wavelet transform is executed in an attempt to reconstruct the 
original signal as accurately as possible.  The inverse transform reconstructs an approximation of 
the original signal (Burrus, Gopinath, and Guo 1998, pp. 206-207).  A simple block-diagram 
depiction of this process is shown in Figure 8 that is used in a real-world system. 

Original 

Quantized 
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Figure 8. 1-D Reconstruction DWT Filter with Quantization 

 
When the inverse wavelet transform is performed, loss of information due to quantization errors 
may cause the resulting decompressed signal to differ measurably from the original signal.  This 
difference may be expressed as a mean-squared error (MSE) between the original k-size signal v(k) 
and the decompressed k-size signal v’(k): 
 

∑ −=
n

nvnv
N

MSE 2])['][(1          (7) 

where 
 

N = length of vector v. 
 
Note that MSE increases in proportion to the degree of quantization introduced into the transmitted 
signal.  
 
For most image-processing applications, MSE is the figure-of-merit of choice for quantifying the 
amount of quantization noise, which in turn becomes one of the most important factors that 
quantifies the quality of the reconstructed signal.  In this paper, MSE is utilized to quantify 
quantization noise resulting of a discrete mapping of an arbitrary array of image data points onto a 
smaller size/range of image data points.  As mentioned previously, quantization noise is one of the 
few non-linear processes which deliberately discards signal information which automatically makes 
it much more difficult to reconstruct the original signal.  This statement is worth repeating since the 
population-based search properties of GAs have proven to be particularly effective in identifying 
optimized solutions to various non-linear processes. 
 
 

5. RESEARCH OBJECTIVE: MINIMIZING QUANTIZATION NOISE 
 
For image compression, the main objective is to reduce the amount of data to be transmitted.  This 
is especially true for bandwidth-limited systems.  Unfortunately, on the receiving end, the image 
can never be perfectly reconstructed using standard wavelet inverse transforms.  The required 
information is already gone.  One can only hope to adjust the resultant image in some way as to 
minimize the MSE. 
 
As mentioned previously, adaptive filtering techniques are utilized for optimizing filter coefficients 
of some plant/model until the resultant output signal emulates the original signal as close as 

Transmission 
Medium 

 

DWT Q E 

 

DWT-1v’(k) 

v(k) 

Q-1 D 
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possible.  Specifically, can Adaptive Filter Techniques compensate for information loss due to 
quantization?  This observation raises the key question to be addressed in this research: 
 
Is it possible to use a GA to “adaptively” evolve a set of optimized g and h coefficients for an 
inverse wavelet transform, such that the MSE of images reconstructed by this inverse transform 
is significantly less than the mean squared error of images reconstructed by the standard wavelet 
inverse transform? 

 
As such, the purpose of this investigation is to determine whether a GA (Goldberg 1989) can be 
used to automatically optimize sets of wavelet coefficients that outperform standard wavelets for 
such applications as (1-D) vector reconstruction (Bradley, Brislawn, and Hopper 1994) and (2-D) 
image reconstruction (Saha 2000). 

 
 

6. SENSITIVITY ANALYSIS OF ORTHONORMAL BASIS FUNCTIONS 
 
Before a discussion of the actual GA/Wavelet modification experiments, a short demonstration on 
how changes to some filter coefficients impacts the signal reconstruction process.  Perfectly 
reconstructed 1-D signals or 2-D images are only possible due to the properties of the orthonormal 
basis vectors used in the DWT.  For the 1-D case, assume that a set of vectors spans some vector 
space such as time.  Figure 9 details how this experiment will take place.  The filter coefficients are 
used for the inverse transform DWT-1. 

 
Figure 9. 1-D Reconstruction DWT Filter with Quantization 

 
The adjustable arrow through the DWT-1 in Figure 9 represents the percentage change to the 
original Daub4 inverse transform filter coefficients.  The Daub4 filter coefficients used for the 
analysis and synthesis functions are shown in Table 2.   
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Table 2. Original Discrete Daub4 Wavelets 
Filter 

# 
Coefficients Change 

(%) 
h1 -0.12941 0.22414 0.83652 0.48296 0 
g1 -0.4829 0.83652 -0.2241 -0.12941 0 
h2 0.48296 0.83652 0.22414 -0.12941 0 
g2 -0.12941 -0.22414 0.83652 -0.48296 0 

 
The h1 and g1coefficients are used respectively in the H(z) and G(z) forward transform blocks 
shown previously in Figure 9.  The h2 and g2 coefficients are used respectively in the H(z) -1 and 
G(z) -1 reverse transform blocks shown previously in Figure 9.  
 
A demonstration of the power of perfect reconstruction with 0% change to the DWT-1 coefficients 
will now be demonstrated.  The test input signal “v(k)” will be a 1-D sine-wave in this case.  The 
v(k) signal is transformed using the “h1 and g1” filter coefficients shown in Table 2 and then 
downsampled as shown previously in Figure 9.  The resultant signal is then upsampled and inverse-
transformed using the “h2 and g2” coefficients shown in Table 2 above.  The results of this process 
are shown in Figure 10. 
 

 
Figure 10. 1-D Sine Wave Perfect Reconstruction Daub4 Filter without Quantization 

 
In Figure 10, the input signal’s symbol is “v(k)” and the output symbol stands is “v(k)’”.  The 
“e(k)” in this case is simply the magnitude error difference between the two signals at a specific 
point in time.  Specifically “e(k)” is defined by: 
 

)'()()( kvkvke −=           (8) 
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Now, as a second experiment, the h2 and g2 filter coefficients are adjusted manually by 20% each 
as shown in Table 3 below.  The choice of 20% is arbitrary and is for illustrative purposes only. 
 

Table 3. 20% Change in Daub4 Wavelets 
Filter 

# 
Coefficients Change 

(%) 
h1 -0.12941 0.22414 0.83652 0.48296 0 
g1 -0.4829 0.83652 -0.2241 -0.12941 0 
h2 0.57956 1.0038 0.26897 -0.10353 20 
g2 -0.10353 -0.17932 1.0038 -0.38637 20 

 
The results of the same reconstruction process is now shown in Figure 11.   
 

 
Figure 11. 1-D Sine Wave Daub4 Filter with 20% Change of h2 & g2 DWT Coefficients 

 
The same process will now be repeated as another example but now with images.  Figure 12 
demonstrates the power of perfect reconstruction for images, with 0% change to the DWT-1 
coefficients on the standard 256X256 “Barb” image. The Daub4 filter coefficients used for the sine 
wave analysis and synthesis functions are the same as what is shown in Table 2.  
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Figure 12. 2-D “Barb” Image using Daub4 Filter with 0% Change of h2 & g2 DWT Coefficients 

 
Figure 13 shows the same image reconstructed with a 20% change in the h2 and g2 filter 
coefficients.  The coefficients are shown in Table 3. 

 

 
Figure 13. 2-D “Barb” Image with a 20% Change in Daub4 h2 & g2 Wavelets 

 
Note that there are a vast number of ways to adjust these filter coefficients.  However, for 
demonstration purposes only it was decided to only adjust the filter coefficients in one direction 
(i.e., positive) with the same amount of magnitude (i.e., 20%).  The main purpose of this section is 
to give the reader a flavor of what manually adjusting the filter coefficients of the DWT can do.  
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This short experiment highlights the fact that, even with the modification of the “h2” and “g2” filter 
coefficients, the resultant reconstructed 1-D and 2-D information can still be recognizable by the 
human eye.  As a result, one may state the coefficients are quite “robust” which make them a very 
suitable to be used as variables in this adaptive information processing system.   
 
 

7. THE GENETIC ALGORITHM 
 

Optimization is a process by which the object is to “enhance” some parametric output of a system.  
Genetic Algorithms are one such process that uses evolution as its basic model to formulate various 
stochastic rules.  The GA developed for this research effort closely follows a standard GA (Holland 
1975), employing fitness-driven selection, crossover, and mutation operators to create each new 
generation of candidate solutions.  The main components to most standard GAs are shown below in 
Figure 14 below.  

 
Figure 14.  Diagram of a basic GA 
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The initial population is usually generated by some random number generator algorithm to create an 
initial array of populations.  The selection, mating, and crossover processes are then used to decide 
which parts (i.e., genes) of which parents, from the current population, are to be used to create the 
new genes of the offspring.  However, sometimes the GA may sometimes find itself “stuck” in a 
local minimum.  In situations like this “mutation” is utilized to “guess” a new starting point to kick-
start the whole process again.  And finally the fitness function is use to select the “optimum” 
children to be used to regenerate the whole process all over again only if some predetermined 
optimum point has not been reached yet. 
 
In the previous section, it is demonstrated that by “manually” adjusting the DWT-1 “g2” and “h2” 
affected the resultant reconstructed data.  Using a GA, this step will now be accomplished 
“automatically” in the hopes of minimizing the quantization noise for images.  Prior to this research, 
it was not known whether any academic, commercial, or military organization had attempted to use 
GAs to derive (or select and then optimize) alternative sets of “evolved” wavelet filter coefficients 
that perform better than standard wavelets for particular applications.  Instead, memory-consuming 
look-up tables have historically been utilized by various DSP embedded processors.  What is 
needed, especially in the military operations field, is a system that derives particular optimized 
filters in real time for a particular mission mode of operation (e.g., specifications) and background 
clutter (e.g., raw data).  Such a system potentially negates the necessity of using large look-up tables 
stored in RAM or ROM.  For this effort, the GA was utilized to “tweak” the least significant bits of 
preselected wavelet filter coefficients.  The purpose of the fitness function was to lower, if possible, 
the quantization noise to some predetermined acceptable level.  This new process is depicted in 
Figure 15 which shows the top-level key components of the GA/DWT solution. 

Figure 15. Basic GA Wavelet Optimization Experiment 
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Since encoding and decoding of the transmitted signal is not the mail problem with image 
compression, neither of their algorithms will be utilized in these experiments.  Only the quantization 
and DWT algorithms will use to conduct all experiments. 
 
Figure 16 is a detailed block diagram of the whole GA/DWT optimization process.  It provides a 
detailed illustration of the evolutionary process it embodies.  

Figure 16. Detailed GA Wavelet Optimization Experiment. 
 
Specifically, the above GA executes the following steps: 
 

1. The initial population (generation 0) is represented by an array of M candidate solutions.  
Each candidate solution consists of a set of g2 and h2 values (as defined for the inverse 
wavelet transform).  The GA begins by initializing the g2 and h2 values for each candidate 
solution to the values from the selected standard wavelet.  Candidate solution 0 of 
generation 0 remains unchanged.  For each of the remaining M-1 candidate solutions, each 
of the g2 and h2 values is mutated by a small, random multiplicative factor (e.g., 0.99 or 
1.02).  Thus, generation 0 is initially seeded with of one exact copy and M-1 random 
perturbations of the selected standard wavelet (Garza and Maher 1999). 

 
2. Next, the GA runs for a fixed number of generations (G). 

a) For each generation, the fitness of each candidate solution from current population is 
evaluated.  For the vector and image data used in this investigation, fitness equals the 
summed magnitude of error between the original image and the image reconstructed 
using the wavelet coefficients that comprise the candidate solution. 
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b) Tournament selection (Miller and Goldberg 1995) is then used to populate the next 
generation.  With tournament selection, a predetermined number of individuals are 
randomly selected from the current generation, and the candidate solution with the best 
fitness value is copied into the next generation.  This process is repeated M times in 
order to populate the next generation with M candidate solutions. 

c) Next, crossover is performed. Crossover pairs each member of the next generation with a 
second randomly selected individual.  For this investigation, two crossover points (one 
for the g2 vector and one for the h2 vector) are identified, and the values at and below 
each crossover point are exchanged.  Thus, the genetic composition of each child 
individual resulting from the crossover operation typically differs from that of both of 
the selected parent individuals. 

d) Next, mutation is randomly applied to a predetermined and small percentage of the 
coefficients in each of the candidate solutions in the next generation.  For this problem, 
mutation consists of modifying a given coefficient by a small multiplicative factor, 
according to a selected Gaussian distribution.  Samples of this are shown in Table 4 
below. 

Table 4. 20% Change in Daub4 Wavelets 
Factor Mutation % Probability 
1.01 +1% 5% 
1.02 +2% 3% 
1.03 +3% 1% 
0.97 -3% 1% 
0.98 -2% 3% 
0.99 -1% 5% 
-1.0 {sign change) 1% 

 
e) Finally, the next generation simply replaces the current generation. 

 
3. After repeating step 2 for G generations, the individual with the best fitness of the entire run 

is declared the solution.  For this study, the best-of-run solution defines the set of g2 and h2 
coefficients that minimizes the total error in the reconstructed signal. 

 
By forcing generation 0 to include a verbatim copy of the standard wavelet, it guarantees that the 
solution evolved by the GA can do no worse than the standard wavelet.  By seeding the initial 
population with randomly mutated copies of the selected standard wavelet, the evolutionary process 
becomes biased such that it focuses upon the immediately adjacent solution space.  In addition, this 
GA can be modified such that the best solution from the current generation is copied into the next 
generation; this process guarantees that the best-of-generation fitness value will not worsen from 
one generation to the next. 

 
8. RESULTS 

 
Twelve tests were performed using 2-D image data.  Each test was characterized by three factors: 
 

1. The quantization factor:  These tests used quantization values of 32 and 64. 
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2. The 2-D data being reconstructed:  Several images commonly appearing in the wavelet 
literature were used, including “Airplane”, “Baboon”, “Barb”, “Boat”, “Couple”, “Fruits”, 
“Goldhill”, “Lenna”, “Park”, “Peppers”, “Susie”, and “Zelda”.  

 
3. The selected standard wavelet:  Wavelets used in these tests included the Daub4 

(Daubechies 1988), 2/6 (Villasenor, Belzer, and Liao 1995), and 5/3 (Lin 1999) wavelets. 
 
Each test consisted of two runs.  The first run used the unmodified standard wavelet to reconstruct a 
selected image.  The second run used a GA to evolve a new set of wavelet coefficients for a 
similarly structured wavelet.  The result of each test compared the MSE and PSNR (Vetterli and 
Kovacevic 1995) of the evolved wavelet to the standard wavelet.  These results compare the 
evolved coefficients to the standard coefficients, and state the percentage change in the magnitude 
of each coefficient.   
 
TEST RESULTS USING DAUB4:  The coefficients for the standard Daub4 inverse wavelet 
transform are shown below and their plots are shown in Figure 16 below. 
 

h2 = {0.482962913, 0.836516304, 0.224143868, -0.129409523} 
g2 = {-0.129409523, -0.224143868, 0.836516304, -0.482962913} 

 

 
Figure 16. Standard Daub4 Scaling Function and Wavelet 
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TEST 1:   Quantization = 32, Image = “Barb” 
  Daub4:   MSE = 96.886522928  PSNR = 8.268169906 
  Evolved:   MSE = 92.904186248  PSNR = 28.450450771 
  Percentage Change: MSE = -4.1103%%  PSNR = +0.6648% 
 

Evolved coefficients: h2’ = {0.46824367, 0.81126518, 0.23985918, -0.10537719} 
g2’ = {-0.17815653, -0.18627964, 0.78603730, -0.44936688} 

Percentage change: ∆h2 = {-3.048%, -3.019%, +7.011%, -18.571%} 
∆g2 = {+37.669%, -16.893%, -6.034%, -6.034%} 

 

 
Figure 17. Resultant Daub4 Scaling Function and Wavelet with Coefficients Evolved Using “Barb” 

Image (Quantization = 32) 
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TEST 2: Quantization = 32, Image = “Boat” 
  Daub4:    MSE = 52.520229339  PSNR = 30.927537470 
  Evolved:    MSE = 49.920497894  PSNR = 31.148014526 
  Percentage Change:  MSE = -4.9500%  PSNR = +0.7129% 
 
  Evolved coefficients: h2’ = {0.47813328, 0.80323285, 0.22855950,-0.09641626} 
     g2’ = {-0.20371400, -0.11414577, 0.76260869,-0.38425025} 
  Percentage Change: ∆h2 = {-1.000%, -3.979%, +1.970%, -29.495%} 
     ∆g2 = {+57.418%, -49.074%, -8.835%, -20.439%} 
 

 
Figure 18. Resultant Daub4 Scaling Function and Wavelet with Coefficients Evolved Using “Boat” 

Image (Quantization = 32) 
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TEST 3: Quantization = 64, Image = “Couple” 
  Daub4:   MSE = 155.96321105  PSNR = 26.200581927 
  Evolved:   MSE = 144.96800359  PSNR = 26.518082027 
  Percentage Change: MSE = -7.0499%  PSNR = +1.2118% 
 
  Evolved Coefficients: h2’ = {0.46393225, 0.78701072, 0.24254917,-0.07969529} 
     g2’ = {-0.25739530, -0.07244071, 0.71684818, -0.34936503} 
  Percentage Change: ∆h2 = {-3.940%, -2.990%, +8.211%, -38.416%} 
     ∆g2 = {+98.900%, -67.681%, -14.306%, -27.662%} 
 

 
Figure 19. Resultant Daub4 Scaling Function and Wavelet with Coefficients Evolved Using 

“Couple” Image (Quantization = 64) 
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TEST 4: Quantization = 64, Image = “Fruits” 
  Daub4:   MSE = 115.80363591  PSNR = 27.493581656 
  Evolved:   MSE = 110.45684432  PSNR = 27.698877292 
  Percentage Change: MSE = -4.6171%  PSNR = +0.7467% 
 
  Evolved Coefficients: h2’ = {0.45006297, 0.81150696, 0.25752134, -0.10514879} 
     g2’ = {-0.15772549, -0.13019651, 0.71494264,-0.38877090} 
  Percentage Change: ∆h2 = {-6.812%, -2.990%, +14.891%, -18.747%} 
     ∆g2 = {+21.881%, -41.914%, -14.533%, -19.503%} 
 

 
Figure 20. Resultant Daub4 Scaling Function and Wavelet with Coefficients Evolved Using 

“Fruits” Image (Quantization = 64) 
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SUMMARY OF RESULTS OF TESTS1-4 USING DAUB4 WAVELETS:  
 
  Average Improvement, MSE:  5.1818% 
  Average Improvement, PSNR: 0.8341% 
 
These results indicate that the GA was capable of evolving a set of real-valued coefficients that 
consistently outperformed a similarly structured Daub4 wavelet using standard wavelet coefficients.  
As a sample of one of these results, images before and after the transformation conducted for 
“TEST3” are shown in Figures 21-23.  Close inspection of Figure 23 reveals minor improvements 
over the image shown in Figure 22 which was reconstructed via the standard Daub4 wavelet. 
 

 
Figure 21. The Original “Couple” Image 

 

 
Figure 22. “Couple” Reconstructed via the Standard Daub4 Wavelet (Quantization = 64) 
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Figure 23. “Couple” Reconstructed via an Evolved Wavelet (Quantization = 64).  
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RESULTS USING 2/6 (TS) MOTHER WAVELETS:  The coefficients for the standard TS 
inverse wavelet transform are shown below and their plots are shown in Figure 24. 
 
  h2 = {-0.088388, 0.088388, 0.707107, 0.707107, 0.088388, -0.088388} 
  g2 = {-0.70710678, 0.70710678} 
 

 
Figure 24. Standard TS Scaling Function and Wavelet 
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TEST 5: Quantization = 32, Image = “Goldhill” 
   TS:   MSE = 55.693927764  PSNR = 30.672725136 
  Evolved:  MSE = 52.678527832  PSNR = 30.914467313 
  Percentage Change: MSE = -5.4142%  PSNR = +0.7881% 
 
  Evolved Coefficients: h2’ = {-0.07478096, 0.11289088, 0.68569361,      
  0.66566063, 0.09555358, -0.07139243} 
     g2’ = {-0.61834085, 0.61191382} 
  Percentage Change: ∆h2 = {-15.395%, +27.075%, -3.028%, 

-5.861%, +8.107%, -19.228%} 
     ∆g2 = {-12.553%, -12.331%} 

 

 
Figure 25. Resultant TS Scaling Function and Wavelet with Coefficients Evolved Using “Goldhill” 

Image (Quantization = 32) 
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TEST 6: Quantization = 32, Image = “Park” 
  TS:    MSE = 68.487875620  PSNR = 29.774666655 
  Evolved:   MSE = 65.506455739  PSNR = 29.967962585 
  Percentage Change: MSE = -4.3532%  PSNR =+0.6492% 
 
  Evolved Coefficients: h2’ = {-0.07336637, 0.11436371, 0.67917624, 

0.67238448, 0.10247711, -0.07791956} 
     g2’ = {-0.65717215, 0.66505474} 
  Percentage Change: ∆h2 = {-16.995%, +29.388%, -3.950%, 

- 4.911%, +15.940%, -11.844%} 
     ∆g2 = {-7.062%, -5.947%} 
 

 
Figure 26. Resultant TS Scaling Function and Wavelet with Coefficients Evolved Using “Park” 

Image (Quantization = 32) 
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TEST 7: Quantization = 64, Image = “Peppers” 
  TS:    MSE = 124.52128283  PSNR = 27.178367746 
  Evolved:   MSE = 112.26459054  PSNR = 27.628375641 
  Percentage Change: MSE = -9.8431%  PSNR = +1.6558% 
 
  Evolved Coefficients: h2’ = {-0.06290282, 0.12320526, 0.66566063, 

0.63949490, 0.10331971, -0.05645800} 
     g2’ = {-0.67870071, 0.78100922} 
  Percentage Change: ∆h2 = {-28.946%, +39.391%, -5.861%,  

-9.562%, +16.893%, -36.125%} 
     ∆g2 = {-4.107%, +10.451%} 
 

 
Figure 27. Resultant TS Scaling Function and Wavelet with Coefficients Evolved Using “Peppers” 

Image (Quantization = 64) 
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TEST 8: Quantization = 64, Image = “Susie” 
  TS:    MSE = 133.22735341  PSNR = 26.884869602 
  Evolved:   MSE = 118.87997182  PSNR = 27.379716673 
  Percentage Change: MSE =-10.7691%  PSNR = +1.8406% 
 
  Evolved Coefficients: h2’ = {-0.06581485, 0.12938192, 0.66566063, 
      0.63309995, 0.10846400, -0.05439425} 
     g2’ = {-0.61788622, 0.72802296} 
  Percentage Change: ∆h2 = {-25.539%, +46.380%, -5.861%, 

-10.466%, +22.713%, -38.460%} 
     ∆g2 = {-12.618%, +2.958%} 

 

 
Figure 28. Resultant TS Scaling Function and Wavelet with Coefficients Evolved Using “Susie” 

Image (Quantization = 64) 
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SUMMARY OF RESULTS OF TESTS 5-8 USING TS WAVELETS:  
 
  Average Improvement, MSE:  7.5949% 
  Average Improvement, PSNR: 1.2334% 
 
These results indicate that our GA was capable of evolving a set of real-valued coefficients that 
consistently outperformed a similarly structured TS wavelet using standard wavelet coefficients.  
Improvements in both the MSE and the PSNR for the TS wavelet were consistently greater than the 
corresponding improvement for the Daub4 wavelet seen in the first four tests.   
 
The sample image results for “TEST 8” are shown in Figures 29-31.  As can be seen, slight 
improvements in shading and detail are visible in Figure 31 as compared the image reconstructed 
using the standard TS wavelet shown in Figure 30. 
 

 
Figure 29. The Original “Susie” Image 

 

 
Figure 30.  “Susie” Reconstructed via the Standard TS Wavelet (Quantization = 64). 
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Figure 31. “Susie” Reconstructed via an Evolved Wavelet (Quantization = 64).  
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RESULTS USING 5/3 (FT) MOTHER WAVELETS:  The coefficients for the standard FT 
inverse wavelet transform are shown below along with their corresponding plots in Figure 32. 
 

h2 = {0.353553, 0.70710678, 0.353553} 
  g2 = {-0.176777, -0.353553, 1.060660, -0.353553, -0.176777} 
 

 
Figure 32. Standard FT Scaling Function and Wavelet 
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TEST 9: Quantization = 32, Image = “Airplane” 
   FT:   MSE = 35.743078867  PSNR = 32.598884014 
  Evolved:  MSE = 35.453097025  PSNR = 32.634261816 
  Percentage Change: MSE = -0.8113%  PSNR = +0.1085% 
 
  Evolved Coefficients: h2’ = {0.35708853, 0.70703607, 0.35001747} 
     g2’ = {-0.22535310, -0.34301712, 1.09116094,  

-0.35623248, -0.22755308} 
  Percentage Change: ∆h2 = {+1.000%, -0.010%, -1.000%} 
     ∆g2 = {+27.479%, -2.980%, +2.875%, 

+0.758%, +28.723%} 
 

 
Figure 33. Resultant FT Scaling Function and Wavelet with Coefficients Evolved Using “Airplane” 

Image (Quantization = 32) 
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TEST 10: Quantization = 32, Image = “Baboon” 
  FT:    MSE = 113.09576543  PSNR = 27.596340166 
  Evolved:   MSE = 111.85707219  PSNR = 27.644169131 
  Percentage Change: MSE = -1.0953%  PSNR = +0.1733% 
 
  Evolved Coefficients: h2’ = {0.35001747, 0.70682398, 0.35708853} 
     g2’ = {-0.20626139, -0.31293066, 0.99595579 

-0.31273186, -0.20463438} 
  Percentage Change: ∆h2 = {-1.000%, -0.040%, 1.000%} 
     ∆g2 = {+16.679%, -11.490%, -6.100%, 

-11.546%, +15.758%} 
 

 
Figure 34. Resultant FT Scaling Function and Wavelet with Coefficients Evolved Using “Baboon” 

Image (Quantization = 32) 



36 

TEST 11: Quantization = 64, Image = “Lenna” 
  FT:    MSE = 140.01809946  PSNR = 26.668961823 
  Evolved:   MSE = 139.92291514  PSNR = 26.671915162 
  Percentage Change: MSE = -0.0680%  PSNR = +0.0111% 
 
  Evolved Coefficients: h2’= {0.34627481, 0.70689467, 0.36051517} 
     g2’ = {-0.26215020, -0.26897337, 0.77367288, 
      -0.33877071, -0.21314989} 
  Percentage Change: ∆h2 = {-2.059%, -0.030%, +1.969%} 
     ∆g2 = {+48.294%, -23.923%, -27.057%, 

-4.181%, +20.576%} 
 

 
Figure 35. Resultant FT Scaling Function and Wavelet with Coefficients Evolved Using “Lenna” 

Image (Quantization = 64) 
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TEST 12: Quantization = 64, Image = “Zelda” 
  FT:    MSE = 111.79914855  PSNR = 27.646418648 
  Evolved:   MSE = 110.98122024  PSNR = 27.678308652 
  Percentage Change: MSE = -0.7316%  PSNR = +0.1153% 
   
  Evolved Coefficients: h2’ = {0.33251660, 0.70668262, 0.37494296} 
     g2’ = {-0.18713481, -0.36715097, 0.85353342, 

-0.28083948, -0.44643196} 
  Percentage Change: ∆h2 = {-5.950%, -0.060%, +6.050%} 
     ∆g2 = {+5.859%, +3.846%, -19.528%, 

-20.567%, +152.540%} 
 

 
Figure 36. Resultant FT Scaling Function and Wavelet with Coefficients Evolved Using “Zelda” 

Image (Quantization = 64) 
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SUMMARY OF RESULTS OF TESTS 9-12 USING FT WAVELETS: 
 
  Average Improvement, MSE:  0.6766% 
  Average Improvement, PSNR: 0.1021% 
 
These results indicate that the GA is again capable of evolving a set of real-valued coefficients.  
Unfortunately in this case the percentage of improvement is much smaller than previously noted for 
the Daub4 and 2/6 wavelets.   
 
Sample image results for “TEST 10” are shown in Figures 37-39.  As can be seen, differences 
between Figures 38 and 39 are too small to be perceived by the naked eye. 
 

 
Figure 37. The Original “Baboon” Image 

 

 
Figure 38. “Baboon” Reconstructed via the Standard FT Wavelet (Quantization = 32). 



39 

 
Figure 39. “Baboon” Reconstructed via an Evolved Wavelet (Quantization = 32). 

 
OVERALL RESULTS (ALL 12 TESTS):   
 

Average Improvement, MSE:  4.4844% 
Average Improvement, PSNR: 0.7232% 

 
 

9. CONCLUSION 
 
Prior to this study, it was believed that not too many active wavelet researchers would have believed 
it possible to systematically modify the filter coefficients of standard, “off-the-shelf” wavelets in the 
hopes of reducing MSE and improving PSNR.  However, the results of this effort conclusively 
illustrate that wavelet filter coefficients can be optimized via a GA.  This process improves upon the 
performance of similarly structured standard wavelets (such as the Daub4, TS, and FT wavelets 
used in these tests) for lossy image reconstruction applications. 
 
 

10. APPLICATIONS OF THE NEW TECHNOLOGY AND FUTURE RESEARCH 
 
Although most of the incremental improvements summarized in the document are at best barely 
detectable to the naked eye, they nevertheless appear to have established a basic method that may 
ultimately lead to significant enhancement of modern image reconstruction technology.  The 
approach established by this investigation promises improvement upon state of the art wavelet 
decompression techniques for a wide range of applications, including audio denoising (Schremmer, 
Haenselmann, and Bömers 2001), sea clutter noise reduction for radar proximity fusing (Noel and 
Szu 1998), signal compression (Saito 1994), object detection (Zhu and Schwartz 2002), fingerprint 
compression (Bradley, Brislawn, and Hopper 1993), image denoising (Chang, Yu, and Vetterli 
1998) , image enhancement (Wang, Wu, Castleman, and Xiong 2001), image recognition (Schilling, 
Cosman, and Berry 1998), and speech recognition (Long and Datta 1998). 
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This research demonstrates that a GA can evolve coefficients for the inverse wavelet transform that 
reduced MSE in comparison to a standard wavelet transform of the same image.  The question of 
whether a single wavelet could be evolved that outperforms standard wavelets for a specific class of 
images (e.g., satellite images), or even for all possible images, has yet to be addressed.  Future 
efforts will attempt to evolve a “super wavelet” capable of producing higher fidelity reconstructions 
of transformed, quantized images than any previously identified wavelet. 
 
This research evolved coefficients of inverse wavelet transforms that minimize the total MSE in 
reconstructed images that had originally been (forward) transformed by wavelets utilizing standard 
coefficients.  It is possible, however, that the overall performance of our evolved wavelet 
reconstruction system could be further improved by simultaneously evolving coefficients for the 
forward wavelet transform.  In effect, this effort would attempt to evolve sets of coefficients for 
matching forward and inverse transforms under conditions subject to quantization error.  Future 
research should therefore investigate the possibility of simultaneously evolving coefficients for both 
the forward and inverse wavelet transform.  
 
The GA developed for this study uses an initial population that is created by randomly mutating 
copies of a selected standard wavelet.  This process biased the search, causing the GA to focus 
primarily upon the solution space immediately adjacent to the standard wavelet.  Hence, the evolved 
wavelet is typically very similar to the standard wavelet.  It is as yet unknown whether the 
evolutionary process could locate optimized solutions in entirely new and previously unexploited 
neighborhoods of the solution space.  Future work will therefore include attempts to evolve 
wavelets without imparting any bias to the search process.  
 
Noise (Fante 1988) refers to the introduction of any undesired change in the information content of 
a signal during transmission.  Thresholding (the removal of wavelet coefficients whose magnitude 
is less than a predetermined noise threshold) is often used to eliminate random noise (Donoho and 
Johnstone 1994).  Various wavelet-based methods have also been shown to be highly effective 
(Donoho 1993).  In many situations, however, a transformed signal is likely to contain several low-
energy values that may make an important contribution to an accurate reconstruction of the original 
signal.  If these values lie below the noise threshold, denoising will remove them from the 
transformed signal, and subsequent reconstruction may produce an unsatisfactory approximation of 
the original signal (Malfait 1996).  Although the current research effort focused primarily upon the 
elimination of error due to the quantization process, future research may expand upon our results by 
developing novel approaches to noise reduction in signal and image processing applications. 
 
The JPEG 2000 image compression standard (Charrier, Cruz, and Larsson 1999) uses wavelet 
technology to compress and subsequently reconstruct images.  It is possible that the wavelets 
optimized during this study could replace standard wavelets for lossy image compression 
applications in the next JPEG release.  Future research should specifically address the JPEG 
standard and identify scenarios in which evolved wavelets could potentially outperform standard 
JPEG wavelets.  A similar approach may also be applied to other wavelet-based standards. 
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