
AEROSPACE REPORT NO.
ATR-92(2778)-5

The Semantics of Ada Access Types (Pointers)

in the State Delta Verification System (SVDS)

30 September 1992 LgC L 9>

DE ,9 1994 Li0
Prepared by

L. G. MARCUS
Computer Systems Division

Prepared for

NATIONAL SECURITY AGENCY
Ft. George G. Meade, MD 20755-6000

Engineering and Technology Group

". h: is. t ", -.- s -p I

SOOPUBLIC RELEASE IS AUTHORIZED

19941214 006

Aerospace Report No.
ATR-92(2778)-5

THE SEMANTICS OF ADA ACCESS TYPES (POINTERS)
IN THE STATE DELTA VERIFICATION SYSTEM (SDVS)

Prepared by A or /

L. G. Marcus N" _T I

Computer Systems Division
iD

-- -- - - - -- -.

30 September 1992

Engineering and Technology Group
THE AEROSPACE CORPORATION

El Segundo, CA 90245-4691

Prepared for

NATIONAL SECURITY AGENCY
Ft. George G. Meade, MD 20755-6000

PUBLIC RELEASE IS AUTHORIZED

Report No.
ATR-92(2778)-5

THE SEMANTICS OF ADA ACCESS TYPES (POINTERS) IN
IN THE STATE DELTA VERIFICATION SYSTEM (SDVS)

Prepared

L. G. Marcus

Approved

B. H. Levy, Maniager
Computer Assurance Vction

D. B. Baker, Director A. Sunshine, Princi al Director
Trusted Computer Systems Department Computer Science an chnology

Subdivision

i11.i

Abstract

We propose a method for handling Ada access types (pointers) in SDVS, i.e., a method
that allows SDVS to translate and reason about Ada programs containing access types.
The method is built upon "higher-order places", i.e., "places" that have other places as
contents.

We give the state delta semantics for various Ada constructs involving access types, discuss
the theory and implementation of higher-order places, and give a partially worked example
of an Ada program involving access types.

v

Contents

Abstract v

1 Ada Access Types in SDVS 1

2 More Details on the Translation 5

3 SDVS Processing of Places of Places 9

4 An Example Program 13

5 Derived Places of Places of Places 19

6 Translating the Example Program 21

7 Conclusions 23

References 25

vii

1 Ada Access Types in SDVS

We propose a method for handling Ada access types (pointers) in SDVS, i.e., a method
that allows SDVS to translate and reason about Ada programs containing access types. As
in any enhancement of SDVS to handle a language extension, we need to find the proper
translation of the new construct into SDVS and then to add any necessary processing and
proving capabilities involving the new construct.

In this case we are lucky. It appears that the semantics of Ada access types corresponds
exactly to a pre-existing aspect of the theory of SDVS, namely places that have other places
for their contents (or simply "places of places"), and only a small amount of enhancement is
necessary in order for SDVS to be able to deal practically with the various ramifications of
places of places. The fact that the state delta logic has an explicit function symbol ("dot")
for the contents of a place, instead of considering contents as simply the interpretation of a
variable via an "evaluation" as is customary in temporal logic, makes the theory of places
of places very natural.

To quote from the Ada Reference Manual (LRM) [1] (Section 3.8, on access types):

Access to such an object is achieved by an access value returned by an allo-
cator; the access value is said to designate the object.

The value designates an object; that is exactly the situation of a place whose contents
(value) is another place. This type hierarchy on places has been previously exploited in
SDVS only in connection with new and old "universes" of places corresponding to entry
and exit from block environments. The theory is discussed in [2].

In addition to [1], our thoughts and examples below are based on reading [3], [4], and [5].

In some operations on an access type variable x in Ada, the loose phrase "contents of x"
could be interpreted as .(.x) (when we are interested in the value of the object x points
to, designated in Ada by x.all), and in other contexts, when we are interested in the thing
itself that x points to, as .x (designated in Ada simply by x). Even though .x is a place,
it is not a "predeclared" place; it does not have an independent declaration. It can only
be referred to by .x. The contents of a pointer place consist of only one place, not perhaps
many, as in the case of "universes." Thus, it makes sense to write ..x or #.x. (In actual
SDVS this must be written with parentheses as .(.x) or #(.x).) An assignment statement of
the form a := b, where a and b are access type objects, would be translated by a state delta
with #a = .b in its postcondition and a modification list consisting of a. An assignment
statement of the form a.all := b.all could involve a state delta with modlist .a and either
#(-a) = .(.b) or #(#a) = .(.b) in the postcondition; these two should be equivalent since
(the place designated by) a does not change during that assignment, so #a is equal to .a
at postcondition time.

Note that Ada can have pointers of pointers. Thus we may need .(.(.x)), etc. [1]:

There are no particular limitations on the designated type of an access type.

1

In particular, the type of a component of the designated type can be another
access type, or even the same access type.

This raises some issues when a proof may require an indefinite number of iterations of the
"dot" operation, or a record access type may require an arbitrary depth expression of the
form record(.record(.record... f),f). (See Section 6.)

The pointers x and y are said to be equal (x = y) at a given time (in a given state) if .x =

.y; thus it is necessary, but not sufficient, that .(.x) = .(y).

For example, the following program returns "maybe":

with text-io; use text-io;
procedure pointerl is

type text is access string;
a: text : new string' ("monday");
b: text : new string' ("monday");

begin
if a = b then
put ("yes");
elsif a.all = b.all then
put("xmaybe");
else put("nope");
end if;

end pointerl;

A "null" pointer is one that is not pointing to anything, i.e., if x is a null pointer, then .x
simply does not have an explicit contents, i.e., .x does not designate a specific place, and
.(.x) "does not exist." However, null is the "non-place" that such an access type object
"non-designates," and all such places test as being equal in Ada. See the programs pointer2,
pointer3, and pointer4 below. This situation is brought about by an access type declaration
with no new value assignment, or by an explicit assignment of the value null.

Note that the two programs below both return "yes":

with text-io; use text-io;
procedure pointer2 is

type text is access string;
a: text;
b: text;

begin
if a = null then
put ("yes");
else put("no");
end if;

end pointer2;

2

with text-io; use text-io;

procedure pointer3 is
type text is access string;

a: text;
b: text;

begin

if a = b then
put(Ilyest");

else put("no"));
end if;

end pointer3;

The following program causes a constraint error because a.all "does not exist" for a = null.

with text-io; use text-io;

procedure pointer4 is

type text is access string;

a: text;
b: text;

begin

if a.all = b.all then

putQ("yes");
else put("no");
end if;

end pointer4;

What is the difference between the fragment

procedure pointer is
type access-char is access character;

a: access-char;
begin

a := new character;

and just plain

procedure pointer is
type access-char is access character;

a: access-char;

with no assignment? The difference is that in the second case a = null (and so a.all, or

.(.a) in SDVS, "does not exist"), which is not true in the first case. The use of "new" in

the Ada LRM is somewhat mysterious. The original Ada LRM does not really explain its

meaning, and one edition of the annotated LRM [1] even has this cryptic note in the index:

3

Index has no entry for "NEW," a reserved word pertaining to access vari-
ables.

A "constant" pointer x cannot have different values for .x. Of course, it can have different
.(.x) values.

If an access object is constant, the contained access value cannot be changed
and always designates the same object. On the other hand, the value of the
designated object need not remain the same [1].

For example, note that the following program is illegal, because it assigns to a constant (the
line b := a), even though the contents of the places designated by a and b are the same.

with text.io; use text-io;
procedure pointerS is

type text is access string;
a: constant text := new string' ("monday");
b: constant text : new string' ("monday");

begin
b := a;
put(b.all);

end pointerS;

Another verification system intended to handle Ada is Penelope, being developed at ORA
Corporation. It is not clear from [6] whether or not Penelope handles access types. In
an email exchange with David Guaspari [7], he clarified that the "predicate transform-
ers associated with the declaration of access types, of access variables, of allocators, etc.
are all defined, but none of them has been implemented in Penelope." This seems to be
approximately equivalent to the shape SDVS is in with regard to access types.

Of course, many other researchers have examined formalizations of pointers, among them
[8]-[18].4

4

2 More Details on the Translation

There are essentially three kinds of Ada constructs that must be translated into SDVS:

declarations of access types, assignments (to the access objects or objects they designate),
and equality comparisons (between access objects or between objects they designate).

New features needed are

1. incomplete and circular type declaration

2. access type declaration

3. null place (does not have dot value)

Below are some examples of Ada pointer constructs. D1 and D2 are assumed to be previ-

ously declared access type variables.

"* D1:P; - equivalent to Dh:P:=null;

"* if D1 = null then

"* D2 := new DATE'(4, JUL, 1776); - creates and gives value.

"* D1.day := 12;

"* D1.all:= (12, OCT, 1492);

"* D2.all := Dl.all; - copying the record, i.e., #(.D2) = .(.D1)

"* D2 := D1; - copying the pointer, i.e., #D2 = .D1; D2 now points to where D1 points,
forcing all values to keep in sync from this point on (until another pointer copying

assignment occurs; so following this statement by D3:=D2 has the same effect as
following it with D3:=D1).

"* Incomplete type declarations, in order to define access types that are in essence cir-
cular: e.g.

type LINK;
type P is access LINK;
type LINK is

record
INT: INTEGER;
NEXT: P;

end record;

With regard to the difference between copying the record and copying the pointer, note
that in the following two programs that the first returns "z', while the second returns "v."

5

with text-io; use text.io;
procedure pointer6 is

type access-char is access character;
a, b: access-char;

begin
a new character'('z');
b new character;
b.all a.all;
a.all :=v;
put(b.all);

end pointer6;

with text-io; use text-io;
procedure pointer7 is

type access-char is access character;
a, b: access-char;

begin
a new character'('z');
b new character;
b a;
a.all := J v.;
put (b.all);

end pointer7;

Note that it is necessary to include the two lines with "new" in each of the above procedures,
in the sense that omitting either one will cauEe a constraint error exception when the
compiled code is executed.

The proposed translation of procedure pointer6 above would entail the application of the
following state deltas, after the declaration phase:

[sd pre: true
comod: (all)

mod: (.a)
post: (#(.a) = 'z' and sl)]

where sl is

[sd pre: true
comod: (all)

mod: (.b)
post: (s2)]

6

where s2 is

[sd pre: true
comod: (all)

mod: (.b)
post: (#(.b) = .(.a) and s3)]

where s3 is

[sd pre: true
comod: (all)

mod: (.a)
post: (#(.a) = 'v' and s4)]

where s4 is

[sd pre: true
comod: (all)

mod: (stdout)
post: (#stdout = .(.b))]

whereas for procedure pointer7 s2 is replaced by

[sd pre: true
comod: (all)

mod: (b)
post: (#b = .a and s3)]

Note that in the following program the first assignment is illegal, since a and b are of different
base types. But since they both designate objects of type integer, the second assignment is
allowed.

procedure pointer8 is
type T1 is access integer;
type T2 is access integer;

a : T1 new integer'(5);

b : T2 new integer;

begin

-- b := a; -- illegal
b.all := a.all; -- legal

end pointer8;

3 SDVS Processing of Places of Places

There are four possible combinations of dots and pounds for contents of places of places:

.(.x), #(#x), #(.x), .(#x)

In postconditions of state deltas, where simultaneous use is made of the old contents be-
fore the state change and the new contents after the state change, these would refer to,
respectively, the old contents of the old place pointed to by x, the new contents of the
new place pointed to by x, the new contents of the old place pointed to by x, and the old
contents of the new place pointed to by x. SDVS 11 correctly (at least with respect to our
interpretation of the semantics of places of places) handles occurrences of the first three,
but not the fourth.

But that is almost "okay," because it does not appear that the latter expression is ever
going to come up in the translation of an Ada program (of course it could come up in the
specification). In other words,

• (#x)

cannot be expressed as some x.all; there is no Ada statement that refers to the previous
contents of a current access object, unless of course that current access object is the same
as the previous one designated by x, in which case

.(.x)

will suffice.

It is also obvious that our solution below to the problem of .(#x) would not help if that
occurrence were due to an Ada program, since the object designated by an access type object
is not allowed to be previously named. (The Ada LRM states that objects designated by
access values "have no simple name;" that is, they cannot be referred to other than by way
of the access type object.)

A solution is that an occurrence of .(#x) = t in the postcondition should be interpreted as
a disjunction of conjunctions:

(#x = al and .al = t) or (#x = a2 and .a2 = t) or ... or .(#x)=t

where in all but the last disjunct the al, a2, ... , range over all places of type value, and
the last disjunct is the original predicate containing the term .(#x) itself. SDVS needs
this disjunct for the cases where the new place has not existed previously, but nevertheless
something can be proved about it based on other facts involving this new pounded place.1

An example of this latter phenomenon is given by
'Note that the continued occurrence of .(#x) = t in the postcondition does not make this a circular

argument: we are merely proposing that the postcondition be expanded once in this manner.

9

[sd pre: (pcovering(all,x, .x) ,formula(inc5.sd))
mod: (x,.x)

post: (.(#x) = 1)]

where inc5.sd is

[sd pre: (true) mod: (x,.x) post: (.(#x)= 1)]

As an example where we need the disjunction, consider:

[sd pre: (pcovering(all,x,y,z) ,pcovering(all,x, .x),
pcovering(all,y,.y),pcovering(all,z,.x),
pcovering(all,z,.y),formula(inc3.sd),.(.x) = 1)

,mod: (z)
post: (#z = 1, .(#x) = 1)]

where inc3.sd is

[sd pre: (true) mod: (z) post: (#z = 1)]

This is a true state delta; however, it just so happens that SDVS cannot prove the above
state delta as written. It needs to be interpreted as if it were the following equivalent state
delta:

[sd pre: (pcovering(all,x,y,z) ,pcovering(all,x, .x),
pcovering(all,y,.y) ,pcovering(all,z,.x),
pcovering(all,z,.y),formula(inc3.sd),.(.x) = 1)

mod: (z)
post: (#z 1,

(#x = .x & .(.x) = 1 or #x = .y & .(.y) = 1) or

S(#x) = 1)]

SDVS proves this, requiring only the application of inc3.sd.

The following is not equivalent:

[sd pre: (pcovering(all,x,y,z) ,pcovering(all,x, .x) ,pcovering(all,y, .y),
pcovering(all,z,.x),pcovering(all,z,.y),formula(inc3.sd),
S(..x) = 1)

mod: (z)
post: (#z = 1,#x = .x -- > .(.x) = 1,#x = .y -- > .(.y) 1)]

Notice that
[(Pl - q1) A (P2 - q2)] V (-'p1 A -P2 - q3)

10

and

(P1 A q1) V (P2 A q2) V (-pl A -P2 A q3)

are not equivalent: let q, = q2 = T and p, = P2 = q3 = F.

As another example, note that the following state delta is not a theorem:

[SD pre: pcovering(all, x, y, z), pcovering(all, x, .x),
pcovering(all, y, .y), .x = .y, formula(inc.sd), .(.x)=l, .z=O

modE]: z, .x, .y
post: #z=l, #(#x)=1

where inc.sd is:

[sd pre: (true) mod: (z,.x,.y) post: (#z = 1)]

Nor is the following a theorem:

[sd pre: (pcovering(all,x,y,z) ,pcovering(all,x,.x),
pcovering(all,y,.y),.x = .y,formula(incl.sd),.(.x) = 1,

.z = 0)
mod: (z,x,y)

post: (#z = 1,#(.x) = 1)]

where incl.sd is:

[sd pre: (true) mod: (z,x,y) post: (#z = 1)]

because z and .x are not necessarily disjoint.

Here is a correct version of the above example:

ESD pre: pcovering(all, x, y, z), pcovering(all, x, .x),
pcovering(all, y, .y), pcovering(all, z, .x),
pcovering(all, z, .y), formula(inc2.sd), .(.x)=l

mod: z, x
post: #z=l, #(.x)=1]

where inc2.sd is

[SD pre: (true) mod; (z, x) post: (#z=l)]

Another nontheorem is:

11

[SD pre: pcovering(all, x, y, z), pcovering(all, x, .x),
pcovering(all, y, .y), pcovering(all, z, .x),
pcovering(all, z, .y), formula(inc2.sd), .(.x)=l

mod: z,x
post: #z=l, #(#x)=1]

Here is an example with #(.x): Consider the state delta dotsl8.sd:

[SD pre: pcovering(all, x, y, z), pcovering(all, x, .x),
pcovering(all, y, .y), pcovering(all, z, .x),
pcovering(all, z, .y), formula(inc3.sd), .(.x)=l

mod: z
post: #z=l, #(.x)=1]

In words, this state delta formalizes the claim that given all the independence relations as
specified in the "pcoverings", if the value of the contents of the place pointed to by x starts
out at 1, and if z will become 1 in the future (per inc3.sd) with only z changing along the
way, then z will become 1 at some future time when the value of the new contents of the
old place pointed by x is still 1.

Here is the proof transcript as produced by SDVS 11:

<sdvs.l> prove
state delta[]: dotsl8.sd
proof []:

open -- [sd pre: (pcovering(all,x,y,z),pcovering(all,x,.x),
pcovering(all,y,.y),pcovering(all,z,.x),
pcovering(all,z,.y),formula(inc3.sd),.(.x) = 1)

mod: (z)
post: (*z = 1,#(.x) = 1)]

Complete the proof.
<sdvs.1.1> goals

g(1) #z = 1
g(2) #x\136 = 1

<sdvs.1.1> apply
sd/number[highest applicable/once]:

apply -- [sd pre: (true)
mod: (z)

post: (#z = 1)]

close -- 1 steps/applications

12

4 An Example Program

The procedure LINKED in Figure 1 on the next page accepts integer inputs (positive,
negative, or zero), and when it receives a, 0 input, it outputs the previous inputs in increasing
order.

In this and the following two sections we study the program, first intutively, by showing
on the next three pages successive states of the computation for the input stream 3, 7, 5,
0. Then we look at the operation of LINKED within the context of places of places, and
finally in the last section we give some suggested translations into state deltas.

13

with TEXTIO; use TEXTIO;
with INTEGERIO; use INTEGERIO;

procedure LINKED is
type LINK;
type P is access LINK;
type LINK is

record
NEXT P;
INT INTEGER;

end record;
HEAD : P := new LINK; -- "new" means that .(.HEAD) '"exists''
I : INTEGER;

procedure ADDITOLINKEDLIST is
TMP : P := HEAD; -- Begin search of where to insert at start of list.
begin

while TMP /= null and then TMP.NEXT /= null
and then TMP.NEXT.INT < I loop -- TMP.NEXT.INT is initially 0

TMP TMP.NEXT; -- so TMP = HEAD.NEXT
end loop;
TMP.NEXT new LINK'(I, TMP.NEXT);-- Create new link and insert in list.

-- TMP is still = HEAD.NEXT
end ADDITOLINKEDLIST;

procedure DISPLAYLINKEDLIST is
TMP : P := HEAD.NEXT; -- Skip unused link at the head of the list.
begin

while TMP /= null loop
PUT(TMP.INT); -- Print integer in the current link.
TMP := TMP.NEXT; -- Go to next link in the list.

end loop;
end DISPLAYLINKEDLIST;

begin
GET(I);
while I /= 0 loop

ADDITOLINKEDLIST;
GET(I);

end loop;
DISPLAYLINKEDLIST;

end LINKED;

Figure 1: Procedure LINKED

14

Input: 3, 7, 5, 0

head next int

null

i=3

tmp
head next int

null

tmpI1
head int

3

null

15

tmp J l

head int

tmp 3

null

head int

tmp 3

tmp .next[7

Lnull

16

i=5

tmhead int

3 1

Lnull

head jl

tmp 1

null

head jint

tmp 3

tmp.next 5.. 5

W- null

17

5 Derived Places of Places of Places

In this section we go into more detail on the treatment of arrays and records of places of
places with the analysis of the program of the previous section as a motivating example.

If X is a place of type array with elements of type integer (with indices of type integer, if
there is a need to specify thus), then for each integer index i, X[i] is a place with contents
of type integer and .X[i] is its value (an integer). In longer SDVS notation X[i] is written
as element(X, i), and its contents as .element(X, i).

Similarly, if X is a place of type record (with some specified fields fi and records of spec-
ified types ti), and fi is a field name, then record(X, fi) is a place with contents of the
apppropriate type (ti) and .record(X, fi) is its contents.

Now if X is a (second order) place of access type record and f is a field name, then its
contents .X is a place of type record. Then just as in the preceding paragraph, record(.X, fi)
is a place and .record(.X, fi) is its contents.

Finally, consider a place X of access type record with a field of type access type. (If the field
fi has the same access type as X, then it is a circular access type.) Again, .X is a place of
type record and record(.X, fi) is the place associated with field fi. For f, this is an access
type place, so .record(.X, fl) is again a place of the same type, and record(.record(.X, fl), fl)
is the access type place corresponding to fl, and so on.

19

x

For X of type record: record(X, fl) I record(X, f2)

.record(X, fl) .record(X, f2)

x

.x

For X of access type record: record(.X, fl) record(.X, f2)

.record(.X, fl) .record(.X, f2)

x

For X of circular access type record: record(.X, fl) I record(.X, f2)

.record(.X, f2)

.record(.X, fl)

rec(.rec(.X, fl), fl) rec(.rec(.X, fl), f2)

.rec(.rec(.X, fl), f2)

.rec(.rec(.X, fl), fl)

20

6 Translating the Example Program

Below is the proposed SDVS translation of the above program, currently done "by hand."

First, in the declaration phase, the following are generated (as postconditions of successively
nested state deltas; the types inzcomplete and access are proposed additions to SDVS):

(alldisjoint (linked, .linked,link),
covering(#linked,.linked,link),
declare (link,type(incomplete)))

(alldisjoint(linked, .linked,p),
covering(#linked, .linked,p)
declare (p ,type(access(link))))

Or perhaps simply,

(alldisjoint(linked, .linked,p),
covering(*lizked, .linked,p)
declareC .p,type(link)))

To continue,

(alldisjoint (linked, .linked,link. int)
covering(#linked, .linked,link. int),
declare(link.int ,type(integer)))

(alldisjoint (linked, .linked,link.next),
covering(#linked, .linked,link.next),
declare (link .next ,type (p)))

(alldisjoint(linked, .linked,head),
covering(*linked, .linked,head),
declare(head,type(p)))

(alldisjoint (linked, .linked,i),
covering(*linked, .linked,i),
declare(i ,type(integer)))

Now, in the procedure ADD-ITO-LINKED-LIST we get

[sd pre: true
comod: all

mod: tmp
post: declare(tmp, type(p)), #tmp = .head]

21

The tests TMP /= NULL and TMP.NEXT /= NULL are represented by .TMP -= NULL and
.record(.TMP, NEXT) -= NULL, respectively. The test TMP.NEXT.INT < I is represented

by .record(.record(.TMP, NEXT), INT) it .I.

The assignment TMP : TNP. NEXT is represented by

[sd pre: true
comod: all

mod: TMP
post: #TMP = .record(.TMP, NEXT)]

The assignment TMP. NEXT := new LINK' (I, TMP. NEXT) is represented by (something equiv-
alent to)

[sd pre: true
comod: all

mod: record(.record(.TMP,NEXT),INT),
record(.record(.TMP,NEXT) ,NEXT))

post: #record(.record(.TMP, NEXT), INT) = .I,
#record(.record(.TMP, NEXT), NEXT) = .record(.TMP, NEXT)]

The state delta representing the claim to be proven is (could be)

[sd pre: (ada(linked),
(forall i (0 le i and i it n -- > .stdin[i] neq 0)))

comod: (all)
mod: (all)

post: ((forall i (0 le i and i lt n-i -- >

#stdout[i] le #stdout[i+iII)),
(forall i (exists j (0 le i and i le n-I -- >

(0 le j and j le n-i and #stdout[j]=.stdin[i])))))]

22

7 Conclusions

We have proposed a method for handling pointers and Ada access types in SDVS, i.e., a
method that allows SDVS to translate and reason about Ada programs containing access
types. The method is built upon "higher-order places", i.e., "places" that have other places
as contents. SDVS 11 already handles correctly most of the basic operations of places of
places.

We have given the state delta semantics for various Ada constructs involving access types,
discussed the theory and implementation of higher-order places, and given a partially worked
example of an Ada program involving access types.

23

References

[1] Grebyn Corporation, The Annotated Ada Reference Manual (ANSI/MIL-STD-1815A-
1983), June 1989.

[2] L. Marcus, "State Deltas with Places of Places." Verification Note 25, February 27,
1992.

[3] D. J. Naiditch, Rendezvous with Ada, (New York: John Wiley and Sons, 1989).

[4] A. D. McGettrick, Program Verification using Ada, (Cambridge, UK.: Cambridge
University Press, 1982).

[5] D. L. Bryan and G. 0. Mendal, Exploring Ada, Volume 1, (Englewood Cliffs, New
Jersey: Prentice Hall, 1990).

[6] D. Guaspari, C. Marceau, and W. Polak, "Formal Verification of Ada Programs,"
IEEE Transactions Software Engineering, Vol. SE-16, pp. 1058-1075, September 1990.

[7] D. Guaspari, "Penelope for Ada," Email communication, April 1992.

[8] S. Meldal, "An Abstract Axiomatization of Pointer Types," in Proceedings of the Sym-
posium on Logic in Computer Science, pp. 252-259, IEEE, 1989.

[9] H.-K. Hung and J. I. Zucker, "Semantics of Pointers, Referencing, and Dereferenc-
ing with Intensional Logic," in Proceedings of the Symposium on Logic in Computer

Science, IEEE, 1991.

[10] V. Swarup and U. S. Reddy, "A Logical View of Assignments," in Proceedings of the
Conference on Constructivity in Computer Science, June 1991.

[11] D. C. Luckham and N. Suzuki, "Verification of Array, Record, and Pointer Operations
in Pascal," A CM Transactions Programming Languages and Systems, Vol. 1, pp. 226-
244, 1979.

[12] N. Suzuki, "Analysis of pointer rotation," in Proceedings 7th Annual ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, pp. 1-11, ACM, Jan-
uary 1980.

[13] W. E. Weihl, "Interprocedural data flow analysis in the presence of pointers, procedure
variables and label variables," in Proceedings 7th Annual ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pp. 83-94, ACM, January 1980.

[14] W. Landi and B. Ryder, "Pointer-induced Aliasing: A Problem Taxonomy," in Proceed-
ings 18th Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 93-103, ACM, January 1991.

[15] W. Landi and B. Ryder, "A Safe Approximate Algorithm for Interprocedural Pointer
Aliasing," in Proceedings A CM SIGPLAN '92 Conference on Programming Language
Design and Implementation, pp. 235-248, ACM, June 1992.

25

[16] L. J. Hendren, J. Hummel, and A. Nicolau, "Abstractions for Recursive Pointer Data

Structures: Improving the Analysis and Transformation of Imperative Programs," in

Proceedings ACM SIGPLAN '92 Conference on Programming Language Design and

Implementation, pp. 249-260, ACM, June 1992.

[17] S. Horwitz, P. Pfeiffer, and T. Reps, "Dependence Analysis for Pointer Variables," in

Proceedings ACM SIGPLAN '89 Conference on Programming Language Design and

Implementation, pp. 28-40, ACM, June 1989.

[18] D. R. Chase, M. Wegman, and F. K. Zadeck, "Analysis of Pointers and Structures,"

in Proceedings A CM SIGPLAN '90 Conference on Programming Language Design and

Implementation, pp. 296-310, ACM, June 1990.

26

