
I NSWCDD/TR-93/345/

I AD-A274 722I I I~IIIIIIII IIlllllil llllllllllllili

I AN ALGORITHM TO FIND THE INTERSECTION
OF TWO CONVEX POLYGONSI

I
BY ARMIDO R. DIDONATO
STRATEGIC AND SPACE SYSTEMS DEPARTMENTI
SEPTEMBER 1993

I
Approved for public release; distribution is unlimited. .

NAVAL SURFACE WARFARE CENTER
DAHLGREN DIVISIONmIN A Dahlgren. Virginia 22448-5000

I* • (94-01450

I '941I 12 0 43 ~~~l

NSWCDD/TR-93/345

AN ALGORITHM TO FIND THE INTERSECTION
OF TWO CONVEX POLYGONS

BY ARMIDO R. DIDONATO

STRATEGIC AND SPACE SYSTEMS DEPARTMENT

SEPTEMBER 1993

Approved for public release; distribution is unlimited

NAVAL SURFACE WARFARE CENTER
DAHLGREN DIVISION

Dahigren, Virginia 22448-5000

NSWCDD/TR,93/345

FOREWORD

The work described in this t tport was performed in the Space and Surface Systems Division of

the Strategic and Space Systems Department at the request of the Cruise Missile Weapon Systems

Division (LIO) of the Strike Systems Department. A description of the analysis and software developed

to find the intersection of two convex polygons is given.

The intersection of convex polygons was required by Sibille Tallant of Lii during her study to

determine operating areas for strikes against multiple targets. This algorithm is used in a strike

analysis tool that she developed called STANT. The author has benefited from numerous discussions

with her on the application of the algorithm and is appreciative of her thorough review of this report.

Mrs. Tallant also produced the drawings that appear in this document.

I Approved by:

Strategic and Space Systems Department

D~iC QT;:JT 1IISPECTED 5

£Aeossion For

SNTIS O&II DTIC T" -

Avail &*4,/or
i/i :;'st. Spee3a

NSWCDD/TR-95/345

I ABSTRACr

An algorithm is given that finds the intersection of two convex polygons. It is coded in Fortran

for the IBM PC desktop computer. The program is robust and fast. It has been used succemfully in

targeting applications that require a rapid determination of the common intersection of more than 100

convex polygons each specified by more than 150 vertices.

Ii/i

NSWCDD/TR-95/345

I CONTlS

I. INTRODUCTION .. 1

II. SUBROUTINE XINT: MASTER ROUTINE (PART 1) .. 2

III. FUNCTION ITr ALGORITHM A ... 4

IV. SUBROUTINE FST: ALGORITHM B (with SORT) ... 5

SUBROUTINE SORT -CALLED BY FST .. 6

V. SUBROUTINE SOLV: ALGORITHM C .. 6

VI. SUBROUTINE XINT (PART 2) .. 7

FUNCTION INT- CALLED BY XINT .. 8

REFERENCES ... 9
APPENDIX - EXAMPLES USING FINTX, BASED ON INTSEC A-I

DISTRIBUTION ... (1)

£/v

NSWCDD/TR-93/345

L INTRDDUCTION

This report describes an algorithm, INTSEC, that determines the region of intersection, INTX,

of two convex closed polygons. We shall refer to the entire PC Fortran code for INTSEC by the name

FINTX. The code is robust; it will always find INTX, except in cases where the single precision

arithmetic of the PC cannot resolve or distinguish between different points (a double precision version

of the code that provides greater resolution is also available). FINTX is also fast. In a recent

application, using an IBM compatible 486-66 DX2 desktop computer, FINTX found the common inter-

section of 172 polygons each with 180 vertices in 6.9 seconds. Examples using FINTX are given in the

appendix.

INTSEC has important applications in computer graphics, computer chip design, and targeting

studies. For example in targeting, INTSEC is useful in generating an operating area against several

targets. Some papers studied on the intersection problem are given in references [1], [3], [4], (5], [6].

None of these papers gave sufficient detail of the actual implementation of their algorithms to evaluate

their speed. For example, an algorithm may be carried out in a small number of steps but if each step

is expensive time-wise, as in computing arctangents, its efficiency is reduced. No remarks were found

concerning robustness of their algorithms.

The only requirement of the two given polygons, in addition to being closed and convex, is

that they be positively oriented (PO). A simple polygon P is positively oriented (PO) if its vertices are

ordered with the interior of P on the I&ft as the boundary of P is traversed in the direction of increasing

indices k of the vertices Pk, k = 1,2, N. I left is replaced by right then P is negatively oriented (NO).

The two polygons are denoted by XY and UV, where XY is specified by its vertices zi with coordinates

(xi, Yi), i = 1,2,..., NX. Similarly, UV is specified by its vertices wj with coordinates (up, vj),

j = 1,2,..., NU. Since the polygons are closed (xi, y1) = (XNX, YNX) and (u,, v,) = (uNU, vNU). In

our procedure we also include (xNX + 1, YNX + 1) = (x2, Y2) and (uJNU + 1, vJVU + i) = (u2, v2). In the

remainder of this report this fact will not be referred to explicitly.

Note that INTX is also convex and is completely determined by its vertices. It can have at

most KK of them with KK < NXI + NUI, where

NXI = NX - I > 3, NUI = NU - 12:3.

The vertices will be ordered so that INTX is PO with the first vertex taken as the one that has the

smallest ordinate. If more than one such vertex exists, then the one of that set that has the minimum

abscissa is taken as the first vertex.

INTSEC is made up of three basic algorithms (A, B, C) and some auxiliary algorithms.

Algorithm A establishes if a given vertex w of UV is either inside XY, outside XY, or on its boundary,

OXY. It also determines if a given vertex z of XY is inside UV, outside UV, or on its boundary, OUV.

I
NSWCDD/TR-93/345 I

Algorithm B finds the first intersection of OXY and OUV that has not been found by A. Algorithm C

finds all the remaining vertices of INTX not found by A. A vertex of INTX, which is not a vertex of

either XY or UV, is found by C at the intersection of a line segment (edge) of XY and a line segment

(edge) of UV, where a line segment (edge) is specified by the coordinates of its end points. 3
For easy reference, we list here the names of the routines associated with the algorithms

mentioned above. They will be discussed in the order listed. 3
ROUTINE ALGORITHM SECTION

XINT (PART 1) Master routine Described in Section II
ITR ALGORITHM A Described in Section IllI
FST ALGORITHM B Described in Section IV
SORT Called by FST Described in Section IV
SOLV ALGORITHM C Described in Section V
XINT (PART 2) Master routine Described in Section VI
INT Called by XINT Described in Section VI

No proofs are given in this paper.

U1. SUBROUTINE XINT, ?ASTER ROUTINE (PART 1) 3
The first part of the master or executive routine XINT is described here. Before proceeding,

some notation is introduced. A given polygon P may be defined by the sequence of its vertices {P&),

k = 1,2, ... , N, where P is generated by taking the Ph in increasing order of the subscripts. The

statements q is in P, q is contained in P, or q c P means q is located inside P or on its boundary, OP.

As noted earlier we refer to XY by its vertices {uj, i = 1, 2,..., NX or simply by (z}. Similarly, UV is U
defined by {w), or {wj), j=-, 2,..., NU. Note that XY has NXI = NX - 1 distinct vertices and UV has

NU1 = NU - 1 such points. No preliminary processing of XY or UV is necessary. n

XINT begins by calling the Fortran function ITR(u, v, NXI, X, Y), which is based on a part of

algorithm A, to find if the vertex w = (u, v) of UV is contained in XY, where X and Y are arrays

containing the x and y coordinates, respectively, of fz). ITR(u, v, NXI, X, Y) can take one of three

values that is stored in Lw. If Lw = 1, then w is in XY but it does not coincide with a vertex of XY. If 3
Lw = 0, then w coincides with a vertex of XY. If Lw = - 1, then w is not in XY. XINT determines Lw

for each w in UV. If ITR finds NUI vertices of UV in XY, then INTX has been found, namely

INTX = UV. If this is not the case, XINT calls ITR(x, y, NU1, U, V) to find if the vertex z = (x, y) of

XY is contained in UV, where U and V contain the coordinates of the {w). The result from

ITR(x, y, NU1, U, V) is stored in Lz. Lz takes one of the three values (1, 0 , or- 1) with meanings I
analogous to those for Lw. XINT determines Lx for each s in XY. If NXI vertices of XY are found in

UV by ITR, then INTX = XY. The abscissas and ordinates of the vertices belonging to INTX found by a
ITR are stored in the arrays WW and ZZ, respectively. In order to avoid duplications, if Ls = 0 then

the coordinates of the vertex are not saved, since they have already been found by Lw = 0, w = s and

2

I
NSWCDD/TR-3/345

stored in WW and ZZ. At this point, we assume that WW and ZZ each contain KI elements, with

0 _K1 < NX1 + NUL. We use WW(K) and ZZ(K) to denote the Kth element of these arrays.

XINT now calls FST, which is based on algorithm B. FST searches for the first intersection

point c of 8XY and 8UV that is not & vertex of either of the polygons. Let sl&2 denote the directed line

segment from end point s, to end point &2. The search for c begins with directed edges 21 22 and wIw2 .

If their intersection ploduces c an exit occurs, otherwise the search continues by looking for a smallest j

such that wwj + 1, 2 <j < NU1, intersects sz2. If no c is found, the procedure is repeated with j = I

and with sis2 replaced by sisi + 1, i = 2. The entire procedure is continued by incrementing j through

its range for each i < NX1 until c is found for the snallest values of j and i. If no is found then INTX

has zero area and an exit is made. If c exists for some smallest i = n and j = m, this implies that there

i is an edge of XY, z|zn +1 , and an edge of UV, w,.wm.+1, that intersect at c. Recall that c is not a

vertex of XY or UV. The vertices of XY and UV are then reordered by the auxiliary routine SORT

such that the sequences {z} and fw} are rotated as shown:
{f. sat. +I1, .",' ZNXI, 3, --, J -. 4*1, 2, --', ISNX}

{w,, wm + 1, wNUI, wI, ,wM -# W1 W, w .. wNU).

More details on FST are given in Section IV.

After finding c XINT calls SOLV, which in based on algorithm C. SOLV finds the

intersection points that make up INTX by moving around OXY and OUV and systematically finding

the missing points. The details of this search by SOLV we given in Section V. After all vertices of

INTX have been found, the routine HULL, given in [2], is used to reorder the points as described in

Section I and to store their coordinates in new output arrays W and Z. Then a final search is made in

W and Z for any successive duplicate points; if any exist, only one set of such points is retained. The

arrays W and Z hold the coordinates of the ordered vertices of INTX.

An example of how INTSEC operates is shown by Figure 1.

I z a

z UV

FXO

FIGURE 1. AN EXAMPLE, INTX FOUND BY INTSEC

1 3

I
NSWCDD/TR-93/345 I

Points a, b are found in that order by ITr. Then point c is found by FST. Note that since c is found

by FST, the points of UV are reordered by SORT such that

W2 -'w1, w3-*w2t w4 -wS3 wl-*w4, w2 -* ws,

or an stated above

(w2, w3, w4 , w1, w2) " (w1, w2, w3 , w9 , wS).'

Then SOLV is called to find the remaining points d,e,f of INTX. HULL is then used to reorder the

points of INTX yielding INTX = {a, c, b, d, e, f, a).

The remainder of XINT will be described in Section VI. The order with which the array

elements of XY and UV are presented to SOLV for finding the intersection points of the edges of XY

and UV that have not been obtained by ITR is discussed.

ilL FUNCTION ITR: ALGORITHM A

Given a PO polygon P specified by its vertices {pf, p , "", P. , "",. PN) and a point q, ITR

determines if q c P with q$ pPi for each j, if q = pi for some j, or if q is outside P. From ITR a

parameter Lq is assigned a value 1, 0, - 1, accordingly. The evaluation of Lq by algorithm A depends

strongly on the following:

Let A denote a triangle. Then S(A), or S for short, has the properties that I S I is twice the area I
of A and can be given in terms of the Cartesian coordinates (f, q) of the vertices of A. Specifying A by

{pl, p 2 , p3 , pl} with pi = [f(j), 9(j)] , I
S =-[(2)-C(I)] [,1(3)-9(1)] + [4(3)-f(i)] [u(1)-q(2)]. (1)

If A is PO then S > 0, and if A is NO then S < 0; S = 0 implies the vertices are colinear. 3
Again, we have for a PO polygon P and a point q, with N1 = N - 1:

a) Lq = 1. q c P, but not at a vertex of P.5
b) Lq = 0. q pi for some j 1, 2, ..., N1.
c) Lq=-1. q P.

Let q = (1, y). Algorithm A, using ITR, begins by checking to see if q = pl If so, then Lq = 0 and an 3
exit from ITR occurs. Otherwise, it keeps the line segment qpj fixed and proceeds counterclockwise

around P looking at the sequence of triangles Aj = {q, pi, pi q), j = 2,3,..., N1. Starting with j = 2, the 3
quantity

s(A) = [(0) -K] (90j) - y + [40)-' Il - 1(Y)l (2) 1
is evaluated to determine the orientation of Aj. For simplicity in notation let S(A,) = Si. If for each i
S5 > 0, then q is not in P and Lq = -1. If there exists an integer k such that 2 < k < Ni and Sk < 0,

then an additional new triangle, •, is considered. It is defined by its sequence of vertices (q, pk - 1, Pk,

q) and its orientation is determined by IS
s•) = S_ -I = [f(k - 1) - 71 [9(k) - Y1 + [f(k) - 3] [Y- n(k - 1)]. (3)

4!

NSWCDD/TR43/345

Using these concepts we mmauise the results of the va.-iou posibilities.

Ifq-pl, then Lq=0.

IfSj > 0 for each j, then Lq= -1.

IfS_<0 and S,- 1 <0, then Lq- -1.
IfSk<0 and k-- >:0, then Lq- 1.

IffSj=0 and 9k-1 >0, then Lq- 1.

If S,=0 and Sk-1 n0, then Lq- 0.

IV. SUBROUTINE FST: ALGORITHM B (with SORT)

Subroutine FST finds the first intersection c of an edge of XY with an edge of UV that is not

at an end point of either edge. The procedure begins by looking for the first intersection of the ith edge

sizi + 1, i = 1 , of XY and at edges wjw3 + 1 , for increauing j, j = 1, 2, ..., NUI of UV. If one is not found,

then i is incremented by I and the process is repeated. If for i ! NXI no intersection has been found,

then INTX has area 0 and an exit is made from XINT. Thus, let c = (t, q) denote the intersection

point of the ith edge of XY with the jth edge of UV, where the end points of the ith edge have

coordinates (x(i), y(i)] and [x(i + 1), y(i + 1)], and the end points of the jth edge have coordinates

[uo), v(j)] and (uo + 1), vj + 1)]. Then the equations to be satisfied are

Dxq-Dy =B

Du q-Dv =C,where
rDx = x(i + 1) - x(i) Dy = y(i + 1) - y(i)

Du = u + 1) - uo) Dv = vo + 1) - v0)

B = y(i) x(i + 1) - x(i) y(i + 1) C= v) uj + 1) - uo) vo + 1)

C x - D CDy - B D

DEL = Dy Du - Dx Dv. (4)INow, let
T a jDxDui + IDyDvi.

If IDELI 5<TE, E=e/4 =1.25*10- 7, then the two edgs under consideration are numerically parallel

Sand cannot yield c. Hence, assume that [DELI > TE. We check to see if (f, q) is contained in the

rectangle R(e) specified by the inequalities

I Xmn -e IXmnlI _< _Xmx + f IXmxI
Ymn - e IYmnI[_5 : Ymx + e IYmxI,

where
Xmn a max[min(x(i), x(i + 1)), min(u(), uo + 1))]
Xmx S min[max(x(i), x(i + 1)), max(u0), u0 + 1))]
Ymn m max4min(y(i), y(i + 1)), min(v(j), v(j + 1))I
Ymx a min[max(y(i), y(i + 1)), max(v0), vo + l))].

15

NSWCDD/TRS/345 U
The value of e is chosen as a small multiple of the smallest positive single precision number in the IBM

PC for which I + e > I. Figure 2 shows R(O).

S. I

I
Ym

FIGURE 2. RECTANGLE R(O) 3
SUBROUTINE SORT-CALLED BY XNIT

If (f, i) is in R(c) then it is accepted as the first intersection point, provided it does not

coincide with an end point of either edge which can occur in spite of the fact that such points have

already been found by ITRL Assuming c has been found, the polygons are reordered by the SORT I
routine. This routine is most easily described by simply listing its few lines of Fortran code, which is

done below for the XY polygon. Suppose gtZ + 1 denotes the XY edge of the intersection. SORT stores I
x(k) in x(I) as the first element of the sequence, x(k+l) in x(2), etc., as described earlier. Similarly, the

y(i) are reordered in the same way. Hence if X and Y are the arrays to be reordered, then SORT 3
requires as input NXI, X, Y, and k. The algorithm is given by

SUBROUTINE SORT(NXI, X, Y, k) I
(DIMENSION STATEMENT FOR X, Y, I1, YI)
DO5 M=l,k-i

XI(M) = X(M) : X1 AND Yl ARE TEMPORARY STORAGE ARRAYS
5 YI(M) = Y(M) : WITH THE SAME DIMENSIONS AS X AND Y.

L=0
DOO M=k,NX1
L=L+1

X(L) = X(M)
10 Y(L) = Y(M)

N2 = NXI - k + I
D015 M=1,k-I

X(N2 + M) = XI(M)
15 Y(N2 + M) = YI(M)

X(NXI + 1) = X(1)
Y(NXI + 1) = Y(1)
X(NX1 + 2) = X(2)
Y(NXI + 2) = Y(2)
END

6 1

NSWCDD/TR-93/345

V. SUBROUTINE SOML: ALGO.RMlW C

After using FST, XINT calls SOLV in order to find the remaining intersection points of INTX.

SOLV takes as input the coordinates of the end points of a directed edge of XY and the end points of a

directed edge of UV and determines if the two lines croa. The coordinates of the intersection point are

given as output and a parameter MO is assigned one of the output values: 1, 2, 3. If MO = 1, then the

lines do not cross. If MO = 2, then the lines croa inside their end points and the intersection point is

accepted as a new point of INTX. If MO = 3, then the two edges overlap and the crossing point

coincides with at least one of the four end points that has already been found by ITR. The procedure

to determine the crossing point is the same as described for FST and the same equations hold.

Of course once MO returns a value, XINT must determine how to proceed and not miss any

remaining intersection points. If MO = 3, then we have found a previous intersection point, so we treat

it as a crossing point, as if MO = 2, but do not store it in our INTX arrays WW and ZZ. Hence, it is

sufficient to have a way of proceeding in the two different situations MO = I and MO = 2. The

procedures are described in Section VI with the use of the function INT.

VL SUBROUTINE XINT (PART 2)

In this section we describe how the remaining points of INTX are determined by using, in

addition to MO, two parameters DEL and IDEL. DEL, as given by (4), is used whenever MO = 2. Its

sign determines -whether, for the next cycle, the j index associated with UV should be incremented or

whether the i index associated with XY should be incremented. Also, when MO = 2 IDEL is set to

DEL/I DEL 1. It is used when MO = I and its sign determines whether j or i should be incremented for

the next cycle.

We begin here with the assumption that the first intersection point c has been found by FST

and the XY and UV arrays have been reordered by SORT as described above. SOLV is called with

input coordinates (xi, yi) of vertex zi and (up, vj) of wj starting with i =-j = 1. Its outputs are MO = 2,

the coordinates of the intersection point c, and DEL. We assume for the first intersection point c that

DEL > 0. Thus the angle with vertex at c, measured in a counterclockwise direction from the line

segment cw2 to the line segment cz2, is positive. This means that at least a part of Zl'2 will belong to

INTX, so we increment the index j. Thus in the next cycle SOLV will be called to decide if z1z2 and

w2w3 have an intersection point. However before the call is made, INT is called to see if starting with

Z2 a successive set of points Z = {Z2 , Z3, ..., z,.) have already been found by ITR (see below for a

description of the function INT). If this is not the case then SOLV considers Z152 and w2 w3 for the next

crossing. Otherwise the set Z is not empty for some m such that 2 < m (NXI and i is set to m. Then

SOLV considers zzm + 1 and w2w3 for the next intersection. The parameter IDEL is set to one.

7

I
NSWCDD/TR-93/345 I

If on the other hand DEL < 0, then the roles of the XY and UV edges are interchanged and

IDEL = - 1. 3
The role of IDEL comes into play if the output from SOLV at some stage gives MO = 1, which

implies that the XY and UV edges under consideration do not cross. In this case, if IDEL = 1 then j is

incremented by one, and if IDEL = - 1 then i is incremented by one. No consideration is given to

points previously found by ITR as was done with the Z sequence when MO = 2.

If MO = 3, then SOLV has obtained a value for DEL that is numerically zero. Thus the two

edges under consideration are parallel and overlap; if they do not overlap then MO = 1 and XINT 3
proceeds as described in the preceding paragraph. In case of overlap, the end points of the overlap

belonging to INTX have already been obtained by ITRM The indices are advanced as described for 3
MO =2.

FUNCTION INT - CALLED BY XINT 5
The function INT(x, y, k) is used to determine if x is one of the first k elements of the WW

array and if y is one of the first k elements of the array ZZ. If both conditions are true then INT #0;

otherwise INT = 0. INT is called by XINT with k = KI, the number of vertices of INTX found by ITR,

(see page 3), i.e., it examines x and y against the elements of WW and ZZ, which are the arrays

containing the coordinates of the intersection points obtained by ITR. I

I
I
I

I
I

I
8 3

U
NSWCDD/TR-93/345

REFERENCES

1. Chin, F., Sampson, J., Wang, C. A., Unifying Approach for a Class of Problem. in the
Computational Geometry of Polygons, Visual Compt. (1), #2, Oct 1985, pp. 124-132.

2. Morris, A., NSWC Library of Mathematics Subroutines, Report NSWCDD/TR-92/425,
Naval Surface Warfare Center, Dahligren, VA. 22448-5000, Jan 1993.

3. Patnaik, L.M., Sheney, R.S., Drishnan, D., Set Theoretic Operation. on Polygons
Using the Scan-Grid Approach, Computer Aided Design (18), #5, Jun 1986,
pp. 275-279.

4. Shamos, M. I., Hoey, D., Geometric Intersection Problems, Seventeeenth Annual IEEE
Symposium on Foundations of Computer Science, Oct 1976, pp. 208-215.

5. Toussaint, G. T., Simple Linear Algorithm for Intersecting Convex Polygons, Visual
Compt. (1), #2, Oct 1985, pp. 1188-1223.

6. Widmayer, P., Wu, Y.F., Schlag, M.D.F., Wong, C.K., On Some Union and Intersection
Problems for Polygon. with Fixed Orientations, Computing (36), #3, 1986, pp 183-197.

I9

I
I
I
I

I
I
I
i
I

U
NSWCDD/TR-93/345

I
I
I
I
I
I

EXAMPLE USING FINTX, BASED ON INTSEC

I
I
I
I
I
I
I
I
I
I
5 A-1/A-2

I
NSWCDD/TR-93/345I

EXAMPLES USING FINTX, BASED ON INTSEC

Here we give some examples of convex polygons XY and UV for which the intersection INTX

is determined using the Lahey Fortran code, FINTX, based on the INTSEC algorithm. A figure is
given for each example showing the geometry of XY and UV. The format of the examples is explained

below.

3 I,X,Y specify the ith vertex and its (x, y) coordinates. In Example 2, the first line refers to

x(1) = 8.0, y(l) = 0.0; J,U,V specify the jth vertex and its (u, v) coordinates. In Example 2, the sixth

Sline refers to u(2) = 4.0, v(2) = 2.0.

The next group of data is the result of using ITR. It specifies the vertices of UV contained in3 XY followed by the vertices of XY contained in UV. In Example 2, the nineth line indicates that [u(2),

v(2)] or w2 is contained in XY and is stored as the first element in WW and ZZ. Note LW = 1. Line 103 indicates that the first vertex of XY, zj, is contained in UV and its coordinates are stored in the second

element of the arrays WW and ZZ. Note LZ = 1.

3 FST refers to the algorithm that determines the first intersection point of INTX not found by

ITR. In Example 2, P and Q refer to the x and y coordinates of this intersection point, which is noted3 on the figure by c, i.e., P x = 6.50, Q = y = 2.0.

Next MO, I,J, P,Q, DEL are given. They refer to input to and output from SOLV. On line 14

of Example 2, the input is x(3), y(3), u(2), v(2), the output is MO = 2, the coordinates of the

intersection point x = P = 6.00 and y = Q = 0.0, and DEL = 32. Hence for Example 2, SOLV yields

the result that the line segment z3z4 of XY and w2w3 of UV have an intersection point x = 6.00,

y = 0.0. The fact that DEL > 0 means that J will be increased by one for the next cycle that can be
seen in line 15. But I is also incremented by one, since z4 is an element found by ITR at3 x(4) = x(l) = 8.00, y(4) = y(1) = 0.0.

Finally, INTX is given in terms of the coordinates of its vertices that are stored in the arrays

W and Z. For Example 2, there are four distinct points (vertices of INTX), the first of which is stored

in W(1) = 6.00, Z(1) = 0.0, as shown on line 17.

I
I
I
I
3 A-3

I
NSWCDD/TR-93/345 I

EXAMPLE I

I,X,Y 3 8.000000 0.000000
I,X,Y 2 5.000000 4.000000
1,SX, Y 3 0.000000 0.000000 I1, X, Y 4 8.000000 0.000000
J, U, V 8.000000 D.0L0201 1 .000
J,U,V 2 2.002000. 3.000000 3 0
J, U, V 3 8.000000 1.000000 A cJ,U, V 4 8.000000 3.000000s}(e
FS, P, Q 5.7500 3.o0ooo000
MO,I,J, ,P, Q,•, DE 2 1 1 .7500 . 0000 -.oo . 0o•./
MO, 1, J,P, Q, DEL 2 2 1 3.750}000 3.000000 24.0 •1

MO, I, J, P, Q, DEL 2 2 2 3.235294 2.588235 -34.0
MO, I,J,P,Q, DEL 1 3 2
MO, 1, J, P, Q, DEL 2 4 2 7.000000 1.333333 18.0
MO, I,JP,Q, DEL 1 4 3 (0,0) (64
MO, I,J, P,Q, DEL 2 4 4 5.750000 3.000000 -24.0

JJ,W,Z 1 7.000000 1.333333
JJ,W,Z 2 5.750000 3.000000 3
JJ, W,Z 3 3.750000 3.000000
JJ,W,Z 4 &235294 2.588235

EXAMPLE 2 1
IXY 1 8.000000 0.000000
I,XY 2 5.000000 4.000000,
I,X,Y 3 0.000000 0.000000
I,X,Y 4 8.000000 0.000000

J, U,V 1 11.000000 2.000000
IXY: 2 4.000000 2.000000
J,U,V 3 8.000000 -2.000000
J, U,V 4 11.000000 2.000000

J,K,WW,ZZ,LW 2 1 4.000000 2.000000 1 V1IA
1,K,WW,ZZ,LZ 1 2 8.000000 0.000000 1

FST, P,Q 6.500000 2.000000 1
MO, 1,J,P,Q, DEL 2 1 1 6.500000 2.000000-28.0 (0,0)
MO, IJ,P,Q, DEL 1 2 2 I
MO, I,J,P,Q, DEL 2 3 2 6.000000 0.000000 32.0
MO, I,J,P,Q, DEL 1 4 3
MO, 1,J, P, Q, DEL 2 4 4 6.500000 2.000000 -28.0 I
JJ, W,Z 1 6.000000 0.000000
JJW,Z 2 8.000000 0.000000
JJ,W,Z 3 6.500000 2.000000
JJ, W, Z 4 4.000000 2.000000

I
"A- 3

NSWCDD/TR93/345

EXAMPLE 3

I,X,Y 1 10.000000 0.000000
I,X,Y 2 6.000000 8.000000
I,X,Y 3 0.000000 0.000000I,x,Y 4 10.000000 0.0000008,8

J,U,V 1 11.000000 5.000000
J,U,V 2 4.000000 5.000000
J,U,V 3 9.000000 2.000000
J,U,V 4 11.000000 5.000000 (4(15)

i J,K,WW,ZZLW 2 1 4.000000 5.000000 1

J,KWW,ZZ,LW 3 2 9.000000 2.000000 1

FST, P, Q 7.500000 5.000000 POJ)

MO, I,J,P,Q, DEL 2 1 1 7.500000 5.000000 -W6.0
MO, I, J, P, Q, DEL 1 2 3
MO, I,J,P,Q, DEL 1 3 3
MO, I,J,P,Q, DEL 2 4 3 9.000000 2.000000 28.0
MO, I,J,P,Q, DEL 2 4 4 7.500000 5.0000004-6.0

JJ, W, Z 1 9.000000 2.000000
JJ, W, Z 2 7.500000 5.000000
JJ,W,Z 3 4.000000 5.000000

5 EXAMPLE 4

I,X,Y 1 8.000000 0.0000003IX,Y 2 6.000000 6.000000
iI,X,Y 3 0.000000 0.000000
I,X,Y 4 8.000000 0.000000

J,U,V 1 o0.000000 4.000000 (.6)
J,U,V 2 5.000000 4.000000
J,U,V 3 O.OO000 9.000000
J,U,V 4 10.000000 , .!•,0oo •

J,K,WW,ZZ,LW 2 1 5.000000 4.000000 1

J,K,WW,ZZILW 3 2 0.000000 0.XYM00 0
FST, P,Q 6.666667 4.000000

MO, I,J,P,Q, DEL 2 1 1 6.666667 4.000000-30.0
MO, I,J,P,Q, DEL 2 2 3 0.000000 0.000000-36.0
MO, I,J,PQ, DEL 2 3 3 0.000000 0.00000042.0
MO, I,J,PQ, DEL 2 4 3 7.058824 2.8 29 68.0
MO, I,J, P, Q, DEL 2 4 4 U66667 4.000000 -30.0

SJJ, W,2 1 0.000000 0.000000
JJ, W,Z 2 7.05824 2.823529
JJW, Z 3 6.66 7 4.000000
JJ, W, Z 4 5.000000 4.000000

I
MA4

I
NSWCDD/TR93/345 I

EXAMPLE 5

I
I,X,Y 1 8.000000 0.000000
I,X,Y 2 6.000000 6.000000
I,X,Y 3 0.000000 0.000000
I, X,Y 4 8.000000 0.000000

J,U,V 1 11.000000 4.000000 1
J,U,V 2 4.000000 4.000000J,U,V 3 2.00000o 2.000000)
J, U, V 4 11.000000 4.000000 (4() 11,4)
J,K,WW,ZZ,LW 2 1 4.000000 4.000000 1J,K,WW,ZZ,LW 3 2 2.000000 2.000000 1

FST, P, Q 6.667 4.000000 ,oo3-
MO,1,J,P,Q,DEL 2 1 1 6.66067 4.Oo0o -42.0
MO, I, JPQ, DEL 2 2 3 2.00000 2.0000042.0
MO,II,J,PQ,DEL 1 3 3(0, (50
MO, I,J,P,Q, DEL 2 4 3 6.965517 3.103448 58.0
MO, 1,J,P,Q, DEL 2 4 4 6.60667 4.000000-42.0

JJ,W,Z 1 2.000000 2.000000
JJ, W,Z 2 6.965517 3.103448 I
JJ,W,Z 3 6.666667 4.000000
JJ, W, Z 4 4.000000 4.000000 3

EXAMPLE 6

lXY 1 10.000000 0.000000I
I,X,Y 2 5.000000 5.000000
I,X,Y 3 0.000000 0.000000
I,X,Y 4 10.000000 0.000000 (•

J, U, V 1 10.000000 2.000000
J, U, V 2 5000000 5.000000 I
J,U,V 3 2.000000 2.000000
J,U,V 4 10.000000 2.000000

J,KIWW,ZZ,LW 2 1 5.00000 5.000000 0
J,K,WW,ZZLW 3 2 2.000000 2.000000 1 (1m
FST, P, Q 8.000000 2.000000 0

MO,ILJ,P,Q,DEL 2 1 1 8000 2.000000 40.0 I
MO, IJ,P,Q, DEL 2 2 2 -5.000000 5.000000 40.0
MO, 1,J,P,Q, DEL 3 2 3 5.000 5.000000 U0.0 (0) (1040)
MO, I,JP,Q, DEL 1 3 4 I
MO, IJ,P,Q, DEL 2 4 4 8.000000 2.000000 40.0

JJ,W,Z 1 2.000000 2.000000
JJ,W,Z 2 5.000000 2.000000 I
JJ,W,Z 2 5.000000 2.000000

I
A.S 3

NSWCDD/Tf43/345

EXAMPLE 7

I,X,Y 8.000000 0.000000
I,X,Y 2 &000000 5.000000
I,X,Y 3 0.O000000 0.0000003,x,Y 2 8.000000 1.000000

J,u,v 2 s&OOOoo, I.oooooo
J,U,V 3 3.000000 5.000000
J,U,V 4 0.000000 3.000000

J,K,WW,ZZ,LW 3 1 3.000000 5.000000 0

FST, P, Q 6.66666 143333
MO, I,J,P,Q, DEL 2 1 1 6.66667 1.333333 30.0 o 8,1)
MO, I,J,P,Q, DEL 2 2 2 3.000000 5.000000 37.0
MO, I,J,P,Q, DEL 2 2 3 3.000000 5.000000 9.0z
MO, I,J,P,Q, DEL 2 2 4 1.565217 2.608606-46.0 (0,0)
MO, I,J,P,Q, DEL 1 3 4
MO, I,J,P,Q, DEL 2 4 4 6.666U7 1.333333 30.0

JJ,W,Z I L666667 1.333333
JJ,W,Z 2 3.000000 5.000000
JJ,W,Z 3 1.565217 2.608696

EXAMPLE 8

I,X,Y 1 8.000000 0.000000I I,X,Y 2 4.000000 4.000000
I,XY 3 0.000000 0.000000
I,X,Y 4 8.00000 0.000000

II
J,U,V 1 &00000 -2.ooooo (4A4
J, U, V 7.000000 3.000000

J,U,V 4 3000000 -2.000000
FST,P,Q 6.111111 1.8888893 MO,I,JP,Q,DEL 2 1 1 6.111111 1.8888 36.0
MO, I,J, P, Q, DEL 2 1 2 &.000000 3.000000 -24.0
MO, I,J,P,Q, DEL 2 2 2 3.000000 3.000000 24.0
MO, I,J,P,Q, DEL 2 2 3 1.571429 1.571429 -28.0
MO, IJ,P,Q, DEL 2 3 3 2.200000 0.000000 40.0
MO, IJ,P,Q, DEL 2 3 4 4.60000 0.000000-40.0
MO,LJ,P,QDEL 2 4 4 6.111111 1.88889 36.0K

JJ,W,Z 1 2.200000 0.000000
JJ, W,Z 2 4.600000 0.000000

SJJ,W,Z 3 6.111111 1.888889
JJ,W,Z 4 5.000000 3.000000
JJ,W,Z 5 3.000000 3.000000
JJ, W,Z 6 1.571429 1.571429

A-7

NSWCDD/TfM3/345 I
EXAMPLE 9

0.000Y 1 0.000000 0I,X,Y 21 OO 0000

I,X,Y 3 6.000000 4.000000
I,X,Y 4 0.000000 0.000000 A-4)

J,UV 1 6.000000 -2.000000
J, U, V 2 6.000000 4.000000
J,U,V 3 0.000000 0.000000
J, U, V 4 6.000000 -2.000000

J,K,WW,ZZ,LW 2 1 6.000000 4.000000 0 3
J,K,WW,ZZ,LW 3 2 0.000000 0.000000 0 4

FST, P,Q 6.000000 o.ooo 0o

MO, IJ,P,Q, DEL 2 1 1 6.000000 0.000000-48.0
MO, IJ,P,Q, DEL 1 2 3
MO, I,J, P,Q, DEL 2 3 3 0.000000 0.000000 -36.0 E,.
MO, I,JP,Q, DEL 2 4 3 0.000000 0.000000 16.0 I
MO, I,J,P,Q, DEL 2 4 4 6.000000 0.000000-48.0

3, W,Z 1 0.000000 0.000000
JJ, W,Z 2 6.000000 0.000000 I
JJ,W,Z 3 6.000000 4.000000

EXAMPLE 10

I,X,Y 1 4.000000 1.000000
I,X,Y 2 8.000000 5.000000
I,X,Y 3 0.000000 5.000000
I,X,Y 4 4.000000 1.000000

J,U,V 1 7.000000 0.000000 (,5)
J,U,V 2 4.000000 4.000000 (4 ..

7,UV 3 2.000000 0.000000
J,U,V 4 7.000000 0.000000

J,K,WWZZW 2 1 4.000000 4.000000 1
I,K,WW,ZZ,LZ 1 2 4.000000 1.000000 1 5
FST, P, Q 5.285714 2.285714

MO, 1,J, P, Q, DEL 2 1 1 5.285714 2.285714 -28.0
MO,II1,JP, Q,DEL 1 2 2
MO, I, J, P, Q, DEL 2 3 2 3.000000 2.000000 24.0
MO,I,J,PQ,DEL 1 4 3
MO, 1,3, P, Q, DEL 2 4 4 5.285714 2.285714 -28.0

JJ, W,Z 1 4.000000 1.000000
JJ,W,Z 2 5.285714 2.285714 5
JJ, W,Z 3 4.000000 4.000000
JJ,W,Z 4 3.000000 2.000000

I
S 2 2 2 A 4

NSWCD/'T43/345

EXAMPLE 11

I,X,Y 1 0.00I000 0.000000

I,X,Y 2 5.000000 0.000000
I, X, Y 3 3.000000 5.000000
I,X,Y 4 0.000000 3.000000
I,X,Y 5 0.000000 0.000000

J,U,V 1 0.000000 -2.000000
J, U, V 2 5.000000 2.000000
J,U,V 3 0.000000 6.000000
J,U,V 4 0.000000 -2.000000
I,KWW,ZZ,LZ 1 1 0.000000 0.000000 1D
I,K,WW,ZZ,LZ 4 2 0.000000 3.0000001 0,)UFST,P,Q 2.500000 0.000000
MO, I,J,P,Q, DEL 2 1 1 2.500000 0.000000-20.0 (0,0)
MO, I,J,P,Q, DEL 2 2 1 4.393939 1.515152 33.0 (5)
"MO,I,J,P,Q, DEL 2 2 2 3.8229 2.941176 -17.0
MO, IJ,P,Q, DEL 2 3 2 2.045455 4.363636 22.0
MO, I,J,P,Q, DEL 2 5 3 0.000000 0.000000 40.0 (0,-4
MO, I,J,P,Q, DEL 2 5 4 2.500000 0.000000 -20.0
JJ, W,z 1 0.000000 0.000000
JJ,W,Z 2 2.500000 0.000000
JJ,W,Z 3 4.393939 1.515152
JJ, W,Z 4 3.823529 2.941176
JJ, W,Z 5 2.045455 4-363636
JJ, W, Z 6 0.000000 3.000000

EXAMPLE 12

I,X,Y 1 0.000000 I.000
I,X,Y 2 5.000000 0.000000
I,X,Y 3 5.000000 2.000000
I,X,Y 4 3.000000 5.000000
I,X,Y 5 0.000000 3.000000 (0,6)

I,X,Y 6 0.000000 0.000000

3,,U,V 1 0.000000 -2.000000
JU,V 2 5.000000 2.000000
J,U,V 3 0.000000 6.000000 o,
J,U,V 4 0.000000 -2.000000

J,K,WW,ZZ,LW 2 1 5.000000 2.000000 0I,KWWZZ,LZ 1 2 o.oooo0 0.000000 1 (0)
1,K,WW,ZZ,LZ 5 3 0.0000003.000000 1

FST, P,Q 2.500000 0.000000 p,-2

MO, 1,J, P, Q, DEL 2 1 1 2.500000 0.000000 -20.0
MO,I,J,P,Q,DEL 2 2 2 5.000000 2.000000-10.0
MO, I,J,P,Q, DEL 2 3 2 5.000000 2.000000 -7.0

A-9

I
NSWCDD/TR-93/345 I

MO, IJ,P,Q, DEL 2 4 2 2.045455 4.383636 22.0
MO, IJ,P,Q,DEL 2 6 3 0.00000 0.000000 40.0
MO, I,J,P,Q, DEL 2 6 4 2.500000 0.000000 -20.0

J, W ,Z 1 0.000000 0.000000
JJ, W, Z 2 2.500000 0.000000
JJ, W,Z 3 5.000000 2.000000
JJ, W, Z 4 2.045455 4.363636
JJ, W, Z 5 0.000000 3.000000

EXAMPLE 13

I,Xy 1 0.000000 0.000000
02.000000 6.000000

I,X,Y 3 0.000000 0.000000
I,X,Y 4 0.000000 0.000000

J,U,V 1 1.000000 3.000000
JUV 2 2.000000 1.000000
J,U,V 3 3.000000 1.000000
J,U,V 4 4.000000 2.000000
J,U,V 5 3.000000 5.000000 (3,)
J,U,V 6 1.000000 3.000000

J,K,WWVZZLW 1 1 1.000000 3.000000 1
J,K,WW,ZZ,LW 2 2 2.000000 1.000000 1
J,K,WWZZ,LW 3 3 3.000000 1.000000 1 (4,2)
J,K,WW,ZZ,LW 4 4 4.000000 2.000000 1

FST, P,Q 2.000000 4.000000

MO, I,J,P,Q, DEL 2 1 1 2.000000 4.000000-24.0 1 .1

MO, I,J,P,Q, DEL 1 2 5 (0,0) (810)
MO, 1,J,P,Q, DEL 1 3 5
MO, I,J,P,Q, DEL 2 4 5 4.000000 2.000000 12.0 U
MO, I,J,P,Q, DEL 2 4 6 2.000000 4.000000-24.0

JJ, W,Z 1 2.000000 1.000000JJ, W, Z 2 3.000000 1.000000
JJ,W,Z 3 4.000000 2.000000
JJ,W,Z 4 2.000000 4.000000
JJ, W,Z 5 1.000000 3.000000

I
I
I
I

A- 10

I
NSWCDD/TR-93/345I

DISTRIBUTION

I COPIES

DOD ACTIVrITES (CONUS)

ATTN CMP/PMA 280 1
CMP/PMA 281 1
CMP/PMA 282 1

NAVAL AIR SYSTEMS COMMAND
CRUISE MISSILE PROJECT
NAVAL AIR SYSTEMS COMMAND HEADQUARTERS
WASHINGTON DC 20361-1014

ATTN SPAWAR 31 1
COMMANDER
SPACE AND NAVAL WARFARE SYSTEMS COMMAND
WASHINGTON DC 20363-5100

ATTN N81 1

CHIEF OF NAVAL OPERATIONS
DEPARTMENT OF THE NAVY
WASHINGTON DC 20350-2000

ATTN J8 1
JOINT CHIEFS OF STAFF
THE PENTAGON
WASHINGTON DC 20318-0001

I DEFENSE TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA VA 22304-6145 12

ATTN PROVOST I
NAVAL POST GRADUATE SCHOOL
MONTEREY CA 93943-5000

ATTN GIFT AND EXCHANGE DIV 4
LIBRARY OF CONGRESS
WASHINGTON DC 20540

I INTERNAL

E 231 3
E 232 2
KIO J. SLOOP I
K104 A. DIDONATO 5
K12 W. ORMSBY I

K13 G. TALLANT 1
L04 S. PARKER 1
LIOMP S. WOOD 1
LlI S. TALLANT 2
N74 (GIDEP) 1

(1)

REPORT DOCUMENTATIO N PAGE Form Approved
I DOMB No. 0704-0188

Public reporting burden for this collelduin of information i estimated to average I hour per response. nduding the time for revewriq instruWtOnm. searching exsting dataoes,
Sgathering and m=#taininq the data needd. and complet•ng and rviewing the collection of information Send cormments regarding thi burden estoniate or any other arsect of this
ollection of intoratn, including suggestions for reducing this burden. to Washington Headqluarters Stn*e. Directorate for informati Operations and Reports. 121S Jefterson

Davis Highway, Suite 1204. Arlington. VA 2202 4302. and to the Office of Management and Suo4get. Paperwork Reduction ProjeCt (0704 0118). Washington. DC 20M03
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1993 Final
4. TITLE AND SUBTITLE S. FUNDING NUMBERS
An Algorithm to Find the Intersection of Two Convex Polygons

6. AUTHOR(S)

Armido R. DiDonato

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Surface Warfare Center NSWCDD/TR-93/345
Dahlgren Division (Code K 104)

Dahlgren, VA 22448-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

An algorithm is given that finds the intersection of two convex polygons. It is coded in Fortran for the IBM PC
desktop computer. The program is robust and fast. It has been used successfully in targeting applications
that require a rapid determination of the common intersection of more than 100 convex polygons, each
specified by more than 150 vertices.

Il

14. SUBJECTTERMS 1S. NUMBER OF PAGES

Closed, Convex Polygons 27

Algorithm, INTSEC 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20. uMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2 89)
Ott-,..t-d, b ANSI t. - ? i

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that
this information be consistent with the rest of the report, particularly the cover and its title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank). Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any

Block 2. Report Date. Full publication date including availability to the public. Enter additional limitations
day, month, and year, if available (e.g. 1 Jan 88). Must or special markings in all capitals (e.g. NOFORN, REL,
cite at least the year. ITAR).

Block 3. Type of Report and Dates Covered. State
whether report is interim, final, etc. If applicable, enter DOD - See DoDD 5230.24, "Distribution
inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88). Statements on Technical Documents."

DOE - See authorities.
Block 4. Title and Subtitle. A title is taken from the NASA - See Handbook NHB 2200.2
part of the report that provides the most meaningful NTIS - Leave blank
and complete information. When a report is prepared
in more than one volume, repeat the primary title, add
volume number, and include subtitle for the specific Block 12b. Distribution Code.
volume. On classified documents enter the title
classification in parentheses. I
Block 5. Funding Numbers. To include contract and DOE - Enter DOE distribution categories from
grant numbers; may include program element the Standard Distribution for
number(s), project number(s), task number(s), and Unclassified Scientific and Technical
work unit number(s). Use the following labels: Reports.

NASA - Leave blank.
C - Contract PR - Project NTIS - Leave blank.
G - Grant TA - Task
PE - Program WU - Work Unit Block 13. Abstract include a brief (Maximum 200

Element Accession No. words) factual summary of the most significant
information contained in the report.

BLOCK 6. Author(s). Name(s) of person(s) responsible
for writing the report, performing the research, or Block 14. Subiect Terms. Keywords or phrases
credited with the content of the report. If editor or identifying major subjects in the report.
compiler, this should follow the name(s).

Block 15. Number of Pages. Enter the total number

Block 7. Performing Organization Name(s) and of pages.
address(es). Self-explanatory.

Block 16. Price Code. Enter appropriate price code
Block S. Performing Organization Report Number. (NTIS only)
Enter the unique alphanumeric report number(s)
assigned by the organization performing the report. Block 17.-19. Security Classifications. Self-

explanatory. Enter U.S. Security Classification in

Block 9. Sponsoring/Monitoring Agency Name(s) and accordance with U.S. Security Regulations (i.e.,
Address(es). Self-explanatory. UNCLASSIFIED). If form contains classified

information, stamp classification on the top and

Block 10. Sponsorinl/Monitoring Agency Report bottom of this page.
Number. (If Known)

Block 20. Limitation of Abstract. This block must be
Block 11. Supplementary Notes. Enter information not completed to assign a limitation to the abstract.
included elsewhere such as: Prepared in cooperation Enter either UL (unlimited or SAR (same as report).
with...; Trans. of...; To be published in.... When a An entry in this block is necessary if the abstract is to
report is revised, include a statement whether the new be limited. If blank, the abstract is assumed to be
report supersedes or supplements the older report. unlimited

Standard Form 298 Back (Rev. 2-89) 1

