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EXECUTIVE SUMMARY

This is the first Annual Technical Summary of the West Virginia Institute of Technology
Applications of Neural Networks to Seismic Classification project. The first year of
research focused on identification and collection of a suitable database, identification of
parametric representation of the time series seismic waveforms, and the initial training and
testing of neural networks for seismic event classification. It was necessary to utilize
seismic events that had a high degree of reliability for accurate training of the neural
networks. The seismic waveforms were obtained from the Center for Seismic Studies and
were organized into three smaller databases for training and classification purposes.
Unprocessed seismograms are not well suited for presentation to a neural network
because of the large number of data points required to represent a seismic event in the
time domain. Parametric representation of the seismic waveform numerically extracts
those features of the waveform that enable accurate event classification. Sonograms and
moment feature extraction are two of the several transformations investigated for
parametric representation of a seismic event. This parametric representation of the seismic
events provides adequate information for accurate event classification, while significantly
reducing the minimum size of the neural network. Preliminary results have achieved
classification rate over 75% for the 5 class problem. Future work is focused on training
and testing with larger datasets (300+ waveforms) and to determine the effects of seismic
recording station location.
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1.0 INTRODUCTION

Seismology is an old science with seismological records dating back to the BC era [5].
Detection and classification of seismic events have been extensively studied in recent years and
require highly trained seismologists to accurately interpret seismic traces. The resurgence of
neural network technology in the past decade has allowed re-examination of models and
algorithms used for detection and classification of seismic traces. Neural networks provide a
model free method of seismogram signal classification [10].

Figure 1 presents the seismic trace of a typical quarry blast. A seismologist, upon initial
examination of the seismic trace, would probably suspect that this trace represents a quarry blast
simply because of his training and experience. The seismologist would then try to identify the
seismic origin by direct conformation with someone at the location of the blast site or from
published schedules of such events. Unfortunately, there are thousands of seismic events daily,
which makes it virtually impossible to identify each and every event with a high degree of
certainty.

Without a-priori knowledge of the event classification, a seismologist would try to identify
certain features of the seismic wave form. In particular, he would attempt to label certain phases
of the wave form, the arrival time of the first surface waves, or P waves, the arrival time of
secondary waves, S waves, and subsequent long waves, L and R. To a great extent, this is a
subjective analysis at best. After phase identification, a tentative classification will be attached to
the wave form. This process is often repeated by other seismologist for further verification.

5000 FebqbO,w

V

-5000
0 500 1000 1500 2000 2500

Sample Number

Figure 1 Quarry Blast
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It has been necessary for the United State to operate various seismic surveillance systems
over the course of the Cold War years in order to monitor nuclear treaty compliance. A seismic
surveillance system is illustrated by the Intelligent Monitoring System (IMS) developed by ARPA
for seismic data interpretation [4]. This system was designed to detect and locate seismic sources
and help classify the event type. The IMS system has been integrated with neural network
components by Lincoln Laboratory [2,3]. Figure 2 shows the functional elements of the modified
IMS system developed.

Discrimination Review Human Expert

Auto Event Discrimination Simple Expert System/Pattern Classifier

Seismic Analyst Review Human Expert

i Auto Event List Processing Expert Systemt

E ignl Mes. &Phas 7 I Simple Expert System

EDetection Processing :1 Signal Processing

Seismic Signals

Figure 2 Modified Intelligent Monitoring System

This modified system adds expert system techniques not present in the original IMS. It
should be noted that proper phase identification is still key to the modified system of Figure 2
developed at the Lincoln Labs.



Referring back to Figure 1, a non-seismologist could examine the seismic wave form and
make several observations. These observations might include overall duration, rise time, the
amount of clutter and possibi; the periodic components of the wave form.

These non-exert observations are subjective at best. To help understand what type of
properties might serve as an indication of signal classification, an informal test was conducted in
which 75 seismic traces composed of 5 events with 15 wave forms each, were shown to four
professors and two graduate students. These wave forms were presented on a computer screen in
flash.;ard style and in random order. After one training session, the group was able to correctly
identify 65% to 900/a of the presented wave forms with an average correct classification of about
75% (the author managed 65% recognition). Follow up discussion with the test group lead to
some suggested heuristics that a non-seismologist and possibly a neural network might use for
seismic event classification. These suggested heuristics are incorporated into the overall system
design.

One of the key premises of this research was the deviation from the traditional methods
used by seismologist to identify alternate methods that can implemented with neural networks.

1.2 Seismic Classification Problem

Seismic data analysis is roughly divided into two categories, exploration and non-
deterministic event detection/classification. Starting with the activation of a seismic source, a
received seismic trace s(t) can be considered the convolution of the original signal wavelet w(t)
with a series of reflection coefficients, r(t)-earth's impulse response-with additive noise,
expressed symbolically as:

s(t) = w(t) * r(t) + n(t).

If the earth's reflection coefficient's r(t) can be modeled, it is theoretically a simple matter
of de-convolution to recover the original source w(t). Given w(t) as determined by at least three
detectors, the source location and magnitude can be found. Exploration seismology involves
processing the seismic trace to recover the reflection coefficients, r(t), with the original wavelet
w(t) known. The reflection coefficients are then geologically interpreted to indicate the possible
presence of natural resources such as gas and oil. Signal processing techniques aid in the
determination of the reflection coefficients ranging from a simple one dimensional correlator to
the incorporation of multidimensional fan filters for spatially different detectors [ 19].

Non-deterministic seismic event detection and subsequent classification and analysis view
the signal trace s(t) from a different perspective. It is desired to reconstruct the basic signature of
the original source w(t) given the received seismic trace s(t). Additionally, other information
concerning the location, magnitude and type of source must be determined by using the statistical
nature of random noise and by identifying unwanted periodic signals. The filtered seismic trace
can be approximately reduced to:
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s(t) = w(t) * r(t)

Again, if the earth's reflection coefficient's r(t) could be accurately modeled, de-convolution could
be used to recover the original source w(t).

Seismic events are classified into several broad categories. These categories of seismic
classifications include [26,27]:

Table 1 Seismic Event Classifications

Natural events:

tectonic
volcanic
collapse earthquakes
ocean microseisms

Man Made:

Controlled
explosions
cultural noises
induced
reservoir impounding
mining
quarry
fluid injection

All of the above classifications are broad and it is often difficult to distinguish between
similar events. Much of the ongoing seismic event classification research limits the discrimination
goal to that of a bivalent, or two class decision.

The actual classification of seismic events is not a firmly developed procedure. There is
no one single method that provides 100% accurate results [14,21,23]. Some of the problems
encountered in classification of seismic signals range from inaccuracies in the actual data
collection to the shades-of-gray type problem in differentiating between a mining explosion and a
quarry blast. The instrumentation used to record seismograms vary in their range of frequency
response, which can be on the order of 0.01 Hz for the low cutoff; to I KHz at the high frequency
cutoff. Typically, data from the Center for Seismic Studies used in this research had a sampling
rate of 40 Hz with a low cutoff frequency of approximately 0.5 Hz. If the classification scheme
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utilizes only data from a single recording station, the sampling rate and frequency compensation
can be applied uniformly without further consideration. Characteristics of the seismic signal will
be modified as a function of distance from the event focus to detector location. The distance
function alone causes significant difficulty in event classification. Frequency content is attenuated
and the signal can potentially undergo modal transformation in which transversal waves will
transpose into compressional waves and even possibly reverse again before arriving at a detector.

Automatic means for the detection of earthquakes has been an active goal of seismic
research for more than 25 years. Various discriminators have been developed and perform with a
high degree of accuracy Detectors based on the ratio of short term signal average to long term
signal average, STA/LTA, approximate a Neyman-Pearson filter and tend towards optimal
signal/noise ratio [33]. Other detection schemes have been developed ranging from Freiberger
(1963) to the SRO (1983).

Recent work within seismology extends the detection problem to include classification of
seismic events. This classification involves discriminating between natural seismic events such as
tectonic, volcanic and collapse earthquakes verse's man made events such as controlled
explosions, cultural noise, and induced events. Knowledge based recognition systems developed
by Roberto and Chiarutti use a knowledge base blackboard scheme to automate seismic signal
analysis [26].

Neural networks have been studied by Dysart /Pulli, Lacosse, and Dowla/Taylor/Anderson
[2,3,10,11]. Most of the neural network research efforts capitalize on seismic signals in which the
phases of the signal can be separated and the subsequent parametric data applied as input to a
neural network. Results in most cases are very favorable, often with better than 90%
classification accuracy [10]. Analysis of parametric data is often done in an off line setting and
relies on the judgment of a seismic expert to determine phase information and other parameters
before processing with neural networks. Lacosse is concentrating in development of seismic
phase identification using neural networks as a supplement to the existing IMS system as part of
an ongoing research contract with ARPA's Artificial Neural Network Research Program [2,3].

Seismic Network Analyzer is an expert knowledge based system developed by Vito
Roberto and Claudio Chiaruttini [26] that adopts the blackboard problem solving paradigm. The
system consists of four basic units; user interface, a permanent database, data and symbolic
memory, and knowledge supervision module. A prototype has been demonstrated using seismic
data from the Seismological Network of North-Eastern Italy.

1.3 Software Implementation Issues

There are many competing languages that could be considered for implementing a seismic
event classification system. The research presented within this paper utilized the ADA language
as the primary programming language. ADA is a procedural language specifically developed by
the United States Department of Defense (DOD) for use with embedded computer systems
[1,28,29]. The language features modern programming concepts such as separate specification
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and implementation portions of code, strong data typing, tasking, strict compiler requirements,
library management, and other features. Originally, ADA was trademarked by the DOD and the
content of the actual language was strictly controlled. This control has since been relaxed but
subsets or dialects of ADA are not commonly found as in other languages [28]. Validated
versions of ADA maintain a high degree of portability between host machines.

Perhaps the strongest feature of the ADA Language is that it was specifically designed to
meet the needs of software engineering. ADA encompasses the entire life cycle of a software
project from the initial set of specifications, to design, testing, and ongoing maintenance. Overall,
ADA supports and promotes software engineering practices not commonly found in traditional Al
languages [6,7,30,32].

Many stand alone AI systems have been developed in the C language, which in itself
implies that many of the issues concerned with embedding Al within an ADA environment have
already been approached [7]. These existing systems in C, coupled with the software engineering
features of ADA, make a strong marriage between Al and the ADA language. ADA is a
procedural language that offers a good environment for processing time series data such as
seismic wave forms. Neural network functions can be easily written in the ADA language thus
combining a model free Al language (neural network) within a procedural language.

The software for the project was written in ADA using the Meridian Corporation's
validated compiler. The development and target hardware was the IBM PS/2 model 70. The
software developed for the project consisted of two major parts. The first was the development
of a complete user friendly package, Seismic Waveform Analysis Package (SWAP), to perform
analysis of seismic waveforms using neural network technology. The second part was the
implementation of the stand alone neural network programs designed to operate in protected
mode.

SWAP consists of a desktop, a top menu bar with pull down submenus and a status bar at
the bottom, showing the location of the waveforms and data files. The techniques included in
SWAP are the examination of seismic signals, selection of seismic signals, feature extraction of
the selected waveforms, the training of a neural network and the classification of a different set of
selected waveforms.

Significant characteristics of the waveforms were extracted from the information at the
Seismic Center and kept as an index into the raw waveform measurements. The user of SWAP
can view these characteristics and select desired waveforms to include in the training/classification
set to be presented to the neural network. The user also has the ability to view a plot of the raw
data to better determine the appropriateness of its inclusion into a data set.

Once a dataset has been selected, the data can be filtered or preprocessed to perform
transformations such as Sine, Fourier and Haar transforms on the signals prior to presenting them
to the neural network. This allows the user to perform feature extraction and noise elimination in
the set of waveforms. Once the feature extraction is completed, a neural network can be trained
using these waveforms. The networks included are Backpropogation Supervised Kohonen,
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Unsupervised Kohonen, ART-2, and Radial Basis. Upon the selection of a network, the user can
enter the initial configuration of the network. The type of information requested will depend on
the network selected.

Since network training is such a lengthy process, SWAP was written using ADA's feature
of concurrent programming, tasking, which allows multiple processes to share the resources of a
single CPU. In this way the training sessions could proceed "in the background" while the end
user could perform other duties and investigations on other sets of waveforms. The only
limitation imposed was that two training sessions could not proceed at the same time. After
training was completed, the user has the ability to save the desktop to a disk file. The information
saved includes the waveforms used, the preprocessing algorithms, the choice of networks, the
initial network configuration and the weight vectors of the internal layers of the network. This
gives the user the flexibility to continue training (with the same or different network topology) or
to classify from a set of input waveforms.

Individual waveform raw data and perform filtering or preprocessing can be selected as
options in order to better examine the effects of a particular noise reducing technique. As security
and recovery methods Seismic Waveform Analysis Package has a set of utility functions which
perform automatic Snapshot backups and a log feature which records a user's session. The user
can change the time intervals between snapshots and can toggle the logging procedure. During
tool development, feature extraction methods found better success with large internal network
topologies. This necessitated the conversion of the product to a protected 32-bit mode of
operation. The first steps were to port the neural network training and classification to the new
requirement of the 32-bit mode.

1.4 Research Plan

This research effort focuses on the viability of using neural networks to classify seismic
events using only parametric data automatically extracted from the original seismogram along
with the official classification as determined by the Center for Seismic Studies. In contrast to
existing knowledge-based systems, this method is not based upon seismological expertise.
Parametric wave form representation requires that the essential characteristics of a particular
event type are adequately represented by the fit vector presented to the processor.

The seismological aspects of this research could potentially require extensive background
training within the field of seismology. By approaching the seismology problem as a signal
classification problem, as opposed to that of a purely seismic problem, familiarity with seismic
phase identification, travel times and related considerations can be somewhat over looked. The
carefully constructed data base used in this research, allows efforts to concentrate mainly on the
application of neural networks to the solution of the problem. This data base includes only
seismic events that have been analyzed by seismologists and are considered to be correct in terms
of parametric data and event classification.
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Seismological background was investigated to provide a basis for interpreting results,
suggest parametric transformations used in other classification schemes, and to provide some
heuristics to enhance overall system performance. Actual supervised training of the resultig
neural network models only rely on presenting the wave form data along with the correct seismic
event classification.

An artificial neural network is incorporated as part of hybrid software simulation system
capable of detecting and classifying seismic events. The hybrid system model is composed of

1) classical filtering techniques (signal Pre-processing),
2) neural network (pattern detection and discrimination) and,
3) a rule based system (final pattern classification and pre-processor adjustment).

The optimal role of the neural network is initially assumed to be that of seismic detection
and discrimination. Further investigation is proposed during the development of the hybrid system
to determine the extent to which the pre-processing (filtering) and post processing (rule based
system) can be replaced by the neural network. Additionally, fuzzy logic will be investigated as
applied to seismic processing.

1.5 Oryanization

This introductory chapter, Chapter 1, has offered motivation and a somewhat broad
description of the seismic discrimination problem. Some of the current research methods for
seismic discrimination was discussed leading to the incorporation of neural networks for seismic
event classification. The review of literature indicates that the current state-of-the-art in seismic
discrimination is the active utilization of neural networks. The data base used for testing
discussed throughout this paper is described in chapter 2.0. The various tables listed in Appendix
A with seismic wave form names, stations and Julian dates are sufficient references such that
anyone accessing the on-line data base at the Center for Seismic Studies can retrieve the related
seismic wave forms. The related software tools developed in later chapters, were implemented in
the ADA language. Software implementation issues were discussed in section 1.3.

Seismological background is covered in Chapter 3. The broad classification of seismic
events as used by seismologists is presented along with plots of sample wave forms. Qualitative
assertions and heuristics that are commonly used for seismic event classification are discussed.
Overall strategies and numerical processing schemes in use are summarized.

Chapter 4 discusses seismic parametric conversions. Parametric data is derived from the
sampled wave form and is independent of the identification of various seismic phases associated
with most classification schemes. Most of the parametric data was derived from sonograms and
moment feature extraction Some of the neural networks used for classification is presented in
Chapter 5. A summary of the work with a radial basis function neural network is presented along
algorithm development found in the Appendix.
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2.0 SEISMIC DATABASE

2.1 Overview

The Center for Seismic Studies (CSS) is an agency funded by ARPA with the principle
objective of providing the research community easy access to seismic data. Since 1982, CSS has
been improving the earlier teleseismic database procedures and programs of the Lawrence
Berkeley Laboratory and the Discrimination Group at Lincoln Laboratories. A more progressive
database was needed to meet the standards of the seismic research community and an interactive
method was needed to access the database. In 1987, the version 2.8 Database was released
adhering to the Intelligent Array System (IAS), a type of seismic data collection standard. The
Version 2.8 database also embedded SQL to interactively access the seismic database. In 1989,
CSS modified the Version 2.8 database to handle regional as well as teleseismic events. The
modified database, Version 3.0, also has a simple database structure that was less complicated for
the interactive use and lessened maintenance.

The Seismic Operations LAN (SOL) is the primary host for interactive analysis from the
seismic research community. SOL is also automated to collect and process external seismic
information from various international seismic stations. Using the processing power of a SUN
workstation, SOL is the heart of the interactions of CSS to the seismic community. The Central
Data Repository (CDR), the seismic data archives of CSS, is the storage facility for SOL. The
CDR consists of a 600 Gigabyte Tape drive dedicated to waveform storage, a 6 Gigabyte
database management system, and a 400 Gigabyte Optical Jukebox to store satellite imagery,
map graphics, and waveform segments. Figure 3 displays the current configuration at CSS.

Currently, CSS is upgrading the Central Database Repository with larger optical drives as
well as larger hard-drives with faster SUN workstations to give the research community with
more computing power and storage capability.

2.2 Databases at the Center for Seismic Studies

Although the Center has many databases consisting of seismic data that has been collected
worldwide, the three major databases are the GSETT, the IMS, and the EXPLOSION. These
three databases are 75% of the entire parametric and waveform data stored at the Center.
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Figure 3 CSS Database

The GSETT database was the work of the Ad Hoc Group of Scientific Experts to
Consider International Co-Operative Measures to Detect and Identify Seismic Events, called
GSE. GSE was formed in 1976 by an international group of scientists during the Conference on
Disarmament for the sole purpose of exchanging data useful for monitoring a limited or
comprehensive nuclear test-ban treaty. Using approximately 50 international seismic stations,
GSE conducted the first international exchange of seismic data in 1986 during the GSETT-1 test.
Due to the complexity and size of the exchange of parameteric and waveform data, the test was
only a limited success. Waveform data were to be available on request, but never exchanged
routinely. But with the increasing technology and the availability of larger computer networks,
the second international fill-scale test began the 22nd of April 1991 to the 2nd of June 1991.
During these 42 days of seismic activity, over 3,700 events were classified and 85,000 waveform
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segments were collected and stored into 1.2 Gigabytes of information. Although, the second
international test had some small procedural problems, the test was a smashing seismological
success.

The Intelligent Monitoring System (LMS) is a ARPA-sponsored computer system for
automated processing and interpretation of seismic data recorded by arrays and single stations. It
was integrated into CSS computer systems, and has been operational since 1990. The IMS data
has been cataloged in the IMS database at CSS, which contains seismic traces from the two
largest seismic stations in Norway, ARCESS and NORESS ARRAYS.

The EXPLOSION database consists of all unclassified seismic data on nuclear testing.
Another database currently being investigated is the GROUND TRUTH database, created by Lori
Grant at CSS. This database is currently being compiled from both the IMS and GSETT
databases for the sole purpose of seismic discrimination by neural networks or fuzzy logic. The
GROUND TRUTH database consists of a hand picked group of seismic events that were verified
through means of seismic bulletins, mining records, and personal contact. Although the database
has been released to the public, the numbers of events are not large enough to create a test bed for
our current networks.

2.3 Applications at the Center for Seismic Studies

The heart of database management at CSS is the SQL/ORACLE database host. This
gives users an interactive method of accessing data. Since SQL querying can be quite taxing,
CSS has created some tools making the collection and examination of data easier. To make the
seismic tools accessible from many different operational platforms, CSS programmed the tools to
be used as Xwindows applications.

CENTTERVIEW was the first programmed tool from CSS. Using this tool, one can
directly access the database without using the burdensome SQL queries, and still have the power
to select the data on a variety of constraints. With this program, one can compile data for
downloading, review parameteric data, and transfer data to the other seismic tools. The next tool
was MAP. This tool displayed the location of the seismic eve, its [epicenters] and the location of
the seismic stations that recorded each event. These locations can be displayed on a variety of
geographic maps stored at CSS by using the MAP program. The last tool created was
GEOTOOL. This tool gives researchers the ability to view the waveform in a time series plot,
seismogram. It also has some signal processing capabilities such as FFTs, filtering, spectrogram,
and others.

2.4 Research Databases

Research databases consist of a subset of the GSETT and IMS database, called SUBSET I
and SUBSET 3 respectively. Subset 1 constructed for training purposes for retrieving data from
CSS and initial software configuration. The database consists of 75 waveforms recorded in the

11



Euro-Asian Area with a fixed wavelength of 2400 samples and a sample rate of 20 Hertz. This
was the preliminary test data set for neural network training. Each event classification was
verified through the REMARKS database table.

Subset 3 is a waveform set based on the work of Thomas J. Sereno and Gagan B. Patnaik
from the paper entitled "Data to Test and Evaluated The Performance of Neural Network
Architecture's for Seismic Signal Discrimination." This was a two year study which focused on
producing data sets for neural network evaluation. The waveforms selected for use in this
particular subset were taken from data set #1 of Dr. Sereno's paper. The data for these
waveforms was obtained from the NORESS and ARCESS arrays located in Norway, which
consist of 25 short period instruments configured in four Concentric rings with a maximum
diameter of 3 km. The data for these waveforms were digitized at a rate of 40 Hz, with a digital
gain of 100000 digital counts/volt. The instrument response for these arrays is approximately flat
to velocity between 2 and 8 Hz.

This dataset was subdivided into eleven smaller databases. Origin identification numbers
(Orids) were selected from among these databases for use in the creation of subset 3. Five Orids
from each database were selected and utilized in a query to the Center for Seismic Studies, where
the waveforms are available on-line. The initial query provided a multitude of waveforms which
provided the basis for subset 3. This pool was further narrowed to 124 waveforms by selecting
only those with cb. channel.

The 124 waveforms left after the narrowing process were then downloaded to our
location using CenterView. This formed out "Subset 3" database. The waveforms consist of
16.8k data points sampled at 40 Hz, cb channel only, and a 0.006837 calibration.

3.0. SEISMOLOGICAL BACKGROUND

The various aspects of seismology include observational seismology, instrumental
seismology, theoretical seismology, and data analysis of seismic events. The primary focus of
applying fuzzy logic to seismology was the analysis and subsequent classification of seismic data.
Some introductory terminology as applied to analysis of seismic data will be reviewed.

3.1 Overview

The types of seismic events can be roughly divided into two categories: natural and man
made [20]. Natural seismic events include tectonic plate movement, volcanic activity, collapse
earthquakes, and oceanic microseisms. Man made seismic events can be the result of a controlled
event or that of an induced event. Controlled events are typically explosions and cultural noises
while induced events will result from reservoir impounding mining, quarry and fluid injection.
Table 2 lists the broad categories of natural and man made seismic events.
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Seismogram interpretation is dependent on the location of the recording station and the
type of structural model utilized for wave propagation in the geological region of the recording
station. The structural models and propagation paths have lead seismologist to three different
categories of seismic events, without regard to the source of seismic activity. These categories
are based on distance between the source epicenter and the recording station. It is common
practice to use a spherical model of the earth and express the distance from seismic event focus
to the recording station as the angle subtended at the center of the earth between the focus and
the station (10 = 111 kin).

The categories thus established are:

Local events < 100

Regional events 100 to 200

Teleseimic > 200

Raw seismograms are relatively lengthy. Typical sampling rates vary between 20 Hz to 40
Hz with high frequency instruments operating at sampling rates upto 1 KHz.. The duration of
seismic events range from a few minutes for discrete events to day for seismic swarms.
Seismograms used in this research all result from discrete events sampled at 20 Hz, with a total of
2400 data points per sampled waveform. Waveforms were taken from the GSETT database at
the Center for Seismic Studies. Figure 4, shown below, illustrates a typical quarry blast while
Figure 5 is a typical marine explosion. In each case, the start of the seismic event occurs at
sample number 600. This starting alignment represents a 30 second pre-event leader and is
common for all seismic traces used in the GSETT database.

Table 2
Types of Seismic Events

Natural events:
tectonic
volcanic

collapse earthquakes
ocean microseisms

Man Made:
Controlled

explosions
cultural noises

Induced
reservoir impounding

mining
quarry
fluid injection
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Figure 4 Quarry Blast FebqbO.w from GSETT Database
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Figure 5 Marine Explosion Febmel.w from GSETT Database
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In analyzing waveforms such as those presented in Figure 4 and Figure 5, seismologists
will identify different phases of the seismogram based on the time of arrival and the mode of
propagation through the earth.

There are two basic types of seismic waves [19] , body waves and surface waves. Body
waves are radiated by the seismic source and propagate in all directions while surface waves are
concentrated along the surface. Body waves can be further subdivided into compressional
(longitudinal) and shear (transversal) waves. Compressional waves are often called primary
waves or P waves and transversal waves are called secondary or S waves. P waves tend to travel
at a rate 1.7 times that of S waves and are normally the first portion o the seismic waves to be
present in a seismogram [ 19].

Figure 6 illustrates the relative motion of a seismic wave and the mode of propagation.
The P waves are always the first waves to arrive [19,26]. The P waves are surface waves that
cause the rock particles to oscillate back and forth in the direction of propagation and can be
compared to the propagation of sound waves. S waves cause rock motion perpendicular to the
motion of P waves and represent a shear wave. Motion of S waves through the liquid parts of the
earth's interior is not possible since liquids do not sustain shear forces. Two additional waves
often associated with a seismic event are the LQ and LR surface waves. The L stands for long, Q
represents Love waves and R is Rayeigh waves. These two waves are often dominate in terms of
relative amplitude. Love and Rayleigh waves exhibit velocity dispersion which can be observed as
frequency variance where-as P and S waves tend to be velocity invariant.

The P, S, LQ, and LR, portion of the seismic trace are referred to as phases. These phases
are further subdivided to give indication of propagation path. A Pn or Sn phase indicates a path
that is in the upper crust and is confined to the granitic layer. Reflection of phases are possible
off other layers in the earth. A phase reflected off the Moho layer is referred to as a PmP or SmP
phase. Many other combinations are used as dictated by the seismic event being evaluated.

3.2 Analysis of a Regional Seismic Event

A regional seismic event from the GSETT data base is now presented to illustrate the type
of parametric information determined by a seismic analyst. Data base notation as assigned by the
Center for Seismic Studies is utilized in the seismic event description that follows. The regional
event considered is illustrated in Figure 7. The event is assigned an origin identification within the
GSETT data base of ORID = 36907. This event occurred on April 28th, 1991 [Julian date of
JDATE = 1991117 ], and was determined to be a regional event. A summary of the seismogram
analysis is given in Table 3.
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Figure 6 Rock Particle Motion

The STASSID label represents a station association identification number assigned as part
of the data base record. The wave train of a single event may be made up of a number of arrivals
and the STASSID allows arrivals believed to have come from a common event to be joined
together in the data base.

The signal amplitude is denoted AMP and represents a zero to peak amplitude of the
earth's displacement in units of nanometers. The duration of a particular phase is designated PER
and is in units of seconds.

Figure 7 is a regional event with three recorded phases. The magnitude scale was
normalized to +/- 1 with actual displacement magnitudes indicated in Table 3. The first arrival
wave is the Pn wave that traveled through the earth's crust from the epicenter to the recording
station. A secondary surface wave, Pg, arrived from a deeper propagation path followed by a
large magnitude LQ or Long-Love wave. The first 618 sample points (approximately 30 seconds)
before the arrival of the Pn wave is a period of no seismic activity. This represents normal
background noise and will tend to drift in magnitude throughout the course of the day due to
cultural noises.

The recording station for this particular wave form was located in Boyern, Germany. It
was recorded with a single vertical channel that measures earth displacement. Table 4 gives the
station location and instrument calibration factors. The frequency response of the instrument is
plotted in Figure 8. The 3 dB bandwidth is 3 Hz. A usable bandwidth of about 10 Hz can be
created with appropriate inverse filtering of the seismic waveform.
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TABLE 3

Seismic Analysis of Regional Event FEBR9.W

ORI) 36907
Date April 28, 1991
Julian Date 1991117
Event Time 672777893.300 seconds from January 1, 1970.
Classification Regional event
Recording Station Grafenberg Array, Boyern, Germany (GRAI)

Event Location
Latitude 46.220
Longitude 15.440
Depth 8 Kilometers

Phase Information
3 phases recorded at GRAl
Surface Wave Magnitude measured at 2 nanometers
Body wave Magnitude measured at 3.50 nanometers

Phase Summary

Phase Start Start ARID STASSID AMP PER
Time Sample number

Pn 672777957.3 619 492530 368441 41.2 0.65
Pg 672777971.3 886 492531 368442 323.6 .082
Lg 672778033.8 2136 492532 368443 468.0 0.71
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Table 4

Station Information

GRA1 - Grafenberg Array -- Boyern, Germany

Single Station
Channel Type: bz
Channel Id: 51671

Location

Latitude 49.6920
Longitude 11.2220
Depth 0.5 Kilometers From Mean Sea Level

Noise Measurements - Correction Factor

Mean Noise - 6.5 nM
Stand Dev -0.2 nM
Signal to Noise Threshold 1.5

Magnitude

30 l [r
25

20 - - -----

15: -

5 .. .- -- '....

0.001 0.01 0.1 1 10
Frequency

iJMagnitude

Figure 8 Frequency Response of Grafenberg Array Channel bz
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3.3 Oualitative Assertations and Heuristics

The seismic analyst evaluating a given wave form must base his reasoning on a physical
model of the earth with respect to the recording station location and the suspected seismic
epicenter. Qualitative assertions must be made concerning the propagation in a global scale.
Several qualitative assertions made pertaining to seismic events are listed in Table 5
[17,18,26,27]. These assertations are based largely on the identification of seismic phases.

Table 5

Qualitative Assertations

1. The dominant frequency of the seismic signal is inversely
proportional; to the distance of the event.

2. The Pg wave is the first arriving wave for local events,
Pn for regional events
P or PKP for telesiesmic events.

3. The longer the duration, the greater the magnitude.

4. Presence of a strong S-wave is a distinctive feature of natural
events such as earthquakes.

5. The absence of S-waves or weakness with respect to P waves
indicate an explosive or artificial seismic source.

6. Similar waveforms are present in seismograms that originate
in the same seismological area.

The assertions listed above are supplemented by heuristics developed by seismologists.
Many of the heuristics can be utilized as linguistic descriptors in the development of a neural
network seismic event discriminator. Table 6 lists some of the heuristics [15,24,26,27].
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Table 6

Seismic Heuristics

1. if the duration of a signal is less than one second, it is most likely noise.
2. If two different signals have dominant signals whose ratio is

above 10, then they probably belong to two different events.
3. If the dominant frequency of the first arrival is above 7 Hz, then the

seismogram belongs to a local event.
4. Ifthe dominant frequency of the first arrival is between 2-7 Hz,

then it belongs to a regional event.
5. If the dominant frequency of the first arrival is below 2 Hz then it

belongs to a teleseismic event.
6. The beginning of a seismic event can be detected using Dixon's test
7. Cultural noise will have dominant frequencies above 1 Hz.
8. Microseismic events will exhibit low frequency broad band noise

from less than 0.01 to 0.5 Hz with periods of 2 to 100 second.
9. P wave is normally recorded first.
10. P is normally followed by S,LQ,and LR.
11. P waves have linear polarization.
12. LR will have elliptical polarization.
13. Earthquakes produce approximately equal amounts of P and S waves.
14. Explosions produce more P waves than natural events.
15. Earthquakes give anaseismic and kataseismi; first onsets.
16. Explosions give anaseismic first onsets everywhere.
17. Earthquakes have relatively deep foci.
18. Explosions have shallow foci.
19. Duration's of wave trains are shorter for explosions than for earthquakes

Most of the qualitative assertations and heuristics are based on the various phases of a
waveform as identified by a seismologist. The listed assertains and heuristics offer several clues
that aid in the development of a neural network parametric conversions. In particular, the
heuristics dealing with dominate frequency are examined in Chapter 4.

3.4 Discrimination Methods

Many techniques of discrimination [33] have been used over the years. Various
techniques include; amplitude ratios [8], spectral properties, ARMA process model, sonogram
detector [17], time independent structures.[17], knowledge based systems [25]. spectral
modulation [13], neural networks using spectral data, and neural networks using cepstnzm
variance and amplitude ratios [ 11].
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In all cases, a generalized strategy is used by the seismic analyst. Trace segmentation is
used to isolate independent events from the seismic trace and different types of feature extraction
methods are employed. A frequently used method is to filter the wave form into three frequency
bands. These bands loosely fall into the 0-2 Hz, 2-7 Hz and 7-10 Hz ranges. Division of the
seismic trace into these bands often simplifies phase identification. The extracted features are then
examined for clarity. This helps establish whether the final analysis is clear, probable, or possible.
At this point, a working hypothesis can be formed which will lead to a refined set of calculations
and cross checking with other recording stations solution.

One of the most extensively used technique of event discrimination is based on the
amplitude ratios of different wave groups [31]. An example of theses method is given in a case
study conducted by Wuster for discrimination of chemical explosions from earthquakes. Seismic
data was divided into 4 time windows of 10 seconds duration each. The first window contained
noise preceding the onset of the event. The second window typically contained the P phase, third
window containing a S phase and the forth window with a surface wave, possibly R phase. Ratio
amplitudes of each window are formed and discriminate plots constructed with the training data
set. Discriminate functions are then determined. Mis-classification percentages of the case study
data set where typically less than 10%. Results have not been generalized to a less homogenous
data set and are restricted to the bivalent case of chemical explosions verses earthquakes [33].

Research has been under taken in the application of neural networks for classification of
seismic events. The modified IMS system described in Chapter 1 incorporates neural networks to
supplement the classification process and utilizes phase identification as the main parametric
training data [2,3]. Work by Dowla, Taylor and Anderson [10] uses a backpropogation neural
network. Phase ratios of seismic events serve as the input to the neural networks. Preliminary
results of a bivalent case discriminating underground nuclear explosions from earthquakes have
achieved a correct classification rate of 93% [10]. Dysart and Pulli [11] report that wide band
spectral ratios Pn/Sn and Pn/Lg provide good discrimination between earthquakes and mining
explosions. Using a data set of 95 seismic traces, Dysart and Pulli trained a backpropogation
neural network with spectral ratios and achieved 100% classification of the test data set [11].

4.0 SEISMIC PARAMETRIC CONVERSION

The information contained in a seismic trace is somewhat hidden when only the time series
wave form is considered. By using various parametric transformations, these wave forms can be
made to yield some of the hidden knowledge such as the type of event that originated the seismic
trace. The dominate frequency of the first thirty seconds of the trace has been found to be an
indication of the relative distance to the events origin. The duration can be a clear signal in
distinguishing a naturally occurring event from that of a man made event. Many of these
transforms that have been found useful by seismologist, were discussed in Chapter 3. The
transformation of raw seismic data into parametric data useful for neural network training and
classification is examined in this chapter.

22



The seismic database wave forms were tested with various transformations and the results
presented graphically for visual interpretation. The most useful representations included simple
time series plots, sonograms, moment feature maps, fractal dimension and relative power plots.
Other transformations used for seismic classification are well documented in literature including
scalograms, power cepstrum, and cosine transformations. Many of these transformations yield
interesting results but will require a more comprehensive study in future research for application
as parametric transformations useful in neural networks schemes.

4.1 Fractal Dimension in Seismic Signal Classification

Examination of various seismic traces suggests a self similarity between successive
windowed samples of each trace. Fractal dimension quantifies the self similarity of the graphically
presented wave form.

While viewed graphically, the wave form occupies a percentage of the two dimensional
graphic space, but does not entirely fill the entire graphic region. A completely filled space (all of
the graph colored black on white), would have a dimension of 2. A single line spanning the
domain of the graph would have a dimension of 1. The seismic wave form is neither composed of
a single line nor does it fill the entire graphic space. The wave form will have a dimension some
where between 1 and 2.

Five variations of fractal dimensions were used in determining the usefulness of fractals in
the classification of seismological events. The fractal variations are derived from two basic fractal
computations; compass dimension and grid dimension.

The compass dimension evaluates the relationship between the magnitude length and the
ruler length of the signal as shown in Figure 9. If a segment of a signal has N as the magnitude
length and r as the ruler length, the fractal dimension, D, is calculated by the equation

D = Log N / Log 1/r.

The grid dimension superimposes a grid pattern over the signal and evaluates the
relationship between the number of grid elements through which the signal passes to the linear
number of squares as shown in Figure 10.

The fractal dim•,sion of a seismic trace could be potentially calculated graphically by
plotting the wave form and counting the number of pixels it occupied in a qxq grid. If N is the
number of occupied pixels and q2 the total number of pixels in the grid, then the fractal dimension
is given by:

D = Log N / Log q2

The graphical method of fractal dimension does not lend itself to processing large amount
of data quickly. The graphic process requires plotting of the seismic trace with a second pass
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through the entire graphic area to sum the number of used pixels. A more direct approach for
determining fiactal dimension can be derived.

Consider a seismic wave form of 2400 data points normalized to ±1200 instead of ±1.
Conceptionally, this represents a two dimensional grid of 2400 by 2400 points and from a
graphical standpoint, can be used for direct calculation of the fractal dimension. The scaling ratio
r becomes:

r = I/N/ 2 = I / (2400x2400)"12 = 1/2400.

The integer distance from one data point to the next data point is summed for a total of
the N points (or parts). This is roughly the total length of the wave form.

N

Total length = -/N 1 (1+ (2/N(xk -
k-2

The total length would not exactly represent the number of parts or occupied pixels if a
large amount of clutter is present in the wave form. A comparison of the strictly graphical
method to the modified method using total length yields no significant difference in fractal
dimension when using seismic wave forms. The fractal dimension of the modified grid can be
estimated by:

D = Log (Total trace length) / Log (Number of grid points),

which is equivalent to the fractal value as determined by the compass dimension method.

Four variations of the grid dimension method were used for classification. The first
variation uses a square window, the number of horizontal and vertical grid elements are equal.
The second variation implements a rectangular window where the number of vertical elements is
greater than the number of horizontal elements. The third and fourth variations high pass filter the
signal before variations one and two are applied.

For each method used, the seismic signal is divided into several time slices, windows, and
a fractal dimension calculated for each window. This produced a series of fractal values upon
which a neural network was trained and tested for classification.

The neural network has a five neuron output. Each neuron denotes a specific type of
event. Since the output neuron values may vary between 0 and 1, the neural network output is
processed through a fuzzy rule set to determine final classification. The final results of
classification percentages may be seen in Table 7.
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Table 7
Fractal Dimension Classification Results

Fractal Dimension Method Classification

Compass dimension 45.30 %

Grid Dimension - No filter
Square window 4.00%
Rectangular window 8.00 %

Grid Dimension - High Pass Filter
Square window 14.67 %
Rectangular window 16.00 %

rI

Figure 9 Compass Dimension Method
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Figure 10 Grid Dimension Method

4.2 Sonoram Feature Extraction

The Sonogram is one method of extracting frequency data for presentation to the neural
networks for classification of seismic events. The first part of the procedure is to normalize the
seismic trace by dividing the entire segment by the largest magnitude in the segment. Then, the
seismic trace is "windowed" , divided into equally spaced segments of the original trace size. For
example in Subsetl, where all waveforms were 2400 samples long, the trace was divided into 32
different segments. This produced 32 segments with 75 samples in each segment. The Fourier
transform was taken of each window to created a 3-dimension matrix where the dimension where
window, frequency, and magnitude. This array for Wave I of Subset 1 can be observed in Figure
11.
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Frequency time

Figure 11 Sonogram of Wavell

The columns of this matrix are transposed and concatenated to form a single vector from
the larger matrix. This is performed on a the segment, waveforms, from the database and
presented to the network. This created a slight problem since the size of the parametric data was
large and cause longer computational time when presented to the network. The routine was
extracting too much data.

One method of solving this problem was to have less windows, and another was to choose
a method of finding the particular frequency that extract the most information. Using the first
method, we found that a 16 windows reduced the size of the data adequately. The second
method can be found in the dominant frequency section in this paper.

A backpropagation algorithm was trained on the Subset I database with various window
sizes. One problem to be noted was that the offset, DC bias, of the waveforms caused some error
in the training of the sonogram data. This was due to the magnitude difference of the Fourier
transform and the DC offset. Therefore, the waveform mean was subtracted from each segment
to remove the offset. This enhance the classification of the data to approximately 87% for the
Subset 1 database.
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43 Domimant Freauenc, in Seismic SimWa Clasification

Heuristics on seismic signals have presented rules which suggest that the dominate

frequency of the first arrival phase is an indication of the event type. The specific heuristics are:

1. Cultural noise will have a dominant frequency above 1 Hz.

2. If the dominant frequency of the first arrival is below 2 Hz, then it belongs
to a teleseismic event.

3. If the dominant frequency of the first arrival is between 2 - 7 Hz,
then it belongs to a regional event.

4. If the dominant frequency is above 7 Hz, then it belongs to a local event.

The training data set from the Center for Seismic Studies has the start of the seismic event
aligned 30 seconds (600 samples at 20 Hz sampling rate) from the start of the seismogram. The
first arrival phase is generally considered to be within the first 30 seconds of the event wave train
and contains the dominate frequency referred in the heuristics listed.

There is no general agreement in the literature surveyed as to the exacting definition of
dominate frequency. The heuristics suggest division of the seismic trace into frequency bands of 0
- 2 Hz, 2 - 7 Hz and 7 - 10 Hz. The data base uses a sampling rate of 20 Hz for a span of 120
seconds. The event is aligned by the Center for Seismic Studies data base manager such that the
event start time occurs after 30 seconds of pre-event noise. The dominate frequency as described
by the heuristics, is only useful during the first 30 seconds after the onset of the first seismic
waves. Only sample numbers 600 through 1200 are in the first arrival window that gives the
dominate frequency.

The algorithm used to extract the dominate frequency is given by:

1. Filter the seismic trace into 3 banks of signals with pass bands of 0-2 Hz,
2-7 Hz and 7 Hz to 10Hz.

2. Calculate the net energy in each band and threshold against some
minimum value above noise level.

3. Apply a simple comparison rules to generate grade of membership values
for the set:
{noise, low band, mid band, high band, no clear dominate frequency}

Literature suggests that after the first 30 seconds of any given event, the dominate
frequency provides no clear indication of the event type. Only the first 30 seconds after the onset
of a seismic event contains useful dominant frequency information.
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Currently, the two methods of identifying the dominant frequency of a signal are:

I. Band pass filter the signal and evaluate the power in each band, and

2. FFT the signal and sum the energy in each band.

The resulting mesh plots for these methods are shown in Figure 12 and Figure 13 respectively.

The neural network has a five neuron output to present the class type, one neuron for each
class. Each neuron ranges between 0 and 1 so, indeterminate levels may be generated. The
training results are shown in Table 8.

Table 8
Dominant Frequency Classification Results

Method Classificat0n
Band Pass Filter 80.0 %
FFT 88.0%

The Power vs. Frequency Plot of FEBME1.w

Time Axis

Figure 12 Dominate Frequency Band Pass Filter Fit Vector
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The Dominant Feature Plot of FEBME1.W

Time Axis

Figure 13 Dominant Frequency FFT Fit Vector

4.4 Moment Feature Maps

One of the rewarding aspects of research is following a wisp of an idea that leads to
fruitful results. The calculation of mean and variances are typical signal processing methods used
in conjunction with seismology. Bispectrum analysis has been tentatively explored by some
researchers and the results suggest that the calculation of higher order spectrums and cumulants
may yield interesting and potentially useful results in seismic classification. By following the
suggested research, it was necessary to calculate higher order central moments as a prelude to
cumulant calculations. Mesh plots of these intermediate results (central moments) produced
visually different plots of different classes of seismic events. A key rule of thumb employed, but
undocumented by neural network researchers is; if you can visually distinguish different patterns
graphically, it's is possible to train a neural network to distinguish the same patterns. Through
proper normalization, a moment feature map is constructed with a normalized height < 1 for each
window.

The general equation for the calculation of moment features is that of central moments

[62].
Ma= 1/in (x-•~

k

where q. represents the mean value of x.

and n = moment number, k = sample number.
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Figure 14 illustrates a moment feature plot of the quarry blast FEBQBO.w. The
occurrence of a strong high order moment corresponds to the peak energy of the quarry blast.
The right hand side of the plot shows the signal settling down to display wide sense stationarity
and possibly strict sense stationarity of the seismic activity after passage of the quarry blast. The
production code for moment feature generation is detailed in Chapter 5.

Moment Feature Map

Moment Window

Figure 14 Moment Feature Map of FEBQBO.w

5.0 PRELIMINARY TESTING AND RESULTS

As encouraging as neural networks appear, the high classification rates typically reported
are usually limited to the bivalent case and have not been generalized to a multiple class
discriminator.
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As each waveform is considered an input pattern to the neural network, raw input vector
length is prohibitive; therefore, parametric representation is necessary to more succinctly
represent the original waveform. This reduced representation is then presented to a much smaller
and, consequently, faster neural network. Faster performance yields realistic training times and
more reasonable computational system requirements. Ultimately, this is envisioned as an
economical PC-based system for preliminary seismic waveform processing and classification.

5.1 Network Testing - Moment Feature

The maximum sample magnitude is used to normalize the other sample values within each
individual waveform. Then, time series waveform, consisting of 2400 samples, is divided into a
given number of "time slices." Initial research indicates that approximately 16 time slices works
well for seismograms of the given length. Evidently, too few time slices prevent adequate
resolution of waveform transitions and phase behavior. Specific central moments are calculated
for each time slice, the results contained in this paper are based upon calculation of the first ten
central moments. Waveform parameterization may ultimately include combinations of FFT-
derived spectral components, or fractal-based dimensions; however, only central moment
parameterization is considered here. A general form for the central moment calculations is
presented immediately below. This relatively simple calculation is represented by the ADA-based
algorithm as,

--PROCEDURE FindMoment IS
sum: FLOAT;
k :INTEGER;
BEGIN

textio.put line("Calculating moments");
no_slices:=integer(float(length)/float(slice size));
for i in (1..noslices) loop

sum:=O.O;
for j in (1.. slice size) loop

sum:=sum+float(signal((i- l)*sice size+j));
end loop;
mean(i):=sum/float(slicesize);

end loop;
- The following loops will calcualte the higher order-- central moments

FOR i IN (1..no slices) LOOP
FOR j IN (1..10) LOOP

m(i)(j):=0.0;
END LOOP;

END LOOP;
for i in (1..no slices) loop

for j in (1.. slicesize) loop
k:=(i- )* slice~size+j;

for I in (1.. 10) loop
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m(i)(l) :=m(i)(l)+((float(signal(k))-mean(i))**l)/

float(slice size);
end loop;

end loop;
end loop;
text io.put iine("Finished Moments");

END FindMoment;

The above algorithm forms a matrix of row and column dimensions equal to number of
moments and number of time slices, respectively. Moment order increases with increasing row
number and time increases with increasing column number. A visualization of the processed
seismogram appears in Figure 1 (normalized data).

Every seismogram is processed individually, with each waveform's moment data filling in
this temporary "moment matrix." The columns of this moment matrix are transposed and
concatenated to form a single row in a larger, permanent matrix. Ultimately, the moment data
from each processed seismogram appears as a row in this larger matrix-it is important to note
that the sequential nature of both the central moments and the time slices is preserved within a
row. The permanent matrix is written to disk, in ASCII format, for later presentation to the neural
network. Initial testing is limited to a database of 75 seismograms, consisting of five seismic event
types, with each type equally represented by 15 examples. Final preprocessing appends the event
classifier to the end ,f each row in the moment data file.network architecture

A back-propagation network is used for event classification based upon the parametric
data. A network architecture consisting of an input layer, two hidden layers, along with a one-of-n
encoded output layer yielded the most favorable results. The input layer size is matched to the
number of datum in a single input pattern; namely (10 moments)*(16 time slices) = 160 elements
per moment vector. Neurons per layer, for the two hidden layers are 30 and 24, respectively. One-
of-n encoding on the output layer results in five output neurons, a single output neuron for each
of the five seismic event classes. Log-sigmoidal transfer functions, with a range of ±1, were used
for all neurons in the network.

Because of the small number of readily available waveforms matching the limited focus of
this initial research, training data was limited to using 45 of the 75 available moment vectors.
Moment vectors actually used in the network training phase were randomly selected from the
parent group. Training time on such a limited number of examples was minimal (typically less than
15 minutes on a 50 MHz 486 PC). However, the convergence rate of the network was impressive
even for a small training set and suggests favorable training times on much larger databases. At
the conclusion of training, the activation levels for non-target neurons was within four percent of
the transfer function zero for all input patterns. The target neuron's activation level was within
three percent of the transfer function maximum for all input patterns.
network testing
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The remaining 30 moment vectors were used to test the trained network. Because the
remaining moment vectors included examples from all five classes of seismic event, the testing
phase required the network to accurately identify several examples from the available classes.
Output identifiers correspond one of the five classes: local area, regional, marine explosion,
quarry blast, and teleseismic. The trained network was able to correctly classify 68% of the
waveforms in the testing database--actual activation levels for all output neurons were within
four percent of the target value. It must be explicitly stated that rigorous testing of the neural
network on large databases has not been conducted; therefore, no estimates of the network's
ability to successfully generalize can be assessed at this point.

5.2 Radial Basis Function in Seismic Signal Classification

The radial basis function network performs generalization and discrimination of input
patterns using an external teacher for an application of seismic waveform classification. Important
modifications to this scheme include (1) change of the size of the spheres; (2) a random walk
scheme during testing; (3) the initial radii gradually decreasing to avoid overlap of two distinct
regions; (4) a conflict resolution mechanism; and (5) a simple means of decreasing the sphere
radius. The applications to seismic signals include using the moments over a sliding window and
the first several points of a wavelet. The speed of training of this network exceeds that of
backpropagation with the same error rate.

5.2.1. Radial Basis Overview

In many problems involving pattern recognition, there is an underlying feature space
where each dimension corresponds to some measurement of a feature. The number of dimensions
is the number of features to be measured. The item to be classified is applied to the network,
measurements are taken and the item is mapped to a point in feature space. As items are mapped
to points, the points indicate regions corresponding to the classes that are to be differentiated.
There are two major issues: (1) Not all possible items will be presented to the system and not all
points in feature space will be tagged according to a specific category. The feature space will
have holes or gaps that should be filled in with some category indication. This process of filling in
the gaps is called "generalization". (2) The boundary between two classes may be very complex.
An important assumption is whether the measurements alone are sufficient to unambiguously
distinguish items in the classes. If so, then a mechanism must exist to approximate this boundary
to any arbitrary degree. Of course, the more complex the boundary (and the class regions need
not be connected), then more sample items are needed for distinguishing regions. This process is
called "discrimination".

5.2.2 Radial Basis Function Network

The Radial Basis Function (RBF) network proposed here achieves these two goals of
generalization and discrimination. It is based on selecting small "sphere" contained in feature
space centered on a sample input item[22]. The sphere cam grow or shrink to accommodate
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generalization and discrimination. A growing sphere is generalizing such that nearby points in
feature space are now included in the class associated with the sphere. A shrinking sphere allows
for greater discrimination by allowing more volume of feature space to be used by another sphere
for another class and by fitting more neatly into a complex boundary. New spheres can be
incorporated to the network as more input samples are presented to the network.

5.2.3 Clmhification

The RBF network consists of three layers: input, middle, and output. For classification
tasks the purpose of the input layer is to feed into the Middle Layer (ML) such that each node in
the ML receives all inputs. The ML nodes are responsible for the formation of the spheres. A
ML node becomes active if the input corresponds to a point in feature space occupied by the
sphere of the node. Each ML node has one output that is connected to an Output Layer (OL)
node. The OL nodes correspond to the classes or categories. If an OL node receives any active
inputs from the ML, then its output is active, signaling the classification of the input.

5.2.4 RBF Learning

The learning procedure in the RBF network is considerably different from other
conventional neural networks such as backpropagation. Three main tasks in learning are (1) the
incorporation of new spheres by middle layer nodes not previously used for classification, (2)
sphere growth, and (3) sphere atrophy. At the beginning of the training phase, the ML has nodes
that are not associated with any region of feature space. When an input occurs and no ML node
is active, a ML node is incorporated so that it learns the current input and uses it as the center for
the sphere. A default radius is assigned to the node so that any feature input that has a distance
from the center less than the radius will cause the node to become active. The node must have
enough processing ability to compute this distance and perform the comparison with the radius as
well as enough memory for the sphere center components and the radius.

Once a ML node has been incorporated into the RBF network by assigning a center and
radius, it must make an upward connection to the correct node in the OL on the basis of which
category the ML node is associated. An external teacher is needed for establishing this
connection.

The learning process involves the modification of the incorporated spheres as more inputs
are applied. If an input occurs that corresponds to a point within an existing sphere of the same
class as the input, then the sphere radius is increased. If an input occurs within a sphere of a
different class, then the radius of the sphere is immediately shrunk to be the distance between its
center and the offending point. Once a radius has been shrunk in this manner, it is not allowed to
increase at any later time, although it may be shrunk again.
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51.5 RBF Problems and Fies

During the training phase it is possible that each ML node simply memorizes the input and
the resultant spheres fail to generalize in a useful way. This situation is likely when there are too
few sample input items ad they are well separated from each other. In addition, a decision
boundary may be very complex, requiring small radii for the spheres and therefore a large number
of spheres. Since any software implementation or hardware realization can allocate a maximum
number of spheres, they could be all incorporated before the training process is complete. The
consequences are that the boundaries are insufficiently approximated and holes exist within
feature space that are not associated with any class. Overall, the RBF network looses its
performance edge.

A possible solution for this problem is to remove spheres that are completely covered by
the union of other spheres of the same category. These removed spheres are ML nodes that can
be incorporated later. However, from experimental observations, very few spheres are completely
covered this way and should not be removed. If the centers of spheres are allowed to shift
positions, then a more uniform coverage of feature space is permitted and then it may be easier to
cover redundant spheres and thence remove them. Moving sphere centers is non-trivial since their
radii may have to change if the spheres are too close to a boundary.

Another problem results from adding a new sphere with a default radius. It may turn out
that the radius is too large such that the new sphere exceeds the decision boundary or covers
another sphere of a different class. This problem is mollified by causing the default radius to
decrease with the number of input samples. Presumably, as the training proceeds, the boundaries
become more well defined and a newly incorporated sphere with a smaller default radius should
not perturb the boundary by much.

From the above discussion it is easily seen that spheres of different classes can partially
overlap. Then during the classification procedure, two or more OL nodes could be active giving
an ambiguous answer. A remedy for this problem is to let the OL nodes have levels of activation
based on the number of ML nodes that are active. Therefore, if an input item maps into a point in
feature space covered by several spheres, then the number of spheres for each class is counted.
The class with the largest number of spheres covering the input point is considered to be the
correct class. In a neuronal setting, the OL could have a Winner-Take-All (WTA) circuit to select
the class.

Experimental observations indicate that in the event of overlap, usually there are only two
spheres of different classes and the above remedy is insufficient. In this case, the remedy is
enhanced by considering the center-to-input distance and selecting the sphere and its class with
the shortest distance.

The problem complementary to overlap occurs when an input sample is not covered by
any sphere. This gap in feature space can occur as a result of learning when a sphere that has
been effective in classifying inputs is forced to reduce its radius and can no longer cover the
volume it once did. Two solutions for class selection have been proposed. One solution performs
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a random walk on the input sample until it falls within the domain of a sphere. Then the class for
that sphere is considered to be the class for the input. Another solution is to measure the
distances from the input to the boundaries of all other spheres and then select the closest sphere.
The first solution requires less computation while the second may give the better answer.

Interestingly enough, a solution exists for both problems of overlap and no coverage. The
RBF network described uses "hard" spheres. If a point falls within the sphere, then the ML node
becomes active with a preset activation level. An alternative is to use "soft" spheres with a
corresponding graded activation. The soft sphere has a high "density" near the center and a
reduced density further out. The sphere's density can be described by a Gaussian function of the
form

C exp( -r - rc 1 2/(202))

where r, is the input point, rc is the sphere center, and sigma is a measure of the radius[12].
The ML node activation is proportional to this Gaussian. During the classification phase, all ML
nodes have some amount of activation since these Gaussians have an unlimited domain. The OL
nodes then sum all of the activation's from their ML nodes and the WTA selects the class with the
largest overall activation. All points of feature space are included in the regions of activation of
the spheres and the point-to-boundary distances are indirectly computed on the basis of the sphere
activation's. This Gaussian scheme is much more intense computationally than the hard sphere
approach. From a hardware implementation point of view, the Gaussian approach may be just as
easy to implement if neuronal-like elements that have a graded response are used. The Gaussian
spheres are incorporated into use in a similar way as the hard spheres, the main difference is that
the decision to incorporate is based on requiring an activation above a non zero threshold instead
of a zero threshold. These RBFs can form the basis for a fiuzzy recognition system[16].

An enhancement to the Gaussian spheres is to allow the sphere to be elongated and
skewed. The activation response is now of the form

C exp( - ( r=rc )T G( r• - rc))

where G is a positive-definite matrix that contains the sizes and skewness. A computational
alternative to the skewed Gaussian spheres is to use hard hyper-rectangles. The "sphere" of
influence is a hard rectangle in the feature space. The ML node must remember the center
coordinates as well as the distances from the center to each face measured parallel to the
appropriate feature space axis. These distances are treated in exactly the same way as the hard
sphere radius for generalization and discrimination, except that now the face distances are treated
individually. A limitation is that the hyper-rectangle cannot change orientation. If these faces
were allowed to change orientation, then the RBF network would approach the traditional
feedforward Perceptron neural network with hyperplanar boundaries. Investigations are in
progress to develop learning schemes for the skewed Gaussian and hyper-rectangle networks.
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5.2.6 RBF Anlcatiin

The environment that these RBF networks are to be used is the seismological
discrimination of earthquakes, quarry blasts, marine explosions, nuclear tests, etc. The seismic
waveform is a set of up to 2400 samples with the beginning of the disturbance given at a specific
sample. If the RBF network is to be applied to this waveform, there are too many input
components to be used effectively. Then an effort must be made to extract features from this
waveform. Three sets of features are moments, fractal dimensions, and wavelets[9].

The difficulty with using these features is that the waveforms are not stationary with
time[19]. For example, with an earthquake, a longitudinal pressure wave is generated and
propagates very fast through the crust and mantle. A transverse wave is also generated and
travels at a slightly slower speed. An detector will receive the longitudinal wave (P-wave for
Primary) first and the transverse wave (S-wave for Secondary) next. Other waves are generated
that correspond to different oscillatory motions (e.g Love, Raleigh, etc.). Reflections and
refraction's tend to split waves into components that propagate at different velocities. The seismic
waveform is, therefore, a superposition of many waves.

To accommodate the temporal variance, the features were taken over a sliding window of
width W samples. After the features were extracted, the window skipped to the next group of W
samples, and so on. These sets of features provide the additional dimension of time. In the RBF
network, the ML nodes have this extra dimension added to the sphere centers and the radius
calculation. Pictorially, the feature space is like a block of wood with time along one side and the
collection of RBF spheres are like wormholes in the wood.

In this application, the hard spheres are used and the learning process occurs just as
before. The classification is based on the number of spheres a sequence of feature points falls in
for each class. The class with the largest number gives the answer.

A problem with this scheme deals with the normalization and scaling of the data. It is
necessary for the feature space to be fixed and finite and it is helpful if the feature space is the unit
hypercube. To this end, the classification procedure begins with finding all feature measurements
for all windows and then scaling all of the measurements for each component so that the smallest
is zero and the largest is one. However, the amount for scaling and shifting differs for different
waveforms and may create an unwanted variation from waveform to waveform. Resolution of
this problem is still under investigation.

5.2.7 RBF Results

Waveforms of length 2400 samples were taken in windows of 80. The network consisted
of 10 input nodes, 500 ML nodes and 3 OL nodes for discriminating between local events (LB),
quarry blasts (QB), and regional events (R). Due to the initial lack of access to the seismic
database, only 19 waveforms were obtained for this analysis. The procedure began with the
feature extraction to obtain 30 10-component vectors by means of generating the first ten
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moments from the sliding window. Then the RBF network was trained on 18 waveforms and
tested on the remainder. The results were encouraging in that 70% of the waveforms were
correctly classified. A deeper probing revealed that only 236 ML nodes were used out of a
possiible maximum of 540 nodes if each sample had to be memorized, indicating that some
generalization was occurring. This classification is comparable to the backpropagation results for
this data, yet the training time was about two orders of magnitude faster with the RBF network.

The second stage of the classification was to test using wavelets, since presumably the
wavelet is characteristic of the mechanism that generates the seismic wave and removes the
effects of propagation and reflections[9-]. Here the results were comparable to the moments in
that 68% were classified correctly.
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APPENDIX A Dafta Ban Wave Form Fles from CSS

FNAME STA CHAN JDATE.

Febmel.w ARU bz 1991119
Febmcl6.w ESLA sz 1991114
Fdxnel7.w ESLA sz 1991114
Febmelg.w ESLA Sz 1991135
Febmcl9.w ESLA Sz 1991135
Febsns43.w GAR bz 1990051
Febno45.w GAR bz 1991124
Fdxne47.w GAR bz 1991139
Fcbme4g.w GAR bz 1991141
Febnke49.w GAR bz 1991146
FcbmwS5.w KIV bz 1991133
FebmeS6.w KIV bz 1991146
Febme65.w OBN bz 1991139
Febmc66.w OBN bz 1991144
Fcbnke67.w QEN z1991146
FdxO.w ORAl bz 1990331
Febr9.w ORAl bz 1991117
FebrlS.w ORAl bz 1991127
Febr2l.w ORAl bz 1991136
Febr46.w WRA Sz 1990331
Fcbr52.w WRA b1991114
Febr58.w WVRA C1 1991119
Febf66.w WRA cb 1991121
Fcbr72.w WRA Cb 1991129
Febr86.w WRA cb 1991141
Febr99.w WRA cb 1991143
Febr103.w WiRA cb 1991147
FebrlO9.w WRA cb 1991151
Febr112.w WRA b1991152
FebrlI .w WRA cb 1991153

NOTE: All signals are 2400 samples at 20.00 samples per second.
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YNAME STA CHAN JDATE

Febta25.w GRAI bz 1991132
FdW6a2.w WRA sz 1990123
Febm9.w WRA sz 1990334
FdeW7&.w WIRA sz 1990335
Febtagl.w WIRA Sz1990335
FebtM8.w WIRA Sz 1990051
Febt97.w WRLA sz 1990065
FebtalSO.w WR~A cb 1991114

Febt&177.w WRA b1991118
Febt&229.w WRA 1991"I121
FebWaO9.w WRA cb 1991125
Fcbta317.w WRA cb 1991125
Febt&408.w VWRA b1991133
Fcbta5l3.w WVRA cb 1991137
Fdxta542.w WRA cb 1991138

FebWa.w BJT sz 1991147
Fcbwa.w GAR bz 1991115
Fcbia7.w GAR bz 1991117
FebbaS.w GAR bz 1991119
Feb1a9.w GAR bz 1991145
Fcb11~.w GRAl bz 1991112
FcbIal3.w GRAI bz 1991116
Febla16.w GRAl bz 1991122
Feb1a9.w GRAl bz 1991149
Febla2O.w IHFS sz 1991135
Fcbla26.w IHFS cb 1991135
Febla73.w WIRA cb 1991137
Febla75.w WRA cb 1991143
Febla76.w WRA cb 1991143
FebiaS2.w WRA cb 1991146

NOTE: All signals ame 2400 samples at 20.00 samples per second.
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INAME STA CHAN JDATK

Feb*.w ASAR cb 1991123
Fcbqbl2.w CTA bz 1991123
Febqb2O.w CTA bz 1991141
Febqb33.w KAF sz 1990331
Fdbqb45.w KAF sz 1991114
Fcbqb93.w KAF sz 1991133
FebcqblOO.w LAP Sz 1991135
FebqblI14.w LAP sz 1991140
Febqb Il7.w LAP sz 1991140
Febqbl Ig.w KAF sz 1991140
Febqbl22.w KAF sz 1991142
Febqbl47.w KAF sz 1991150
FebqblS4.w KAF sz 1991154
FebqblSS.w STK bz 1991121
FebqblgO.w WRA cb 1991141

FNAMZ STA 1-WYE CHAN JDATE

2850 LAP R SZ 1990044
2854 KAP R SZ 1990044
340281 KAF R SZ 1990331
347028 KAF LB SZ 1991112
5908 KAF R SZ 1990065
4709 KAF LB SZ 1990058
423781 LAP QB SZ 1991152
422160 KAF LB SZ 1991151
418260 KAF LB SZ 1991149
416469 KAF LB SZ 1991148
386423 LAP LB Si 1991133
371268 KAF QB Si 1991125

360285 KAF QB Si 1991120

356908 LAP QB Si 199111
347142 KAP QB Si 1991113
355627 KAP R Si 1991117

379845 LAP QB Si 1991129

381583 KAF QB Si 1991130
351941 KAF R Si 1991115

NOTE: All signals am 2400 samples at 20.00 smples per semcnd
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GSETr-Subsetl Station Names and Locations

STA STATION NAME LATITUDE LONGITUDE

ARU ARTM - SVERDLOVSK, OBLAST 56.4000 58.6000

ASAR ALICE SPRINGS ARRAY - NORTH. TERRITORY, AUSTRALIA 23.7040 133.9620

BJT BAIJIATUAN - BALIJATUAN, CHINA 40.0403 116.1750

CTA CHARTERS TOWERS - QUEENSLAND, AUSTRALIA 20.0890 146.2540

ESLA SONSECA ARRAY STATION - SPAIN 39.6700 -3.9600

GAR GARM - GARM, USSR 39.0000 70.3000

GRAI ORAFENBERG ARRAY - BOYERN, GERMANY 49.6920 11.2220

HFS HAGFORS ARRAY - SWEDEN 60.1335 13.6836

KAF KANGASNIEMI - FINLAND 62.1127 26.3062

KIV KISLOVODSK - WESTERN CAUCASUS USSR 43.9500 42.6833

OBN OBNINSK - OBNINSK, USSR 55.1167 36.5667

STK STEPHENS CREEK - NEW SOUTH WALES, AUSTRALIA 31.8820 141.5920

WRA WARRAMUNGA ARRAY - NORTHERN TERRITORY, AUSTRALIA -19.7657 134.3891
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"APPENDIX B Backpropagption Neural Network

Back Propagation is an iterative gradient descent method which seeks to minimize the mean-
square error. This - among other things - means that the updating rule is the so-called delta rule.
In the delta rule, we have new weight = old weight + delta*error where delta is a learning rate -
often taken to be 0.1. Back propagation was among the first methods which allowed the training
of hidden neurons in a multi-layer neural network. It had always been possible to find the error in
an output neuron. It was simply defined to be the absolute value of the difference between the
actual output and the desired output. For a hidden neuron - say n[i]- the error was a bit more
nebulous. In back propagation, error in a hidden node was defined as follows:

Let e[i] represent the error in a hidden neuron n[i] and suppose that n[i] is connected to neurons
no], then e[i] is defined by the equation

eli] = w[i~j]*e[j]

where eoj] is the error in neuron j and w[ij] is the weight from neuron i to neuron j. From this
definition of error for hidden nodes and with gradient descent as a training method, we get the
method of back propagation. Back propagation also uses "Squashing" or "Sigmoidal" functions
to insure that all neurons (hidden or otherwise) produce outputs in [0,1]. The most commonly
used function is given by:

f(x)= 1/(l+exp(-(x-k))

where k is some constant.

Training A BackProp Neural Net

The steps involved in training a back propagation neural network are:

1. Weight initialization.

Typically all weights are set to small random values in [0,1]. This method is employed
for lack of something better to do rather than some deep mathematical reason.

2. Presenting Inpt and Desired Output

BackProp is a supervised neural network, so the desired output ispresented each time an
input vector is presented tothe network. The input vector may be thought of asa continuous
valued vector. The output vector is generally a binary vector i.e. each entry is 0 or 1. The output
is the weighted sum of the input values to a neuron times the corresponding weights. Once this
value has been calculated, it is passed through the "Squashing" or sigmoid function to give the
final value for the output.
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3. Ad•at wtheWei&

Starting at the output nodes and working backwards to the input nodes, the weights are
adjusted by the delta rule. The formulas are slightly different for weights on connections to
output neurons than the ones for those in bidden layers. This is due to the way error is
calculated.

4. Iterating

The process is repeated by going back to step ii Training often stops when
a. things look hopeless
b. the net has learned the training set
c. a set number of iterations have been done
d. an acceptable percentage of the training set has been learned.

Adjusting Parameters

The parameters which are most often adjusted in BackProp are:

a. delta or the training rate
b. the number of layers
c. the number of neurons in each layer
d. the constant k in the sigmoidal function.

No good rules exist for choosing or adjusting any of the parameters given above.

Back Proapation in Detail

The diagram given below is intended to serve as a guide for an n-layered backprop neural
network. We shall make the assumptions that:

1. layer I is the input layer
2. layer n is the output layer
3. w[ij,k] is the weight from neuron j in layer i to neuron k in layer i+ 1.
4. noin[i] is the number of neurons in layer i
5. e[ij] is the error in neuron j in layer i
6. out[ij] is the output of neuron j in layer i

A Procedure to Initialize Weights

Note that an n-layered network will have n-I sets of weights.

procedure initializeweights (wnoinn)
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begin
for i- I to n-i

for j = I to noin[i]
for k = I to no in(i+I]

w[ij,k] - random;
end

end
end

end { end procedure }

A Procedure to Compute the Outputs

Note that only layers 2-n have output. The output of layer I is the input vector which we shall call
Y. Note that Y should have no-in[ I] components.

procedure computeoutputs (w,nno in)

begin
{ Transfer the input vector to layeri }
forj = I to no-in[l]

out[ 1Ij] = Yal;
end;

for i = 2 to n do
for j = 1 to noin[i]
out[ij]0;
for k:=I to no-in(i-I]

out[i~j]=fout~ij] +w[i- 1j,k]*out[i- 1,k]

end { end k )
out(i,j] = 1/(I+exp(-out[ij])

end; { end j loop)
end;

end; { end compute outputs)

A Procedure to UpZate the Weights

Procedure update weights(nw,deltadesired)

begin
for i = n-I downto I do

for j = I to noin[i]
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ifi = n-I then ( a weight to output layer }
e[ij] = output[ij]*(1-output[ij])*

(desired ]-output[ij])
else begin
e(ij] = 0;
for k = I to noin[i+ I]

e[Qj]e-e[ij]+w[ij,k]*e[i+l,k]
end { end k }
e[ij]fe[ij]*out[ij]*(1-out[ij])

end { end else }

end; { end i loop }

end; { end update weights }
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APPENDIX C Unsupervised Kohonen Networks

Suppose that a set of data consists of M points which fall into one of N classes. This number - N
- may or may not be known.

Example - A hospital takes data from each of its 1000 patients and records the results in a patient
vector. Then M = 1000. It is desired to use the patient vectors to determine which patients have
the same disease. Thus N - the number of classes is the same as the number of diseases and N
may or may not be known.

In Unsupervised Kohonen neural networks, a set of neurons is trained to arrange themselves at or
near the centers of the classes. When training is over, this set of neurons (Kohonen called them
codebook vectors) is able to give an idea of N or the number of distinct classes in the data classify
an unknown input vector by nearest neighbor where "near" may mean Euclidean distance or some
other measureof distance.

The network is not able to tell what the individual classes are. Thus in the hospital example, a
Kohonen Neural Network could place all individuals with the same disease in the same class but it
could not assign a name to the disease.

This is very similar to Cluster Analysis in statistics and networks such as the k-means neural
network. The literature generally reports that Kohonen networks are very slow to train (by
design) are good pattern recognizers are noise tolerant.

Problems with Kohonen networks include how to know when to stop training (choice of training
parameters), how to initialize the codebook vectors and the appropriate number of codebook
vectors

Training an Unsupervised Kohonen Net

Note: Neuron and codebook vector are used interchangeably in the following discussion.

Let N be "comfortably large" and define an array of N vectors with C components. In the hospital
example we might make the following analysis:

Suppose we are reasonably sure that there are at most 25 diseases among the 1000
patients. Suppose that we took 10 measurements from each patient e.g. temperature, blood
pressure, blood count, etc. We might decide to begin with 50 neurons with 10 components. This
forms our Codebook.

If we choose too few neurons, the data cannot be reasonably covered. If we choose too many
newurons, some of the diseases may subdivide into subclasses which are not distinguishable even
to a trained observer. There are no good rules of thumb to follow concerning the number of
neurons vs. the population size. One generally has to experiment to find a good number.
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Initializing the Codebook

As stated above, initializing the codebook is a difficult problem. Some suggested ways are given
below:

a. Assign each codebook vector a random value.
for i = to N { for each codebook vector}
forj= I to C

codebook[i~j] = random

b. Assign each codebook vector the same constant value
for i = I to N { for each codebook vector)
forj = I to C

codebook[ij] = K { K is a constant)

c. If the range of values of each component is known, assign
component j a random value in the range of that component.
Say that component i varies from a maximum value of Max[i]
to a minimum value of Mln[i]. We could code

for i = to N { for each codebook vector}
forj I to C

codebook[ij] = random*(MaxO]-jMln]) + Min]j]

d. Similar to c is the approach that assigns component j the
average value of that component for the entire data set.
This is intractible for large data sets. If however this
value is known, we may code

for i = to N { for each codebook vector)
forj= I to C

codebook[i,j] = avgaj] { avg[j] is the average of
all of the jth components)

e. Something else that may make sense.

Training the Network

The essential part of Kohonen training is summarized as
follows:

0. Let lambda be a training rate (Kohonen has suggested 0.2)
and let Maxiter denote the number of training iterations you
wish to perform.
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. Let X be an input vector to the training procedure.

2. Compute the distance from X to each of the codebook vectors.
Distance could mean Euclidean distance in N space or it
could mean the cosine of the angle between X and each
codebook vector.

3. Let k' be the closest codebook vector. k' is often referred
to as the winning or firing neuron.

4. Update code vector k' by the following formula
forj = I to C

codebook[k'j] = codebook[k'j] +
lWnbda*(Xoj]-codebook[k'j]

5. Decrement lambda

6. If you have reached Maxiter or lambda has reached 0,
terminate training. Otherwise repeat steps 1-6.

Variations of Kohonen Training

As stated earlier, the initialization of the Kohonen neurons is a difficult problem particularly in the
absence of information about the data. This often leads to the problem of too few neurons to
cover the space - or in the other extreme too many neurons which break the data down into
meaningless classes. To overcome this problem some suggested solutions are given below.

1. For the first "several" passes through the data file,
update every codebook neuron. This has the effect of
pulling all of the neurons to "where the data is".

2. Keep a record of how many times a neuron has fired. If it
does not fire "in a long while", force it to fire. This
simply means to update the winning neuron and the idle
neuron by the formula given in step 4 above.

Complete Pseudocode for Unsupervised Kohonen

CONST
Maxiter =
lambda = - ;
C=-; { Number of components in vectors }
N= -- ; { Number of codebook vectors }
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Procedure initialze codebook_neurns(codebook~CN)

begin
for i= I to N
forj I to C

codebook[ijJ = a. random value
b. average value ofjth component
c. constant value
d. random value in the range of

jth component

end,

Procedure Compute _distances (Codebok~XCN~kjrime)

begin
FOR EUCLIDEAN DISTANCE CODE THE FOLLOW!NG AND OMIT BELOW

for i = 1 to n;
Dist[i]=0;
forj = 1 to C

dist[i]=dist[i]+sqr(Xfj]-codebook[i~j]);
end-,
kjxpime =1;
for i = 2 to N

if Dist~i] < dist[k~prime];
k..prime = i

end;

FOR MAXIMUM DOT PRODUCT CODE THE FOLLOWING AND OMIT ABOVE
for i = 1 to n

Dist[iJ0O;
normk-x=O;
norm neuron = 0;
forj = I to C

dist~i]distg[i]+(Xoj]*codebook[ij])
norm-x = norm x + sqr(Xo]);
norm-neuron--normineuron+sqr(codebook[ijJ;

end;
dist[i]= dist[iY(sqrt(norrnýx)*sqrt(norM~neron);

end;

kjprime = 1;
for i = 2 to N
if Distli] > dist[k~prime]
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k..prim.-i

end,

NOTE THAT kjprime is the index of the winning neuron

end; ( end compute distances

Procedure updatnazeron(codebookXk)
begin
forj- 1 to C
codebook[kj]=codebook[kj]+1ambda*(codebook[kj]- XU]);

end;
end;

Begin{(Beginmain

initalzecodebooknpeurons(codebook,C,N);
trained = false;
hmbdaO=lambda,
iterations=O;
while trained = false

read input vector X
compute distances(codebok,X~C,N,k..prime);
updlate neuron(codebookXk~prime);
if iterations < (you pick it)

begin
for i = 1 to N

update _neuron(codelmic,X~i);
iteriter + 1;
lambda~lambda-IambdaO/Maxiter,

end (while)

end;
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"APPENDIX D Supervised Kohomen Networks

Training the Network

The essential parts of Supervised Kohonen training are summarized as follows. Those steps
marked with * are identical to the corresponding step in unsupervised learning. The reader may
observe that if the neural network is correct, the codebook vector is rotated toward the input
vector. If the network is incorrect, the codebook vector is rotated away from the input vector.

*0. Let lambda be a training rate (Kohonen has suggested 0.2)

and let Maxiter denote the number of training iterations you
wish to perform.

1. Let X be an input vector to the training procedure with a
known classification, say xclass.

*2. Compute the distance from X to each of the codebook vectors.

Distance could mean Euclidean distance in N space or it
could mean the cosine of the angle between X and each
codebook vector.

*3. Let k' be the closest codebook vector. k' is often referred

to as the winning or firing neuron.

4. Update code vector k' by the following formula
if the classification of X as belonging to the class

represented by the vector k' is correct then
forj= ItoC

codebook[k'j] = codebook[k'j] +
lambda*(XU]-codebook[k'j]

else
forj = I to C

codebook[klj] = codebook[k'j] -
lanbda*QXC]-codebook[ikj]

* 5. Decrement lambda

* 6. If you have reached Maxiter or lambda has reached 0,

terminate training. Otherwise repeat steps 1-6.
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Cumpht !uedws for SupWvisd Ke•b...

CONST
Maxite"r--;

lambda -
C= ; (Number of components in vectors}
N- ; f Number of codebook vectors }

Procedure initialze codebook-neurons(codebookCN)

begin
for i= I to N
forj = 1 to C
codebook[ij] = a. random value

b. average value ofjth component
c. constant value
d. random value in the range of

jth component
for i = I to N

neuron id[i] = class to be represented by codebook
vector i

end;

Procedure Compute distances (CodebookXC,Nk_prime)

begin
FOR EUCLIDEAN DISTANCE CODE THE FOLLOWING AND OMIT BELOW

for i = I ton;
Dist[i]•0;
forj = I to c

dist[i•dist[i]+sqr(Xj]-codebook[ij]);
end;

kprime = 1;

for i =2 to N
if Dist[i] < dist[kprkie];

k.prime = i;
end;

FOR MAXIMUM DOT PRODUCT CODE THE FOLLOWING AND OMIT ABOVE

for i= I ton
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Disttri]0O;
norm~x=0;
norm neuron = 0;
forj=; 1 to C

dist[i]=dist[i]+(XU]*codebook[ij])
norm-x = norm x + sqr(XU]);
norm-neuron--norm-neuron+sqr(codebook[ij];

end;
dist[i]= dist[i]/(sqrt(norm _x)*sqrt(norln neuron);

end;

kjprime = 1;
for i = 2 to N
if Dist[i] > dist[k~prime]

kjprime=
end;

NOTE THAT kjprime is the index of the winning neuron

end; ( end compute_distances )

Procedure update _neuron(correct~codebookXk)
begin
if correct = true then
for =1I to C
codebook~kj]=~codebook[kj]+1ambda*(codebookIk j]- Xa]);

end;
else
forj = I to C
codebook[kj]=codebook[kj]-1ambda*(codebook[k~j]- Xa]);

end;

end;

Begin { Begin main

initialize-codebook-neurons(codebook,C,N);
trained = false;
WnbdaO=lambda,
iterations=0;
while trained = false

read input vector X and its class - say xýclass
compute distances(codebook,XC,N,kjprime);
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if naroeJu~kprime] x- clas then
correct - trm

else
Correct = true;

update _nwron(coffectrcodebook,X~kpiime);
if iterations < (you pick it)

for i = 1 to N
update neuron(codebook,XJi);

iter-iter + 1;
Iambda=hambda-IaqmbdsaO/Miaxiter-,

end (while)

end;
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