NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

SOFTWARE TESTING TOOLS:
METRICS FOR MEASUREMENT OF EFFECTIVENESS
ON PROCEDURAL AND OBJECT-ORIENTED
SOURCE CODE

by

Bernard J. Bossuyt
Byron B. Snyder

September 2001

Thesis Advisor: J. Bret Michael
Second Reader: Richard H. Riehle

Approved for public release; distribution is unlimited.

Report Documentation Page

Report Date Report Type Dates Covered (from... to)
30 Sep 2001 N/A -

Title and Subtitle Contract Number

Software Testing Tools: Analyses of Effectiveness on

Procedural and Object-Oriented Source Code Grant Number

Program Element Number

Author (s) Project Number

Bernard J. Bossuyt & Byron B. Snyder
Task Number

Work Unit Number

Performing Or ganization Name(s) and Address(es) Performing Organization Report Number
Research Office Naval Postgraduate School Monterey,
Ca93943-5138

Sponsoring/M onitoring Agency Name(s) and Sponsor/Monitor’s Acronym(s)

Address(es)
Sponsor/Monitor’s Report Number (s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms

Report Classification Classification of thispage
unclassified unclassified

Classification of Abstract Limitation of Abstract
unclassified uu

Number of Pages
209

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 2001 Master’s Thesis

4. TITLE AND SUBTITLE: Title (Mix case letters) 5. FUNDING NUMBERS
Boftware Testing Tools: Analyses of Effectiveness on Procedural and Object-Oriented
Bource Code

6. AUTHOR(S) Bernard J. Bossuyt & Byron B. Snyder

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) | 10. SPONSORING / MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is
unlimited.

13. ABSTRACT (maximum 200 words)

The levels of quality, maintainability, testability, and stability of software can be improved
and measured through the use of automated testing tools throughout the software development
process. Automated testing tools assist software engineers to gauge the quality of software by
automating the mechanical aspects of the software-testing task. Automated testing tools vary
in their underlying approach, quality, and ease-of-use, among other characteristics. Evaluating
available tools and selecting the most appropriate suite of tools can be a difficult and time-
consuming process. In this thesis, we propose a suite of objective metrics for measuring tool
characteristics, as an aide in systematically evaluating and selecting automated testing tools.
Future work includes further research into the validity and utility of this suite of metrics,
conducting similar research using a larger software project, and incorporating a larger set of
tools into similar research.

14. SUBJECT TERMS software testing tool metrics, procedural, object-oriented, software testing | 15. NUMBER OF
tools, metrics, testing tool evaluation, testing tool selection, PAGES 209

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

i

Approved for public release; distribution is unlimited.

SOFTWARE TESTING TOOLS: ANALYSES OF EFFECTIVENESS ON
PROCEDURAL AND OBJECT-ORIENTED SOURCE CODE

Bernard J. Bossuyt
Lieutenant, United States Navy
B.A., University of Colorado, 1993
Byron B. Snyder

Lieutenant, United States Navy
B.S., United States Naval Academy, 1992

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2001

Authors:

“Byron B. Snyder

Approved by: W &hbt

J. Bret Michael, Thesis Advisor

v Richard Riehle, Second Reader
Christopher'S. Eagl¥ Chairman
Computer Science Wepartment

il

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

The levels of quality, maintainability, testability, and stability of software can be
improved and measured through the use of automated testing tools throughout the
software development process. Automated testing tools assist software engineers to
gauge the quality of software by automating the mechanical aspects of the software-
testing task. Automated testing tools vary in their underlying approach, quality, and ease-
of-use, among other characteristics. Evaluating available tools and selecting the most
appropriate suite of tools can be a difficult and time-consuming process. In this thesis,
we propose a suite of objective metrics for measuring tool characteristics, as an aide in
systematically evaluating and selecting automated testing tools. Future work includes
further research into the validity and utility of this suite of metrics, conducting similar
research using a larger software project, and incorporating a larger set of tools into

similar research.

THIS PAGE INTENTIONALLY LEFT BLANK

vi

I1.

I11.

TABLE OF CONTENTS

INTRODUCTION...cuuiiiriinensnecsnensnncssessnecssesssassssassssssssassssssssssssassssasssssssssssssssssassnse 1

A. PROBLEM STATEMENTccouiiiiiiiininnninsnisssncssessssissssssssssssessssssssssssssans 1

B. RESEARCH ISSUESuuuiiiniinninntennenneecsnensnecssessssesssessssesssssssassssassssssssans 1

1. Identifying MetriCS...cccuvereecscnrrcssssnrecssssnnnecsssnssssssssssssssssssssssssssssssssanns 2

2. Testing of Procedural versus Object-oriented Source Code............ 2

3. Evaluating ToolSccoeiiiciivnnniciiisniicssssnnnecsssnssssssssssscssssssssssssssssssssnns 2
C. CASE STUDY: CSMA/CD LAN DISCRETE-EVENT SIMULATION

PROGRAM .ciitiiiiitiitinnisniisnissnsississssissssssssssssessssssssssssssssssssssssssssssasans 2

RELATED WORKconiiniintinnincsninsnissnecsessssesssessssesssessssesses .5
A. IEEE STANDARD 1175 WORKING GROUP’S TOOL-

EVALUATION SYSTEMcuiiniiniinnensnecsnecssnecssessssesssnssssecsssssssssssassssesssses 5

1. ANalyzing User NEedSccocverrerrsrnnricssssnnrecsssnssecssssssnesssssssssssssssssssnns 5

2 Establishing Selection Criteriaeeeensensennsenseecseensnecsaenssneens 8

3. B 10 T0) LT 1 RS 10

4. TO0O0l SEleCtionccuueeveeerueineensuensnensenseensnensecsssenssnnsssesssnssseessnsssaenns 10

5. Reevaluationeiiciivveeicnisnnniensssnnicssssnsnssssssssscsssssssesssssssssssssssssssasns 14

6. SUIMIMATY cecieisrrersnncsssncssssncssssacssssssssssesssssesss 14

B. INSTITUTE FOR DEFENSE ANALYSES REPORTS......ccccceeveivurisunnnnes 15
C. SOFTWARE TECHNOLOGY SUPPORT CENTER’S SOFTWARE

TEST TECHNOLOGIES REPORTiiiiiiieintenceicnensnennecsnecnens 16

METHODOLOGY ..uuueiiuennricsnnnssnensncsssecsnssssnsssassssessssssssssssassssassssssssssssassssassssssssases 17

A. 010 Y DY-N 2] = R 17

1. BoundSCRECKET ..cccuuiineenseeciseecsninsseensnecssnecsannsssesssecsssecssnssssesssasssseessane 17

a. Y 7 g 17

b. g 7 1 R 17

2. L O O 1)) N 17

a. N] g N 17

b. FOAIUT S auueenenneveevsnnniiosssnsiesssssnsissssssssssssssssssssssssesssssssassssnanss 17

3. CTC++ (Test Coverage Analyzer for C/CH+) uiivvvercssverccsnrcssnnncees 18

a. Y 7 18

b. FOATUTES cauuaennnneennneeniavicsnnnnsnsisssanissssrsssssssssssssssssssssssssssssssanes 18

4. L OF:1 1121 T o N 19

a. N] g N 19

b. FOATUFES auennaeronnnrensrenensreressnssssasssssasisssssesssasessssssssssssssnsssssssses 19

5. ObjectChecker/Object Coverage/ObjectDetail.........cccceeecuerercnnnens 19

a. SUMIUATY.ccvvvevcveiossaeiossrisssssisssssesssssessssssssssssssssssssssssssssssssassoses 19

b. FOATUTES canauennnnercnnenncnvrnsnnnnsasissanissssnssssssssssssssssssssssssssssssanes 20

6. Panorama C/CH ..iiiininnniicsssnnicssssssicss 20

a. Y 7 20

b. FOATUTES cunuannnennnennnennnennennrnenneicsnenssnenseissscsssessssssssessssssssasnes 20
7. TCAT C/CH T aiiiiiiciinninnsinsnesssessssssssesssssssssssssssssssssssssssssssssssssns 21
a. Y] g N 21
b. FOAIUT S auueeennnnevnoisnvnriosssannressssasrisssssssssssssssssssssssssesssssssssssssanss 21
TOOLS SELECTED FOR EVALUATION.....ccccieninneinsnensnecsaensanccsecsanee 21
1. LDRA TESTBED......uuiiiiiiiiisiicstinnninnnssessssssnssssssssesssssssees 21
a. NY] g N 21
b. Static ANAIYSIS FEATUTES ...uuuueeeeveunvrsosssnrressssnsiossssssssssssssssases 22
c. Dynamic ANAlySiS FEATUFESuuueueeesueeossuriossariosssrssssrssssasoses 24
2. Parasoft Testing Productscceeeieeicvercccsssnnnccsssnnrecssssnssecsssnssscssnes 25
a. NY 1] g N 25
b. O Y Y O (11 26
c. CodeWizard fEAtUTES ...uunuunnneensueenvenseensaeisnensseessecssnessanens 26
d. INSUTEHF fOALUTES.nenenaeereosonerioossranriosssnsressssssssssssasssssssssssases 27
3. Telelogic Products........cceeeeeeressercscnnicssnnncssnnncens 27
a. Y 7 g 27
b. FOATUTES cunnannnennnaennnenneennencreenneicrsenneessenssscsssessssesssessssssssasnns 27
SOFTWARE QUALITY METRICScciiiiiensnensencsnnnsnescsnecssecssnnes 28
1. Procedural (Traditional) Software Metrics.......ccceeeeeercurrcrcnercscneeenes 29
2. Object-Oriented Software MetriCs......ccceeecccerrecsssnrrecsssssssecssnssscsens 31
PROPOSED SOFTWARE TESTING TOOL METRICS..........ccceceeeurennee 34
1. Metrics for Tools Testing Procedural Software.......cccccceeevcnnerccnns 34
a. Human Interface DeSign (HID)..............ueeoeuereseuercssercscnenenes 34
b. Maturity & Customer Base (MCB)ccoeuueeecvsvuneecsssnenenes 35
c. Tool Management (TM).........eeeeeeeeeeecssuressersssssosssssosssssssanns 36
d. EaSe Of US@ (EU).uuuccouueeevsurissrunssssurssssassssessssssssssssssssssssssasssses 36
e. USer CONIOl (UQC).auuuuuiccveuueeiesssueriosssnsssosssssssessssssssssssssssssssnes 37
f Test Case Generation (TCG)eeeeeeeeeeeeeeesrsrssaneevececcsssssssannens 37
g. TOOl SUPDPOTE (TS).eecuuueeeuueiesunrissuvrissnrncssarnssssnssssssssssssesssssesanes 39
h. Estimated Return on Investment (ERQOI)............eeeeeeeeeeeeeennne. 39
i Reliability (Rel)uuuueveevevsueinuinsnencninsnensninssesssssossssssssssssssnns 40
Je Maximum Number of Classes (MINC).......cooeeeresvueressvesossansones 40
k. Maximum Number of Parameters (MNP)eeeeeerenunenen. 40
L ReSpONSe Time (RT)..uuueeueeeveueiessuercssuercssnersssnnnsssssssssssssssasssses 40
m. Features Support (FS) c.ceuueenuensneensuenseensnensnecssenssncessessnns 40
2. Metrics for Tools Used to Test Object-Oriented Software 40
3. Difference between Procedural Testing Tool Metrics and
Object-oriented Testing Tool Metrics.....cceeverersnrcssnnrcssnercssnescssnnscnes 41
PERFORM TESTS ...uuiiiiiiniinninnninsnicssisssissssssssiesssssssssssssssssssssssssssssssssss 41
1. LDRA TeSthed.....ccuuineiisennsiicsiineiisenssnecsnnsssnsssessssecssnssssesssessssesssess 41
a SCIUP oneeenreirninrrinrensnnnnensiensinsnsssesssssssesssesssessssssssssssasssss 41
b Problems DUring EXECUTIONuueeeeueressuerossrersssrerssssesossassones 41
2. Parasoft......ceeicneicinieniiicninicnsnicnsnnecssneicsssnessssnessseesssssessssssssssseses 42
a. Y 1 7 N 42

3. TelelOGIC .uuuererunricsnricsnrisssnnissunncssnnncssnnrcsssnscsssssssssessassessnns
a Y N
b Problems During EXECUTIONuceueeevesunevesuseonnns
IV. ANALYSIS atntncttcstnsntcnseessessssssssssssssssessssssssssssssssssssssssssns
A. TOOL PERFORMANCEuuuuiiirrennnnnsnensnnensnecssnssssesssnssssecsanses
1. LDRA Testbed.....eeinieenieenssnecssnecssnencssnnecssseecssanecssaneens
a. Procedural............naennaonnnecneennencnensnencnensencnnns
b. FUNCHONAL c..uuaaaeennnnaeroninnnrieoscnansscsssnsresssssssesssnnns
c. ODbJect-OFientedu.uueeeeeueevosueresserossnerossserosssssosans
d. Reporting CRaracteristicsveeeeseeeesssasseossssnssosaes
2. Parasoft.......eeiecnenneinnnenniennennnecnnnecssnecsnenseenseesseeaens
a. Procedural........eeenaeecoscnneroosssnnneosssnssessesansscsans
b. FURCHONAL...uunnannnannaenneennenneenrnennnecaeisnnesnecnns
c. (0] (e 0 T 1
d. Reporting CRArACIEFISTICS ...cuueeereueresereroseneressnenosans
3. LOZISCOPE «euuuerricircnniicsssnnnrcssssnnsecsssnssssssssssnesssssssssssssssssans
a. Procedural...........naenneonnenneennnensnensnencnensnnnnnns
b. FUNCHONAL c..cuauaeennnnnnerininnnricossnnrscsssnssesssssssecsssnnns
c. ODbJect-OFientedu..uueeeoeneeeosuerosserosserosenerosssssosans
d. Reporting CRaracteristicsveeeeseeeeossresssossssnssosans
B. TESTING TOOL METRICS........
1. Human Interface Design.......cccccevvcnnrecscsnnrccsssnnneccssnssecsens
2. Test Case Generation.........ceeeneecseecseccssensecsssecsanssseenes
3. Reporting Featurescoeeiccniisnnnicsssnnrccsssnnsescssnssscsans
4. Response Time........oiceveicnieicscnnicssnnicsssnicssssssssssessssessasseses
5. Feature SUPPOrtceiciceiciceicssnicssnscssnnscssssssssssssssassons
6. Metric Suites Supported..........ccoceeeeveecssnnecnnns
7. Maximum Number of Classes.......ccceeveerverccssaresssarecsnneces
8. Object-Oriented Software Quality Metrics......ccceeeuueenee
9. To00l Managementcoceeeecuercssnnrcsssercsssnssssssssssasssssassssnes
10. USer CONLIOl......uueiieeiiisenininncnsnncnsnnncsssnncssssecssssscsssessnns
11. Other Testing Tool MetricS.....ccccceereurrcssnercssanscssanscssanscnns
V. I 2 N B T
A. TESTING TOOL RESULTS ...uuieniiniinnennnensnecsnnssnesssecssecssnnes
B. TESTING TOOL METRIC RESULTS.....ccceevennvernnuinsnncsarcsannee
VI. CONCLUSION
A. SUMMARY ...uuiiiiiiininniisnnicnncsssissssissess
B. RECOMMENDATIONS FOR FUTURE WORK.........ccceeeeune
APPENDIX A. PROCEDURAL CODEuiiinniinsninnenssnicsnesssssssessssssssens
APPENDIX B. FUNCTIONAL CODE.......uuiirrirnirsnensnensnecssnsssacsssecssecssnnes
APPENDIX C. OBJECT-ORIENTED CODAE..........uccovirrirnreicseessancsecsssscsaeens
C-1 SIMULATION.CPPuuutrcrrrriinensnnecsnnisncsssesssesssnsssncsnns

C-2 CONSTANTS. Hu..ueerurrrninsnnnsnnssannsssnssanssssssssnsssssssasssssssssssssssssasssssssssssssssssases 146

C-3 CLOCKICPP....ueeerenennennnnsnennesnesssssnesssssssssesssssssssssssasssssssssssessasssassassssssss 147
C-4 CLOCK Hu..uuuuirurnrnennninsnnssansssnssssssssssssasssssssssssssssssasssssssssssssssssasssssssssssssssssases 150
C-5 EVENTLIST.CPP.......uurrrrerrnrennennennesnessesnessesssssssssssssssssessassssssassssenss 151
C-6 EVENTLIST.H 156
C-7 IDLIST.CPP ..ureretinnennnnieninnessnessessessssssesssesssesssssssssssssssssessassssssassssssss 157
C-8 IDLIST . Huucouueerrrernrennrnsnnnsnensnnsssnsssnssssnssssssssssssssssasssssssssssssssssasssssssssssssssssases 160
C-9 NETWORKLCPPuurerrnierennenennennnssnessesssessesssssssssssssesssessassssssassssssss 161
C-10 NETWORK H.....uuoonuirrrirrrensnnnsnnnssnsssansssnssssnsssssssasssssssssssssssssasssssssssssssssssases 163
C-11 STATIONLIST.CPPuurerrrreninnennesnnnssesnesnesssssssssssssesssessassssssassssssns 164
C-12 STATIONLIST . H ..uueerirrrrensnensnnnsnessansssnesssnsssssssanssssssssssssssssasssssssssssssssssases 167
APPENDIX D. CSMA/CD UML DIAGRAM.......uuuiiuirrrnnnnnennesnesssessssssnsssessssssessaesssssns 169
D-1 CONCEPTUAL MODELcuuieniinrnrnrrensnnnsnesssnssssnssssssssssssssssssssasssssssssssssses 170
D-2 ACTIVITY DIAGRAM FOR NETWORK SIMULATIONcccceeeueenneee 171

D-3 ACTIVITY DIAGRAM FOR PROCESSING PACKET-ARRIVAL
EVENT o ieenrentnntenntennisneessesssnessessssesssssssssssssssssssssssssssssassssssssasssssese 172

D-4 ACTIVITY DIAGRAM FOR PROCESSING TRANSMISSION-
ATTEMPT EVENTS 173

D-5 ACTIVITY DIAGRAM FOR PROCESSING COLLISION-CHECK
EVENTS ... eretintenenntennennesnisssssessesssesssssssssssssssssssssessassssssssssssssasssess 174

D-6 ACTIVITY DIAGRAM FOR PROCESSING PACKET-DEPARTURE
EVENTS ... ereintentnntnenennennisnesnsssisssesssssssssssssssssesssessassssssasssssssasssess 175
D-7 DESIGN CLASS DIAGRAMuuinuirrrinsnnnsnesssnssssessanssnssssnssasssssssssssssasssssss 176
D-8 INTERACTION DIAGRAM FOR NETWORK SIMULATION............... 177

D-9 INTERACTION DIAGRAM FOR PROCESSING PACKET-
ARRIVAL EVENTScoiiiinrinnnnninnenensnensnessnessisssessssssessasssssssessassssssaes 178

D-10 INTERACTION DIAGRAM FOR PACKET-DEPARTURE EVENT....179
D-11 GENERIC INTERACTION DIAGRAM FOR PROCESSING
TRANSMISSION-ATTEMPT AND COLLISION-ATTEMPT

EVENT ...iiieniienniennniennniensneessnnessssesssssssssessssssssssssssssssssssssssssssssssses 180

D-12 COLLABORATION DIAGRAM FOR PROCESSING PACKET-
ARRIVAL EVENTS .ucooiininntennninniensnensnessnesssessssesssessssssssssssssssssssssssssssns 181

D-13 COLLABOARION DIAGRAM FOR PROCESSINGG PACKET-
DEPARTURE EVENTS...uuiiniinieniinnennsnensnnnsnesssessssesssnsssssssssssssssssssssscens 182

D-14 COLLABORATION DIAGRAM FOR PROCESSING
TRANSMISSION-ATTEMPT EVENTS.....coonninninnrnnnnnnnnensnncssnecsansssncns 183

D-15 COLLABORATION DIAGRAM FOR PROCESSING COLLISION-
CHECK EVENTS ...uiiiintinntensninnnenssnsssnesssnssssssssassssssssssssassssssssssssssssssssss 184
APPENDIX E. TESTING TOOL METRICS RECORD SHEETcccceeuvevurcruersnennne 185
APPENDIX F. CSMA/CD FLOW CHARTcoouinvinriinsnensnensaensnnsssnsssnssssessssssssssssessans 189
INITIAL DISTRIBUTION LIST ..uuuconiiiiiiiiiniinninsnninsnensnesssesssessssessssssssesssassssssssssssssssss 191

LIST OF FIGURES

Figure 1: Needs Analysis Data Collection Form (From Poston)........c..cccceeverieniincniencennenne. 7
Figure 2. Tool Selection Criteria SREet..........c.eeeevuiiiiiieiiiie et e 9
Figure 3. Tool-Organization Form (From PoSton)cccccecieiiiiiiienieniieieciee e 11
Figure 4. Tool-Platform Form (From PoStOn)cccceeeiiiiiiiiiieiiiecieceiee e 12
Figure 5: Procedural Dynamic Coverage Analysis Overall Report..........cccceeeieniieniiennennen. 45
Figure 6: Procedural Statement Execution History Summary...........cccoveieeriiieeniiieeniee e, 46
Figure 7: Procedural Branch/Decision Execution History Summarycccccceevvieiiennennnen. 46
Figure 8: Halstead Metrics for procedural codeoocvimeiiiieiiieniiieeiieecee e 47
Figure 9: LCSAJ and Unreachability for procedural codeccoevveviieniinciiiniiiiieiee. 47
Figure 10: Procedural Mandatory Standards Violations...........ccccceeeeieieniiieeniieeniie e 48
Figure 11: Procedural Checking Standards Violations...........cccceeeieeiiieniienienieeiieeieeee e, 48
Figure 12: Procedural Optional Standards Violationscccceccueeeriieeiieeeiieeeiie e 49
Figure 13: Procedural Global Basic Information...............cceceeviiiiiieninenieniieieeie e 49
Figure 14: Functional Dynamic Coverage Analysis Overall Report...........ccceevvieeviieieneennns 50
Figure 15: Functional Statement Execution History Summaryccecceevvieiieniieencenneenen. 50
Figure 16: Functional Branch/Decision Execution History Summaryccccceocvveeiieenneenns 51
Figure 17: Halstead Metrics for functional codeocivriiiiiiiiiienieniieieceeee e 52
Figure 18: LCSAJ and Unreachability for functional codeccecovveveiieniiieniiieciieeieeas 52
Figure 19: Functional Mandatory Standards Violations...........c..cccceeviviineniienieneenenieneeens 53
Figure 20: Functional Checking Standards Violationscccceeveeeviiieniieenciieeciee e 53
Figure 21: Functional Optional Standards Violationsc..cccceeverienirienienenienienecenens 54
Figure 22: Functional Global Basic Information.............ccceeevieeiiieeiiieeciie e 54
Figure 23: Halstead Metrics for object-oriented codeccceviieriiiiiienieniieieeieeee e, 55
Figure 24: Object-Oriented LCSAJ and Unreachability for procedural code 55
Figure 25: Object-Oriented Mandatory Standards Violations.........c..cceceeveevienienenncnienennens 56
Figure 26: Object-Oriented Checking Standards Violationscccceeeceieeiiieeniiieecciee e, 57
Figure 27: Object-Oriented Optional Standards Violations.........c.ccecevveeveirienieneenenienennen. 57
Figure 28: Object-Oriented Global Basic Informationccccceeeeiieniiieniieeniieeiee e 58
Figure 29: Parasoft Procedural Static Analysis Report.........c.coccveeeiieniiiiiiiniieiieieeieeee e, 58
Figure 30: Parasoft Functional Static Analysis Report.........cccceeeiveeiiieniiienieecieeeee e 59
Figure 31: Parasoft Functional Dynamic Analysis Reportccccceeeveriiiniininienicnciienens 60
Figure 32: Parasoft Object-Oriented Static Analysis Summary Table..........ccccoecvvereieeennenn. 60
Figure 33: Parasoft Object-Oriented Dynamic Reportcceevieeiiiiiiiiiieieeiieiieeeeee e, 61
Figure 34: Parasoft Testing Status REPOTTccevuiiieciiiieiiieeiieeieeee e e 62
Figure 35: Parasoft Static Analysis RepOrt........ccceeiiieriiiiiiiiiieiieieceee e 63
Figure 36: Parasoft Method Test StatUs.......ccccueeeiiieeiieeeiiieeieeciee et 64
Figure 37: Parasoft Method Test Case Detailed Reportccoeviieiiieiiieiieniiiiiieeieeeeee, 64
Figure 38: Logiscope Procedural Rule Violations..........ccceeeeuiieeciieieciiiieiieeciie e 65
Figure 39: Logiscope Rule Violation Report..........cccoeviiiiiiiiieiiiiiiieiieceeee e 67
Figure D-1: Conceptual MOdelcccuoiiiiiiiiiiieiie ettt 170
Figure D-2: Activity Diagram for Network Simulationc..cccceevveniiiiniiniencnicnecen 171
Figure D-3: Activity Diagram for Processing Packet-Arrival Eventsccccoceveeinnnne. 172

xi

Figure D-4: Activity Diagram for Processing Transmission-Attempt Events...................... 173

Figure D-5: Activity Diagram for Processing Collision-Check Events...........ccccceevveennenn. 174
Figure D-6: Activity Diagram for Processing Packet-Departure Events............ccccevvennenne. 175
Figure D-7: Design Class DIiagram..........cccceeeiiieiiieeiiieeiieecieeeeiie e eeereeesveeesereeeseveeeeneas 176
Figure D-8: Interaction Diagram for Network Simulationcoceveevinininniniencenenn 177
Figure D-9: Interaction Diagram for Processing Packet-Arrival Events...........ccccceeuveenneen. 178
Figure D-10: Interaction Diagram for Packet Departure Event..........c.cccocoevenieniniiniennnne 179
Figure D-11: Generic Interaction Diagram for Processing Transmission-Attempt and
Collision Attempt EVENLcooiiiiiiiiiiiieiieeieeeeee e 180
Figure D-12: Collaboration Diagram for Processing Packet-Arrival Events 181
Figure D-13: Collaboration Diagram for Processing Packet-Diagram Events..................... 182
Figure D-14: Collaboration Diagram for Processing Transmission-Attempt Events........... 183
Figure D-15: Collaboration Diagram for Processing Collision-Check Events..................... 184
Figure F-1: CSMA/CD Simulation Program Flow Chart...........c.cccccvveviiiinieeiieeiee e 189

Xii

LIST OF TABLES

Table 1. Human-Interface DeSign SCOTESccevuiieriiieiiiieiiie ettt
Table 2. Test-Case GENETation SCOTEScecuierrierreeriieiieeriiesreestresreesseesseesseesseesseesseesseens

Table 3. Summary of Tool Findings

xiil

THIS PAGE INTENTIONALLY LEFT BLANK

X1V

ACKNOWLEDGMENTS

Sincere appreciation to

Dr. J. Bret Michael & Mr. Richard Riehle

for their guidance and support in this endeavor.

We appreciate the assistance and product evaluation copies

provided by the following testing tool vendors:

LDRA
Parasoft

Telelogic

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XVi

I. INTRODUCTION

A. PROBLEM STATEMENT

The life cycle of a software component begins with the conceptualization of an
information system, and ends with the retirement of the system. Although there have
been great improvements in standardizing the software development process, there has
yet to be developed a process which guarantees the creation of error-proof software.
Testing can be used to assess the quality of software components. However, testing can
require a lot of computations when the software component is tested after each step of the
software development process or tested to a high-level of assurance. In addition, testing
of a software component can be labor intensive, and thus expensive in terms of human

capital (e.g., software engineers, project managers, domain experts).

Automated testing tools assist software engineers to gauge the quality of software
by automating the mechanical aspects of the software-testing task. Automated testing
tools vary in their underlying approach, quality, and ease-of-use, among other
characteristics. In addition, the selection of testing tools needs to be predicated on
characteristics of the software component to be tested. But how does a project manager

choose the best suite of testing tools for testing a particular software component?

We envision the benefits of this research to the Department of the Navy to be
twofold. Firstly, the results of our research can be used by software engineers as a basis
for selecting the best type of tool or suite of tools for testing the software system under
test. Secondly, managers can apply the metrics in order to monitor and gauge the
effectiveness of specific combinations of testing tools for software-development projects

funded by the US Department of Defense.

B. RESEARCH ISSUES

The goal of this research is to provide project managers with assistance in
selecting tools by developing metrics for evaluating software testing tools, in terms of

their functionality, usability, and other select distinguishing characteristics.

1. Identifying Metrics

Automated testing tools vary in their ability to both detect known software defects
and convey information about these defects to the user of the tool. We developed a list of
metrics required to compare testing tools applied to both procedural and object-oriented
software.

2. Testing of Procedural versus Object-oriented Source Code

Similar to other software development tools, the focus of some testing tools is on
testing procedural software while other tools are tailored for testing object-oriented
software. Through our experiments, we have determined that the set of metrics used for
comparing tools for use in testing procedural software cannot be one-to-one mapped to
those for testing object-oriented software, although the two sets are not disjoint.

3. Evaluating Tools

Through the experimentation with different tools, we have identified metrics that
may be used when selecting a tool for a development project. This will assist future
efforts in evaluating testing tools’ individual strengths and weaknesses and how they
relate to the requirements of the software being developed (e.g., procedural vs. object-

oriented, vital vs. important).

C. CASE STUDY: CSMA/CD LAN DISCRETE-EVENT SIMULATION
PROGRAM

Carrier Sense Multiple Access with Collision Detection (CSMA/CD) is a widely
used contention-based access protocol in networks. Prior to transmitting, a station on the
network samples the network at its point of connection. If it determines the network is
busy, the station delays it transmission. However, if it does not detect any activity it may

begin transmitting.

Although a station will not transmit when it detects activity, it is still possible for
two station’s transmissions to collide. Such a situation occurs when one station begins to
transmit prior to another station’s transmission reaching the first station’s connection
point. After transmitting its information, the station monitors the network. If a different
packet of information is detected on the network before its transmission has had enough

2

time to reach every station on the network, the station assumes its traffic did not reach its

destination.

When a collision is detected, all transmitting stations terminate their activity. The
station that first identifies the collision sends a jamming signal to all stations signaling
them to cease any transmissions. All stations then wait for the jamming signal to end
plus a previously defined period of silence. At that point, any station may begin

transmitting.

At the end of the silent period, the previously transmitting stations, and possibly
others that now have traffic to send, would detect no activity on the network and
therefore would immediately attempt transmission. This would result in another

collision. Continuing this cycle would prevent any further traffic on the network.

The description of the protocol to this point, in which a station will transmit with
a probability of 1 upon detecting that the bus is available, is classified as non-persistent.
To prevent this fatal infinite cycle, p-persistent networks were created. In such networks,
a station transmits with probability of p and delays transmission with probability of (1 —
p). Therefore, following a collision, it is not guaranteed that all stations with traffic will
attempt to transmit at the end of the silence period. This enables one station’s message to
be detected by other stations before they retry to transmit, allowing the pending message

transmission to take place unimpeded.

The experiments conducted were performed on three versions of programs that
simulate a CSMA/CD network. The first version is a procedural program developed by
Sadiku and Ilyas with the modification of one line so that it could be operated on a wide
range of C and C++ compilers.! This version will be referred to as the procedural

version. Appendix F contains the flow chart of the simulation program.

This program was selected for this project for two purposes. First, it uses several
blocks of code numerous times throughout the program. This factor lends the program to
implementation through the use of functions in place of those blocks of code as was done

in the second version of the program, hereafter called the functional version. Second, it

1 Sadiku, M. and Illyas, M., Simulation of Local Area Networks, Boca Raton, Florida. CRC Press,
1994, pp. 112-133.

simulates the interaction of several real-world items that lend themselves to being
represented by classes and objects. This approach to simulating the network was used in

the third version of the program, which we refer to as the object-oriented version of the

program.

II. RELATED WORK

A. IEEE STANDARD 1175 WORKING GROUP’S TOOL-EVALUATION
SYSTEM

In December of 1991, a working group of software developers and experienced
tool users completed the Reference Model for Computing System-Tool Interconnections,
IEEE Standard 1175.2 As an offshoot of their work, they also introduced a tool-
evaluation system. The system implements a set of forms which aides project managers
in gathering, organizing, and analyzing information on testing (and other) tools

efficiently and, if done correctly, effectively.

The system enables tool evaluators to record tool information in such a way to
provide an extensive picture of the tools being considered. The forms allow the
evaluators to access tool-dependent factors such as speed, user friendliness, and
reliability. They also allow evaluators to access environment-dependent factors such as
the cost of the tool, the tool’s affect on organizational policies and procedures, and tool
interaction with existing organization hardware and software assets. The data forms also

facilitate the weighting, rating, and summarizing selection criteria.

Using the forms, project managers have a systematic and repeatable process to
follow in selecting tools. The forms assist in developing a list of information needed to
select a tool and provide a means to collect, organize, and analyze that information. They
also enable evaluators to identify and prioritize user needs, to find what tools are
available and most importantly, to select a tool based on estimated cost-effectiveness.
The process is performed in five steps: analyzing user needs, establishing selection
criteria, tool search, tool selection, and reevaluation.

1. Analyzing User Needs

Just as a full assessment of the customer’s needs must be accomplished before
beginning a software development process, the first step of the tool selection process is to
accurately and completely identify the needs of the prospective tool users. A

comprehensive and correct needs analysis is vital to the tool selection process. All future

2 Poston, Robert R. and Sexton, Michael P., “Evaluating and Selecting Testing Tools”, IEEE Sofiware,
May 1992, pp. 33-42.

5

decisions can be traced back to the results of the analysis. Additionally, the
effectiveness of the tool selected will be measured against the users’ needs that are

presented in the analysis, as well as those needs that the analysis overlooked.

The tool-selection process begins the needs analysis step with conversations with
the organization’s personnel responsible for tracking the company’s performance.
Speaking with such individuals provides the evaluator with a foundation by identifying
the organization’s current levels of productivity and quality. Additionally, some
organizations also have even higher long-range productivity-level goals. These
productivity and quality levels may enable the evaluator to readily eliminate some tools

that are not applicable for use in satisfying the organization’s goals.

Identifying the amount the organization invests in testing is the next step of the
needs analysis process. By combining the current level of testing investment and the
number, size and complexity of planned projects, the evaluator can estimate the amount
of investment the organization will likely be making on testing in the future. This will
aid the evaluator in predicting the likelihood that an investment in a testing tool will

provide a positive return on the investment.

Estimating the organization’s future testing performance levels is the third step of
the needs analysis. Using the data provided by the quality assurance personnel in step
one, the evaluator can make educated predictions on future performance. These are
generally better than current levels due to the experience and expertise gained in current
projects. Additionally, the evaluator must confer with organizational staff to identify any
planned adaptations to the current process that may affect testing effectiveness such as
hiring of more personnel or changes in procedures. The information gathered thus far is

placed in the needs analysis form shown in Figure 1.

The final step of the needs analysis process is the actual analysis of the
information mentioned above. Analysis of the information will reveal the expected cost
of tool implementation and estimated return on the investment. The organization must
weigh the expected improvement in productivity and quality versus the large financial

and temporal investment required to integrate an automated testing tool into the

padinboe 10U
ale 5|00] MaLl I

Elep paloIpald

12a(oud
WU&28d W)

E1Ep U858

{232 "youelq yied Na) sbeleans aunjonis
afielar0d INdINGD
(218 ‘plesdl 'plea) afiedeacd 1ndy|
afizlarod slUalalintbey

afielarod1se |

MlsUap aune4

ejep Ajrenb-)saL

alenjos pue s1s&] Guneniea]
s152] Gunnosxg
slUsLLILOlIALE 1581 Bunannsuo
g1581 Bulubisag
sanralgo 1581 Builyaq
funse | Guiuued
Manoe Gunsal Jad 1500 palaipald
funsel e 10) 1500 paloipald

SLIUOLL RIS Ul Bunsal Jo 1500 palaipald
elep (1s00) Ajangonpold-jsa)]

WYO4d NOILD3T102 Y1vd
SISATVYNV SA33N

Figure 1: Needs Analysis Data Collection Form (From Poston)

organizational procedures. If the organization expects increased projects placing much
greater load on the current testing assets with expectations of stable or increased
productivity and quality, the level and type of investment need to be further evaluated.

2. Establishing Selection Criteria

The second step of the tool selection process is to establish the criteria that will be
used to select the testing tool. The working group has developed a tool-selection criteria
form (Figure 2) that organizes several criteria in four groups. The first group is “general
criteria” that lists minimum acceptable productivity gain and quality gain. This group is
first because if a tool is not expected to provide the required amount of overall
productivity and quality improvement, then there is no need to further evaluate the other

criteria.

The second group is “environment-dependent criteria.” In this group the
evaluator determines the maximum amount the organization is willing to spend on tools,
organizational changes, platform changes, and tool-interconnection changes.
Organizational changes include the costs incurred to make any necessary changes to the
organization’s policies, techniques, standards, measurements, and training schedules.
Platform changes refer to the cost of making adaptations to existing hardware, operating
systems, software, and networking assets among others. Tool-interconnection changes
are the modifications that must be performed to ensure the data-exchange utilities can

continue to perform with the new tool.

If a large number of the expenditure amounts are low, the evaluator may decide to
report that the amounts given suggest either a lack of support for acquiring testing tools
or a lack of knowledge of the far-reaching implications of attempting to integrate a
testing tool into established practice. If the evaluator is unable to elicit enough
investment in advance, the assessment may continue. After the selection process has
been performed based on the other criteria, the remaining tools can be assessed according
to how they would affect each of the investment areas. Then the evaluator may make a

recommendation based on the tool which best suits the organization’s priorities.

If sufficient data can be collected and they indicate ample support for testing

tools, the criteria are then weighed. The weighting process brings together the

8

Jelo]

(s84n|ig} uaamiag awn} ueaw) Aypgelay £
(sasn peledIpep pUE |ENSED) 8Sn Ol aWl] 7%
(sJasn paledIpep pUE |ENSED) Wea| 018wl T
[ssaullpualy 1850) SI0J08) UBLUNY 7'
(s} asuodsal) aoueLMopad |

a|qeldaaae wnuy
BUAUD (2nsHaeIEYD) [BUORIUnjUoU Juapuadap-|oo] § dnoig

uoauny |00] FE

MOIaUnY (00] £

WOlaunY |00] 78

oAUy joo0] e
uolauny ajqeidande Wnuwiy
eUaL0 [euonouny Juapuadap-joo] ¢ dnoig

SAIN ABSUBIL UOELLOW| |7
safiueya uoijoauUDIBUII-00] 7
walshs sfueyaxa-uoeuMOL] fE7

walshs asepajul-uelLUNY 97
Walshs SUDIEDIUNWWOD GE'F
walshs afienfue] ¢Ez
walshs aseqele] £EC
walshs Bugesado 77

alempled |EF
safiueya wiogeld ©7
sasinoa Gulliel] 577

SusLIAINSESR F77
SpepUEls Lanpoid-sioas ©FF
sanbiuyas] 777

salog |'ZE
pasiaal 40 wau Joy safiveyd euonezivelin 77
sjooy Bunsel |z
10} 1500 pasmo||e LUNLLIKELN]

euayua Juapuadap-juawuonau] 7 dnoig

ueb fueng 77|

uieB Awnanpoug ||
a|qeldadoe Wiy
elaId [E18UAY 1|, dnolg

al0as

aley

I
ol

133HS ONIHOIS ' ONILYY 1001 Yim
133HS YId311dD NOILD313S-T1001

Sheet

with Tool Rating and Scoring Sheet (From Poston)

Criteria

Figure 2. Tool Selection

appropriate entities, which assign ranking to each criterion based on its perceived or
actual importance. Each item on the list must have a unique value. The process is useful
in moving the organization closer to a consensus on those requirements that are the most
important and empowers the users of tools and tool-generated information to provide
input to decision-makers.

3. Tool Search

Searching for available tools is the third step in the tool-selection process. The
actual search begins after the evaluator has developed an organizational profile. By
changing ‘tool name’ to ‘organization name’ on the “Tool-to-Organization,” “Tool-to-
Platform,” and “Tool-Interconnection” profile forms of IEEE 1175 (Figures 3-5), they are
converted to organizational profile forms. These forms are then completed to the extent
the organization deems to be necessary, while documenting any deviation from the

standard.

Once the profile of the organization is complete, it is used to eliminate tools from
the vast listings of tool surveys that are available from several sources listed in Poston
and Sexton. A search of current trade publications, academic journals, and Internet

search engines may also provide other prospective tools.

When the evaluator is satisfied with the list of potential tools, a request is made to
the suppliers of those tools for the most recent data available on the tool’s characteristics.
The recommended approach is to provide blank versions of the tool-profile forms from
IEEE 1175. Along with the completed forms, the evaluator should request current
purchase price, a list of current users who will be willing to discuss their experiences with
the tool, and trade articles, research or other independent sources of information that may
attest to the tool’s value to the testing process. The quality of response may be indicative
of the level of support the supplier will provide if the tool is selected. When the evaluator
is satisfied with the amount of responses, the tool selection process may begin.

4. Tool Selection

The evaluator is responsible for assessing how closely a tool compares to the
criteria developed in the second step (Figure 2). Using all of the information gathered on

a tool, the assessor assigns a rating of one if the tool exactly matches the set criteria. If

10

Tool-to-Organization Interconnection Standard Profile

Tool name: Date:

Organization Interconnections Name of applicable standards

Job function
Primary user

Secondary user

Final user

Life cycle
Phase of initial use

Phases of intermediate use

Phase of final use

Support elements
Policies

Technologies (methodologies)

Work-product standards

Measurements

Training courses

Figure 3. Tool-Organization Form (From Poston)

11

Tool-to-Platform Interconnection Standard Profile

Tool name:

Date:

Platform Interconnection

Hardware

Operating Systems

Database Systems

Language Systems

Communications Systems

User-interface Systems

Data-file-exchage formats

Document-exchange formats

Description-exchange formats

Name of applicable standards

Figure 4. Tool-Platform Form (From Poston)

12

Tool-Interconnection Standard Profile

Tool name: Date:

Tool Interconnection Name of applicable standards

Mechanisms for transfers
Direct

File-based

Control repository

Communication system

Other

Processes of transfers
Send

Receive

Information descriptions
Syntax

Semantics

Information purpose

Control

Management
Quality
Configuration/change
Project management
Measurement (metrics)

Subject
Presentation
Perspective
Concept

Other

Figure 5. Tool Interconnection Standard Profile Form (From Poston)

13

the tool does not support the criterion in any way, a rating of zero is assigned. If a tool
only partially provides the needed support, a value between zero and one is assigned. For
example, if a tool only provides 25% of the desired productivity gain, a value of .25 is
placed in the productivity gain rate line. The rating is then multiplied by the weighting
given to the criterion, in order to provide the tool’s final score for that criterion. Each

tool’s scores are then tallied.

The tool with the greatest total score is likely the one that the evaluator should
recommend for use to the project managers, tool users and other personnel who have
input in the final decision about which tool to use. Meeting participants listen to the
evaluator’s scoring and make assessments about each tool. The group then decides on
which tool should be adopted.

5. Reevaluation

After the selected tool has been implemented, it is continually reevaluated. The
tool evaluator and project managers work together to compare actual tool performance to
what was expected and promised. If the tool fails to perform or meet expectation, then an
analysis is conducted to determine whether the shortcomings are inherent to the tool or
are problems that the supplier may resolve through product improvements, training, or
other means. The cost of corrections will need to be weighed against the expected return
as well as the cost of adopting another tool.

6. Summary

The tool selection process developed by the IEEE 1175 Working Group provides
a solid foundation upon which to build an organization’s tool selection procedures. The
forms provide an excellent starting point for ranking prospective tools, but an
organization should include other criteria it feels are important and remove those that are
perceived of lesser importance to the organization. We build upon this list of criteria and
identify separate sets of criteria for tools applied to procedural code and for those applied

to object-oriented code.

14

B. INSTITUTE FOR DEFENSE ANALYSES REPORTS

The Institute for Defense Analyses published 4An Examination of Selected
Software Testing Tools: 19923 with a follow up supplement a year later*. These reports
document the results of research conducted on testing tools. While the tools and
knowledge gathered may be dated, they were still useful in our research. They provide a
historical frame of reference for the recent advances in testing tools as well as identify a
large number of measurements that may be used in assessing testing tools. For each tool,
the report details different types of analysis conducted, the capabilities within those
analysis categories, operating environment requirements, tool-interaction features, along

with generic tool information such as price, graphical support, and the number of users.

The research was conducted to provide software developers with information
regarding how software testing tools may assist the development and support of software

to be used for the Strategic Defense Initiative (SDI). The major conclusions of the study

were that:

o Test management tools offered critical support for planning tests and
monitoring test progress.

o Problem reporting tools offered support for test management by providing
insight software products’ status and development progress.

o Available static analysis tools of the time were limited to facilitating
program understanding and assessing characteristics of software quality.

o Static analysis tools provided only minimal support for guiding dynamic
testing.

o Many needed dynamic analysis capabilities were not commonly available.

J Tools were available that offered considerable support for dynamic testing

to increase confidence in correct software operation.

3 Youngblut, C and Brykczynski B., An Examination of Selected Software Testing Tools: 1992,
December 1992.

4 Youngblut, C and Brykczynski B., An Examination of Selected Software Testing Tools: 1993
Supplement, October 1993.

15

o Most importantly, they determined that the wide range of capabilities of
the tools and the tools’ immaturity required careful analysis prior to

selection and adoption of a specific tool.

C. SOFTWARE TECHNOLOGY SUPPORT CENTER’S SOFTWARE TEST
TECHNOLOGIES REPORT

The Software Technology Support Center works with Air Force software
organizations to identify, evaluate and adopt technologies to improve product quality,
increase production efficiency, and hone cost and schedule prediction ability.> Section
four of their report discusses several issues that should be addressed when evaluating
testing tools and provides a sample tool-scoring matrix. Current product critiques and
tool evaluation metrics and other information can be obtained by contacting them through

their website at http://www.stsc.hill.af. mil/SWTesting/.

5 Daich, Gregory T., etal, Software Test Technologies Report, August 1994, p. 1.
16

III. METHODOLOGY

A. TOOL SEARCH

The following is a brief summary of testing tools that we considered using in our
thesis research. These tools were selected based on whether or not they support C++ and
also whether or not they could be run on a Windows platform.

1. BoundsChecker

a. Summary

BoundsChecker is a Compuware Numega product that automatically
detects static, stack and heap memory errors and resource leaks. The product assists in
finding and fixing memory and resource leaks and API, pointer, and memory errors
automatically. BoundsChecker identifies the line of source code where errors occurred,

provides explanations, and provides suggested solutions and coding samples.

b. Features

o Detects memory and resource leaks

o Finds and fixes failed API calls in any application, component, DLL or
EXE

o Identifies static, stack and heap memory errors

o Identifies the exact line of code where an error occurs

. Verifies that your code will run properly on all Win32 platforms,
including Windows CE

o Works from within the Visual C++ Developer Studio environment

2. C-Cover
a. Summary

C-Cover is a full-featured code coverage analyzer for C/C++ running on
Microsoft and Unix systems offered by Bullseye Testing Technology. C-Cover finds
untested code and measures testing completeness. Test productivity is increased and time
is saved by identifying untested control structures.

b. Features

o Ability to include or exclude any portion of project code
17

o Automatic merging of multiple sessions

o Automatic merging of coverage for DLLs and shared libraries that are
used by multiple programs

o Backed by premier level technical support

° Five levels of detail: source directory, source file, C++ class, function, and
control structure

o Full support for both C++ and C including templates, exception handling,

inline functions, namespace

o Function coverage and condition/decision coverage measurement

o Graphical Coverage Browser for Windows

J Indexed HTML user documentation

. Many options for searching, filtering, and sorting report information

J Run-time source code included

o Sample programs and Visual Studio projects

o Simple floating license

° Support for DLLs, shared libraries, device drivers, ActiveX, DirectX,

COM, and time-critical applications

o Support for languages translated to C/C++, such as lex and yacc
o Support for multiple threads, processes, users
. Transparent operation

3. CTC++ (Test Coverage Analyzer for C/C++)

a. Summary

CTCH++, a Testwell Oy product, is an instrumentation-based tool
supporting testing and tuning of programs written in C and C++ programming languages.

CTC++ measures test coverage and reports on the dynamic behavior of the program

under test.
b. Features
. Ease of use
o Independent instrumentation of source files
o Integrated to Microsoft Visual C++ Developer Studio

18

. Support for host-target and kernel code testing

° Usable with GUI testers
4. Cantata++
a. Summary

Cantata++ supports unit and integration testing of C++ software.
Cantatat++ offers dynamic testing and test coverage analysis of C++ applications.
Cantatat++ measures object-oriented coverage measures such as inheritance and
instantiations of templates. This tool offers minimal intrusion into the development and

testing process by not generating stubs. Cantatat+ is a product of Quality Checked

Software.

b. Features

o Access to data within the implementation of the software under test

o Full control of the interface between the software under test and other
software

o Data value checking facilities

o Support for reuse of test case

o Test harness for developing structured, repeatable tests

o Testing of exceptions and templates

5. ObjectChecker/Object Coverage/ObjectDetail

a. Summary

These three tools are all products of ObjectSoftware Inc. ObjectChecker
helps automate the style of C++ code and compares C++ constructs with pre-defined
coding rules. ObjectCoverage helps automate and improve the effectiveness of software
testing by analyzing “selection” and “iteration” statements and generating a test
case/branch coverage report. ObjectDetail is a tool to locate early defects and build

software-oriented metrics for analysis of an application.

19

b. Features
o Allows the use of regular expressions to define rules for the style checker,
to suppress report generation for selected files and methods and selected

sections of code

o Can be invoked from within test scripts
o Generates violation reports in PostScript or regular text format
o Handles all C++ classes (templates and non-templates)
J No source code changes are required
J Works at the source level
6. Panorama C/C++
a. Summary

Panorama C/C++ is a product of ISA (International Software Automation
Inc.). Panorama C/C++ is a fully integrated software engineering environment that
supports both the development of a new system and the improvement of an existing
system. The environment supports software testing, quality assurance, maintenance, and

re-engineering.

b. Features

o Automated defect detection with capability to identify the location of the
source code segment/branch having a defect found

. Automated error simulation

o Improves test planning through complexity analysis, control flow analysis,
and control flow diagramming

o Detailed data analysis, including the analysis of global and static variables

to identify where they are defined, used, or assigned a value

. Logic-error checking through program-logic analysis and diagramming
o Program review and inspection
o Test case design through path analysis and automatic extraction of path-

execution conditions

20

o Incremental unit testing by assigning bottom-up unit-test orders without
using stubs
o Performance analysis and module/branch execution frequency analysis to

locate performance bottlenecks

7. TCAT C/C++

a. Summary

TCAT C/C++ detects weaknesses in code. Easily accessible point-and-
click coverage reports find the segments that need to be further tested. Digraphs and call-
trees can be viewed pictorially. TCAT C/C++ is offered by Software Research Inc.

b. Features
o Common user interface
o Support for C++ templates, in-line functions and exception handlers
o Support for Microsoft Foundation Classes
o Interfaces to handle large, multiple complex projects
o Automated product installation
o Point-and-click coverage reporting
o Fully integrated with Microsoft Visual C++
o GUI is fully integrated with some C++ compilers

B. TOOLS SELECTED FOR EVALUATION
1. LDRA TESTBED

a. Summary

LDRA Testbed is a source code analysis and test coverage measurement
tool. Testbed utilizes its own parsing engine, offering the user more flexibility for
tailoring the tool to meet requirements. As a complete package of modules integrated
into an automated, software testing toolset, LDRA Testbed enables attaining a greater

degree of software testing.

21

LDRA Testbed’s two main testing domains are Static and Dynamic
Analysis. Static Analysis analyzes the code, while Dynamic Analysis involves execution
with test data to detect defects at run time. LDRA Testbed analyzes the source code,
producing reports in textual and graphical form depicting both the quality and structure of

the code, and highlighting areas of concern.

LDRA Testbed supports the C, C++, ADA, Cobol, Coral66, Fortran,
Pascal, and Algol programming languages. It has been ported to the following operating
systems: MS Windows NT/2000/9x/Me, Digital Unix, HP-UX, AIX, SCO ODT, SGI
Irix, SunOS 4 (Solaris. 2.1), Solaris Sparc/Intel, VAX/VMS, OpenVMS, MVS, Unisys A
Series, and Unisys 2200 Series.

b. Static Analysis Features

Main Static Analysis is the kernel module of the LDRA Testbed
system. All software requiring LDRA Testbed analysis must first be processed by Main
Static Analysis.

Main Static Analysis produces the following:
J LCSAJ Report (see page 23 for a description of LCSAJ)
o Metrics Report
o Quality Report
. Reformatted Code

1.) Complexity Analysis: Complexity measures can be
computed for procedures, files and even across an entire system. Complexity Analysis
analyzes the subject code, reporting on its underlying structure on a procedure-by-
procedure basis.

2.) Metrics Report: Complexity metrics are reported in
the Metrics Report. This configurable report breaks down each metric on either a file-by-
file or a procedure-by-procedure basis and stipulates whether the value has passed the

quality model or not. At the top of the report is a list of the metrics that are computed.
22

Each metric is reported with those passing the quality model in green, and those failing in

red.

Complexity Metric Production: In order to control the quality of

software products, LDRA Testbed produces the following complexity metrics:

Control Flow Knots: Knot analysis measures the amount of
disjointedness in the code and hence the amount of ‘jumping about’ a code reader will be
required to undertake. Excessive knots may indicate that a program can be reordered to

improve its readability and complexity.

Cyclomatic Complexity: Cyclomatic Complexity reflects the
decision-making structure of the program. It is recommended that for any given module
the metric should not exceed ten. This value is an indicator of modules that may benefit
from redesign. It is a measure of the size of the directed graph, and hence is a factor in

complexity.

Reachability: All executable statements should be reachable by
following a control-flow path from the start of the program. Unreachable code consists
of statements for which there is no such path. LDRA Testbed marks all such lines as
being unreachable. Since they contribute nothing to the program computations, they

could be removed without altering the code’s current functionality.

Looping Depth: The maximum depth of the control flow loops is a

factor in the overall readability, complexity and efficiency of the code.

LCSAJ Density: The LCSAJ density is a maintainability metric.
If a line of code is to be changed, then the density informs the user how many test paths
(LCSAIJs) will be affected by that change. If the density is high, then confidence that the
change is correct for all test paths will be reduced, and hence an increased amount of
regression testing may be required.

An LCSAJ is a linear sequence of executable code commencing

either from the start of the program or from a point to which control flow may jump. It is
23

terminated either by a specific control-flow jump or by the end of the program. The
linear code sequence consists of one or more consecutive Basic Blocks. Consequently,
there may be a number of predicates that must be satisfied in order for control flow to

execute the linear code sequence and terminating jump.

Comments: To control readability and maintainability, the

following are measured:

o Number of lines of comments in the declaration part of a procedure

o Number of lines of comments in the executable part of a procedure

o Number of lines of comments just prior to a procedure declaration (a
procedure header)

o Number of totally blank lines of comments

Halstead’s Metrics: These metrics measure the size of a program. LDRA Testbed

supports the following Halstead metrics:

Length

Total Operands
Total Operators
Unique Operands
Unique Operators
Vocabulary
Volume

3) Quality Report: The Quality Report creates views of
the quality of the source code. The report can reflect the quality of a single file, the entire
system or a group of unrelated source files, and can be produced in either ASCII or

HTML format.

c. Dynamic Analysis Features

After the source code has been instrumented, compiled, and linked, the
execution of the program creates an output stream which contains the execution history.
The Dynamic Coverage Analysis option processes the execution history, mapping its
information onto the control flow information on the source code acquired from the static

analysis phase. The instrumented program is normally executed several times, with each

24

execution followed by a Dynamic Coverage Analysis. The remaining options are usually

selected after completion of a series of these analyses.

The output of the Dynamic Coverage Analysis can be used as input for
making decisions about improving the robustness of the source code. In essence, the

dynamic-coverage metrics provide an indication of how much more needs to be done.

To increase the coverage, the user must construct further sets of test data
to be run with the instrumented source code. The Dynamic Coverage Analysis must then
be rerun. Each run of the Dynamic Coverage Analysis shows the names of the entire test
data sets used to obtain the corresponding results. The detailed results are reported as
profiles, including the following:

Untested Code Reporting

Control Flow Tracing

Statement execution Frequency Analysis
Branch Execution Frequency Analysis
LCSAJ Sub-path Execution Analysis
Profile Analysis

Dynamic Data Set Analysis

Host/Target Testing

o Real-Time Systems Testing

2. Parasoft Testing Products

a. Summary

This evaluation consisted of the following Parasoft Products: C++ Test
with embedded CodeWizard (beta version 1.3 August 2, 2001) and Insure++. C++ Test
is a C/C++ unit testing tool that automatically tests any C/C++ class, function, or
component without requiring the user to develop test cases, harnesses, or stubs. C++ Test

automatically performs white-box testing, black-box testing, and regression testing.

CodeWizard can enforce over 170 industry-accepted C/C++ coding
standards and permits the user to create custom rules that apply to a particular software-

development effort.

Insure++ automatically detects runtime errors in C/C++ programs.

25

Parasoft’s Testing Tool suite supports Microsoft Visual Studio 6.0 on
Windows NT/2000. Parasoft is developing Linux and Solaris versions at the time this

research was conducted.

b. C++ Test features
o Can be used to achieve and demonstrate various levels of code coverage
o Allows verification of class functionality and construction without waiting

for the rest of the system to build
o Automates unit testing process, which is fundamental to Extreme

Programming and other programming models

J Automatically builds scaffolding and stubs for classes/functions

o Automatically creates and executes test cases for classes/functions

o Performs automatic regression testing

o Performs component testing

o Provides a framework for entering and executing specification and

functionality tests

o Provides for incremental testing of classes/functions

J Tests code under extreme cases
c. CodeWizard features

o Coding standards grouped according to programming concepts and
severity

o Enforces predefined and custom rules

o Supports the creation of custom rules

o Supports user-specified thresholds for triggering rule-violation reports

. Supports rule suppression

26

d. Insure++ features

J Allows switching between selective checking and thorough checking with
full instrumentation

o Capable of checking third-party libraries, functions, and interfaces to
modules written in languages other than C

o Contains a large set of rules for detecting errors specific to C++ code

o Detects numerous categories of errors such as memory corruption,
memory leaks, memory allocation errors, variable initialization errors,
variable definition conflicts, pointer errors, library errors, logic errors, and

algorithmic errors

o Identifies the source and location of leaks
o Supports cross-platform development
o Supports large number of compilers

3. Telelogic Products

a. Summary

Logiscope TestChecker measures structural test coverage and shows
uncovered source code paths. Logiscope TestChecker is based on a source code

instrumentation technique that can be tailored to the test environment.

Logiscope TestChecker identifies which parts of the code remain untested.
It also identifies inefficient test cases and regression tests that should be re-executed
when a function or file is modified. Logiscope TestChecker is based on source code

instrumentation techniques such as the use of probes.

b. Features
o Assesses test case efficiency and testing progress
o Assists in the definition of regression tests
o Instrumentation code probes can be tuned to meet application-execution

constraints, for

o Deciding how to implement memory management coverage data
(e.g., statically or dynamically, type of data)

27

o Reducing overhead associated with the size of the instrumented
files

o Selecting the type of output device for dumping coverage data
(e.g., file, TCP/IP, serial link)

Merges multiple test run results
Provides code-coverage analysis

Provides information for each function, file or project:
o Decision coverage
o Modified conditions/decisions (MC/DC) as per DO-178B

° List of tests that cover the selected function or file

Provides information for each test case:

o Specific test case improvement regarding overall overage
o List of impacted files and functions
o Description field for user comments

Supports multi-threaded applications
Tests can be performed either on host or target platforms

Computes the following metrics:

o Call-pair coverage

o Instruction-blocks coverage

Automatically generates customizable reports and documentation

Provides a visual representation of the uncovered paths (i.e., call and

control-flow graphs)

SOFTWARE QUALITY METRICS

Extensive research and numerous writings have been completed in relation to

metrics for measuring quality of software programs. The history of software metrics

began with counting the number of lines of code (LOC). It was assumed that more lines

of code implied more complex programs, that in turn were more likely to have errors.

28

However, software metrics have evolved well beyond the simple measures introduced in
the 1960s.

1. Procedural (Traditional) Software Metrics

Metrics for traditional or procedural source code have increased in number and
complexity since the first introduction of lines of code. While LOC is still used, it is
rarely measured simply to know the length of procedural programs since there continues
to be debate on the correlation between size and complexity. Instead, LOC is used in the
computation of other metrics, most notably, in determining the average number of defects

per thousand lines of code.

McCabe® first applied cyclomatic complexity to computer software. Cyclomatic
complexity is an estimate of the reliability, testability, and maintainability of a program,
based on measuring the number of linearly independent paths through the program.
Cyclomatic complexity is measured by creating a control graph representing the entry
points, exit points, decision points, and possible branches of the program being analyzed.

The complexity is then determined using the following formula:
Equation 3.1
M=V(G)=e—-n+2p where V(GQ) is the cyclomatic number of G
e is the number of edges
n is the number of nodes
p is the number of unconnected parts of G

This metric however does not look at the specific implementation of the graph. For
example, nested if-then-else statements are treated the same as a case statement even

though their complexities are not the same.

Function point (FP)7 is a metric that may be applied independent of a specific
programming language, in fact, it can be determined in the design stage prior to the

commencement of writing the program. To determine FP, an Unadjusted Function Point

6 McCabe, “Complexity Measure,” IEEE Transactions on Software Engineering, Vol. 2, No. 4, pp.
308-320, December 1976.

7 Dekkers, C., "Demystifying Function Points: Let's Understand Some Terminology," IT Metrics
Strategies, October 1998.

29

Count (UFC) is calculated. UFC is found by counting the number of external inputs (user
input), external outputs (program output), external inquiries (interactive inputs requiring a
response), external files (inter-system interface), and internal files (system logical master
files). Each member of the above five groups is analyzed as having either simple,
average or complex complexity, and a weight is associated with that member based upon

a table of FP complexity weights. UFC is then calculated via:

Equation 3.2
UFC = 2,15 (number of items of variety i) x (weight of 1)

Next, a Technical Complexity Factor (TCF) is determined by analyzing fourteen
contributing factors. Each factor is assigned a score from zero to five based on its

criticality to the system being built. The TCF is then found through the equation:

Equation 3.3
TCF=0.65+0.012-14 F;

FP is the product of UFC and TCF. FP has been criticized due to its reliance upon
subjective ratings and its foundation on early design characteristics that are likely to

change as the development process progresses.

Halstead?® created a metric founded on the number of operators and operands in a
program. His software-science metric (also referred to as ‘halted length’) is based on the
enumeration of distinct operators and operands as well as the total number of appearances
of operators and operands. With these counts, a system of equations is used to assign
values to program level (i.e., program complexity), program difficulty, potential

minimum volume of an algorithm, and other measurements.

8 Halstead, M., Elements of Software Science, Elsevier, North-Holland, New York, 1977.
30

2. Object-Oriented Software Metrics

The most commonly cited object-oriented software metrics are those proposed by
Chidamber and Kemmerer.” Their suite consists of the following metrics: weighted
methods per class, depth of inheritance tree, number of children, coupling between object

classes, response for a class, and lack of cohesion in methods.

Weighted methods per class (WMC) is the sum of the individual complexities of
the methods within that class. The number of methods and the sum of their complexities
correlate to the level of investment of time and effort in designing, developing, testing,
and maintaining the class. Additionally, a large number of methods implies increased

complexity due to the increased likelihood of their use by children of the class.

Depth of inheritance tree (DIT) is defined as the maximum length from the node
to the root of a class tree. The deeper a class is in the inheritance hierarchy, the greater
the likelihood that it inherits a large number of methods, thereby making its behavior
more complex to both predict and analyze. Also, a larger DIT implies greater design

complexity due to the larger number of classes and methods in the project.

The number of immediate subclasses of class is represented by “number of
children” (NOC). A larger NOC implies a significant amount of inheritance and reuse.
The more times a class is inherited, the greater the possibility that errors will be made in
its abstraction and the greater the possible impact the class has on the project. Therefore,
a class with a high NOC may need to be tested more thoroughly than classes with lower

NOC’s.

Coupling between object classes (CBO) is defined as the number of classes to
which it is coupled (i.e., interdependent on). When a class inherits methods, instance
variables, or other characteristics from another class, they are coupled. The greater the
number of shared attributes, the greater the interdependence. A significant amount of
coupling leads to an increased probability of changes in one class causing unaccounted,
and possibly undesired, changes in the behavior of the other. This tighter coupling may

require more extensive testing of classes that are tightly coupled together.

9 Chidamber, S. and Kemmerer, C., ‘A Metrics Suite for Object Oriented Design’, IEEE Transactions
on Software Engineering, Vol. 20, No. 6, pp. 476-493, 1994.

31

Response for a class (RFC) is defined as the cardinality of the set whose members
are the methods of the class that can potentially be called in response to a message
received by an object in that class. The set’s members include the class methods called
by other methods within the class being analyzed. A large RFC indicates that there are
numerous ways in which class methods are called, possibly from many different classes.
This may lead to difficulties in understanding the class, making analysis, testing, and

maintenance of the class uncertain.

Lack of cohesion in methods (LCOM) is defined as the number of method pairs
with no shared instance variables minus the number of method pairs with common
attributes. If the difference is negative, LCOM is set equal to zero. A large LCOM value
indicates strong cohesion within the class. A lack of cohesion, indicated by a low LCOM
value, signifies that the class represents two or more concepts. The complexity of the
class, and perhaps of the entire project, could be reduced by separating the class into

smaller, and likely simpler, classes.
Chidamber and Kemmerer’s suite were extended by Lie and Henry.10 They

introduced the Message Passing Coupling (MPC) metric that counts the number of send
statements defined in a class; this signifies the complexity of message passing between
classes. Their Data Abstraction Coupling (DAC) metrics is calculated based on the
number of abstract data types used in the class and defined in another class. The greater
the DAC value, the greater the dependence on other classes and therefore the greater the

complexity of the project.

Henry and Kafura developed the Information Flow Complexity (IFC) metric to
measure the total level of information flow of a module.!! A module’s (M) fan-in is
defined as the number of local flows that terminate at M plus the number of data
structures from which information is retrieved by M. Fan-out is defined as the number of
local flows that emanate from M plus the number of data structures that are updated by

M. Local flow is defined as either a module invoking a second module and passing

10 Lie, W. and Henry, S., “Object-oriented Metrics that Predict Maintainability”, Journal of Systems
and Software, Vol. 23, No. 2, pp. 111-122.

11 Henry, S. and Kafura, D., "Software Structure Metrics based on Information Flow," [EEE
Transactions on Software Engineering, SE Vol. 7 No. 5, September 1981.

32

information to it or a module being invoked returning a result to the calling module. IFC
is then found by summing the LOC of M and the square of the product of M’s fan-in and
fan-out. Shepperd removed LOC to achieve a metric more directly related to information

flow.12

Equation 3.4

IFC(M) =LOC(M) + [fan-in(M) x fan-out(M)]*

Lorenz and Kidd proposed another set of object-oriented software quality

metrics.!3 Their suite includes the following:

o Number of scenarios scripts (use cases) (NSS)

o Number of key classes (NKC)

o Number of support classes

o Average number of support classes per key class (ANSC)
o Number of subsystems (NSUB)

o Class size (CS)

o Total number of operations + number of attributes
o Both include inherited features
o Number of operations overridden by subclass (NOO)

o Number of operations added by a subclass (NOA)
. Specialization index (SI)

o SI =[NOO x level] / [Total class method]

. Average method size

o Average number of methods

o Average number of instance variables
o Class hierarchy nesting level

12 Churcher, N and Shepperd, M, “Comments on ‘A Metrics Suite for Object Oriented Design’”, I[EEE
Transactions on Software Engineering, Vol. 21 No. 3, pp. 263-265, 1995.

13 Lorenz, M. and Kidd, J., Object-Oriented Software Metrics, Prentice Hall, Englewood Cliffs, N.J.,
1994

33

D. PROPOSED SOFTWARE TESTING TOOL METRICS

Elaine Weyuker identified nine properties that complexity measures should
possess.!4 Several of these properties can be applied to other metrics as well. These
characteristics were considered during our research to develop metrics for software

testing tools.

We propose that our software testing tool metric suite contain the following
properties, although to varying degrees. The metrics exhibit non-coarseness in that they
provide different values when applied to different testing tools. They are finite in that
there are a finite number of tools for which the metrics’ results in an equal value. Yet
they are non-unique in that the metric may provide the same value when applied to
different tools. Our metrics are designed to have an objective means of assessment rather
than being based on subjective opinions of the evaluator. A testing tool metric record

sheet is included in Appendix E.

1. Metrics for Tools Testing Procedural Software

These metrics are applied to the testing tool in its entirety vice a specific function

performed by the tool.

a. Human Interface Design (HID)

All automated testing tools require the tester to set configurations prior to
the commencement of testing. Tools with well designed human interfaces enable easy,
efficient, and accurate setting of tool configuration. Factors that lead to difficult,
inefficient, and inaccurate human input include multiple switching between keyboard and
mouse input, requiring large amount of keyboard input overall, and individual input fields
that require long strings of input. HID also accounts for easy recognition of the

functionality of provided shortcut buttons.

14.Weyuker, E., ‘Evaluating Software Complexity Measures’, [EEE Transactions on Software
Engineering, Vol. 14, No. 9, pp. 1357-1365, 1988.

34

Equation 3.5

HID = KMS + IFPF + ALIF + (100 —BR)

Where KMS is the average number of keyboard to mouse switches per function
IFPF is the average number of input fields per function
ALIF is the average string length of input fields

BR is the percentage of buttons whose functions were identified via inspection by

first time users times ten

A large HID indicates the level of difficulty to learn the tool’s procedures on
purchase and the likelihood of errors in using the tool over a long period of time. HID
can be reduced by designing input functions to take advantage of current configurations
as well as using input to recent fields as default in applicable follow on input fields. For
example, if a tool requires several directories to be identified, subsequent directory path
input fields could be automatically completed with previously used paths. This would
require the tester to only modify the final subfolder as required vice reentering lengthy

directory paths multiple times.

b. Maturity & Customer Base (MCB)

There are several providers of automated testing tools vying for the
business of software testers. These providers have a wide range of experience in
developing software testing tools. Tools that have achieved considerable maturity
typically do so as a result of customer satisfaction in the tool’s ability to adequately test
their software. This satisfaction leads to referrals to other users of testing tools and an

increase in the tool’s customer base.
Equation 3.6
MCB = maturity + customer base + projects
Where maturity is the number of years tool (and its previous versions)

have been applied in real world applications
35

customer base is the number of customers who have more than one
year of experience applying the tool

projects is the number of previous projects of similar size that
used the tool

Care must be taken in evaluating maturity to ensure the tool’s current
version does not depart too far from the vendor’s previous successful path. Customer
base and projects are difficult to evaluate without relying upon information from a vendor

who has a vested interest in the outcome of the measurement.

C. Tool Management (TM)

As software projects become larger and more complex, large teams are
used to design, encode, and test the software. Automated testing tools should provide for
several users to access the information while ensuring proper management of the
information. Possible methods may include automated generation of reports to inform
other testers on outcome of current tests, and different levels of access (e.g., read results,

add test cases, modify/remove test cases).

Equation 3.7
TM = access levels + information control methods
Where access levels is the number of different access levels to tool information

Information control methods is the sum of the different methods of
controlling tool and test information

d. Ease of Use (EU)

A testing tool must be easy to use to ensure timely, adequate, and
continual integration into the software development process. Ease of use accounts for the
learning time of first-time users, retainability of procedural knowledge for frequent and

casual users, and operational time of frequent and casual users.

36

Equation 3.8
EU =LTFU + RFU + RCU + OTFU + OFCU
Where LTFU is the learning time for first users
RFU is the retainability of procedure knowledge for frequent users
RCU is the retainability of procedure knowledge for casual users
OTFU is the average operational time for frequent users

OTCU is the average operational time for casual users

e. User Control (UC)

Automated testing tools that provide users expansive control over tool
operations enable testers to effectively and efficiently test those portions of the program
that are considered to have a higher level of criticality, have insufficient coverage, or
meet other criteria determined by the tester. UC is defined as the summation of the
different portions and combinations of portions that can be tested. A tool that tests only
an entire executable program would receive a low UC value. Tools that permit the tester
to identify which portions of the executable will be evaluated by tester-specified test
scenarios would earn a higher UC value. Tools that will be implemented by testing teams
conducting a significant amount of regression testing should have a high UC value to

avoid retesting of unchanged portions of code.

f Test Case Generation (TCG)

The ability to automatically generate and readily modify test cases is
desirable. Testing tools which can automatically generate test cases based on parsing the
software under test are much more desirable that tools that require testers to generate
their own test cases or provide significant input for tool generation of test cases.
Availability of functions to create new test cases based on modification to automatically
generated test cases greatly increases the tester’s ability to observe program behavior

under different operating conditions.

Equation 3.9

37

TCG = ATG + TRF
Where ATG is the level of automated test case generation as defined by:
10: fully automated generation of test cases
8: tester provides tool with parameter names & types
via user friendly methods (i.e. pull down menus)
6: tester provides tool with parameter names & types
4: tester must provide tool with parameter names, types
and range of values via user friendly methods
2: tester must provide tool with parameter names, types
and range of values

0: tester must generate test cases by hand

TREF is the level of test case reuse functionality

10: test cases may be modified by user friendly methods
(i.e. pull down menus on each test case parameter)
and saved as a new test case

8: test cases may be modified and saved as a new test case

6: test cases may be modified by user friendly methods
but cannot be saved as new test cases

4: test cases may be modified but cannot be saved as new test cases

0: test cases cannot be modified

38

g. Tool Support (TS)

The level of tool support is important to ensure efficient implementation
of the testing tool, but it is difficult to objectively measure. Technical support should be
available to testers at all times testing is being conducted, including outside traditional
weekday working hours. This is especially important for the extensive amount of testing
frequently conducted just prior to product release. Technical support includes help desks
available telephonically or via email, and on-line users’ groups monitored by vendor
technical support staff. Additionally, the availability of tool documentation that is well

organized, indexed, and searchable is of great benefit to users.
Equation 3.10

TS = ART + ARTAH + ATSD - DI

Where ART is the average response time during scheduled testing schedule
ARTAH is the average response time outside scheduled testing schedule
ATSD is the average time to search documentation for desired information
DI is the documentation inadequacy measured as the number of

unsuccessful searches of documentation

h. Estimated Return on Investment (EROI)

A study conducted by the Quality Assurance Institute involving 1,750 test
cases and 700 errors has shown that automated testing can reduce time requirements for
nearly every testing stage and reduces overall testing time by approximately 75%.15
Vendors may also be able to provide similar statistics for their customers currently using

their tools.
Equation 3.11

EROI = (EPG x ETT x ACTH) + EII — ETIC + (EQC x EHCS x ACCS)

15 04 Quest, The New Quality Assurance Institute, November 1995.
39

Where:

EPG is the Estimated Productivity Gain

ETT is the Estimated Testing Time without tool

ACTH is the Average Cost of One Testing Hour

EII is the Estimated Income Increase

ETIC is the Estimated Tool Implementation Cost

EQC is the Estimated Quality Gain

EHCS is the Estimated Hours of Customer Support per Project
ACCS is the Average Cost of One Hour of Customer Support

i Reliability (Rel)

Tool reliability is defined as the average mean time between failures.

J- Maximum Number of Classes (MNC)

Maximum number of classes that may be included in a tool’s testing
project.

k. Maximum Number of Parameters (MNP)

Maximum number of parameters that may be included in a tool’s testing
project.

L Response Time (RT)

Time required to conduct test case on specified size of software. Difficult
to measure due to varying complexity of different programs of same size.

m. Features Support (FS)

Count of the following features:

o Extendable: tester can write functions that expand provided functions
o Database available: open database for use by testers

o Integrates with software development tools

o Provides summary reports of findings

2. Metrics for Tools Used to Test Object-Oriented Software

Studies are continuously being conducted to ascertain the validity and usefulness
of other software quality metrics. A seminal study, conducted at the University of

Maryland, determined that the majority of the metrics proposed by Chidamber and
40

Kemmerer were useful in predicting the program under test’s proneness to containing
faults.!® As such, automated testing tools implemented on object-oriented software
should support their metric suite with the exception of LCOM. Testing tool support of
the other object-oriented software quality metrics discussed previously should also be
measured. This will enable the software development manager to measure the level of
support for measuring the quality of object-oriented software.

3. Difference between Procedural Testing Tool Metrics and Object-
oriented Testing Tool Metrics

Through our studies, we have determined that the differences between procedural
and object-oriented testing tool metrics are minimal. Metrics for testing tools aimed at
object-oriented software should support the general testing tool metrics. Additionally,
they should include a measurement for level of support of the object-oriented software

quality metrics and one for the maximum number of classes supported by the tool.

E. PERFORM TESTS
1. LDRA Testbed
a. Set-up

LDRA Testbed was installed on a computer using Microsoft Windows 98.
Projects tested were written, compiled, and executed in Microsoft Visual Studio 6.0.
LDRA Testbed does not embed itself into the Visual Studio application, but does provide

an icon on the desktop for easy launching of the testing tool.

b. Problems During Execution

The tool performed well once a few configuration difficulties were
corrected. The installation wizard did not automatically update settings for the location
of the vcvars32.bat file. In response to queries, LDRA’s technical support was timely,

friendly, and knowledgeable.

16 Basili, V., etal, “A Validation of Object-Oriented Design Metrics as Quality Indicators”, Technical
Report 95-40, University of Maryland, College Park, MD, April 1995.

41

2. Parasoft
a. Set-up

The following Parasoft products were installed on a computer using
Microsoft Windows 2000; C++ Test, Code Wizard, and Insure++. Projects tested were
written, compiled, and executed in Microsoft Visual Studio 6.0. All three products allow
themselves to be integrated into the Visual Studio application. Testing operations can be
conducted from either buttons added to Visual Studio toolbars or via the Tools menu on

the Visual Studio menu bar.

Configuring CodeWizard: In order to use CodeWizard, you must have

CodeWizard (with a valid CodeWizard license) installed on your machine.

To configure C++ Test to automatically run your classes and methods
through CodeWizard, enable the Use CodeWizard option by choosing Options> Project
Settings, then selecting the Use CodeWizard option in the Build Options tab.

b. Problems During Execution

Parasoft C++ Test was initially installed on a computer using Microsoft
Windows 98, as had been done during earlier testing. During test execution, C++ Test
consistently produced time-out errors. After speaking with technical support to identify
the source of the difficulties, it was discovered that version 1.3 (June 2001) of C++ Test
did not support Windows 98. After obtaining version 1.3 (July 2001) of C++ Test, it and
Code Wizard and Insure++ were installed on a computer using Windows 2000. As
Parasoft technical support was discussing the many features available in their products, it
was determined that there was a newer version [beta version 1.3 (August 2, 2001)]
available. This new version incorporates the code analysis features of Code Wizard into

C++ Test.

42

3. Telelogic
a. Set-up

The Telelogic Tau Logiscope 5.0 testing tool suite was installed on a
computer using Microsoft Windows 2000. Projects tested were written, compiled, and
executed in Microsoft Visual Studio 6.0. Telelogic provides access to its functions by
placing selection into the Tools menu on the Visual Studio menu bar, but does not
automatically introduce graphical shortcut buttons on the Visual Studio toolbar.

b. Problems During Execution

While the example in the installation manual worked well, it did not
address all the functions that are not performed by the wizard (e.g. creation of batch
files). Several of the problems that we encountered could be eliminated by better
organization of installation manuals, such as placing the Microsoft Visual Studio
integration content at the beginning of the manual. Once integrated into Visual Studio,

the tools were quite easy to use.

43

THIS PAGE INTENTIONALLY LEFT BLANK

44

IV. ANALYSIS

A. TOOL PERFORMANCE
1. LDRA Testbed

a. Procedural

Coverage Report — In order to achieve DO178B Level A, the program
must achieve 100% coverage in both statement coverage and branch coverage. The
procedural program achieved an overall grade of fail because it only achieved 88%
statement coverage and 83% branch coverage. 554 of a possible 629 statements were
covered during the testing process. 146 out of 176 branches were covered by the testing
tool. What is important to note about 88% coverage is that we only used default test
settings and did not conduct additional test runs to improve our coverage. As mentioned
before in the tool summary, to increase the coverage, the user must construct further sets
of test data to be run with the instrumented source code. The report lists each individual
line that is not executed by any testing data. The graphics below were captured directly

from Testbed’s report.

Statement = 88 % Branch/Decision = 83 % MC/DC : Not Applicable

Figure 5: Procedural Dynamic Coverage Analysis Overall Report

45

Executed by Runs... Coverage(%)
Procedure | Executable | Previous | Current | Combined | Previous | Current | Combined
Statements
Main 629 0 554 554 0 88 88
Whole 629 0 554 554 0 88 88
program
Figure 6: Procedural Statement Execution History Summary
Executed by Runs... Coverage(%)
Procedure | Branch/ Previous | Current | Combined | Previous | Current | Combined
Decisions
Main 176 0 146 146 0 83 83
Whole 176 0 146 146 0 83 83
Program

Figure 7: Procedural Branch/Decision Execution History Summary

Metrics Report — Our procedural program returned a value of 130 knots
and a cyclomatic complexity of sixty-one. The 130 knots signals that the procedural code
is disjointed and would require somebody trying to read the code to jump back and forth
between functions in order to understand what the code is attempting to accomplish. The
cyclomatic complexity of sixty-one demonstrates that the program can be re-ordered to
improve readability and reduce complexity. The figures below list the findings from the

metrics report for Halstead Metrics, LCSAJ and Unreachability.

46

File Total Total Unique Unique Vocabulary | Length | Volume
Operators | Operands | Operators | Operands

Seqmain.cpp | 471 593 24 60 84 1064 6801

Figure 8: Halstead Metrics for procedural code

File Total Reachable | Unreachable | Max. Unreachable | Unreachable

LCSAJs | LCSAJs LCSAJs LCSAJ | Lines Branches
Density
Seqmain.cpp | 228 218 10 25 0 0

Figure 9: LCSAJ and Unreachability for procedural code

Quality Report — The Quality Report gives an instant view on the quality

47

different violations against standards considered “Optional (Advisory).”

of the source code analyzed. Overall LDRA’s Testbed gave the procedural program a
grade of fail. It reported 109 occurrences of eighteen different violations classified as
“Mandatory (Required) Standards,” eleven occurrences of three different violations

classified as “Checking (Mandatory/Required) Standards,” and eighty occurrences of six

Figures 10

through Figure 13 list the different standards that were violated. If a Motor Industry
Software Reliability Association (MISRA) code is violated, it is so annotated by the
LDRA report.

Figure 10: Procedural Mandatory Standards Violations

Figure 11: Procedural Checking Standards Violations
48

Number of (O)Optional(Advisory) MISRA

Violations Standards Code
1 Procedure contains essential
knots.
‘ 1 |Procedure is not structured. ‘
‘ 1 |DU data flow anomalies found. ‘
‘ 1 |DD data flow anomalies found. ‘
Loop index is not declared
17
locally.
59 Scope of wvariable could be MISRA 22
reduced

Coverage Report — The functional program achieved an overall grade of
fail because it only achieved 90% statement coverage and 86% branch coverage. 557 of

169 out of 196

Figure 12: Procedural Optional Standards Violations

INumber of procedures:

|
INumber of locally uncalled procedures: ‘
|
|

IMaximum loop depth: 5

|Total Cyclomatic Complexity: 61
INumber of reformatted executable lines: ‘ 642
INumber of lines of comments: ‘ 29

Figure 13: Procedural Global Basic Information

Functional

a possible 619 statements were covered during the testing process.

branches were covered by the testing tool.
used default test settings and did not conduct additional test runs to improve our

coverage. The graphics below were captured directly from Testbed’s report.

49

Again, in achieving 88% coverage, we only

Figure 14: Functional Dynamic Coverage Analysis Overall Report

Figure 15: Functional Statement Execution History Summary

50

Figure 16: Functional Branch/Decision Execution History Summary

Metrics Report — Our functional program returned a value of 109 knots
and a cyclomatic complexity of fifty-five. The 109 knots signals that the functional code
is disjoint and would require somebody trying to read the code to jump back and forth

between functions in order to understand what the code does. The cyclomatic complexity
51

of fifty-five demonstrates that the program can be re-ordered to improve readability and
reduce complexity. The figures below list the findings from the metrics report for

Halstead Metrics, LCSAJ and Unreachability.

File Total Total Unique Unique Vocabulary | Length Volume

Operators | Operands | Operators | Operands

Csma.cpp | 432 546 24 55 79 978 6165

Figure 17: Halstead Metrics for functional code

File Total Reachable | Unreachable Max. Unreachable | Unreachable
LCSAJs LCSAJs LCSAJs LCSAJ Lines Branches
Density
Csma.cpp | 237 227 10 10 0 0

Figure 18: LCSAJ and Unreachability for functional code

Quality Report — The Quality Report provides a view of the quality of the
source code. Overall LDRA’s Testbed gave the functional program a grade of fail. It
reported 115 occurrences of eighteen different violations classified as ‘“Mandatory
(Required) Standards,” fourteen occurrences of four different violations classified as
“Checking (Mandatory/Required) Standards,” and thirty-six occurrences of six different

violations against standards considered “Optional (Advisory).”

52

Figure 19: Functional Mandatory Standards Violations

Figure 20: Functional Checking Standards Violations

53

Number of (O)Optional(Adyvisory) MISRA
Violations Standards Code

Procedure contains essential
knots.

‘ 2 ‘Procedure is not structured. ‘
‘ 1 ‘DU data flow anomalies found. ‘
‘ 4 ‘DD data flow anomalies found. ‘
‘ 9 ‘Globals used inside procedure ‘
18 Scope of wvariable could be MISRA 22

reduced

Figure 21: Functional Optional Standards Violations

‘Number of procedures: ‘ 10
‘Number of locally uncalled procedures: ‘ 0
‘Maximum loop depth: ‘ 4
‘Total Cyclomatic Complexity: ‘ 55
‘Number of reformatted executable lines: ‘ 629
‘Number of lines of comments: ‘ 277

Figure 22: Functional Global Basic Information

c. Object-Oriented

Coverage Report — Technical difficulties prevented of coverage data for

the object-oriented program.

Metrics Report — The object-oriented program returned a value of fifty-
six knots and a cyclomatic complexity of forty-seven. The fifty-six knots indicates that
the object-oriented code is disjoint and would require somebody trying to read the code to
jump back and forth between functions in order to understand what the code is attempting
to accomplish. The cyclomatic complexity of forty-seven indicates that the program can
be re-ordered to improve readability and reduce complexity. The figures below list the

findings from the metrics report for Halstead Metrics, LCSAJ and Unreachability.

54

File Total Total Unique Unique Vocabulary | Length | Volume
Operators | Operands | Operators | Operands
Simulation.cpp | 363 734 25 122 147 1097 7898
Figure 23: Halstead Metrics for object-oriented code
File Total Reachable | Unreachable | Max. LCSAJ | Unreachable | Unreachable
LCSAJs | LCSAJs LCSAJs Density Lines Branches
Simulation.cpp | 188 183 5 25 0 0

Figure 24: Object-Oriented LCSAJ and Unreachability for procedural code

Quality Report — The Quality Report gives an instant view on the quality
of the source code analyzed. Overall LDRA’s Testbed gave the object-oriented program
a grade of fail. It reported 401 occurrences of thirty-one different violations classified as
“Mandatory (Required) Standards,” 102 occurrences of nine different violations
classified as “Checking (Mandatory/Required) Standards,” and seventy-five occurrences

of nine different violations against standards considered “Optional (Advisory).”

d. Reporting Characteristics

LDRA'’s Testbed has numerous report formats to support many different
decision processes. The static call-graph displays the connections between methods with

each method shown in a color that signifies the status of that method’s testing.

55

Figure 25: Object-Oriented Mandatory Standards Violations

Figure 26: Obj ect-Oriented Checking Standards Violations

Figure 27: Object-Oriented Optional Standards Violations

57

|Number of procedures:

| 49
lNumber of locally uncalled procedures: |
IMaximum loop depth: | 3
|Tota1 Cyclomatic Complexity: | 83
Number of reformatted executable 963
lines:
INumber of lines of comments: | 1017

Figure 28: Object-Oriented Global Basic Information

2. Parasoft

a. Procedural

Parasoft C++ (with integrated Code Wizard) detected 95 occurrences of
eight different rule violations (Figure 29).

File Edit Project Tesis Seftings Help

-
= 2 T ¥ @
open files] resdsmbols build test tast all atic rle wizard refresh

= seqmain.cpp Source tOUEI Test progress Resuls | Test case editor| Stub tables | Suppressions | Rules Manage
Dynamic anakysis Static analysis]

W [95] seqmaln.cpp

= 1] Informational

~-[117 Prefer iostream.h 10 stdio b (ecpp-2)

[[21] Prefer Ces-style casts (mecpp-2)

[121111 else, while, 2nd do statements shall be followed by a block, even iTitis emply (ucs-13)
[116] f a block is a single statement, it shall e enclosed in braces (ucs-14)

[[31'when working with float or double expressions, use less than or equal to or greater than or e
[11] Always provide a default branch for switch staternents (ucs-25)

[¥ 110 Dontcheck foats for equality check far greater than or l2ss than, (user208)

¥ W seqmain.cpp
H ¥ g GLOBAL SYMBOLS

F-FE-F-EEH-EEHCE

Figure 29: Parasoft Procedural Static Analysis Report

b. Functional

Parasoft C++ (with integrated Code Wizard) detected eighty-three
occurrences of eight different rule violations (Figure 30) during static analysis of the
functional version of the source code. Of the 328 test cases conducted, 321 passed and

seven reported time-out errors (Figure 31).

58

source code.

C.

Object-Oriented

Parasoft C++ (with integrated Code Wizard) detected 122 occurrences of

exception errors (Figure 33).

12 different rule violations during static analysis of the object-oriented version of the
The findings for the six classes are summarized in Figure 32. Of the
seventy-one test cases conducted, fifty passed and twenty-one reported access violation

Insure++ reported thirty-nine outstanding memory

double ch_busy
douhle clock

double d_clock
double delay
double[g] delay_ci

double delay_sdy

nnnnnnnnnnnnnnnn“““““g

4

double average_delay
double hackoff_time

double delay_con_int

double callision_end_time
double collision_rate

double[] collision_rate_ci
double callision_rate_surr

double delay_sagr -
| »

[1] Ahways provide a default branch for switch statements (ucs-35)
[9] Don't check floats for equality; check for greater than or less than. (user-208)

T C++Test ==
File Edit Project Tests GSettinogs Help
= i B F @
openfilefs] readsymbols build test test all static ruldwizard refresh
= Csmacpp Source cnde' Testprogress Results | Testcase editor Stuhtahlesl Buppressinmal Rules Managerl
Dynamic analysis Static analysis I
‘ [83] Csma cpp
|- 4P GLOBAL SYMBOLS = [18] Prefer instream.h to stdio.h (ecpp-2
- woid arrival_ewvent([1121 Prefer G++-style casts (mecpp-2)
-2 woid atternpt_evert([1151 17, else, while, and do statements shall be followed by a block, even ifitis empty (Ucs-13)
- void calculate_results([1117 a block is a single staterment, it shall be enclosed in braces (Ucs-14)
-2 void departure_eventd [B¥ (100 Whenever a global function or variable is referenced, use the - operator {ucs-15)
S void find_backoff_time(] =-[f [7]When working with loat or double expressions, use less than or equal to or greater than or equal to instead of == (Ucs-27)
= ol intmaing -3 CiDocuments and SettingsiadministratorDesktoptunctional codelCema.cpp © 254
=l woid pick_eventd # CiDocuments and SetingsiadrministratorDesktoptunctional codelGsma.cpp | 305
= void resched_attemptd ChADocuments and SettingswdministratorDesktopifunctional codelGsma.cpp @ 345
- woid show_results CiDocuments and SettingsiadministratoiDesktoptfunctional codelCsma.cpp © 348
= woid transmit_event ChDocuments and Settings\administratoriDesktapifunctional code\Csma.cpp : 383
double arrival_rate = # CiDocuments and SetingsiadrministratorDesktoptunctional codelGsma.cpp © 412
double arrival_rate_slots -% CaDocuments and Settings\administratorDesktoplfunctional code\Csma.cpp 1 427

Output | Messages I

Static analysis done.

= |
;astart”J & <2 H & Csma - Microsoft bisual C. .. I ++Test funcstaticresults - wordPad

IPrDject: funcz®

Figure 30: Parasoft Functional Static Analysis Report

59

& 1z43Pm

*. Csma - Microsoft ¥isual €+ + - [Esma.cpp] "

Fils

Edit Praject Tests

Settings

Help

=1=)=]
=

=3 T & W & @
openfilefs) readsmbols build test testall static rulwizard refresh

= Csma.cpp

-7 ¢

Rlaklolkblalfor

j

G
<
L 4
<
<
L 4
<
<
L
<
R
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

LOBAL SYMBOLS

= |
woid arrival_event)

woid attempt_event()
woid calculate_resultsd
woid departure_event()
woid find_hackoff_time(
int rmaing

woid pick_event(

void resched_attempt)
woid show_results)
woid transmit_event

double arrival_rate
double arrival_rate_slots —
double average_delay
double backof_time

double ch_husy

double clock

double callision_end_time
double collision_rate
double[6] collision_rate_ci
double callision_rate_surr,
double d_clock
double delay
doublefs] delay_ci
double delay_con_int
double delay_sdv
double delay_sqr
double delay_sum

o

Source cndel Testprogress Results I Testcase Ednnrl Stub Iab\asl Suppressmnsl Rules Managerl

Dynamic analysis | Static analysis'

Showe |a|| results ;'Dflype !AN‘r’ LI Clear
[¥ 4@ [321 0 7/328] GLOBAL SYMBOLS
= @ [10071] waid arrival_eventd

Mo parameters

[50 0 0J50] void attempt_event()
[24 011 25] void calculate_results
[1007r1] woid departure_ewvent(
[50 00/ 50] void find_backof_timeg
[10071] intmaing

[50 0 07 50] void pick_event()

[47 0 2750] void resched_atternpt
[B0 00/ 50] void show_results

[47 0 3750] void transmit_ewent()

G
RARRRRRRE
(TYTTTTTY R

Output | Messages |

5|

=

| Project: funczZ?®

PRstart |J o] & 1 H @ Csma - Microsoft Visual C... IIGUT
Figure 31: Parasoft Functional Dynamic Analysis Report

@< 1zmaPm

Clock

EventList

IdList Network | Simulation StationList

Total

Ecpp-2

1 11 1

16

Ecpp-12

Mecpp-2

18

20

Ucs-13 2 1 3 17 1 24
Ucs-14 2 1 3 14 20
Ucs-15 3 5 1 9 1 19

Ucs-23

Ucs-27

Ucs-32

Ucs-35 1 1
Ucs-37 2 2
User-208 2 4 6

Figure 32: Parasoft Object-Oriented Static Analysis Summary Table

60

|21 x|

File Edit Project Tests Seftings Help

/=3 7 @
openfilefs] readsymbols build test testsll refresh
= clockcpp Source codel Test progress Results | Testcasze editorl Stubtablesl Suppressiomsl
"< CUEREE Y Show |a|\ results ;qutype |ANY ;I Clear |
= idListcpp
& itk EIIV & [50021771] float getEventTime(int, int) j
' RR oo ARGE next_station=1, eveniType=-2147483648 ARGE POST. next_siation=1, eveniType=-2147483648 RET. 1 #INF FRE: thi:

= simulation.cpp ARGS: next_station=993315, eveniType=1, PRE:this={.} J

- & Error occurred:
® Accessviolation exception

® atCADOCUME~TADMINI~TDesktomO0CODE~NEYENTL~1 CPP : 30
-

- Stacktrace:
- float getEventTimedint, int)’ at CADOCUME~1ADMINI-1\Deskiom 00 CODE~NEVENTL~1.CPP : 30

ARGE: next_station=0, eveniType=-1, ARGS POST. next_station=0, eveniType=-1, RET. 2.70451e-043 PRE. this={.} POST. it
ARGE: next_station=-211, evenitType=0, ARGE POST. next_station=-211, eveniType=0, RET. 4 67787e+007 PRE: this={..}, PL

ARGE: next_station=2147483647, eventType=276, ARGS POST nex_station=2147483647, eveniType=276, RET.1#MNF FRE
ARGE: next_station=583477, evenfType=-1, PRE: this={..},

ARGE: next_station=-1, eventType=1, ARGS POST. nex_station=-1, eveniType=1, RET:0 PRE:this={..}, POST:this={..}
_| i_ZE ARGE: next_station=1, eventType=1, ARGS POST: next_station=1, eventType=1, R’ET'I-1 17549e-038 PRE: this={ }, POSTﬂ;I
4 3

stationList.cpp

|

W eventListepp
7 g EventList
& GLOBAL SYMBOLS

(E3}

]

Output Messagesl

H|4|>|H| b if:'l*l.'

Error occurred during testing function "getEventTime" eventlList.cpp line: 30
Access violation exception

-

Stack trace:

Test case(s) which caused this error:
1. ARGS: next station=42959, eventType=1, PRE:this={..]

=

|PEDJECE: semaintestprojectooverage™

iﬁstart |J :tﬂ e @ “ & simulation - Microsoft Visu, |§E++Te§t @(EI* 10:22 AM

Figure 33: Parasoft Object-Oriented Dynamic Report

d. Reporting Characteristics

C++Test, CodeWizard, and Insure++ provide itemized reports of
discovered errors, but do not provide extensive summary reports. Thus, the reports

generated by these tools are quite different than those provided by LDRA.

During the execution of testing C++Test reports the progress using bar
graphs to indicate the number and percentage of methods and tests conducted.
Additionally, if coverage is enabled the tools will highlight the lines of code which have

been tested. Figure 34 demonstrates the reports shown during test execution.

61

#iCoverage for eventlist.cpp i])

H?:}C++Test File:iDocuments and Settings\AdministratonDeskiopl00 codeleventlist.op)
File Edit Project Tests Settings Help lzn vold Eventlist :: initializei(] { =
121 83 double x = 0.0;
[T R @ 122 /% Tnitialize the event list ¥/
open filefs] readsymbols build test stop refresh 123 a3 for (int i = 0; i < MAX STATIONZ: i++)
- 124 {
i - Ii
2 tlockcpp 1| Source code TestpmgresslResultsITestcase editor| Stultables 125 526 for (int 4 = 07 1 € 47 94+
= eventlistcpp @ ’ H Il 126 1
idListepp | |[Recerd Play Stop Pamse 127 3304 event time[i][J] = infiniteE:
& network 128 | 3304 x = (Eloat] rand():
= network.cpp = 129 3305 if (j == 0}
class|:iEventList 130 1652 event time[i][]] = x;
[@& eventListons EventList () 131| 3303 |
=M g EventList - - - 132 a25 y
e & GLOBAL SYMBOLS float getEventTime (int, int) Lo .
Bvoid initialize() L34 3
int nextEvent () 135
float nextEventTime () 136]
int next3tationf) =
4 | |

Output Progress

Tests: 432 % (21148
Methads: EENNEEEEER 28 % (217)
Clagses: 0% (D}
UI | IP[D]ECE: geqmalntestprojectocoverage

iﬁstart |J m e @ “ swmu\atlon—Ml...I e Insta I @OO code I §C++Test I @ESPN.com: MLml @Enverage fo... @untltled—Pamt @(ﬂ* 945 AM
Figure 34: Parasoft Testing Status Report

Results of the static analysis conducted upon the source code are reported
under the “Static analysis” tab under the “Results” tab as shown in Figure 35. The
number in square braces next to the file name indicates the total number of occurrences
of coding rule violations within that file. The next line indicates the number of
occurrences of violations of a specific coding rule. Expanding the line reveals the

location (i.e., source code line number) of each occurrence of the violation.

62

File Edit Project Tests Setings Help

-
= It w £ @
spen file(s) readsymbols build st testall static rufwizard refresh

= clockcpp Source cnde' Test progress RESUllSlTestcase editor | Stub tables | Suppressions | Rules Manager

= eventlist.cpp Dynamic analysis Static analysis |

= idlistopp ‘ [6] stationList.cpp

netwark.cpp [[1] Prefer iostream h t stdio h (2epp-2)

-) [B [111f, else, while, and do statements shall be followed by a black, even ifitis empty (ucs-13)
simulation.cop B [1]Wwhenever a global function or variable is referenced, use the - operator (ucs-15)

= stationList.cpp =l [31 Functions shall explicitly declare their return type (Ues-23)
= -+ ClDocuments and Settings\AdministratonDeskiomO0 codelstationList.epp : 28

v

t stationListepp
-

-# CiDocuments and SetlingstAdministratonDesklopQ 0 codelstationList.cpp : 41
& StationList

- CaDocuments and SetlingstAdministratonDesklopQ 0 codelstationList.cpp ; 45

&3]

Qutput Messages |

H<|>|H| |F'«'|at|.'

iPrDject: *

o] |
iﬁstart |J :tﬂ e @ “ & simulation - Microsoft Visu, Iﬁ'i;t++Te§t seuparastatlcresults—Wo... @(EI* 12:52 PM
Figure 35: Parasoft Static Analysis Report

Results of the dynamic analysis conducted on the source code are reported
under the “Dynamic analysis” tab under the “Results” tab as shown in Figure 31. Each
line indicates the status of testing for an individual method. The numbers in the square

braces on the first line indicate the following information (Figure 36):

° OK: The number of test cases that in which the method returned and had
the correct return value and/or post-condition

° Failed: The number of test cases in which the test did not have the correct
return value or post-condition

) Error: The number of test cases in which the method crashed

) Total: The total number of test cases used

63

Error

" ;

= b [T 02050 void transmil_eventd

Failed Total

Figure 36: Parasoft Method Test Status

Clicking on a test case’s results will cause its branch to expand. If a test
case passes, it will display (in green) the number of times it was executed (in braces) and
its arguments, returns, preconditions, and post-conditions as shown in the second line of

Figure 37.

- 4 [5002171] float getEventTimedint, int)
----- # ARGE: next_station=1, eveniType=-2147483648, ARGS POST: next_station=1, eventTvpe=-2147433648
EI---J ARGE: nextstation=993315, eventType=1, PRE:this={..},
- @ Efror occurred:
----- # Accessviolation exception
- at CADOCUME~TWDMINI~11Desktop OO CODE~TEVEMTL~1 .CPP - 30
- @ Stacktrace:
L float getEventTimelint, int)' at CADOCUME~TADMINI~T\DesktiopDOCODE~NEVEMTL~1.CPP : 30
----- ® ARGS next_station=0, eventType=-1, ARGS POST: next_station=0, eventType=-1, RET: 2.7T0451e-043 |

Figure 37: Parasoft Method Test Case Detailed Report

If a test case had an error or failed, expanding its branch will display the number
of times it was executed (in braces, in red), its arguments, returns, preconditions, post-
conditions, and details about the type of exception or error found. It also indicates the
line number at which the exception or error occurred as shown in the lines three through
nine in Figure 37.

3. Logiscope

a. Procedural

Telelogic’s Logiscope reported 218 occurrences of fourteen different

programming rule violations as listed in Figure 38. If a rule is violated, it is so annotated

64

Rule i
. Rule Name State Lines
Mnemonic
. Function declaration in .
ansi ANSI syntax Violated 55,
I ||Assignment in function calls || O
assca ssignment in function calls ||;- 4 -
brkcont |[Break and continue Violated ||168, 170, 200, 231,
forbidden
cast Prefer C++-style Casts Violated 2(7)’7 13Zé§ 139297’ 232219’ 232853, 225, 243, 264, 266, 299, 301,
25, 25, 25, 25, 25, 25, 28, 57, 58, 59, 60, 61, 63, 64,
64, 64, 67, 68, 68, 68, 71, 73, 77, 78, 79, 80, 81, 82,
83, 84, 85, 86, 95, 97, 107, 118, 134, 146, 148, 177,
183, 192, 200, 234, 236, 238, 238, 247, 247, 252, 254,
const Literal constants Violated 255, 260, 262, 267, 267, 271, 275, 277, 278, 283, 287,
291, 296, 298, 302, 302, 310, 310, 317, 319, 320, 321,
325, 330, 330, 334, 338, 340, 341, 348, 351, 362, 364,
367, 369, 374, 389, 390, 391, 392, 393, 394, 398, 400,
406, 411,418,419, 420, 421, 422, 423, 424, 425, 426,
ctrlblock Blocks in control statements [|Violated égg’ ;é;’ 21;? ’ ; 321 ’ 31 17 (;) ’313902 ’323030’324301 ’325574’326697’ 270,
expreplx Expressions complexity Violated 64, 67,225,266, 301, 309, 329, 383, 408, 413,
headercom Function and class header Violated 55,
- comments
Headercom ||[Module header comments Violated 1,
identl |[Identifier length |[Violated |[34, 35, 36, 36, 52, 52, 52, 52,
A single variable per .
sgdecl declaration Violated 34,35, 36,37, 38, 39,40, 41, 42,43, 52, 53,
slecom Use // comments Violated 22,23, 24, 25, 27, 28, 29, 30, 31, 32, 45, 46, 48, 49,
— 93, 103, 129, 154, 159, 197, 207, 283, 348, 356,
slstat One statement per line Violated ;gg’ 113, 123, 151, 170, 200, 231, 267, 287, 302, 310,
swdef ||default within switch |[Violated 152,

Figure 38: Logiscope Procedural Rule Violations

65

in red within the “State” column followed by a listing of source code line numbers where
the rule violation occurs in the “Lines” column. If a rule is not violated, it is so stated in
green in the “State” column. Only one rule which was not violated is shown for
demonstration purposes, all other rules which were not violated were removed from the

table for space concerns.

b. Functional

Technical difficulties were experienced in trying to conduct tests on the

functional version of the software. Test results were inconclusive.

c Object-Oriented

Logiscope identified 372 occurrences of twenty different rules violations
in the object-oriented version of the network simulation program. The reports are in the
same format as for procedural with each file’s violations displayed in a separate table.
Technical difficulties were encountered with the Quality Report. Function level
attributes were measured to be in the “Excellent” or “Good” range for more than 90% of
the functions.

d. Reporting Characteristics

Logiscope provides its reports in HTML format, which allows for easy
navigation within the reports. The Rules report contains the table listed in Figure 38.
Additionally, it includes a separate table for each rule listing the occurrences of violations
for each file (Figure 39). There is an additional “Synthesis Table” which creates a matrix
summarizing the number of violations of each rule per each file. Each mention of a rule
is hyperlinked to a detailed explanation of the rule at the bottom of the report. File names
are linked to the table which lists the violations within that report. The reports also list
the date and time the analysis was last conducted on each file. This feature assists in the

management of the testing reports.

66

The Quality report is also in HTML format and provides similar hyperlink
features as the Rules report. When analyzing object-oriented programs, Logiscope

parammode : Parameters mode

File Name || State || Lines
clock.cpp | Violated 114, 14, 14, 32, 41, 50,
eventList.cpp || Violated ||
idList.cpp || Violated ||54, 54, 59, 64, 64,
network.cpp || Violated 8, 14, 35,
87,87, 115, 115, 115, 160, 160, 160, 240,
simulation.cpp Violated 240, 240, 348, 348, 348, 402, 402, 402,
447,447,448, 448, 492, 492, 28,
stationList.cpp || Violated 128, 41, 54, 59, 59, 59, 63, 63, 67, 67, 71,

Figure 39: Logiscope Rule Violation Report

provides reports on three levels: application, class, and function. At the application level,
the project is given a Maintainability score of Excellent, Good, Fair or Poor. The score is
based on the project’s scoring in four areas: Analyzability, Changeability, Stability, and
Testability. All five areas are hyperlinked to the functions the tool uses to calculate the
scores. The scoring tables are followed by a table listing over twenty application level
metrics including Method Inheritance Factor, Method Hiding Factor, Polymorphism

Factor, Coupling Factor, and many others including cyclomatic complexity measures.

The Class level section of the report displays the same attributes as the
Application Level with the addition of three metrics: reusability, usability, and
specializability. Again, each is hyperlinked to explanations of the methods for

determining each attribute’s values.

B. TESTING TOOL METRICS

During the application of the three testing-tool suites on the three software

versions, measurements were taken to calculate the testing-tool metrics.

67

1. Human Interface Design

To calculate the human-interface design (HID) metric, measurements were taken
during three operations: establishing test project, conducting test project, and viewing

testing results.

While conducting the operations with the LDRA tools, there were six occasions
that required the user to transfer from the keyboard to the mouse or vice versa. Dividing
this number by the number of operations (three) results in an average of two keyboard-to-
mouse switches (KMS). There were fifteen input fields resulting in five average input
fields per functions (IFPF). Eleven of the input fields required only mouse clicks and
six required entry of strings totaling eighty-three characters. = The average length of
input fields (ALIF) was calculated by dividing the sum of these inputs (ninety-four) by
the number of input fields (sixteen) resulting in an ALIF of six. In attempting to identify
the functions of sixteen buttons, eleven were identified correctly. The percentage of
68.75 was subtracted from 100, divided by ten, and rounded to the nearest integer to
arrive at a button recognition factor (BR) of three. The sum of KMS, IFPF, ALIF, and
BR earns LDRA a HID score of sixteen.

The same operations were performed with the Telelogic products. There were
fifteen occasions that required the user to transfer from the keyboard to the mouse or vice
versa. Dividing this number by the number of operations (three) results in an average of
five keyboard-to-mouse switches (KMS). There were twenty-four input fields resulting
in eight average input fields per functions (IFPF). Seventeen of the input fields required
only mouse clicks and seven required entry of strings totaling 146 characters. The
average length of input fields (ALIF) was calculated by dividing the sum of these inputs
(163) by the number of input fields (twenty-four) resulting in an ALIF of seven. In
attempting to identify the functions of ten buttons, four were identified correctly. The
percentage of forty was subtracted from 100 and divided by ten to arrive at a button
recognition factor (BR) of six. The sum of KMS, IFPF, ALIF, and BR earns LDRA a

HID score of twenty-six.

Repeating the operations with the Parasoft tools, there were six occasions that

required the user to transfer from the keyboard to the mouse or vice versa. Dividing this

68

number by the number of operations (three) results in an average of two keyboard-to-
mouse switches (KMS). There were twenty-two input fields resulting in eight average
input fields per functions (IFPF). Sixteen of the input fields required only mouse clicks
and six required entry of strings totaling sixty-nine characters. =~ The average length of
input fields (ALIF) was calculated by dividing the sum of these inputs (eighty-seven) by
the number of input fields (twenty-two) resulting in an ALIF of four. In attempting to
identify the functions of sixteen buttons, fourteen were identified correctly. The
percentage of seventy-five was subtracted from 100, divided by ten and rounded to the
nearest integer to arrive at a button recognition factor (BR) of three. The sum of KMS,
IFPF, ALIF, and BR earns LDRA a HID score of seventeen. The HID scores for the

three tool suites are shown in Table 1.

Table 1. Human-Interface Design Scores

Parasoft Telelogic LDRA
KMS 2 5 2
IFPF 8 8 5
ALIF 4 7 6
BR 3 6 3
HID 17 26 16

2. Test Case Generation

Test case generation (TCG) measurements were also obtained for each group of
tools. LDRA does not automatically generate test cases but does provide user-friendly
features such as pull-down menus for created test cases therefore it was assigned an eight
for its level of automated test case generation (ATG). LDRA offers user-friendly features
to allow for modifying existing test cases so it earned a score of ten for its level of test

case reuse functionality (TRF). Telelogic does provide automatic test case generation so

69

it earned an ATG score of ten. However, authors were unable to find reference to test
case modification within the testing tool application or documentation. Therefore, it was
not assigned a TRF value. Parasoft also provides automatic test case generation and user-
friendly test-case-reuse functions, resulting in scoring ten in both ATG and TRF. The

sums of the ATG and TRF are given in Table 2.

Table 2. Test-Case Generation Scores

Parasoft Telelogic LDRA
ATG 10 10 8
TRF 10 0 10
TCG 20 10 18
3. Reporting Features

The Reporting Features (RF) metric is determined by one point for automatically
generating summary reports and one point for producing reports in a format (e.g., HTML
or ASCII text documents) that are viewable outside the application. LDRA and Telelogic
automatically generate summary reports formatted in HTML earning a RF measure of
two for each vendor. Parasoft also automatically produces summary reports, but they
must be viewed within the Parasoft testing application. Therefore, Parasoft’s RF measure
is one.

4. Response Time

Each tool performed well with regards to response time. LDRA averaged twenty-
five minutes in performing its tests. Telelogic averaged approximately thirty-five
minutes. Parasoft averaged forty-three minutes.

5. Feature Support

The Feature Support (FS) is the count of the following features that are supported:
tool supports user-written functions extending tool functionality, stores information in a

database open to the user, and integrates itself into software development tools. LDRA

70

supports all these features resulting in a FS of three. Telelogic supports an open database
and integration, but the authors were unable to determine its extendibility support.
Telelogic earned a FS score of two. Parasoft integrates itself with software development
tools, but no information regarding the two other features was available. Therefore,
Parasoft’s FS value was assigned a value of one.

6. Metric Suites Supported

The Metric Suites Supported (MSS) metric is based on the tool’s support of three
different software quality metric suites: McCabe, function points, and Halstead. Parasoft
does not report on any of these metrics, and hence, it is assigned a value of zero.
Telelogic and LDRA report on McCabe and Halstead, but not function points, earning
each a MSS value of two. LDRA is developing the capability to report function-point
metrics.

7. Maximum Number of Classes

No tool reported a limit on the number of classes it could support when testing
object-oriented programs. Even so, this metric should remain within the testing tool
metric. It could be severely damaging to a software development project’s success if a
tool were selected and implemented only to discover it could not support the number of
classes contained in the project.

8. Object-Oriented Software Quality Metrics

The Object-oriented Software Quality Metrics is the count of various object-
oriented software metrics including those from the metrics suites created by Chidamber
& Kemmerer, Lie & Henry, Lorenz & Kidd, and Henry & Kafura. Parasoft does not
report any of these metrics, resulting in no score. Telelogic supports the Chidamber &
Kemmerer suite, the Le & Henry suite, as well as several from the Lorenz & Kidd suite,
thus earning an OOSWM value of twelve. LDRA also supports metrics from several of
the suites warranting a score of eleven. Measurement of this metric is complicated
through tools referring to measurements by titles not matching those listed in the suites.
Project managers should consult tool documentation or vendor representatives if a

desired metric does not appear to be supported.

71

0. Tool Management

None of the three testing tool suites provide different access levels or other
information control methods. Tool management must be controlled via computer policies
implemented in the operating system and other applications outside of the suite of testing
tools.

10. User Control

All tools offered extensive user control of which portions of the code would be
tested by a specified test case. Each allowed the user to specify a function, class, or
project, or any combination of the three, to be tested.

11. Other Testing Tool Metrics

The remaining testing tool metrics require execution of extensive experiments or
input from tool vendors. The scope of our research prevents conducting detailed
experiments. Along with insufficient input from the vendors, this prevents analysis of the

remaining metrics.

72

V.

A. TESTING TOOL RESULTS

RESULTS

The three suites of testing tools provided interesting results on the relative quality

of the three versions of the software under test. LDRA’s Testbed reported an increasing

number of programming-standard violations as the procedural version was first converted

to the functional design then translated into the object-oriented version. The number of

standards violations also increased as the design moved away from procedural design.

Although the quantity of violations and the quantity of types of violations increased, the

cyclomatic complexity decreased at each increment. Statement and branch coverage did

not significantly differ across the three versions. While the other tools reported different

information, their results were consistent with an increasing number of errors discovered

in the non-procedural version yet increased levels of quality. Table 3 summarizes the

findings.
Table 3. Summary of Tool Findings
Procedural Functional Object-Oriented
LDRA 88% statement coverage | 90% statement coverage | Not available
83% branch coverage 86% branch coverage Not available
130 knots 109 knots 56 knots
61 cyclomatic 55 cyclomatic 47 cyclomatic
complexity complexity complexity
109 occurrences of 18 115 occurrences of 18 401 occurrences of 31
different mandatory different mandatory different mandatory
standards standards standards
11 occurrences of 3 14 occurrences of 4 102 occurrences of 9
different checking different checking different checking
standards standards standards
80 occurrences of 6 36 occurrences of 6 75 occurrences of 9
different optional different optional different optional
standards standards standards
Parasoft 95 occurrences of 8 83 occurrences of 8 122 occurrences of 12
different rules different rules violations | different rules
violations violations
Telelogic | 218 occurrences of 14 Not available 372 occurrences of 20

different rules
violations

different rules
violations

73

The tools offer differing views of the quality of the software under test. When
testing the procedural program, LDRA reported 200 occurrences of twenty-seven
different coding standards, Telelogic reported a similar 218 occurrences but of only
fourteen different rule violations, and Parasoft reported only ninety-five occurrences of
only eight different rule violations. These differences can be attributed to the different
standards and rules that are tested for by each tool. LDRA appends several industrial
standards such as the Motor Industry Software Reliability Association (MISRA) C
Standard and the Federal Aviation Authority’s DO-178B standard. Likewise, the set of

standards tested for by Telelogic and Parasoft intersect but are not identical.

Similar results occur when comparing tool results for the functional and object-
oriented versions. Project managers should compare these differences to determine
whether they would have an affect on the tool selection decision. If the additional
standards used by LDRA are not an issue for current or prospective customers, the impact

would be minimal.

B. TESTING TOOL METRIC RESULTS

After developing the proposed testing tool metrics, we applied them to the three
testing-tool suites. During the process of applying the metrics, we discovered that several
of the metrics are quite difficult, if not impossible, to calculate without having additional
information supplied by the tool vendor. For example, if a vendor has not conducted a
study on the tool’s operational retainability by its users, experiments would need to be
designed and conducted to evaluate the performance of users in applying the tools. If a
vendor does not have statistics on its average response time to customer support requests,

calculating the measure would be impossible.

Success was achieved in applying several of the metrics including human-
interface design (HID), test-case generation (TCG), and reporting features (RF). HID
measurements were calculated for each testing tool based on the sub-metrics of average
keyboard-to-mouse switches (KMS), average input fields per function (IFPF), average
length of input fields (ALIF), and button recognition (BR) when applicable. The sub-

metrics demonstrated non-coarseness (different values were measured), finiteness (no

74

metric was the same for all tools), and non-uniqueness (some equal values were
obtained). The HID measurements were all unique, indicating that the measurement

could be useful in comparing tools during the evaluation and selection process.

Test-case generation (TCG) measurements also provided unique measurements
for each tool. Sub-metrics measuring levels of automated test-case generation (ATG) and
test case reuse functionality (TRF) demonstrated the qualities of non-coarseness,

finiteness, and non-uniqueness.

Reporting features (RF) measurements were also successful. It is simple to
determine whether a tool automatically generates summary reports (SR) that are viewable
without the tool application running (e.g., HTML or ASCII text document) (ER). The RF
metric is non-coarse, finite, and non-unique. However, because each tool earned a SR
score of one, additional testing should be conducted to determine SR’s level of non-

uniqueness.

Response time (RT) measurements for the three tools were all different. This
indicates that RT is non-coarse and finite. Although not proven, it seems apparent that if
two tools were to complete a test run in the same amount time, then they would receive a

non-unique score.

No tools shared the same feature support (FS) nor Object-Oriented Software
Quality Metrics (OOSWM) measurements. Therefore, they are non-coarse and finite, but

an expanded study group of tools is required to verify their non-uniqueness.

Two tools earned the same metric-suite-supported score indicating non-
uniqueness, while the third earned a different score showing the metric’s non-coarseness

and finiteness.

All three tools earned the same score in the Tool Management and User Control
metrics. Further research must be conducted to determine the validity and usefulness of

this metric.

The Maturity & Customer Base, Ease of Use, Tool Support, Estimated Return on

Investment, Reliability, and Maximum Number of Parameters metrics were not

75

completed. In order to do so would involve conducting extensive experiments or

obtaining tool-vendor input, the latter of which is not readily available.

76

VI. CONCLUSION

A. SUMMARY

Automated testing tools vary in their underlying approach, quality, and ease-of-
use, among other characteristics. Therefore, evaluating available tools and selecting the
most appropriate suite of tools is vital to project success. The tool selection process,
however, can be difficult and time-consuming due to the lack of metrics for measuring a
tool’s characteristics and comparing them to other tools. We have proposed a suite of
objective metrics for measuring tool characteristics, to aid decision maker in
systematically evaluating and selecting automated testing tools. These metrics are not

tied to a specific architectural framework or programming language.

B. RECOMMENDATIONS FOR FUTURE WORK

The recommendations for future work include conducting more intensive testing
of the tools cited in this thesis to include regression testing, testing the tools against larger
and more complex software systems, including additional tools in the analyses, and

analyzing the validity and utility of the proposed testing-tool metrics.

Conducting more intensive testing of previous tools includes creating additional
test cases and modifying default test settings to improve test coverage and conducting
regression testing. In our research, we used the default test settings of each tool to
provide a baseline for measuring tool characteristics. Further research could be
conducted to compare the testing tools under various operating system configurations and
tool settings. Additional research could be conducted to measure a tool’s capability and
efficiency in measuring and improving testing coverage through modifying default
settings and incorporating additional test cases. Research may also be conducted to

measure a tool’s ability to conduct and manage regression testing.

In our research, we implemented only three suites of testing tools that support
C++ programs. Further work could incorporate a larger number of suites from different

vendors such that a wide spectrum of programming languages are supported by the pool

77

of tool suites. This would reduce the likelihood of language-specific factors affecting the

research findings.

Our case study of a discrete-event simulation program could be supplemented by
case studies for which the target software has a higher degree of encapsulation,
inheritance, and polymorphism. The results could be used to determine the tools’

capability and efficiency in dealing with such attributes.

The greatest opportunity for follow-on work is to research the validity and utility
of the proposed suite of testing-tool metrics. The proposed metrics are based on the
research conducted on evaluation versions of three commercially available suites of
testing tools. Further research could be conducted to determine the metrics’ validity in
measuring the characteristics of testing tools and to ascertain their utility in evaluating
and selecting among testing tools. For instance, are the metrics invalid and therefore
useless? Do the proposed metrics provide valid measurements but provide minimal
usefulness in the tool selection process? Or do they provide valid measurements that are
useful in evaluating similarities and differences between automated software testing

tools?

78

APPENDIX A. PROCEDURAL CODE

This appendix contains the procedural version of the CSMA/CD simulation

program.

include <stdio.h>
include <stdlib.h>

include <math.h>

define MAX STATIONS 10 /* Number of stations */

define BUS RATE 2000000.0 /* Transmission rate in bps*/

define PACKET LENGTH 1000.0 /* Packet length (bits) */

define BUS LENGTH 2000.0 /* Bus length in meters */

define MAX BACKOFF 15.0 /* Backoff period in slots*/

define PERSIST 0.0 /* Persistence */

define JAM PERIOD 5.0 /* Jamming period */

define MAX PACKETS 226 /* Maximum packets to be

transmitted in a simulation run */

define FACTOR 1000.0 /* A factor used for changing

units of time */

define MAX Q SIZE 50 /* Maximum queue size */
define ID SIZE 50 /* Size of the identity array */
define DEGREES FR 5 /* Degrees of freedom */

double arrival rate; /* arrival rate (in packets/sec) per station */

double arrival rate slots; /* arrival rate (in packets/slot) per

station */

double packet time; /* packet transmission time */

79

double t dist par[10]
={12.706,4.303,3.182,2.776,2.571,2.447,2.365,2.306,

2.262, 2.228}; /*

T-distribution parameters */
double start time [ID SIZE]; /* starting time of packet */

double event time [MAX STATIONS][4]; /* time of occurrence of an event

*/
double delay ci [DEGREES FR + 1]; /* array to store delay values */

double utilization ci[DEGREES FR + 1]; /* array to store utilization

values*/

double throughput ci[DEGREES FR + 1]; /* array to store throughput

values */

double collision rate ci[DEGREES FR + 1]; /* array for collision rate

values*/

double slot size, p, ch busy;

double rho, clock, d clock, no pkts departed, next event time;
double x, logx, rand size, infinite;

double delay, total delay, average delay;

double delay sum, delay sqgr, delay var, delay sdv, delay con int;
double utilization, utilization sum, utilization sqgr;

double utilization var, utilization sdv, utilization con_int;
double throughput, throughput sum;

double collision rate, collision rate sum, collision end time;

double select prob, backoff time, packet slots;

int queue size [MAX STATIONS]; /* current queue size at a station */
int queue id [MAX STATIONS] [MAX Q SIZE]; /* array for id numbers of
packets */

int id list [ID SIZE]; /* array of id numbers */
80

int id attempt stn [MAX STATIONS]; /* array to identify attempting

stations */

int Jj, ic, 1ii, next station, next event, next, id number;

int no attempts, no trans, no collisions, select flag;

int main ()

printf ("The following results are for: \n");

printf ("Degrees of freedom = %d\n", DEGREES FR);

printf ("Confidence Interval = 95 percent \n");

printf (" \n") ;

printf ("\n") ;

arrival rate 0.0;

slot size BUS LENGTH * FACTOR * 5.0 * pow (10.0, -9.0);

P = PERSIST;

packet time PACKET LENGTH * FACTOR / BUS_RATE;

packet slots (double) (int) (packet time/slot size) + 1.0;

infinite 1.0 * pow (10.0, 30.0);

rand size = RAND MAX;

for (1i=0; ii < 10; ii++)

arrival rate = arrival rate + 20.0;

for (ic = 0; ic <= DEGREES FR; ic++)

81

rho = 0.0;

ch busy = 0.0;
clock = 0.0;
d clock = 0.0;
collision end time = 0.0;
utilization = 0.0;
no pkts departed = 0.0;
total delay = 0.0;
next event time = 0.0;
average delay = 0.0;
no collisions = 0;

select flag = 0;

/* Compute the traffic intensity. If the traffic intensity

is greater than unity, stop the program. */

rho = arrival rate * PACKET LENGTH * MAX STATIONS / BUS_RATE;

if (rho >= 1.0)
{
printf ("Traffic intensity is too high\n");

exit (1) ;

/* Initialize all variables to their appropriate values. */

arrival rate slots = arrival rate * slot size;

for (int 1 = 0; i < MAX STATIONS; i++) queue size[i1]=0;

82

for (int k = 0; k < ID SIZE; k++)
{
start timelk] = 0.0;
id list[k] = 0;

}

for (int m = 0; m < MAX STATIONS; m++)

{

for(int 1 = 0; 1 < MAX Q SIZE; 1++) queue id[m] [1]=0;

}

for (int n = 0; n < MAX STATIONS; n++)

for (3 = 0; J < 4; j++)
{

event time[n] [Jj] = infinite;

X (double) rand();

x * FACTOR/rand size;

X
Il

if (J == 0) event time[n][]] = x;

/* Scan the event list and pick the next event to be executed.

while (no pkts departed < MAX PACKETS)

{
next event time = infinite;

for (int i = 0; i < MAX STATIONS; i++)

83

*/

for (3 = 0; j < 4; j++)

if (next event time > event time[i][]])

next event time = event timel[i][Jj];

next station = 1i;

next event =3

}

clock = next event time;

if (next event > 3)

printf ("Check the event-1list");

exit (1) ;

while (d clock <= clock) d clock ++ ;

switch (next event)

case O: /* This is an arrival event. */

/* Select an identification for the arriving message */

id number = -1;

84

for (int i = 0; i < ID SIZE; i++)

if (id_list[i] == 0)

{

id number = 1i;
id list[i] = 1;
break;
}
if (id number != -1) continue;
}
if (id number == -1)

{

printf ("Check the ID-1list.");
exit (1) ;
}
queue size[next station] ++ ;
if (queue size[next station] > MAX Q SIZE)

{

printf ("The queue size 1is large and 1is = %d\n",

queue size[next station]);
exit(1l);
}
queue_ id[next station] [(queue size[next station]-1)]
id number;

start time[id number] = clock;

85

if (queue size[next station] == 1)

{

event time[next station][1l] = d clock;
if (event time[next station][1l] <= collision end time)

event time[next station][l] = collision end time + 1.0;

/* Schedule the next arrival */

for (;7)
{
x = (double) rand():;
if (x != 0.0) break;
}
logx = -log(x/rand size) * FACTOR / arrival rate slots;
event time[next station] [next event] = clock + logx;
break;
}
case 1: /* This 1s an attempt event. */

no_attempts = 0;

for (int i = 0; i < MAX STATIONS; i++)

{

if (event time[i][1l] == clock)

no_attempts ++ ;

id attempt stn[no attempts - 1] = 1i;

86

}

select flag = 0;

if (no_attempts > 1)
{
x = (double) rand():;
x = x/rand size;
for (int i = 0; i1 < no_attempts; i++)
{
select prob = (double) (i+l)/ ((double) no_ attempts);
if (x <= select prob)
{
next station = id attempt stn[i];
select flag = 1;
}
if (select flag == 1) continue;
}
}
if (ch busy == 0.0)

if (p == 0.0)

{

event time[next station] [2]

event time[next station] [1]

}

else

X

(double)

rand () ;

87

clock + 1.0;

infinite;

if

if

backoff time;

x = x/rand size;
if (x < p)

{

event time[next station] [2] clock + 1.0;

event time[next station][l] = infinite;
}
else
{
event time[next station][1l] = clock + 1.0;

if (event time[next station][l] <= collision end time)

event time[next station][l] = collision end time + 1.0;
event time[next station][2] = infinite;
}
}
(ch busy == 1.0)
(p == 0.0)

x = (double) rand():;
x = x/rand size;
backoff time = (double) (int) (x * MAX BACKOFF);

if (backoff time < 1.0) backoff time = 1.0;
event time[next station][1l] = clock + backoff time;
if (event time[next station][1l] <= collision end time)

event time[next station] [1] = collision_end time

88

+

event time[next station][2] = infinite;

}

else

event time[next station][l] = clock + 1.0;

if (event time[next station][1l] <= collision end time)

event time[next station] [1l] = collision _end time + 1.0;
event time[next station][2] = infinite;
}
}
break;

case 2: /* This is a transmission event */

no _trans = 0;
for (int 1 = 0; 1 < MAX STATIONS; i+4)
if (event time[i][2] == clock) no_trans ++ ;

if (no_trans > 1)

collision end time = clock + JAM PERIOD + 2.0;
no _collisions ++ ;

}
for (int i = 0; i < MAX STATIONS; i++)

if (event time[i] [2] == clock)

event time[i] [2] = infinite;

&9

x = (double) rand();
x = x/rand size;
backoff time = (double) (int) (x * MAX BACKOFF);

if (backoff time < 1.0) backoff time = 1.0;
event time[i][1l] = collision end time + backoff time;

}

if (event time[i][1] <= collision end time)

x = (double) rand():;
x = x/rand size;
backoff time = (double) (int) (x * MAX BACKOFF);

if (backoff time < 1.0) backoff time = 1.0;
event time[i] [1] = collision _end time + backoff time;

}

else

if (ch busy != 1.0)

{

event time[next station] [3] clock + packet slots ;

event time[next station] [2] = infinite;
ch busy = 1.0;
}

else

if (p == 0.0)

90

(double) rand();

b
I

x = x/rand size;

backoff time = (double)
if
event time[next station] [1]
if
event time[next station] [1]
backoff time;
event time[next station] [2]
}
else
{
event time[next station] [1]
if
event time[next station] [1]

event time[next station] [2]

}

break;

case 3:
{
id number =
ch busy = 0.0;

queue_ size[next station] -- ;

91

(int)

(backoff time < 1.0) backoff time = 1.

(event time[next station][1]

(event time[next station][1]

(x * MAX BACKOFF) ;

0;

clock + backoff time;

<= collision end time)

= collision _end time

infinite;

clock + 1.0;
<= collision end time)
collision end time + 1.0;

infinite;

/* This is a departure event */

queue_ id[next station] [0];

+

/* Push the queue forward */

for (int i = 0; 1 < queue size[next station]; i++)
queue id[next station][i] = queue id[next station] [i+1];
queue id[next station] [queue size[next station]] = 0;
delay = clock - start time[id number];
total delay += delay;
id list[id number] = 0;
no pkts departed += 1.0;
utilization += packet slots;
event time[next station][3] = infinite;
if (queue size[next station] > 0)
{
event time[next station][1l] = clock + 1.0;

if (event time[next station][l] <= collision end time)

event time[next station] [1] collision end time + 1.0;

}

else

{

event time[next station] [1] infinite;

event time[next station] [2] infinite;

}

break;

}

utilization = utilization / clock;

92

average delay = total delay * slot size /

FACTOR) ;

(no_pkts departed

throughput = no _pkts departed * FACTOR / (clock * slot size);

collision rate = (double) no collisions * FACTOR /

slot size);

utilization ci[ic] = utilization;
delay ci[ic] = average delay;
throughput ci[ic] = throughput;
collision rate cilic] = collision rate;
}

delay sum = 0.0;

delay sqr = 0.0;

utilization sum = 0.0;

utilization sqr = 0.0;

throughput sum = 0.0;

collision rate sum = 0.0;

for (ic = 0; ic <= DEGREES FR; ic++)
{
delay sum += delay cific];
delay sqgr += pow (delay ci[ic],2.0);
utilization sum += utilization ci[ic];
utilization sgr += pow (utilization cific],2.0);
throughput sum += throughput ciflic];
collision rate sum += collision rate ci[ic];

}

delay sum = delay sum / (DEGREES FR + 1);

delay sqr = delay sqr / (DEGREES FR + 1);

delay var = delay sqr - pow(delay sum,2.0);

delay sdv = sqgrt(delay var);
93

(clock

*

*

delay con_int = delay sdv * t dist par[DEGREES FR-
1]/sqrt (DEGREES_FR) ;

utilization sum = utilization sum / (DEGREES FR + 1);

utilization sqr = utilization sqr / (DEGREES FR + 1);

utilization var = utilization sgr - pow(utilization sum,2.0);
utilization sdv = sgrt(utilization var);
utilization con_int = utilization sdv * t dist par[DEGREES FR-

l]/sqrt(DEGREES_FR);
throughput sum = throughput sum / (DEGREES FR + 1);

collision rate sum = collision rate sum / (DEGREES FR + 1);

printf ("For an arrival rate = %g\n",arrival_rate);
printf ("The traffic intensity = %g\n", rho);

printf ("The average delay = %g", delay sum);

printf (" +- %g\n", delay con int);

printf ("The utilization = %g", utilization_ sum);
printf (" +- %g\n", utilization con int);

printf ("The throughput = %g\n", throughput sum);

printf ("The collision rate = %g\n", collision rate sum);
printf ("\n");

}

return O;

94

APPENDIX B. FUNCTIONAL CODE

This appendix contains the functional version of the CSMA/CD simulation

program. It was created by the authors through the process of implementing functions to

replace sections of code that appeared several times in the procedural version in

Appendix A.

#

#

include <stdio.h>

include <stdlib.h>

include <math.h>

define

define

define

define

define

define

define

define

MAX_ STATIONS
BUS_RATE
PACKET LENGTH
BUS_LENGTH
MAX_BACKOFF
PERSIST

JAM_ PERIOD

MAX PACKETS

in a simulation run */

define FACTOR

of time */

define MAX Q SIZE

define ID SIZE

define DEGREES FR

//arrays

double t dist par[10]

Number of stations */
Transmission rate in bps*/
Packet length (bits) */
Bus length in meters */
Backoff period in slots*/
Persistence */

Jamming period */

/* Maximum packets to be transmitted

/* A factor used for changing units

/* Maximum queue size */

10 /*
2000000.0 /*
1000.0 /*
2000.0 /*
15.0 /*
0.0 /*
5.0 /*

10

1000.0

500
50 /*
5 /*
={12.706, 4.303,

95

Size of the identity array */

Degrees of freedom */

3.182, 2.776, 2.571,

2.447, 2.365,

distribution parameters */

double start time [ID SIZE];

double event time [MAX STATIONS] [4];

event */

double delay ci
*/

[DEGREES FR + 1];

double utilization ci[DEGREES FR + 1];

values*/

double throughput ci [DEGREES FR + 1];

values */

double collision rate ci[DEGREES FR + 1]; /*

values*/

//numbers

double arrival rate;

*/

double arrival rate slots; /*

station */

double packet time;

double slot size,
persistence,
ch busy;

double rho,
clock,
d clock,
num_ pkts departed,
next event time;

double x,

96

/* arrival rate

arrival

2.306, 2.262, 2.228}; /* T-

/* starting time of packet */

/* time of occurrence of an

/* array to store delay values

/* array to store utilization

/* array to store throughput

array for collision rate

(in packets/sec) per station

rate (in packets/slot) per

/* packet transmission time */

logx,

rand size,

infinite;
double delay,

total delay,

average delay;
double delay sum,

delay sqr,

delay var,

delay sdv,

delay con_int;
double utilization,

utilization sum,

utilization sqgr;
double utilization var,

utilization sdv,

utilization con_int;
double throughput,

throughput sum;
double collision rate,

collision rate sum,

collision _end time;
double select prob,

backoff time,

packet slots;

int queue size [MAX STATIONS];

station */

97

/*

current queue size at a

int queue id

packets */

int id list

[MAX STATIONS] [MAX Q SIZE]; /* array for id numbers of

[ID SIZE]; /* array of id numbers

int 1id attempt stn [MAX STATIONS]; /* array to

attempting stations */

//First ints

(i, j, ic, 1i) only used as local for loop counters

//They didn't need to be globals.

int next station,

next event,

id number;

int num attempts,

num_trans,

num collisions,

select flag;

//Function:

//Purpose:

//

pick event
Scan event list looking for station-event pair with
the earliest time. Clock moved to this time.

List is not changed.

void pick event ()

{

//set next event time infinitely large

next event time = infinite;

98

*/

identify

//scan all stations'...

for (int i = 0; i < MAX STATIONS; i++)

//queues

for (int j = 0; j < 4; J++)

//if next event time is after station's event's time

if (next event time > event time[i][]])

//set next event time to station's event's time

next event time = event timeli][Jj];

//set station and event of next event to perform

next station i;

next event = 3;

}//end of if

}//end of j for

}//end of i for

//after finding next soonest event to be performed,

//to that event time

clock = next event time;

return;

};//end of pick event()

99

set clock

//Function:

//Purpose:
to

//
//Post:

//

arrival event

Simulate the arrival of a packet at a station that needs

be transmitted.

Packet is given an id number (if available).

Station's queue size is incremented if not full.

Packet id is placed in queue id array.

If new packet is station's only packet, schedule time to
attempt transmission.

Packet is given start time.

void arrival event ()

{

/* Select an identification for the arriving message */

//set identification number to -1

id number = -1;

//for all 1 less than number of ids

for (int i = 0; i < ID SIZE; i++)

//if

'flag' at i is zero

if (id_list[i] == 0)

100

//set id number of packet to i
id number = 1i;

//set 'flag' at i to one

id list[i] = 1;

break;

//1if id number was available continue

if (id number != -1) continue;

//1if id number wasn't changed, either id's are gone or there
//1is a problem with the id list...

if (id number == -1)

//inform user to check id list and stop program

printf ("Check the ID-1list.");

exit (1) ;

//increment station's queue size (to hold new packet)

queue_ size[next station] ++ ;

//1if station's queue size is too big...

if (queue size[next station] > MAX Q SIZE)

//inform user and stop program

101

printf ("The queue size is large and is = %d\n",

queue_ size[next station]);

exit (1) ;

//place packet in station's queue

queue id[next station] [(queue size[next station]-1)] = id number;

//set packet's start time to current clock value

start time[id number] = clock;

//1if new packet is the station's only packet..

if (queue size[next station] == 1)

//schedule transmission attempt

event time[next station][1l] = d clock;

//1if a collision period is active...

if (event time[next station][1] <= collision end time)

//delay transmission attempt til collision ends

event time[next station][l] = collision end time + 1.0;

//Schedule the next arrival for the current station

102

//this is a version of a do/while loop

for (;;)

//find a random number that's not zero

x = (double) rand();

if (x !'= 0.0) break;

//use x to schedule next arrival for current station

logx = -log(x/rand size) * FACTOR / arrival rate slots;
event time[next station] [next event] = clock + logx;
return;

};//end of arrival event ()

//Function: find backoff time ()

//Purpose: Generate a random number which is then used to pick a
random

// backoff time for rescheduling a transmission attempt.
//Post: No changes to any packet times is made.

/=

void find backoff time()

{

//generate a random number to..

103

(double) rand();

b
Il

x = x/rand size;

//calculate backoff time

backoff time = (double) (int) (x * MAX BACKOFF);
//1f backoff time is < 1, set to 1.0

if (backoff time < 1.0) backoff time = 1.0;

return;

}; //end of find backoff time ()

//Function: resched attempt ()

//Purpose: If zero persistence, reschedule attempt for random time in
// in the future. If one persistence, reschedule attempt for
// next available time.

//Post: Packet attempt time is given value determined by
persistence.

// Packet transmission time is reset to infinite.

/ m e

void resched attempt ()
{
//1f persistence is zero...

if (persistence == 0.0)

//call function to find backoff time
find backoff time();

104

//set attempt time to current time plus backoff time
event time[next station][l] = clock + backoff time;
//1if attempt time falls in a collision period...
if (event time[next station][1l] <= collision end time)
//set attempt time to collision end plus backoff time
event time[next station][l] = collision end time + backoff time;
//set event transmission time to infinite
event time[next station][2] = infinite;

}

else//if persistence is not zero

{
//set attempt time to next clock increment
event time[next station][1l] = clock + 1.0;
//1if new attempt time falls in collision period...
if (event time[next station][l] <= collision end time)
//set attempt time to one clock increment past collision
event time[next station][l] = collision end time + 1.0;
//reset event transmission time

event time[next station][2] = infinite;

}; //end of resched attempt ()

//Function: attempt event
//Purpose: Determine number of stations trying to transmit.

// If more than 1, pick one at random.

105

// If channel is not busy, and..

// zero persistence: transmit packet

// p persistence: transmit randomly

// If channel is busy,

// zero persistence: find random backoff time and resched
// P persistence: resched for next available slot

//

//

//Post: Packet attempt and transmit times will be altered based

// on nested if/else statements.

[o

void attempt event ()

{

//set number of attempts to zero

num_attempts = 0;

//for all stations...

for (int i = 0; i < MAX STATIONS; i++)

//if station's next event is ready to transmit

if (event time[i] [1] == clock)

//increment number of stations attempting to transmit

num attempts ++ ;

//place id of attempting station in an array

id attempt stn[num attempts - 1] = 1i;

106

}

//set select flag to zero

select flag = 0;

//if more than one station is trying to transmit...

if (num attempts > 1)

//pick a random number
x = (double) rand();

x = x/rand size;

//for all stations trying to trasmit...

for (int i = 0; i < num_attempts; i++)

//determine select prob

select prob = (double) (i+1)/ ((double) num_ attempts) ;

//1if random number is less than select prob...

if (x <= select prob)

//then station is slot i of array gets to transmit
next station = id attempt stn[i];
//set selection flag to 'true'

select flag = 1;

//if a station has been chosen continue

107

if (select flag == 1) continue;

//1if channel is not busy...

if (ch busy == 0.0)

//and if persistence is zero

if

}

(persistence == 0.0)

//transmission time of current event is set
event time[next station][2] = clock + 1.0;
//attempt time of current event is reset

event time[next station][l] = infinite;

else//if persistence is not zero

{

//generate a random number

X
Il

(double) rand():;

x x/rand size;
//if random number is less than persistence

if (x < persistence)

//set transmission time of current event
event time[next station][2] = clock + 1.0;
//reset attempt time of current event

event time[next station][l] = infinite;

108

else//random number is greater than persistence

{

//set attempt time of current event (event not transmitted)
event time[next station][l] = clock + 1.0;
//1if new attempt time falls in a collision time...
if (event time[next station][1l] <= collision end time)
//delay next attempt til collision ends
event time[next station][l] = collision end time + 1.0;
//ensure transmission time of current event is reset

event time[next station][2] = infinite;

//1if channel is busy...

if (ch busy == 1.0)

//reschedule transmission attempt time

resched attempt ();

return;

};//end of attempt event ()

//Function: transmit event

109

//
//
//
//
//
//
//

Purpose: Determine number of statinos trying to transmit.

If more than one, there is a collision; jam for specified
time period and have all transmitting stations resched
attempt to transmit.

If only one, and

channel not busy, transmit.
channel busy, determine reschedule time.
Post: Packet attempt/transmit time(s) will be updated.

void transmit event ()

{

//set number of transmission to zero
num_trans = 0;
//for all stations...

for (int i = 0; i < MAX STATIONS; i++)

//1if they are currently transmitting, increment

transmissions

if (event time[i][2] == clock) num trans ++ ;

//1if there are more than one transmitting stations,
//there's a collision and

if (num trans > 1)

//set collision end time
collision end time = clock + JAM PERIOD + 2.0;
//increment collision count

num _collisions ++ ;

110

number

of

time

time

//for all stations...

(int 1 = 0; i < MAX STATIONS; i++)

//1if they are transmitting...

(event time[i] [2] == clock)

//set transmit time to infinite

event time[i] [2] = infinite;

//call function to find backoff time
find backoff time();

//set attempt time to collision end time plus backoff

event time[i][1l] = collision end time + backoff time;

//1if attempt time is before collision end time

(event time[i] [1] <= collision end time)

//call function to find backoff time
find backoff time();

//set attempt time to collision end time plus backoff

event time[i][1l] = collision end time + backoff time;

else//only one channel trying to transmit

111

//if channel not busy...

if (ch busy != 1.0)

//set departure time to clock time + # of packet slots sent
event time[next station][3] = clock + packet slots ;
//reset event transmission time
event time[next station][2] = infinite;
//set channel to busy cause transmitting
ch busy = 1.0;

}

else//if channel is busy..

//reschedule transmission attempt time

resched attempt () ;

return;

};//end of transmit event ()

//Function: departure event

//Purpose: Simulate successful transmission.

112

//Post:

// Calculate delay of packet and other performance
parameters.

// If station's gqueue not empty, schedule next transmit
attempt.

/= e

void departure event ()

{

//let id number be identification number of departing packet

id number = gqueue id[next station] [0];

//free transmission medium

ch busy = 0.0;

//decrement queue size

gqueue_ size[next station] -- ;

//Push the queue forward
for (int i = 0; 1 < queue size[next station]; i++)

gqueue id[next station][i] = queue id[next station] [i+1];

//set departing packet id to O

queue id[next station] [queue size[next station]] = 0;

//calculate delay for departing packet

delay = clock - start time[id number];

//add delay to total delay

113

Free channel and update transmitting station's queue size.

total delay += delay;

//release id number of departing packet

id list[id number] = 0;

//increment number of packets departed

num_ pkts departed += 1.0;

//add packet slots to utilization

utilization += packet slots;

//reset departing packet event time

event time[next station][3] = infinite;

//if station's queue is not empty
if (queue size[next station] > 0)
{
//schedule station's next event for transmission attempt

event time[next station][1l] = clock + 1.0;

//if event time is prior to end of collision end time

if (event time[next station][1l] <= collision_end time)

//set event time to one increment after collision end time

event time[next station][l] = collision end time + 1.0;
}

else //if station's queue is empty

{

//reset event attempt and transmission times

114

event time[next station][l] = infinite;
event time[next station][2] = infinite;
}
return;
}//end of departure event
s
//Function: calculate results
//Purpose: Calculate performance statistics.
//Post: Lists are not changed.
e ettt bt

void calculate results ()
{
//initialize values
delay sum = 0.0;
delay sgr = 0.0;

utilization sum = 0.0;

I
o
o
~

utilization sqgr
throughput sum = 0.0;

collision rate sum = 0.0;

//calculate confidence level values

for (int ic2 = 0; ic2 <= DEGREES FR; ic2++)

delay sum += delay ci[ic2];

115

delay sqgr += pow (delay ci[ic2],2.0);
utilization sum += utilization ci[ic2];
utilization sqr += pow (utilization cific2],2.0);
throughput sum += throughput cific2];

collision rate sum += collision rate ci[ic2];

//calculate arrival rate's stats

delay sum = delay sum / (DEGREES FR + 1);
delay sqgr = delay sqr / (DEGREES FR + 1);
delay var = delay sqgr - pow(delay sum,2.0);
delay sdv = sqgrt(delay var);

delay con_int = delay sdv * t dist par[DEGREES FR-
1]/sqrt (DEGREES_FR) ;

utilization sum = utilization sum / (DEGREES FR + 1);
utilization sqr = utilization sqr / (DEGREES FR + 1);
utilization var = utilization sgr - pow(utilization sum,2.0);

utilization sdv = sqgrt(utilization var);

utilization con_ int = utilization sdv * t dist par[DEGREES FR-
11/sqrt (DEGREES FR) ;

throughput sum = throughput sum / (DEGREES FR + 1);

collision rate sum = collision rate sum / (DEGREES FR + 1);

return;

};//end of calculate results

116

//Function: show results

//Purpose: Display results of simulation.

//Post: Lists are not changed.
Tttt

void show results ()

{
//display statistics for specified arrival rate
printf ("For an arrival rate = %$g\n",arrival rate);
printf ("The traffic intensity = %g\n", rho);
printf ("The average delay = %g", delay sum);
printf (" +- %g\n", delay con int);
printf ("The utilization = %g", utilization sum);
printf (" +- %g\n", utilization con int);
printf ("The throughput = %$g\n", throughput sum);
printf ("The collision rate = %g\n", collision rate sum);

printf ("\n") ;

return;

};//end of show results ()

//Beginning of main function.

int main ()

117

//Print intro
printf ("The following results are for: \n");
printf ("Degrees of freedom = %d\n", DEGREES FR) ;

printf ("Confidence Interval = 95 percent \n");

printf (" \n") ;

printf ("\n");

//set/calculate some initial values

arrival rate = 0.0;

slot size = BUS LENGTH * FACTOR * 5.0 * pow (10.0, -9.0);
persistence = PERSIST;

packet time = PACKET LENGTH * FACTOR / BUS RATE;

packet slots (double) (int) (packet time/slot size) + 1.0;

infinite 1.0 * pow (10.0, 30.0);

rand size RAND MAX;

//perform simulation several times...

for (int ii=0; ii < 10; 1ii++)

//incrementing arrival rate by 20 units each pass through

arrival rate = arrival rate + 20.0;

//each arrival rate is simulated several times to find confidence

levels

for (int ic = 0; ic <= DEGREES FR; ic++)

rho = 0.0; //traffic intensity (max value is

118

ch busy

channel is busy
clock =
d clock =
collision end time =
utilization =
num_pkts departed =
total delay =
next event time =

average delay

packets
num_collisions =

select flag

station is selected

//Compute the traffic

= 0.0; //channel is free if 0, otherwise

0.0; //simulation clock

0.0; //clock to determine slot timing
0.0; //the time at which collision ends
0.0; //utilization of channel

0.0; //number of packets sent

0.0; //aggregrate delay of packets

0.0; //time to execute next event

0.0; //average of delays for all

0; //number of collisions that occur
= 0; //indicates 1if transmitting
intensity

rho = arrival rate * PACKET LENGTH * MAX STATIONS / BUS_RATE;

//If greater than unity...

if (rho >= 1.0)

//tell user and stop program

printf ("Traffic intensity is too high. \n");

exit (1) ;

/* Initialize all variables to their appropriate values. */

arrival rate slots =

arrival rate * slot size;

119

//set queue size at all stations to zero
for (int i = 0; i < MAX STATIONS; i++)

queue size[1]=0;

//set start time and id list of all stations to zero

for (int k = 0; k < ID SIZE; k++)

start time[k] = 0.0;

id_list([k] = 0;

//for all stations...

for (int m = 0; m < MAX STATIONS; m++)

//set all event ids to zero

for(int n = 0; n < MAX Q SIZE; n++) queue id[m] [n]=0;

//for all stations...

for (int g = 0; g < MAX STATIONS; g++)

for (int r = 0; r < 4; r++)

//set event times to infinite
event time[qg] [r] = infinite;
//get a random number

x = (double) rand():;

120

X = x * FACTOR/rand size;
//set first event time to random value
if (r == 0) event time[q][r] = x;

}//end of r for loop

}//end of g loop

//while have NOT exceeded the max # of packets to send...

while (num pkts departed < MAX PACKETS)

//scan event list for next event

pick _event();

//1if get invalid event type...

if (next event > 3)

//inform user of problem with event list & stop program
printf ("Check the event-1list");
exit (1);

}//end if

//while slot clock is less than simulation clock, go to

next slot

while (d clock <= clock) d clock ++ ;

//use type of next event to choose function to call

switch (next event)

121

FACTOR) ;

//if an arrival event, call arrival function
case 0O:
arrival event ();

break;

//if an attempt event, call attempt function
case 1:
attempt event () ;

break;

//if a transmission event, call transmit event
case 2:
transmit event ();

break;

//if a packet departure. call departure function
case 3:
departure event ();

break;

}//end of switch

}//end of while -- done with simulation pass

//calculate statistics for pass

utilization = utilization / clock;

average delay = total delay * slot size / (num pkts departed

122

throughput = num pkts departed * FACTOR / (clock * slot size);

collision rate = (double) num collisions * FACTOR / (clock

slot size);
//place results in array for calculating confidence factors
utilization ci[ic] = utilization;
delay ci[ic] = average delay;
throughput ci[ic] = throughput;
collision rate cific] = collision_rate;

}//end of ic for loop

//find results for current arrival rate

calculate results();

//display results for current arrival rate

show results();

}//end of ii for loop

return 0;

}//end of main

123

*

THIS PAGE INTENTIONALLY LEFT BLANK

124

APPENDIX C. OBJECT-ORIENTED CODE

This appendix contains the object-oriented version of the CSMA/CD simulation
program. This version was built on the work of Neil Acantilado, including his UML

diagram shown in Appendix D.

The program is divided into five classes, a main file, and a file containing
constants. The simulation.cpp file contains the C++ main function and includes all the
other files. The constants.h file contains thirteen constants that are used throughout the
project by various entities. The remaining ten files consist of the .cpp and .h files that
create the five classes of objects used by the project to represent the network, stations on
a network, a list of events that will occur, a list of ids that represent the packets of

information on the network, and a clock for timing purposes.

125

C-1 SIMULATION.CPP
include <stdio.h>
include <stdlib.h>

include <math.h>

#include "Constants.h"
#include "Clock.h"
#include "EventList.h"
#include "IdList.h"
#include "Network.h"

#include "stationList.h"

// Holds a list of stations and their queues

StationList stations;

// Holds a list of id numbers and their queues

IdList ids;

// Holds a list of 4 type of events

EventList events;

// Clock representing simulation process.

Clock watch;

// Keeps track of status of channel

Network csmaNetwork (PERSIST) ;

126

// Arrival rate (in packets/sec) per station

float arrival rate = 0.0;

// Represents the end-to-end propagation delay

float slot size = BUS LENGTH * FACTOR * 5.0 * pow (10.0, -9.0);

// Arrival rate (in packets/slot) per station

float arrival rate slots;

// packet transmission time

float packet time = PACKET LENGTH * FACTOR / BUS RATE;

float packet slots = (float) (int) (packet time/slot size) + 1.0;

float infinite = 1.0 * pow (10.0, 30.0);

float rand size = RAND MAX;

// array to store delay values

double delay ci[DEGREES FR + 11];

// array to store utilization values

double utilization ci [DEGREES FR+1];

// array to store throughput values

double throughput ci [DEGREES FR+1];

127

// array for collision rate values

double collision rate ci[DEGREES FR+1];

double rho = 0.0;
double next event time;
double average delay;
double collision rate;

double throughput;

int i, j, ic, 1ii, next station, next event, next;

// T-distribution parameters
double t dist par[] = { 12.706, 4.303, 3.182, 2.776, 2.571,

2.447, 2.365, 2.306, 2.262, 2.228 };

double total delay;

double delay sum, delay con int;

double utilization, utilization sum, utilization sqr;

double utilization var, utilization sdv, utilization con int;
double throughput sum;

double collision rate sum;

double no pkts departed;

double no _collisions;

//***
// Function: double traffic(double rho, double arrival rate)

// Purpose: Calculate traffic intensity (rho)

128

//***

double traffic(double rho, double arrival rate)

{

// Calculate the traffic intensity rho and check to see if it

exceeds

// the network capacity

rho = arrival rate * PACKET LENGTH * MAX STATIONS / BUS RATE;

if (rho >= 1.0)

printf ("Traffic intensity is too high\n");

exit (0);

return rho;

}//end of traffic function

//***

// Function: void depart(double next event time, int next station,

int next event)
// Purpose: Perform packet departure event.
//***
void depart (double next event time, int next station, int next event)
{

int id number = 0;

double delay = 0.0;
129

float time = watch.getTime () ;

double collision _end time = watch.getCollisionEndTime () ;

id number = stations.getQueueld(next station, 0);

csmaNetwork.setChannel (0.0) ;

stations.decrementQueue (next station);

// Push the queue forward

for (int i = 0; i < stations.queueSize(next station); i++)
stations.setQueueld(next station, i,
stations.getQueueld(next station, i+l));
stations.setQueueld(next station, stations.queueSize (next station),
0);
delay = time - ids.getStartTime (id number);

total delay += delay;

ids.setIdList (id number, 0);

no_pkts departed += 1.0;

utilization += packet slots;

// Schedule the next event for transmission attempt by the station

events.setEventTime (next station, 3, infinite);

if (stations.queueSize (next station) > 0)

events.setEventTime (next station, 1, time + 1.0);

if (events.getEventTime (next station, 1) <= collision end time)

130

events.setEventTime (next station, 1, collision end time +

events.setEventTime (next station, 1, infinite);

events.setEventTime (next station, 2, infinite);

//***

// Function: void transmit (double next event time, int next station,

int next event)
// Purpose: Perform packet transmission
//***
void transmit (double next event time, int next station, int next event)
{

int no_trans = 0;

double x = 0.0;

double collision end time = 0.0;

double time = watch.getTime()

float rand size = RAND MAX;

// Check to see if a collision has take place.
for (int i=0; i < MAX STATIONS; i+4)

if (events.getEventTime (i, 2) == time) no_trans++;

if (no_trans > 1)

131

watch.setCollisionEndTime (time + JAM PERIOD + 2.0);

no collisions++;

collision end time = watch.getCollisionEndTime () ;

for (int i = 0; i < MAX STATIONS; i++)

if (events.getEventTime (i, 2) == time)

events.setEventTime (i, 2, infinite);

x = (float) rand();

x = x/rand size;

double backoff time = (double) (int) (x * MAX BACKOFF);

if (backoff time < 1.0) backoff time = 1.0;

events.setEventTime (i, 1, collision end time

backoff time);

}

if (events.getEventTime (i, 1) <= collision end time)

x = (float) rand();
x = x/rand size;
double backoff time = (double) (int) (x * MAX BACKOFF);

if (backoff time < 1.0) backoff time = 1.0;

events.setEventTime (i, 1, collision _end time

backoff time);

}

132

else

if (csmaNetwork.isChannelFree ())

events.setEventTime (next station, 3, time + packet slots);

events.setEventTime (next station, 2, infinite);

csmaNetwork.setChannel (1.0);

else

if (!csmaNetwork.isPersistent ())

x = (float) rand();
x = x/rand size;
double backoff time = (double) (int) (x * MAX BACKOFF);

if (backoff time < 1.0) backoff time = 1.0;
events.setEventTime (next station, 1, time + backoff time);

if (events.getEventTime (next station, 1) <=

collision end time)

events.setEventTime (next station, 1, collision end time

+ backoff time);

events.setEventTime (next station, 2, infinite);

else

events.setEventTime (next station, 1, time + 1.0);

133

if (events.getEventTime (next station, 1) <=

collision _end time)

events.setEventTime (next station, 1, collision end time

+ 1.0);

events.setEventTime (next station, 2, infinite);

//~k~k~k*‘k~k*‘k~k*‘k**

// Function: void attempt (double next event time, int next station,

int next event)

// Purpose: Perform attempt event

//**************k*k*k*k*k*k~k*k*k~k*k*k~k*k*k~k****k*k~k*k*k************************

void attempt (double next event time, int next station, int next event)

{

Il
o
~

int no_ attempts

Il
o
~

int select flag
double x = 0.0;
double select prob = 0.0;

double time = watch.getTime()

double collision end time = watch.getCollisionEndTime () ;

float rand size = RAND MAX;

for (int i = 0; i < MAX STATIONS; i++)

134

if

(events.getEventTime (i, 1) == time)

no attempts++;

stations.setIdAttemptStn (no_ attempts-1, 1i);

select flag = 0;

if

if

(no_attempts > 1)

for

(float) rand():;
x/rand size;

(int 1=0; i < no_attempts; i++)

select prob = (double) (i+l) / ((double) no_ attempts);

if (x <= select prob)

next station = stations.getIdAttemptStn(i);

select flag = 1;

if (select flag == 1) continue;

(csmaNetwork.isChannelFree ())

if

(!csmaNetwork.isPersistent ())

135

events.setEventTime (next station, 2, time + 1.0);

events.setEventTime (next station, 1, infinite);

else

{
x = (float) rand();
x = x/rand size;

if (x < csmaNetwork.getPersistence())

events.setEventTime (next station, 2, time + 1.0);

events.setEventTime (next station, 1, infinite);

else

events.setEventTime (next station, 1, time + 1.0);

if (events.getEventTime (next station, 1) <=

collision end time)

events.setEventTime (next station, 1, collision end time

+ 1.0);

events.setEventTime (next station, 2, infinite);

if (!csmaNetwork.isChannelFree())

if (!csmaNetwork.isPersistent ())

136

x = (float) rand();
x = x/rand size;
double backoff time = (double) (int) (x * MAX BACKOFF);

if (backoff time < 1.0) backoff time = 1.0;
events.setEventTime (next station, 1, time + backoff time);

if (events.getEventTime (next station, 1) <=

collision _end time)

events.setEventTime (next station, 1, collision end time +

backoff time);

events.setEventTime (next station, 2, infinite);

else

events.setEventTime (next station, 1, time + 1.0);
if (events.getEventTime (next station, 1) <= collision_end time)

events.setEventTime (next station, 1, collision end time +

events.setEventTime (next station, 2, infinite);

}

//***

//

Function: void arrival (double next event time, int next station,

int next event)

// Purpose: Perform arrival event

//~k~k~k*‘k~k*‘k~k*‘k**

137

void arrival (double next event time, int next station, int next event)

{

int id number = 0;

double x = 0.0;

double time = watch.getDTime () ;

double d clock = watch.getDTime () ;

double collision _end time = watch.getCollisionEndTime () ;

float rand size = RAND MAX;

// Select an identification for the arriving message

id number = ids.SelectIdNumber () ;

stations.incrementQueue (next station);

stations.setQueueld(next station, stations.queueSize (next station)-

id number) ;

ids.setStartTime (id number, time);

if (stations.queueSize (next station) == 1)

events.setEventTime (next station, 1, d clock);

if (events.getEventTime (next station, 1) <= collision end time)

events.setEventTime (next station, 1, collision end time

// Schedule the next "arrival" event

138

+

for (;;)

x = (float) rand();
if (x != 0.0) break;
}
double logx = -log(x/rand size) * FACTOR / arrival rate slots;

events.setEventTime (next station, next event, time + logx);

//~k~k~k*‘k~k*‘k~k*‘k**

// Function: void process (double next event time, int next station,

int next event)

// Purpose: Determine type of event that occurs next.

//**************k*k*k*k*k*k~k*k*k~k*k*k~k*k*k~k****k*k~k*k*k************************

void process (double next event time, int next station, int next event)

{
watch.setTime (next event time);

if (next event < 0 || next event > 3)

printf ("An event was not recognized. Check the event-list");

return;

while (watch.getDTime () <= watch.getTime ())

139

watch.incrementDTime () ;

switch (next event)

case 0: // This is an arrival event.

arrival (next event time, next station, next event);

break;

case 1: // This is an attempt event.

attempt (next event time, next station, next event);

break;

case 2: // This is a transmission event.

transmit (next event time, next station, next event);

break;

case 3: // This is a departure event.

depart (next event time, next station, next event);

break;

} // switch

140

//****************k*k*k*k~k*k*k~k*k*k~k*k*k~k*k*k**k*k~k*k*k************************

// Function: void compute (double utilization ci[], double delay cil],

// double throughput ci[], double

collision rate cil])

// Purpose: Compute statistics
//***************k*k*k******k*k**‘k‘k‘k*k*******************************
void compute (double utilization ci[], double delay cil],

double throughput cil[], double

collision rate cil])

double delay sqr, delay var, delay sdv;

delay sum = 0.0;
delay sqr = 0.0;
utilization sum = 0.0;

utilization sqgr

Il
o
o
~

throughput sum = 0.0;

collision rate sum = 0.0;

for (int ic = 0; ic <= DEGREES FR; ic++)

delay sum += delay cilic];

delay sqgr += pow(delay cific],2.0);
utilization sum += utilization ci[ic];
utilization sgr += pow(utilization ci[ic],2.0);
throughput sum += throughput ciflic];

collision rate sum += collision rate cific];

141

delay sum

delay sqgr

delay var

delay sdv

delay sum /

delay sqr /

(DEGREES FR + 1);

(DEGREES FR + 1);

delay sgr - pow(delay sum,2.0);

sqrt (delay var);

delay con_int =

1]/sqrt (DEGREES_FR) ;

utilization
utilization
utilization
utilization

utilization

delay sdv * t dist par[DEGREES FR-

sum = utilization sum / (DEGREES FR + 1);

sqr = utilization sqr / (DEGREES FR + 1);

var = utilization sgr - pow(utilization sum,2.0);

sdv

con_int =

1]/sqrt (DEGREES_FR) ;

sqgrt (utilization var);

utilization sdv * t dist par[DEGREES FR-

throughput sum = throughput sum / (DEGREES FR + 1);

collision rate sum = collision rate sum / (DEGREES FR + 1);

//~k~k~k*‘k~k*‘k~k*‘k**

//
//

Function:

Purpose:

void output (double rho, double arrival rate)

Output data

//***************k*k*k*k*k~k*k*k~k*k*k~k*k*k~k*k*k**k*k~k*k*k************************

void output (double rho, double arrival rate)

{

printf ("For
printf ("The
printf ("The
printf (" +-

printf ("The

an arrival rate = %$g\n", arrival rate);

traffic intensity = %$g\n" , rho);

average delay

= %g" , delay_ sum);

%g\n" , delay con int);

utilization

%g" , utilization sum);

142

printf (" +- %g\n" , utilization con int);
printf ("The throughput = %$g\n" , throughput sum);
printf ("The collision rate = %g\n" , collision rate sum);

printf ("\n") ;

//****************k*k*k*k~k*k*k~k*k*k~k*k*k~k*k*k**k*k~k*k*k************************

// Function: wvoid initialize()
// Purpose: Initialize class objects.

//***

void initialize ()

csmaNetwork.setChannel (0.0) ;
watch.reset (),
events.initialize();
stations.initialize();

ids.initialize();

int main () {

float rand size = RAND MAX;

// for (ii = 0; ii < 30; ii++) {}

for (i1 = 0; 1ii < 10; 1ii++) {

arrival rate = arrival rate + 20.0;

143

for (ic = 0; ic <= DEGREES FR; ic++)

// Initialize all variables to their appropriate values.

rho = 0.0;
utilization = 0.0;
no pkts departed = 0.0;
total delay = 0.0;
next event time = 0.0;
average delay = 0.0;
no collisions = 0;
initialize () ;
arrival rate slots = arrival rate * slot size;

// Compute traffic intensity

rho = traffic(rho, arrival rate);

while (no pkts departed < MAX PACKETS)

// Scan the event list and pick the next event to be

executed.

next event time = events.nextEventTime () ;

next station events.nextStation () ;

144

next event = events.nextEvent () ;

process (next event time, next station, next event);

// A simulation run is to be terminated

utilization = utilization / watch.getTime () ;

average delay = total delay * slot size / (no _pkts departed *
FACTOR) ;

throughput = no pkts departed * FACTOR / (watch.getTime() *
slot size);

collision rate = (double) no collisions * FACTOR /
(watch.getTime () * slot size);

utilization ci[ic] = utilization;

delay ci[ic] = average delay;

throughput ci[ic] = throughput;

collision rate cific] = collision rate;

compute (utilization ci, delay ci, throughput ci,

collision rate ci);

output (rho, arrival rate);

return 0;

145

C-2 CONSTANTS.H

#ifndef CONSTANTS H

#define CONSTANTS H

include <math.h>

define

define

define

define

define

define

define

define

MAX STATIONS 10 // Number of stations

BUS RATE 2000000.0 // Transmission rate in bps

PACKET LENGTH 1000.0 // Packet length (bits)

BUS LENGTH 2000.0 // Bus length in meters

MAX BACKOFF 15.0 // Backoff period in slots

PERSIST 0.0 // Persistence

JAM PERIOD 5.0 // Jamming period

MAX PACKETS 100 // Maximum packets to be transmitted

in a simulation run

define

of time

define

define

define

define

#endif

FACTOR 1000.0 // A factor used for changing units
MAX Q SIZE 500 // Maximum queue size

ID SIZE 50 // Size of the identity array
DEGREES_ FR 5 // Degrees of freedom

SIMULATION RUNS = 10;

146

C-3 CLOCK.CPP
#include <math.h>
#include <stdio.h>

#include <stdlib.h>

#include "clock.h"

Clock :: Clock() {
setTime (0.0) ;
setDTime (0.0) ;

setCollisionEndTime (0.0) ;

Clock :: Clock(float new time, float newDTime, float newCollEndTime) {
setTime (new_time);
setDTime (newDTime) ;

setCollisionEndTime (newCollEndTime) ;

float Clock :: getTime () {

return clock;

float Clock :: getDTime () {

return d clock;

float Clock :: getCollisionEndTime () {

147

return collision end time;

void Clock :: setTime(float new time) {
if (new time < 0.0) {
printf ("Invalid time. \n");

exit (1) ;

clock = new_time;

void Clock :: setDTime(float new time) {
if (new _time < 0.0) {
printf ("Invalid time. \n");

exit (1) ;

d clock = new time;

void Clock :: setCollisionEndTime (float new_ time) {
if (new _time < 0.0) {
printf ("Invalid time. \n");

exit (1) ;

collision end time = new time;

148

void Clock :: incrementDTime () {

d clock++;

void Clock :: reset() {
setTime (0.0) ;
setDTime (0.0) ;

setCollisionEndTime (0.0) ;

149

C-4 CLOCK.H
#ifndef CLOCK H

#define CLOCK H

#include <math.h>

class Clock {

public:

Clock :: Clock();

Clock :: Clock(float time, float dtime, float cetime);
float Clock :: getTime();

float Clock :: getDTime();

float Clock :: getCollisionEndTime () ;

void Clock :: setTime(float new_time);

void Clock :: setDTime (float new time);

void Clock :: setCollisionEndTime (float new time);
void Clock :: incrementDTime () ;

void Clock :: reset();

float clock; //simulation clock
float d clock; //clock to determine slot timing

float collision end time; //the time at which collision ends

#endif

150

C-5 EVENTLIST.CPP
#include <math.h>
#include <stdio.h>

#include <stdlib.h>

#include "eventList.h"

float infiniteB = 1.0 * pow (10.0, 30.0);

EventList :: EventList () {

//for all stations...

for (int g = 0; g < MAX_ STATIONS; gq++)

for (int r = 0; r < 4; r++)

//set event times to infinite

event time[qg][r] = infiniteB;

//get a random number

X (float) rand():;

X = x * FACTOR/rand size;
//set first event time to random value

if (r == 0) event time[q][r] = x;

}//end of r for loop

}//end of g loop

151

float EventList :: getEventTime (int next station, int eventType) {

return event time[next station] [eventType];

float EventList :: nextEventTime () {//set next event time
large
next event time = infiniteB;

//scan all stations'...

for (int i = 0; i < MAX STATIONS; i++)

//queues

for (int j = 0; j < 4; J++)

//1f next event time 1s after station's event's time

if (next event time > event time[i][]])

//set next event time to station's event's time

next event time = event time[i][]];

//set station and event of next event to perform
next station = 1i;
next event =3

}//end of if

}//end of j for

}//end of i for

152

infinitely

return next event time;

int EventList :: nextStation() {

next event time = infiniteB;

//scan all stations'...

for (int i = 0; i < MAX STATIONS; i++)

//queues

for (int j = 0; j < 4; J++)

//1f next event time 1s after station's event's time

if (next event time > event time[i][]])

//set next event time to station's event's time

next event time = event time[i][]];

//set station and event of next event to perform
next station = 1i;
//next event =37

}//end of if

}//end of j for

}//end of i for

153

return next station;

int EventList :: nextEvent () {

next event time = infiniteB;

//scan all stations'...

for (int i = 0; i < MAX STATIONS; i++)

//queues

for (int j = 0; j < 4; J++)

//1f next event time 1s after station's event's time

if (next event time > event time[i][]])

//set next event time to station's event's time

next event time = event time[i][]];

//set station and event of next event to perform
//next station = i;
next event =3

}//end of if

}//end of j for

}//end of i for

154

return next event;

void EventList :: setEventTime (int next station,
clock) {
event time[next station] [eventType] = clock;
}
void EventList :: initialize() {

double x = 0.0;
// Initialize the event list

for (int i = 0; i < MAX STATIONS; i++)

for (int j = 0; j < 4; J++)

event time[i] [J] = infiniteB;
x = (float) rand();
if (3 == 0)

event time[i] []J] = x;

155

int eventType,

float

C-6 EVENTLIST.H
#ifndef EVENTLIST H

#define EVENTLIST H

#include <math.h>

#include "constants.h"

class EventList {

public:
EventList :: EventList();
float EventList :: getEventTime (int next station, int eventType);
float EventList :: nextEventTime () ;
int EventList :: nextStation();
int EventList :: nextEvent();
void EventList :: setEventTime (int next station, int eventType,

float clock);
void EventList :: initialize();
float event time [MAX STATIONS] [4]; //time of occurrence of event
float x;
float rand size;
float next event time;
int next station;

int next event;

#endif

156

C-7 IDLIST.CPP
#include <math.h>
#include <stdio.h>

#include <stdlib.h>

#include "idList.h"

IdList :: SelectIdNumber () {

// Select an identification for the arriving message

//set identification number to -1

id number = -1;

//for all i less than number of ids

for (int i = 0; i < ID SIZE; i++)

//1if 'flag' at i is zero

if (id_list[i] == 0)

//set id number of packet to i
id number = 1i;

//set 'flag' at i to one

id list[i] = 1;

break;

//1if id number was available continue

157

if (id number != -1) continue;

//1if id number wasn't changed, either id's are gone or there
//is a problem with the id list...

if (id number == -1)

//inform user to check id list and stop program
printf ("Check the ID-1list.");

exit (1) ;

return id number;

IdList :: IdList () {
//set start time and id list of all stations to zero

for (int k = 0; k < ID SIZE; k++)

start time[k] = 0.0;
id list[k] = 0;
}
}
void IdList :: setStartTime (int id number, float clock) {
start time [id number] = clock;

158

float IdList :: getStartTime (int id number) {

return start time[id number];

IdList :: setIdList(int id number, int number) {

id list[id number] = number;

void IdList :: initialize () {

for (int i = 0; i < ID SIZE; i++)

id list[i] = O;

start time[i] = 0.0; // Starting time of these packets

159

C-8 IDLIST.H

#ifndef IDLIST H

#define IDLIST H

#include <math.h>

#include "constants.h"

class IdList {

public:
IdList :: IdList();
int IdList :: SelectIdNumber () ;
IdList :: setIdList(int id number, int number);
void IdList :: setStartTime (int id number, float clock);
float IdList :: getStartTime (int id number) ;
float start time [ID SIZE]; // starting time of packet
int id list [ID_SIZE]; // array of id numbers

int id number;

void IdList :: initialize();

#endif

160

C-9 NETWORK.CPP
#include <math.h>
#include <stdio.h>

#include <stdlib.h>

#include "network.h"

Network :: Network(float persistence) {

if (persistence >= 0.0 && persistence <= 1.0)

P = persistence;

void Network :: setPersistence(float persistence)

P = persistence;

bool Network :: isPersistent ()

if (p == 0.0)
return false;
else

return true;

161

float Network :: getPersistence()

return p;

void Network :: setChannel (float status)

ch busy = status;

bool Network :: isChannelFree ()

if (ch busy == 0.0)
return true;
else

return false;

162

C-10 NETWORK.H
#ifndef NETWORK H

#define NETWORK H

#include <math.h>

#include "constants.h"

class Network {

public:
Network :: Network (float persistence);
void Network :: setPersistence(float persistence);
bool Network :: isPersistent();
void Network :: setChannel (float status);
bool Network :: isChannelFree();
float Network :: getPersistence();
float start time [ID SIZE]; // starting time of packet
int id list [ID SIZE]; // array of id numbers

int id number;
float p;

float ch busy;

#endif

163

C-11 STATIONLIST.CPP
#include <math.h>
#include <stdio.h>

#include <stdlib.h>

#include "stationList.h"

StationList :: StationList () {
//set queue size at all stations to zero

for (int i = 0; i < MAX STATIONS; i++)

queue _size[1]=0;

StationList :: ~StationList () {

StationList :: incrementQueue (int next station) {
//increment station's queue size (to hold new packet)

queue_ size[next station] ++ ;

//if station's queue size is too big...

if (queue size[next station] > MAX Q SIZE)

//inform user and stop program

printf ("The queue size is large and is = %d\n",

queue size[next station]);

164

exit (1) ;

StationList :: decrementQueue (int next station) {
gueue_ size[next station]--;

}

StationList :: initialize() {

// Initialize queue sizes from all stations to 0

for (int i = 0; i < MAX STATIONS; i++)

queue size[i] = 0;

int StationList :: queueSize(int next station) {

return queue size [next station];

void StationList :: setQueueld(int next station, int size, int id) {
queue id[next station][size] = id;

}

int StationList :: getQueueld(int next station, int size) {

return queue_ id[next station] [size];

165

void StationList :: setIdAttemptStn(int no_ attempts, int next station)
{

id attempt stn[no attempts] = next station;

int StationList :: getIdAttemptStn(int next station) {

return id attempt stn[next station];

166

C-12 STATIONLIST.H

#include "log inst.h"

#ifndef STATIONLIST H

#define STATIONLIST H

#include <math.h>

#include "constants.h"

class StationList {

public:
StationList :: StationList();
StationList :: StationList(int max stats, int max queue);
StationList :: incrementQueue (int next station);
StationList :: decrementQueue (int next station);
int StationList :: queueSize(int next station);
void StationList :: setQueueld(int next station, int size, int id);
int StationList :: getQueueld(int next station, int size);
void StationList H setIdAttemptStn (int no_ attempts, int

next station);

int StationList :: getIdAttemptStn(int next station);

StationList :: ~StationList () ;

StationList :: initialize();

int queue size [MAX STATIONS]; // current queue size at a
station

167

int queue id [MAX STATIONS] [MAX Q SIZE]; // array for id numbers of

packets

int id attempt stn [MAX STATIONS]; // array to identify

attempting stations
int next station;
int next event;
float event time [MAX STATIONS] [4]; //time of occurrence of event
float x;
float rand size;

float next event time;

#endif

168

APPENDIX D. CSMA/CD UML DIAGRAM

This appendix contains the UML diagrams created by Neil Acantilado for the
2000 winter quarter offering of SW4540 — Software Testing at the Naval Postgraduate

School that the authors were simultaneously taking from Prof. J. Bret Michael.

169

D-1 CONCEPTUAL MODEL

specifies transmission attempt activity »

specifies collision check activity »

. Packet
Clock synchronizes » Network consists » Station <« arrives/departs
-stationld : int -packetld : int
. -startTime : double
1 “ 1 «
provides clirrent time drivgn-by
Event
EventGenerator| generates » associatefd-to »
-stationld : int

-time : double

Zﬁ specifies-departure-of »

TransmissionAttemptEvent| [CollisionCheckEvent| | ArrivalEvent | |DepartureEvent|

specifies-arrival-of »

Figure D-1: Conceptual Model

170

D-2 ACTIVITY DIAGRAM FOR NETWORK SIMULATION

Gad Input Network Paramete§

Initialize/Start Network Sim uIath

%@entify Next Pending Network Evea
Process Network Event

@)date Network Analysis Statistics and Metri9

[Max Packet Departures NO[T Reached]

Update Network Clock

Schedule Future Events

[Max Packet Depjartures Reached]

Galyze Accumulated Network Da@

Figure D-2: Activity Diagram for Network Simulation

171

D-3 ACTIVITY DIAGRAM FOR PROCESSING PACKET-ARRIVAL
EVENT

@twork Event Identified as Packet Arrival EveD
@ntify Station Corresponding to Evea

Assign ID to Packet
@d Packet to Station Packet Que@

G:hedule Transmission Attempt If Queue Was Previously Empt}

éhedule Next Arrival Event For Statia

Figure D-3: Activity Diagram for Processing Packet-Arrival Events

172

D-4 ACTIVITY DIAGRAM FOR PROCESSING TRANSMISSION-
ATTEMPT EVENTS

@etwork Event Identified as

Transmission Attempt Evea

Gbitrarily Choose One Station if Multiple Stations are Attempting to Trans@

[Channel

is Busy]

[Channel is

not Busy]

@edule Next Transmission Event for Stati@ €Chedme Next Collision

Check Event for Statia

Figure D-4: Activity Diagram for Processing Transmission-Attempt Events

173

D-5 ACTIVITY DIAGRAM FOR PROCESSING COLLISION-CHECK
EVENTS

@etwork Event Identified as Collision Check Eve@
G)unt Number of Transmitting Statio@

[Collision occurred] [No collision occurred]

@enerate Jamming Sig@
< Abort All Transmissions) G:hedule Packet Departure Event for Statia

@sohedule All Transmission Attempts After Collision Durati@

Figure D-5: Activity Diagram for Processing Collision-Check Events

174

D-6 ACTIVITY DIAGRAM FOR PROCESSING PACKET-DEPARTURE
EVENTS

@twork Event Identified as Packet Departure EveE

@ntify Station Corresponding to Eve@
@queue Packet from Station Que@

Geturn Packet ID to Packet ID POD

@date network measurement variables accordin@
G:hedule Next Transmission Attempt Event for Statia

®

Figure D-6: Activity Diagram for Processing Packet-Departure Events

175

D-7 DESIGN CLASS DIAGRAM

NetworkAnalysisResults

-arrivalRate : double

_rho : double NetworkSession

-averageDelay : double analyzes » -utilization : double

-delayConint : double -averageDelay : double

-utilization : double -throughput : double

-utilizationConlnt : double 1 * |-collisionRate : double

-throughput : double PacketldAssigner

NetworkParameters -collisionRate : double assigns/restores id numbers »

-maxStations : int * +assignld() : int
-busRate : double +resetld(in id : int)

-packetLength : double logs netyork data

-maxBackoff : double generates »
-persist : double
-jamPeriod : double
-maxPackets : double

-factor : double cqnfigures » Network ‘ Station «datatype» ¢ Packet
P consists » consists » maintains »
—E?ngu?&ze sint stationld PacketQueue -stationld : int
Ml 1ze : In . . .
; . -startTime : double
-degreesOfFreedom : int +startSimulation() +queue(in p : Packet) I
+dequeue() : Packet

synchranizes »

- " simulates transmission activity events
SimulationClock

-time : double

+setTime(in time : double)
+getTime() : double

utilizes
Event
simulates packet activity events »

synchronizes -stationld : int
-startTime : double
simulates »
type-identified-by
NetworkEventManager
«enumeration»

+fireNextPendingEvent() : Event NetworkEventType
+setFutureEvent(in stationld : int, in type : NetworkEventType, in time : double) 1 -arrivalEvent = 0
+disableEvent(in stationld : int, in type : NetworkEventType) -transmissionAttempt = 1

-collisionCheck = 2
-departure = 3

Figure D-7: Design Class Diagram

176

D-8 INTERACTION DIAGRAM FOR NETWORK SIMULATION

NetworkAnalysisResults

(]
>
[
=3
S | __________]
(0]
X
[S)
@©
o
£
c
S
£) E
o A
€
(]
>
w
F= I
o
2
[
z
=l

ﬁ s
© o f=
c s
o a
= 2
c el
O []
>
w
X
o
2
[} Z
z 2

©

o

o
x
£
S
ko
2 A A
4
2
[
£
©
5 —~
Q| | - R P
£ L5 g
5 AT £

= ©

£ 5 &
3 o
N o
[e]]
[=4

:NetworkSimulatorMain

Figure D-8: Interaction Diagram for Network Simulation

177

INTERACTION DIAGRAM FOR PROCESSING PACKET-

D-9

ARRIVAL EVENTS

Clock

r
(0]
[=
k=
73
1%}
S
S A
X
o
©
o
°
X
] T
a A
(0]
3
[
=]
o I
[}
X
o
©
a 3
£ |=
(0]
©
a | E
o (=
3 [
[
5 o
f=] o
o
c =
S o
s - E-—1-—3-—"
prs ©
7 £l A
[[
(=2} o)
€
=}
z
z
g
(]
[
- [
I} o
] T I I I
w A A
kol
X
[S]
@
5 o
e]
ot I}
e = El
© = o
= Z |c
m c o
w \\\\\\\\\\\\\\\W\\.m\ \\\\\\\\\\\\\ _— - —
® =
u 2|3
S o
]
1)
z

:Network

Figure D-9: Interaction Diagram for Processing Packet-Arrival Events
178

NetworkSession

Clock

:PacketldAssigner

:Packet

:PacketQueue

:Station

:NetworkEvent

D-10 INTERACTION DIAGRAM FOR PACKET-DEPARTURE EVENT

:NetworkEventManager

:Network

3
L2
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ [P [[
s
]
2
= ©
(3 e
=1 = 2
4 o
=]
= £
[
3 = |E
o |®
o o
€
=}
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Z 4 _1_ _______
A =
©
it
]
[
I3}
~ |2
k=4
°©
o
0
= £
1 =
=3 [0
2 o
3 5]
=4 @
o <
—~ © o
3 |< ?
c | o
Qo £
[s [=
< = 20 = E
2 c [} o k) =
H =
w > ° H 2
(=2 J = =3
g1 £ g 2
2 [} L w
[b= [}
o w kel =l
= 1] = °
x w ©
[o) b 2
z S @ S
° = o @
o o o m

Figure D-10: Interaction Diagram for Packet Departure Event
179

D-11 GENERIC INTERACTION DIAGRAM FOR PROCESSING
TRANSMISSION-ATTEMPT AND COLLISION-ATTEMPT EVENT

:Network :NetworkEventManager :NetworkEvent Clock

getNextPendingEvent()
L

} processkE
I
I
I

!

1
I
I
I
I
I
I
I
I
ent(event) }
I
I
I

getSta‘tionId()

getTiime()

vy

I
I
i
I
1
I
—
I getStation(stationld)
I
I
I
I
f

-
|
|

procesg(event)

L
getTime()

Y

-

schedule(time)

|
\
|
\
\
\
} rescheduleEvents(time) }
|
\
|
[

-

Figure D-11: Generic Interaction Diagram for Processing Transmission-Attempt and
Collision Attempt Event

180

D-12 COLLABORATION DIAGRAM FOR PROCESSING PACKET-ARRIVAL
EVENTS

:PacketldAssigner| :Clock

8: id=getPacketld() 12: newTime|= getTime()

3: processEvent(e)

1: event=getNextPendingEvent()
9: [new packet] create(id, time) 13: scheduleArrivalEvent(stationld, newTime)
Network :EventManager

7: s = get(stationld) 4: stationld=gefStationild()
10: queue(p) 5: time=getTimeg()
6:eventType=getEventType()
15: update(newWTime)

2: e = get()
14: scheduleArrivalEvent(stationld, newTime)

p:Packet s:Station
— —
11: queue(p)

:Stations e:Event :Event
— e:Event

:Packet

Figure D-12: Collaboration Diagram for Processing Packet-Arrival Events

181

D-13 COLLABOARION DIAGRAM FOR PROCESSINGG PACKET-
DEPARTURE EVENTS

:PacketldAssigner|

11: res

oreld(id)

NetworkAnalysisResults|
L |

| 15: updateStatistics()

3: processEvent(e)

:Clock

12: newTime |= getTime()

1: event=getNextPendingEvent()
13: [station buffer size > 1]

13.1 scheduleTransAttEvent(stationld, newTime)

14: [station buffer size == 0]

14.1: disableTransAttE vent(stationld)
14.2: disableCollIChkEvent(stationld)

p:Packet

10: id=getld() ,—l:l_‘Net ok
: W —

8: p=dequeue()

9: p=dequeue()

—

:Packet

7: s = get{stationld)

—

:Stations

4: stationld=get
5: time=getTim
6:eventType=g

Stationild()
£()
tEventType()

e:Event

:EventManager

2: e =get()

:Event

Figure D-13: Collaboration Diagram for Processing Packet-Diagram Events

182

D-14 COLLABORATION DIAGRAM FOR PROCESSING
TRANSMISSION-ATTEMPT EVENTS

:Clock

7:newTime 5 getTime()

3: processEvent(e)

:Network

1: event=getNextPendingEvent()
8: [channel NOT busy]

8.1: scheduleCollIChkEvent(stationld,, newTime)
8.2: disableTransAttEvent(stationld)

9: [channel busy]

9.1: scheduleTransAttEvent(stationld, newTime)
9.2: disableColIChkEvent(stationld)

4: stationld=get]
5: time=getTim
6:eventType=g

Stationild()
£()
tEventType()

e:Event

-EventManager
EventManager

2: e =get()

:Event

Figure D-14: Collaboration Diagram for Processing Transmission-Attempt Events

183

D-15 COLLABORATION DIAGRAM FOR PROCESSING COLLISION-CHECK
EVENTS

:Clock

1: event=getNextPendingEvent()
7: newTime = getTime() 8: [multiple stations transmitting]
8.1*: [i:=1 to num Stations] disableCollChkEvent()
3: processEvent(e) 8.2*: [i:=1 to num Stations] scheduleTransAttE vent(stationld, newTime)
9: [only one station transmitting]
9.1: scheduleTransAttEvent(stationld, newTime)
9.2: disableColIChkEvent(stationld)

:EventManager

:Network

4: stationld=getStationild()
5: time=getTimeg()
6:eventType=g¢tEventType()

2: e =get()

e:Event :Event

Figure D-15: Collaboration Diagram for Processing Collision-Check Events

184

APPENDIX E. TESTING TOOL METRICS RECORD SHEET

This appendix contains a form for recording the measurements obtained when
applying our proposed metrics to a software testing tool. If a metric has sub-metrics,

blanks are available for recording the sub-metrics directly below the metric.

185

Testing Tool Metric Record Sheet for (TESTING TOOL)

Human Interface Design (HID)
Average Keyboard-to-Mouse Switches (KMS)
Average Input Fields per Function (IFPF)
Average Length of Input Fields (ALIF)
Button Recognition (BR)

Maturity & Customer Base (MCB)
Maturity (years of tool existence) (M)
Customer Base (number of users) (CB)
Projects of similar size using tool (P)

Tool Management (TM)
Number of Access Levels (NAL)
Information control methods (ICM)

Ease of Use (EU)
Learning Time for First-time Users (LTFU)
Retainability of procedural knowledge by frequent users (RFU)
Retainability of procedural knowledge by casual users (RCU)
Operational Time for Frequent Users (OTFU)
Operational Time for Casual Users (OTCU)

User Control (UC)
Sum of different portions & portion combinations that can be tested

Test Case Generation (TCG)
Level of Automated Test Case Generation (ATG)
Level of Test Case Reuse Functionality (TRF)

Tool Support (TS)
Average Response Time during normal working hours (ART)
Average Response Time after hours (ARTAH)
Average Time to Search Documentation (ATSD)
Documentation Inadequacy (# of unsuccessful searches) (DI)
Response to Product Surveys (RPS)

Reliability (Rel)
Mean Time between Failures (MTF)

Maximum Number of Parameters (MNP)
Maximum number of parameters allowed in one project

Response Time (RT)
Average Response Time

186

Estimated Return on Investment (EROI)
Estimated Productivity Gain (EPQG)
Estimated Testing Time without tool (ETT)
Average Cost of One Testing Hour (ACTH)
Estimated Income Increase (EII)
Estimated Tool Implementation Cost (ETIC)
Estimated Quality Gain (EQC)
Estimated Hours of Customer Support per Project (EHCS)
Average Cost of One Hour of Customer Support (ACCS)

Metric Suites Supported
McCabe
Function Points
Halstead

Features Support (FS)
Extendable (tester allowed to write functions to extend tool) (E)
Database open for use by testers (DB)
Integrates with software development tools (I)

Reporting Features (RF)

Summary Report automatically generated (SR)
Exportable Reports for viewing external to tool (ER)

187

Additional Metrics for Application to OO Software

Maximum Number of Classes (MNC)
Maximum number of classes allowed in one project

Object-Oriented Software Quality Metrics (OOSWM)
Chidamber & Kemerer Metric Suite
Weighted methods per class
Depth of inheritance tree
Number of children
Coupling between object classes
Response for a class

Lie and Henry Metric Suite
Message Passing Coupling (MPC)
Data Abstraction Coupling (DAC)

Henry and Kafura/Shepperd
Information Flow Complexity (IFC)

Lorenz and Kidd Metric Suite
Number of scenarios scripts (NSS)
Number of key classes (NKC)
Number of messages sent by methods
Number of parameters used by operation
Number of subsystems (NSUB)
Total number of operations + number of attributes
Number of operations overridden by subclass (NOO)
Number of operations added by a subclass (NOA)
Specialization index (SI)
Class hierarchy nesting level

McCabe Object-Oriented Software Metrics

Maximum Cyclomatic Complexity
Hierarchy Quality

188

APPENDIX F. CSMA/CD FLOW CHART

Fead Input parameters

-

Initialize Variables
Zz =

Sean the ewvent list and pick an ewent

Packet departure Packet arrival

-

Update queue size and
ather related wariables

Type of Event

rE

Select an ID number for
arriving padet

; PR If mare than one station l

iz att ting th ick
transmitting stations L c il L i Sk
ane at atime

Collision checlk Transmission sttermpt

Compute delay and Update queue size and
push the quaue fonvard 1 ather wariables
Schedule transmission Collision = hanm If queue was empty

attempt of the next E F befare this arrival,

pachet, it any res Ho \% lil =schedule for
tranzmizzion ewent
Generate jamming Schedule Schedule
signal transmission collizion
event chedk
I Schedule the next
Abort all transmissions arrival
and reschedule their Sohedule
transmission attempts packet
afterthe collizion departure

i B B I 1

Should the
simulation be
stopped?

Yes ‘l

Compute the output
results

Figure F-1: CSMA/CD Simulation Program Flow Chart!”

17 Sadiku, M. and Ilyas, M., Simulation of Local Area Networks, Boca Raton, Florida. CRC Press,
1994, pp. 111.

189

THIS PAGE INTENTIONALLY LEFT BLANK

190

10.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, VA 22060-6218

Dudley Knox Library
Naval Postgraduate School
Monterey, CA 93943-5101

Professor Bret Michael
Naval Postgraduate School
bmichael@cs.nps.navy.mil

Professor Richard Riehle
Naval Postgraduate School
rdriehle@nps.navy.mil

LT Ray Buettner
Naval Postgraduate School
rrbuettn@nps.navy.mil

Professor Mantak Shing
Naval Postgraduate School
shing@nps.navy.mil

Dr. William Bryzinski
Software Productivity Consortium
bryk@software.org

Dr. Reginald Meeson
Institute for Defense Analyses
meeson@ida.org

Mr. Robert V. Binder
RBSC Corporation
rbinder@rbsc.com

Dr. Jeffrey Voas

Cigital
jmvoas@cigital.com

191

I11.

12.

13.

Prof. Richard Kemmerer
University of California, Santa Barbara
kemm(@cs.ucsb.edu

Mr. Neil Acantilado
SPAWAR Systems Center, San Diego
nacantil@spawar.navy.mil

Dr. Jeffrey Besser

SPAWAR Systems Center, San Diego
besser@spawar.navy.mil

192

	TABLE OF CONTENTS
	I.INTRODUCTION
	A.PROBLEM STATEMENT
	B.RESEARCH ISSUES
	1.Identifying Metrics
	2.Testing of Procedural versus Object-oriented Source Code
	3.Evaluating Tools

	C.CASE STUDY: CSMA/CD LAN DISCRETE-EVENT SIMULATION PROGRAM

	II.RELATED WORK
	A.IEEE STANDARD 1175 WORKING GROUP’S TOOL-EVALUAT
	1.Analyzing User Needs
	2.Establishing Selection Criteria
	3.Tool Search
	4.Tool Selection
	5.Reevaluation
	6.Summary

	B.INSTITUTE FOR DEFENSE ANALYSES REPORTS
	C.SOFTWARE TECHNOLOGY SUPPORT CENTER’S SOFTWARE T

	III.METHODOLOGY
	A.TOOL SEARCH
	1.BoundsChecker
	a.Summary
	b.Features

	2.C-Cover
	a.Summary
	b.Features

	3.CTC++ (Test Coverage Analyzer for C/C++)
	a.Summary
	b.Features

	4.Cantata++
	a.Summary
	b.Features

	5.ObjectChecker/Object Coverage/ObjectDetail
	a.Summary
	b.Features

	6.Panorama C/C++
	a.Summary
	b.Features

	7.TCAT C/C++
	a.Summary
	b.Features

	B.TOOLS SELECTED FOR EVALUATION
	1.LDRA TESTBED
	a.Summary
	b.Static Analysis Features
	Main Static Analysis is the kernel module of the LDRA Testbed system. All software requiring LDRA Testbed analysis must first be processed by Main Static Analysis.
	Main Static Analysis produces the following:
	Complexity Analysis:Complexity measures can be computed for procedures, files and even across an entire system. Complexity Analysis analyzes the subject code, reporting on its underlying structure on a procedure-by-procedure basis.
	2.)Metrics Report:Complexity metrics are reported in the Metrics Report. This configurable report breaks down each metric on either a file-by-file or a procedure-by-procedure basis and stipulates whether the value has passed the quality model or not.
	Complexity Metric Production: In order to control the quality of software products, LDRA Testbed produces the following complexity metrics:
	Control Flow Knots: Knot analysis measures the a
	Cyclomatic Complexity: Cyclomatic Complexity reflects the decision-making structure of the program. It is recommended that for any given module the metric should not exceed ten. This value is an indicator of modules that may benefit from redesign. It
	Reachability: All executable statements should be reachable by following a control-flow path from the start of the program. Unreachable code consists of statements for which there is no such path. LDRA Testbed marks all such lines as being unreachable
	Looping Depth: The maximum depth of the control flow loops is a factor in the overall readability, complexity and efficiency of the code.
	LCSAJ Density: The LCSAJ density is a maintainability metric. If a line of code is to be changed, then the density informs the user how many test paths (LCSAJs) will be affected by that change. If the density is high, then confidence that the change
	An LCSAJ is a linear sequence of executable code commencing either from the start of the program or from a point to which control flow may jump. It is terminated either by a specific control-flow jump or by the end of the program. The linear code sequen
	Comments: To control readability and maintainability, the following are measured:
	3.)Quality Report:The Quality Report creates views of the quality of the source code. The report can reflect the quality of a single file, the entire system or a group of unrelated source files, and can be produced in either ASCII or HTML format.

	c.Dynamic Analysis Features

	2.Parasoft Testing Products
	a.Summary
	b.C++ Test features
	c.CodeWizard features
	d.Insure++ features

	3.Telelogic Products
	a.Summary
	b.Features

	C.SOFTWARE QUALITY METRICS
	1.Procedural (Traditional) Software Metrics
	2.Object-Oriented Software Metrics

	D.PROPOSED SOFTWARE TESTING TOOL METRICS
	Metrics for Tools Testing Procedural Software
	a.Human Interface Design (HID)
	b.Maturity & Customer Base (MCB)
	c.Tool Management (TM)
	d.Ease of Use (EU)
	e.User Control (UC)
	f.Test Case Generation (TCG)
	g.Tool Support (TS)
	h.Estimated Return on Investment (EROI)
	i.Reliability (Rel)
	j.Maximum Number of Classes (MNC)
	k.Maximum Number of Parameters (MNP)
	l.Response Time (RT)
	m.Features Support (FS)

	2.Metrics for Tools Used to Test Object-Oriented Software
	3.Difference between Procedural Testing Tool Metrics and Object-oriented Testing Tool Metrics

	E.PERFORM TESTS
	1.LDRA Testbed
	a.Set-up
	b.Problems During Execution

	2.Parasoft
	a.Set-up
	b.Problems During Execution

	3.Telelogic
	a.Set-up
	b.Problems During Execution

	IV.ANALYSIS
	A.TOOL PERFORMANCE
	LDRA Testbed
	a.Procedural
	b.Functional
	c.Object-Oriented
	d.Reporting Characteristics

	Parasoft
	a.Procedural
	b.Functional
	c.Object-Oriented
	d.Reporting Characteristics

	3.Logiscope
	a.Procedural
	b.Functional
	c.Object-Oriented
	d.Reporting Characteristics

	B.TESTING TOOL METRICS
	1.Human Interface Design
	2.Test Case Generation
	3.Reporting Features
	4.Response Time
	5.Feature Support
	6.Metric Suites Supported
	7.Maximum Number of Classes
	8.Object-Oriented Software Quality Metrics
	9.Tool Management
	10.User Control
	11.Other Testing Tool Metrics

	V.RESULTS
	A.TESTING TOOL RESULTS
	B.TESTING TOOL METRIC RESULTS

	VI.CONCLUSION
	A.SUMMARY
	B.RECOMMENDATIONS FOR FUTURE WORK

	APPENDIX A. PROCEDURAL CODE
	APPENDIX B. FUNCTIONAL CODE
	APPENDIX C. OBJECT-ORIENTED CODE
	C-1 SIMULATION.CPP
	C-2 CONSTANTS.H
	C-3 CLOCK.CPP
	C-4 CLOCK.H
	C-5 EVENTLIST.CPP
	C-6 EVENTLIST.H
	C-7 IDLIST.CPP
	C-8 IDLIST.H
	C-9 NETWORK.CPP
	C-10 NETWORK.H
	C-11 STATIONLIST.CPP
	C-12 STATIONLIST.H

	APPENDIX D. CSMA/CD UML DIAGRAM
	D-1 CONCEPTUAL MODEL
	D-2 ACTIVITY DIAGRAM FOR NETWORK SIMULATION
	D-3 ACTIVITY DIAGRAM FOR PROCESSING PACKET-ARRIVAL EVENT
	D-4 ACTIVITY DIAGRAM FOR PROCESSING TRANSMISSION-ATTEMPT EVENTS
	D-5 ACTIVITY DIAGRAM FOR PROCESSING COLLISION-CHECK EVENTS
	D-6 ACTIVITY DIAGRAM FOR PROCESSING PACKET-DEPARTURE EVENTS
	D-7 DESIGN CLASS DIAGRAM
	D-8 INTERACTION DIAGRAM FOR NETWORK SIMULATION
	D-9 INTERACTION DIAGRAM FOR PROCESSING PACKET-ARRIVAL EVENTS
	D-10 INTERACTION DIAGRAM FOR PACKET-DEPARTURE EVENT
	D-11 GENERIC INTERACTION DIAGRAM FOR PROCESSING TRANSMISSION-ATTEMPT AND COLLISION-ATTEMPT EVENT
	D-12 COLLABORATION DIAGRAM FOR PROCESSING PACKET-ARRIVAL EVENTS
	D-13 COLLABOARION DIAGRAM FOR PROCESSINGG PACKET-DEPARTURE EVENTS
	D-14 COLLABORATION DIAGRAM FOR PROCESSING TRANSMISSION-ATTEMPT EVENTS
	D-15 COLLABORATION DIAGRAM FOR PROCESSING COLLISION-CHECK EVENTS

	APPENDIX E. TESTING TOOL METRICS RECORD SHEET
	APPENDIX F. CSMA/CD FLOW CHART
	INITIAL DISTRIBUTION LIST

