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BACKGROUND BIOAEROSOL CHARACTERIZATION

1. Introduction

The release of different bioaerosols is affected by various factors. Intrinsic
mechanisms in some organisms forcibly discharge particles usually in response to an
environmental factor. Other organisms require a mechanical disturbance for particle
release. Seasonal climate changes affect the growth cycles of plants and subsequently
the maturation and release cycles of pollen and spores. Diurnal effects are mainly
influenced by local weather conditions and meteorological parameters such as
temperature, relative humidity, wind direction and wind speed, which can influence’

the release and aerosolisation of small particles, pollen and spores.

It has been shown (Van den Assem, 1972) that diurnal concentrations of certain
airborne pollen groups correlated positively with temperature and negatively with
relative humidity. Days with > 50% cloud cover generally resulted in lower pollen
concentrations. Rainfall will scrub pollen from the air while inhibiting pollen release

from anthers.

Fungi may be grouped as “dry weather fungi” (those releasing spores during dry
weather) or “wet weather spores”. High relative humidity positively influences the
release of a number of fungal spores, eg. the ascomycetes. Ascospore concentrations
often peak as a light rain shower begins. Rain stimulates intrinsic mechanisms and
also mechanically stimulates by a mechanism known as rain splash. Certain “dry
weather spores” were found to increase in concentration before and after rain showers,
(Hjelmroos, 1993). Increased concentrations of some fungal spores (Pedgley,1982;
Leach, 1975) have been associated with low relative humidity. Light-dark cycles also
seem to affect spore release. However, temperature, humidity and light levels do not
appear to affect spore release in all fungi. In general, fungal spores are somewhat

resistant to environmental stresses encountered during transport through the air.

No active (intrinsic) release mechanisms are known for bacteria. Most likely, bacteria

are released by mechanical agitation, including wind, disturbance by animals, human




activities such as manipulation of compost and agricultural work. Human pathogens
are released by coughing and sneezing. The background aerosol may be attributed to
bacteria released from leaf surfaces by the wind and areas of exposed soil. Bacteria
seem to be more susceptible to environmental stress than are fungal spores and pollen,
although bacterial endospores eg. Bacillus species are quite resistant (Knudsen and

Spurr, 1987).

2. Fluorescence Protocol

The protocol for bioaerosol sampling and subsequent chemical treatment of
collected samples has been documented in the 1* Interim Report. Excitation/emission
(EEM) spectra have been generated producing two dimensional plots of fluorescence
intensity as a function of emission and excitation wavelength. Corrected emission
spectra for samples and water have been integrated in order to calculate fluorescence
cross sections (cm”/st/particle) The fluorescence protocol used and calculation of the

. . . d .
fluorescence cross section have been described in the 2™ Interim Report.

3. Microscopic Analysis of Bioaerosol Particles

The primary disadvantage of using microscopy for routine monitoring of
bioaerosols is that it is time and skill intensive. Computerised methods that automate
the actual counting procedure allows fast and accurate results to be obtained.
Microscopic analysis is transcending into the discipline of analytical imaging, in
effect any image obtained microscopically can be digitised. The quality of the
digitised image however is still dependent on the clarity of the primary microscopic
image. Therefore the most advanced microscopic applications are only as good as

basic light microscopy will allow.

The protocol for microscopic analysis of filters has been documented in the 1* Interim
report. In addition to light microscopic analysis, filters have been examined using a
Kontran Elektronic (KS 400) digital imaging system. This system utilises a Nikon
Microphot-FXA video camera attached to a Nikon microscope. The digital imaging

system has the capability of sizing particles down to an equivalent diameter of 0.4 pm




at x 400 magnification. Analysis was therefore extended to include particles of

equivalent diameter < 1 um down to 0.4 pum in size (0.4 pm <d <1 pm).

4. Results and Discussion

Eight 12 hourly bioaerosol samples were collected at Mace Head over the period of
July to December 1997. A combination of meteorological and condensation nuclei
(CN) data were used to determine air mass sources. Data include bioaerosol samples

from both marine (wind sector 180-300°) and continental air sources (45-1 35%.

The samples were evaluated into size classes (0.4 pm < d > 51.2 pm) and the size
distributions of the total aerosol particles and biological particles were obtained.
These were plotted as number concentration dN/dlogD per ml versus equivalent
diameter (um) and are presented in Figures 1, 3, 5, 7, 9, 11, 13, 15. Additionally, the
number concentration dN/dlogD per ml was calculated for the total number of black
(non-biological) and transparent (non-biological) particles in each diameter interval

and are presented in Figures 2, 4, 6, 8, 10, 12, 14, 16.

In general, lower number concentration levels, by factors between about 2-3 were
found for marine air as compared to continental air. However, for larger sized
particles (diameter > 10 pm), marine air biological particles were generally dominant.
The highest concentration of particles occurs during a continental episode on the
10/23/97, on comparing the total aerosol size distributions for the eight sampling
periods. A peak concentration occurs in the size intervals of diameter < 3.2 pm for all
samples. The highest concentration of particles in the size range of 3.2 pm <d < 6.4

pm occurs during the continental periods of 09/19/97, 10/23/97 and 12/02/97.

Similarly, on comparing the size distribution of black particles for all eight samples,
the highest concentrations also occur during the continentél sampling period 10/23/97.
The highest concentration of particles occurs in the size ranges < 3.2 um for all
samples. The highest concentration of particles in the size range of 3.2 pm <d < 6.4

pm also occurs during the continental periods of 09/19/97, 10/23/97 and 12/02/97.




The highest concentration of biological particles at the size intervals of diameter 0.4-

0.8 pum, 0.8-1.6 um, and 3.2-6.4 pm occurs during the continental period 10/23/93.
The peak biological particle concentration at the size interval of diameter 1.6-3.2 um

occurs during the continental period 09/19/97.

The continental period 10/23/97 has the highest concentration of transparent particles.
Most samples have a peak concentration occurring in the size interval of diameter
0.8-1.6 um with the exception of the marine period 08/15/97 which has a peak

transparent particle concentration at the size interval 1.6-3.2 um.

A comparative study was carried out to compare sample 09/05/97 counted by both
light microscopy and the digital imaging system. The results are presented in Figure
17. Agreement between the two systems is good, particularly for the size intervals of
diameter 1.6-3.2 um and 6.4-12.8 pm. A comparative study was also carried out on
blank samples and the results are presented in Figure 18. Both blanks counted by light
microscopy agree quite well with one another but blank 1 counted by light
microscopy is comparatively lower than when counted by the digital imaging system.
This is probably due to the fact that the digital system had a lower particle detection

cut-off size.

Representative emission spectra for the sampling periods are shown in Figures 19 (a)
through to 25 (h). No emission spectra are available for the period 12/02/97 due to
instrumentation failure. Fluorescence cross sections (cm2/sr/particle) have been

calculated for each spectrum and are presented in Table 1.
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Figure 1. Total and biological aerosol size distribution. dN/dlogD per ml vs. diameter (um).
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Figure 2. Black, biological and transparent particle size distribution.
dN/dlogD per ml vs. diameter (um).
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Figure 3. Total and biological aerosol size distribution. dN/dlogD per ml vs. diameter (um).

08/15/97 Marine
10000
1000 +

E

a 100 ¢

& F

3

5 104

0.1 1 10 100
Particle diameter ( pm)
—e— Black —m— Biological — -& — Transparent

Figure 4. Black, biological and transparent particle size distribution.
dN/dlogD per ml vs. diameter (um).




09/05/97 Marine
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Figure 5. Total and biological aerosol size distribution. dN/dlogD per ml vs. diameter (um).
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Figure 6. Black, biological and transparent particle size distribution.
dN/dlogD per ml vs. diameter (um).
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Figure 7. Total and biological aerosol size distribution. dN/dlogD per ml vs. diameter (um).
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Figure 8. Black, biological and transparent particle size distribution.
dN/dlogD per ml vs. diameter (um).




10/02/97 Marine
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Figure 9. Total and biological aerosol size distribution. dN/dlogD per ml vs. diameter (um).
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Figure 10. Black, biological and transparent particle size distribution.
dN/dlogD per ml vs. diameter (um).
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Figure 11. Total and biological aerosol size distribution. dN/dlogD per ml vs. diameter (um).
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Figure 12. Black, biological and transparent particle size distribution.
dN/dlogD per ml vs. diameter (um).
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Figure 13. Total and biological aerosol size distribution. dN/dlogD per ml vs. diameter (pm).
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Figure 14. Black, biological and transparent particle size distribution.
dN/dlogD per ml vs. diameter (um).
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Figure 15. Total and biological aerosol size distribution. dN/dlogD per ml vs. diameter (jm).
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Figure 16. Black, biological and transparent particle size distribution.
dN/dlogD per ml vs. diameter (um).
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Figure 19 (a) 07/31/97 Marine

Figure 19 (b) 07/31/97 Marine
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Figure 19 (c) 07/31/97 Marine

Figure 19 (d) 07/31/97 Marine
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Figure 19 (e) 07/31/97 Marine

Figure 19 (f) 07/31/97 Marine
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Figure 19 (g) 07/31/97 Marine

Figure 19 (h) 07/31/97 Marine
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Figure 20 (a) 08/15/97 Marine
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Figure 20 (b) 08/15/97 Marine
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Figure 20 (c) 08/15/97 Marine

Figure 20 (d) 08/15/97 Marine
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Figure 20 (e) 08/15/97 Marine

Figure 20 (f) 08/15/97 Marine
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Figure 20 (g) 08/15/97 Marine

Figure 20 (h) 08/15/97 Marine
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Figure 21 (a) 09/05/97 Marine

Figure 21 (b) 09/05/97 Marine
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Figure 21 (c) 09/05/97 Marine

Figure 21 (d) 09/05/97 Marine
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Figure 21 (e) 09/05/97 Marine

Figure 21 (f) 09/05/97 Marine
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Figure 21 (g) 09/05/97 Marine

Figure 21 (h) 09/05/97 Marine
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Figure 22 (a) 09/19/97 Continental

Figure 22 (b) 09/19/97 Continental
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Figure 22 (e) 09/19/97 Continental Figure 22 (f) 09/19/97 Continental
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Figure 23 (a) 10/02/97 Marine

Figure 23 (b) 10/02/97 Marine
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Figure 23 (c) 10/02/97 Marine
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Figure 23 (d) 10/02/97 Marine
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Figure 23 (e) 10/02/97 Marine

Intensity

Excitation @ 286 nm

25 ¢

-
(4]
|
T

05 ¢4

0

290

390 440 490 540

Wavelength (nm)

340

Figure 23 (f) 10/02/97 Marine
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Figure 23 (g) 10/02/97 Marine

Figure 23 (h) 10/02/97 Marine
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Figure 24 (a) 10/09/97 Marine

Figure 24 (b) 10/09/97 Marine
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Figure 24 (c) 10/09/97 Marine

Figure 24 (d) 10/09/97 Marine
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Figure 24 (e) 10/09/97 Marine

Figure 24 (f) 10/09/97 Marine
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Figure 24 (g) 10/09/97 Marine
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Figure 24 (h) 10/09/97 Marine
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Figure 25 (a) 10/23/97 Continental

Figure 25 (b) 10/23/97 Continental
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Figure 25 (c) 10/23/97 Continental

Figure 25 (d) 10/23/97 Continental
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Figure 25 (e) 10/23/97 Continental

Figure 25 (f) 10/23/97 Continental
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" Figure 25 (g) 10/23/97 Continental

Figure 25 (h) 10/23/97 Continental
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