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INTRODUCTION

The use of solid polymer electrolytes (SPE) in
rechargeable lithium batteries is currently being widely
investigated. Polymer electrolytes can be prepared into
very thin films possessing large surface area yielding high
power densities. An energy advantage of a solid flexible
electrolyte is its ability to enable the design of more
volume efficient battery configurations. In an
electrochemical cell, especially in a reversible cell, a
flexible electrolyte can accommodate the volume changes that
occur with charge/discharge cycles. Polymer electrolytes
can increase cell safety by preventing ignition by acting as
a shut down separator, if thermal runaway should occur
within a cell. A thin Li+ ion conducting polymer film acts
as both the electrolyte and a separator between the lithium
anode and a lithium insertion compound as the cathode. The
use of high energy cathode films of reversible compounds
such as LiCoO2 , LiNiO2 , LiMn 2 0 4 , V2 0 5 , or V60 1 3 with thin
lithium foil anodes and the structural flexibility of
polymer electrolytes make the lithium polymer battery a
promising candidate for advanced battery systems for
electric vehicles (EV) or consumer/military electronics
applications.

One of the first polymer electrolyte chemistries
consisted of poly(ethylene oxide) PEO-LiX complexes (1,2)
which need to operate at around 100°C. New multiphase
systems involve adding plasticizing solvents to PEO-LiX or
trapping liquid electrolyte solutions in a polymer matrix to
form a "gel" electrolyte. The latter more "liquid like"
chemistries can operate at room temperature and therefore
are of interest for further research. One cf the basic
fundamental problems in the development of solid state ionic
materials based on polymers is the conductivities of these
materials. Recently, room temperature conductivities as
high as 10- 3 S cm- 1 have been reported for polyacrylonitrile
(PAN) based lithium salt complexes (3). It is ionic
conductivity measurements on this chemistry that is the
focus of this report.

EXPERIMENTAL

The preparation of the solid gel electrolytes involved
the immobilization of LiCIO4 , LiAsF 6 , or LiN(CF 3 SO2 ) 2 in
ethylene carbonate (EC) and propylene carbonate (PC)
mixtures with PAN. The LiAsF 6 (Lithco "Lectro-salt") and
LiN(CF 3SO2 ) 2 (3M) were dried under vacuum at 60 0 C for 24 h.ý
LiClO4 (Alfa reagent grade) was recrystallized in distilled
water, then dried under vacuum at 150 0 C for 24 h. PC
(Burdicke and Jackson) was dried with type 4A molecular

1



sieves for 48 h then distilled under vacuum. EC (Fluka AG)
was fractionated under vacuum. Dimethyl carbonate (DMC)
(Burdick and Jackson) was fractionated in an argon
atmosphere. Karl Fisher titration for EC, PC, and DMC
indicated water contents of <24 ppm. Poly(acrylonitrile)
(Polyscience Inc.) with an average molecular weight of
150,000 was dried under vacuum at 60 0 C for 48 h.

The liquid electrolyte EC:PC:LiX was prepared in a vial
with a stirring bar. PAN powder was then added and the
mixture stirred to ensure wetting of the PAN. The mixture
was heated slowly in an oil bath to 100WC, avoiding over-
heating and decomposing the PAN. The mixture turned to a
clear highly viscous gel and was cast between glass plates,
with 0.25 mm spacers, and allowed to cool. The resulting
polymer electrolyte was an elastomeric mechanically stable
film. Two general film compositions were prepared with mole
percentages of 40EC:34.75PC:21PAN:4.25LiX (17.6:1 EC+PC:LiX)
and 38EC:33PC:21PAN:8LiX (8.8:1 EC+PC:LiX). Variations to
these compositions include the use of DMC with EC/PC
mixtures, the addition of ground molecular sieves to form a
composite film, and a film with a lower concentration of PAN
(12%).

Electrolyte conductivities were determined from ac
impedance measurements using an EG&G PAR model 388 impedance
system with a frequency range of 5 Hz to 1000 kHz. The test
cell was made of ceramic with an electrode configuration of
SS/SPE/SS. A thermocouple was in close approximity to the
SPE in the cell. The cell assembly was inserted into a
wide-mouthed glass reaction vessel packed with molecular
sieves, and nitrogen bubbled through. The temperature
testing (700C to -70 0 C) was performed in a Tenney
environmental chamber. All chemical storage, film casting,
and cell assembly was performed in a Vacuum Atmospheres
argon-filled dry box.

RESULTS AND DISCUSSION

For polymer electrolytes to be of practical use, Li-ion
mobility must be high enough to enable useful rate
capabilities in lithium batteries. As a general comparison
of two types of polymer electrolyte chemistries, Figure 1
shows an Arrhenius plot of the ionic conductivities of PEO-
LiClO4 film, a PAN:EC:PC:LiClO4 film, and a EC:PC:LiClO4
liquid electrolyte. The PAN-based electrolyte film
demonstrates conductivities approaching that of the liquid
and a significant increase in ion mobility over the PEO
electrolyte. It is this result, first demonstrated by
Abraham and Alamigir for this chemistry (3), that makes a
mechanically stable free-standing film a possible battery
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Figure 1. Arrhenius plot of electrolyte conductivities.
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electrolyte. The difference in conductivity of the PAN-
based electrolyte and the liquid at decreasing temperatures
is due to the lower viscosity of the polymer.

Having established that PAN-based films can be prepared
and can produce ionic conductivities close to liquid organic
electrolytes, further studies of Li-ion mobility in these
types of electrolytes were performed. Table 1 lists the
polymer electrolyte molar compositions, solvent:LiX ratio,
and conductivities at 250C of the films studied.

TABLE 1. Electrolyte Conductivities at 250C

ELECTROLYTE Solvent:LiX CONDUCTIVITY
(S cm- 1 )

45EC:45PC:LiClO 4 (liquid) 9:1 5.2 x 10-3
38EC:33PC:21PAN:8LiClO 4  8.8:1 2.9 x 10-3
40EC:34.75PC:21PAN:4.25LiClO 4  17.6:1 4.5 x 10-4
56.5:EC:23PC:16PAN:4.25LiN(CF 3 SO2 ) 2  17.6:1 2.0 x 10-3
40EC:34.75PC:21PAN:4.25LiAsF 6  17.6:1 3.7 x 10-3
40EC:34.75PC:21PAN:4.25LiAsF 6 :5wt%3A 17.6:1 1.6 X l0-3
33EC:28PC:13.5DMC:20PAN:5.5LiAsF 6  13.5:1 9.9 x 10-4
44.3EC:39PC:12PAN:p4.7LiAsF 6  17.6:1 2.8 x 10-3
38EC:33PC:21PAN:8LiAsF 6  8.8:1 1.0 x 10-3

In Figure 2, the conductivities of three LiX salt
complexes, LiAsF 6 , LiCIO4 , and LiN(CF 3 SO2 ) 2 with EC:PC:PAN,
are shown. As in liquid organic electrolytes, the LiAsF 6
electrolyte gives the highest conductivity. The imide,
LiN(CF 3 SO2 ) 2 , known as a high temperature stabilizing salt,
demonstrated poor conductivity at low temperatures. This is
believed to be due to precipitation of the imide salt from
the EC:PC mixture resulting in loss of lithium ions for
charge transfer.

The arrhenius plots in Figure 3 show the conductivities
of three chemical variations with the LiAsF 6 electrolyte.
Changing the solvent to LiAsF 6 ratio from 17.6:1 to 8.8:1
(i.e., doubling the amount of salt while holding the PAN
concentration at 21 mole percent) lowers the conductivity
over the whole temperature range. This again is a viscosity
effect on the ionic mobility. The addition of DMC, which in
liquids makes the electrolyte more stable with the lithium
metal anode, lowers the conductivity. This is expected
since LiAsF 6 /DMC electrolyte has a lower conductivity than
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Figure 2. Arrhenius plot of electrolyte conductivities.
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LiAsF 6 /EC:PC in liquids due to its much lower dielectric
constant (E: EC-89.6, PC=64.9, DMC=3.1). A film with a 12%
concentraticr of PAN was prepared. Its conductivity (seen
in Figure ' at lower temperatures was greater than films
prepared with 21% PAN. This is expected since the film with
less PAN is more liquid like. The electrolyte was "wetter,"
but still had the physical integrity of a solid film.

All the arrhenius plots for the gel electrolytes
exhibit significant curvature, which is characteristic of
Vogel-Tammann-Fulcher (VTF) behavior (1). The VTF
relationship is an application of free-volume distribution
to conductivity in polymer dynamics and is expressed by the
equation

a = AT-1exp[-Ea/(T-To)] (1)

where A is a prefactor related to the transport coefficient,
To is the idealized temperature corresponding to zero
configurational entropy, and Ea is the activation energy for
charge transport within the gel electrolytes. Table 2 gives
these calculated values for some of the electrolytes
studied.

TABLE 2. VTF Equation Values

ELECTROLYTE A To (0 C) Ea (eV)

EC:PC:LiClO4 (Liquid) 2.68 176 0.036
EC:PC:PAN:LiClO4 (17.6:1) 5.38 130 0.093
EC:PC:PAN:LiAsF 6 (17.6:1) 4.12 176 0.043
EC:PC:PAN:LiAsF 6 (8.8:1) 5.10 162 0.066

Figure 5 shows the straight line VTF plots from which the
activation energies were determined. These calculations
were performed over a temperature range of -20 0 C to 70 0 C.
As shown, the higher the ionic conductivity the lower the
activation energy. This is expected since Ea is calculated
from the conductivity. What Figure 5 does show is that the
activation energy of the electrolytes does not change over
the temperature range. This may indicate the solid gel is
homogenous.
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CONCLUSIONS

It can be concluded from this study that solid gel
polymers based on PAN and LiX salt complexes possess
adequate ionic conductivities to be used in lithium
rechargeable batteries. The next logical step in the
development of these electrolytes is to study their lithium
stability and interfacial properties and their use in actual
anode/electrolyte/cathode configurations.
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