NSWCDD/TR-93/345 /

AD-A274 722

LT

AN ALGORITHM TO FIND THE INTERSECTION
OF TWO CONVEX POLYGONS

BY ARMIDO R. DIDONATO
STRATEGIC AND SPACE SYSTEMS DEPARTMENT

SEPTEMBER 1993

Approved for public release; distribution is unlimited.

.:‘-:5"§D 4
sﬂﬂg
VAN 1 3 1994

8

=g NAVAL SURFACE WARFARE CENTER
DAHLGREN DIVISION
Dahigren, Virginia 22448-5000

A\iv'e 94—01450 |

i 5!‘ i
:e’f*? !f,’ | us‘s.!»
CERIEE

[
|

NSWCDD/TR-93/345

AN ALGORITHM TO FIND THE INTERSECTION
OF TWO CONVEX POLYGONS

BY ARMIDOR. DIDONATO
STRATEGIC AND SPACE SYSTEMS DEPARTMENT

SEPTEMBER 1993

Approved for public release; distribution is unlimited.

NAVAL SURFACE WARFARE CENTER
DAHLGREN DIVISION
Dahlgren, Virginia 22448-5000

NSWCDD/TR-93/345

FOREWORD

The work ducﬁbd in this ::port was performed in the Space and Surface Systems Division of
the Strategic and Space Systems Department at the request of the Cruise Missile Weapon Systems
Division (L10) of the Strike Systems Department. A description of the analysis and software developed
to find the intersection of two convex polygons is given.

The intersection of convex polygons was required by Sibille Tallant of L11 during her study to
determine operating areas for strikes against multiple targets. This algorithm is used in a strike
analysis tool that she developed called STANT. The author has benefited from numerous discussions
with her on the application of the algorithm and is appreciative of her thorough review of this report.
Mrs. Tallant also produced the drawings that appear in this document.

Approved by:

R. L. S(géIDT, Head

Strategic and Space Systems Department

TIC QUALITY INSPECTED 8

. Aecession For

' BTIS ORARI =d
{ DTIC TAS 0
§ Unans:umcsd (|

pJuanirivetienn |

o By .
Dl&tl‘”"l *10:!/
Avallah ilit? Godas

jdveil smdsor |
uat Speeinl

ifii m ‘ <)

rw wib

Py

|
NSWCDD/TR-93/345

ABSTRACT

An algorithm is given that finds the intersection of two convex polygons. It is coded in Fortran
for the IBM PC desktop computer. The program is robust and fast. It has been used successfully in
targeting applications that require a rapid determination of the common intersection of more than 100
convex polygons each specified by more than 150 vertices.

iii/iv

NSWCDD/TR-93/345

CONTENTS

L. INTRODUCTION

II. SUBROUTINE XINT: MASTER ROUTINE (PART 1)
II. FUNCTION ITR: ALGORITHM A

IV. SUBROUTINE FST: ALGORITHM B (with SORT)

SUBROUTINE SORT - CALLED BY FST

<

SUBROUTINE SOLV: ALGORITHM C

VI. SUBROUTINE XINT (PART 2)
FUNCTION INT - CALLED BY XINT

£
o ~ A N o N == e

REFERENCES

APPENDIX - EXAMPLES USING FINTX, BASED ON INTSEC
DISTRIBUTION

A-1

)

NSWCDD/TR-93/345

L INTRODUCTION

This report describes an algorithm, INTSEC, that determines the region of intersection, INTX,
of two convex closed polygons. We shall refer to the entire PC Fortran code for INTSEC by the name
FINTX. The code is robust; it will always find INTX, except in cases where the single precision
arithmetic of the PC cannot resolve or distinguish between different points (a double precision version
of the code that provides greater resolution is also available). FINTX is also fast. In a recent
application, using an IBM compatible 486-66 DX2 desktop computer, FINTX found the common inter-
section of 172 polygons each with 180 vertices in 6.9 seconds. Examples using FINTX are given in the
appendix.

INTSEC has important applications in computer graphics, computer chip design, and targeting
studies. For example in targeting, INTSEC is useful in generating an operating area against several
targets. Some papers studied on the intersection problem are given in references (1), [3], [4], [5], [6].
None of these papers gave sufficient detail of the actual implementation of their algorithms to evaluate
their speed. For example, an algorithm may be carried out in a small number of steps but if each step
is expensive time-wise, as in computing arctangents, its efficiency is reduced. No remarks were found

concerning robustness of their algorithms.

The only requirement of the two given polygons, in addition to being closed and convex, is
that they be positively oriented (PO). A simple polygon P is positively oriented (PO) if its vertices are
ordered with the interior of P on the left as the boundary of P is traversed in the direction of increasing
indices k of the vertices py, k=1,2, N. If |eft is replaced by right then P is negatively oriented (NO).
The two polygons are denoted by XY and UV, where XY is specified by its vertices 3; with coordinates
(xi, yi), i=1,2,.., NX. Similarly, UV is specified by its vertices w; with coordinates (uj, vj),
i=12,.., NU. Since the polygons are closed (x,, ¥,) = (xyx» Ynx) and (u;, v;) = (uny, vap)- In

our procedure we also include (xy x 4 1s YN x +1) = (X3 ¥2) and (Uny 419 YU +1) = (ugy V). In the
remainder of this report this fact will not be referred to explicitly.

Note that INTX is also convex and is completely determined by its vertices. It can have at
most KK of them with KK < NX1 4 NU1, where
NX1=NX-12>3, NU1=NU-123.
The vertices will be ordered so that INTX is PO with the first vertex taken as the one that has the
smallest ordinate. If more than one such vertex exists, then the one of that set that has the minimum
abecissa is taken as the first vertex.

INTSEC is made up of three basic algorithms (A, B, C) and some auxiliary algorithms.

Algorithm A establishes if & given vertex w of UV is either inside XY, outside XY, or on its boundary,
OXY. It also determines if a given vertex 3 of XY is inside UV, outside UV, or on its boundary, UV.

NSWCDD/TR-93/345

Algorithm B finds the first intersection of XY and UV that has not been found by A. Algorithm C
finds all the remaining vertices of INTX not found by A. A vertex of INTX, which is not a vertex of
either XY or UV, is found by C at the intersection of a line segment (edge) of XY and a line segment
(edge) of UV, where a line segment (edge) is specified by the coordinates of its end points.

For easy reference, we list here the names of the routines associated with the algorithms
mentioned above. They will be discussed in the order listed.

ROUTINE ALGORITHM SECTION

XINT (PART 1) Master routine Described in Section II

ITR ALGORITHM A Described in Section III
FST ALGORITHM B Described in Section IV
SORT Called by FST Described in Section IV
SOLV ALGORITHM C Described in Section V

XINT (PART 2) Master routine Described in Section VI
INT Called by XINT Described in Section VI

No proofs are given in this paper.
II. SUBROUTINE XINT, MASTER ROUTINE (PART 1)

The first part of the master or executive routine XINT is described here. Before proceeding,
some notation is introduced. A given polygon P may be defined by the sequence of its vertices {p.},
k=12,.., N, where P is generated by taking the p, in increasing order of the subscripts. The
statements q is in P, q is contained in P, or q ¢ P means q is located inside P or on its boundary, P.
As noted earlier we refer to XY by its vertices {z,}, i =1,2,..., NX or simply by {z}. Similarly, UV is
defined by {w}, or {w,-}, j=1,2,..., NU. Note that XY bas NX1 = NX — 1 distinct vertices and UV has
NU1 = NU -1 such points. No preliminary processing of XY or UV is necessary.

XINT begins by calling the Fortran function ITR(u, v, NX1, X, Y), which is based on a part of
algorithm A, to find if the vertex w=(u, v) of UV is contained in XY, where X and Y are arrays
containing the x and y coordinates, respectively, of {z}. ITR(u, v, NX1, X, Y) can take one of three
values that is stored in Lw. If Lw = 1, then w is in XY but it does not coincide with a vertex of XY. If
Lw = 0, then w coincides with a vertex of XY. If Lw = -1, then w is not in XY. XINT determines Lw
for each w in UV. If ITR finds NU1 vertices of UV in XY, then INTX has been found, namely
INTX = UV. If this is not the case, XINT calls ITR(x, y, NU1, U, V) to find if the vertex z =(x, y) of
XY is contained in UV, where U and V contain the coordinates of the {w}. The result from
ITR(x, y, NU1, U, V) is stored in Lz. Lz takes one of the three values (1, 0 , or-1) with meanings
analogous to those for Lw. XINT determines Lz for each s in XY. If NX1 vertices of XY are found in
UV by ITR, then INTX = XY. The abscissas and ordinates of the vertices belonging to INTX found by
ITR are stored in the arrays WW and ZZ, respectively. In order to avoid duplications, if Lz = 0 then
the coordinates of the vertex are not saved, since they have already been found by Lw = 0, w =z and

/I U N - S O O N W .

NSWCDD/TR-93/345

stored in WW and ZZ. At this point, we assume that WW and ZZ each contain K1 elements, with
0 < K1 < NX1 4+ NU1. We use WW(K) and ZZ(K) to denote the Kth element of these arrays.

XINT now calls FST, which is based on algorithm B. FST searches for the first intersection
point ¢ of XY and UV that is not a vertex of either of the polygons. Let 3,3, denote the directed line
segment from end point 3, to end point 3,. The search for ¢ begins with directed edges 3,3, and w,w,.
If their intersection produces ¢ an exit occurs, otherwise the search continues by looking for a smallest j
such that w,w. ., 2 <j < NUI, intersects 3,3,. If no c is found, the procedure is repeated with j = 1
and with 3,3, replaced by 3., . ,, i = 2. The entire procedure is continued by incrementing j through
its range for each i < NX1 until ¢ is found for the amallest values of j and i. If no c is found then INTX
has zero area and an exit is made. If c exists for some smallest i = n and j = m, this implies that there
is an edge of XY, 2,3, ., and an edge of UV, w_ w_ _,, that intersect at c. Recall that c is not a
vertex of XY or UV. The vertices of XY and UV are then reordered by the auxiliary routine SORT
such that the sequences {z} and {w} are rotated as shown:

{80 B 4 19 s BN XD Bps oonr B} = {811 39, ooy BN x)

{Woms Wom 419 =2 WNUD W15 oy W} = {Wy, W, o, W)
More details on FST are given in Section IV.

After finding ¢ XINT calis SOLV, which is based on algorithm C. SOLV finds the remaining
intersection points that make up INTX by moving around XY and UV and systematically finding
the missing points. The details of this search by SOLV are given in Section V. After all vertices of
INTX have been found, the routine HULL, given in [2], is used to reorder the points as described in
Section I and to store their coordinates in new output arrays W and Z. Then a final search is made in
W and Z for any successive duplicate points; if any exist, only one set of such points is retained. The
arrays W and Z hold the coordinates of the ordered vertices of INTX.

An example of how INTSEC operates is shown by Figure 1.

FIGURE 1. AN EXAMPLE, INTX FOUND BY INTSEC

NSWCDD/TR-93/345

Points a, b are found in that order by ITR. Then point ¢ is found by FST. Note that since c is found
by FST, the points of UV are reordered by SORT such that
Wad Wy, Wyt Wy, W,—Wg, W, =W, W,- W,
or as stated above
(wg, W3, Wy, Wy, Wo) = (W, Wq, Wy, W,, W)
Then SOLYV is called to find the remaining points d,e,f of INTX. HULL is then used to reorder the
points of INTX yielding INTX = {a, c, b, d, ¢, f, a}.

The remainder of XINT will be described in Section VI. The order with which the array
elements of XY and UV are presented to SOLV for finding the intersection points of the edges of XY
and UV that have not been obtained by ITR is discussed.

III. FUNCTION ITR: ALGORITHM A

Given a PO polygon P specified by its vertices {p;, p,, .-, Pjr o py} and a point q, ITR
determines if q ¢ P with q # p; for each j, if q=p; for some j, or if q is outside P. From ITR a
parameter Lq is assigned a value 1, 0, — 1, accordingly. The evaluation of Lq by algorithm A depends
strongly on the following:

Let A denote a triangle. Then S(A), or S for short, has the properties that |S| is twice the area
of A and can be given in terms of the Cartesian coordinates (£, 1) of the vertices of A. Specifying A by
' {P1: Py» P3, Py} with p; = [€(3), n(3)]
S = [€(2) - 1)) [n(3)-n(D)] + [£(3) - €1)] [n(1) - n2)]. ()
If A is PO then S > 0, and if A is NO then S < 0; S = 0 implies the vertices are colinear.

Again, we have for a PO polygon P and a point q, with N1 =N-1:

a) Lgq=1. qeP, but not at a vertex of P.

b) Lq=0. q= p; for some j =1, 2, ..., NL

c) Lq=-1. qfP.
Let q = (X, ¥). Algorithm A, using ITR, begins by checking to see if q = p,. If 80, then Lq=0 and an
exit from ITR occurs. Otherwise, it keeps the line segment qp, fixed and proceeds counterclockwise
around P looking at the sequence of triangles A= {9, Py Pj q}, j =2,3,...,N1. Starting with j = 2, the
quantity

S(a;) = [£(1) -%] [»() - 7] + (£G) -%] (¥ —n(1)] (2

is evaluated to determine the orientation of A;. For simplicity in notation let S(A;) =S . If for each
Sj>0, then q is not in P and Lq = ~ 1. If there exists an integer k such that 2 <k < N1 and S, <0,
then an additional new triangle, A, is considered. It is defined by its sequence of vertices (q, Pi_1 Pa
q) and its orientation is determined by

S(8) =8, _y = [€&(k-1) -] [n(k) - 7] + [£(k) ~ %] [7~ (k- 1)]. ®

l

NSWCDD/TR-93/345

Using these concepts we summarise the results of the various possibilities.
If q=p,, then Lq=0.
If S; > 0 for each j, then Lq = - 1.
IS, <0and S, _, <0, then Lq= -1.
IfS, <0and 5, _, >0, then Lq=1.
fS,=0andS,_, >0, then Lq=1.
S, =0and S, _, =0, then Lq=0.

IV. SUBROUTINE FST: ALGORITHM B (with SORT)

Subroutine FST finds the first intersection ¢ of an edge of XY with an edge of UV that is not
at an end point of either edge. The procedure begins by looking for the first intersection of the ith edge
33,41 i=1, of XY and at edges w,w, . ,, for increasing j, j = 1, 2, ..., NU1 of UV. If one is not found,
then i is incremented by 1 and the process is repeated. If for i = NX1 no intersection has been found,
then INTX has area 0 and an exit is made from XINT. Thus, let ¢ = (§,1) denote the intersection
point of the ith edge of XY with the jth edge of UV, where the end points of the ith edge have
coordinates [x(i), y(i)) and [x(i+1), y(i+1)], and the end points of the jth edge have coordinates
[u(), v(j)] and [u(§ + 1), v(j +1)]. Then the equations to be satisfied are

Dxn-Dy{=B
Dun-Dv§=C,
where
Dx = x(i + 1) — x(i) Dy =y(i+1) -y(i)
Du = u(j +1) ~u(j) Dv =v(j +1) - v()
B = y(i) x(i+ 1) —x(i) y(i+1) C =v(§) u(G+1)—u(f) v(j +1)
€= Dx —B Du ”=Qy#
DEL = Dy Du - Dx Dv. 4)
Now, let

T = |DxDu| + |DyDv}|.

If IDEL| < TE, E = ¢/4 = 1.25¢10 ~7, then the two edges under consideration are numerically paraliel
and cannot yield c. Hence, assume that |DEL| > TE. We check to see if (£, n) is contained in the
rectangle R(¢) specified by the inequalities

Xmn - € [Xmn| € § < Xmx + ¢ [Xmx|

Ymn-—¢ [Ymn| <9< Ymx+e|{Ymx]|,
where

Xma = max|min(x(i), x(i + 1)), min(u(j), u(+1))]

Xmx = min[max(x(i), x(i + 1)), max(u(3), u(+ 1))}

Ymn = max|{min(y(i), y(i + 1)), min(v(j), v(j + 1))}
Ymx = mill[m(y (i)’ y (i + 1))1 M(VO), "6 + l))] .

NSWCDD/TR-93/345

The value of ¢ is chosen as a small multiple of the smallest positive single precision number in the IBM
PC for which 14 ¢ > 1. Figure 2 shows R(0).

FIGURE 2. RECTANGLE R(0)

SUBROUTINE SORT - CALLED BY XNIT

If (§, 1) is in R(¢) then it is accepted as the first intersection point, provided it does not
coincide with an end point of either edge which can occur in spite of the fact that such points have

already been found by ITR. Assuming ¢ has been found, the polygons are reordered by the SORT

routine. This routine is most easily described by simply listing its few lines of Fortran code, which is
done below for the XY polygon. Suppose 3,3, , , denotes the XY edge of the intersection. SORT stores
x(k) in x(1) as the first element of the sequence, x(k+1) in x(2), etc., as described earlier. Similarly, the
y(i) are reordered in the same way. Hence if X and Y are the arrays to be reordered, then SORT
requires as input NX1, X, Y, and k. The algorithm is given by

SUBROUTINE SORT(NX1, X, Y, k)
(DIMENSION STATEMENT FOR X, Y, X1, Y1)
DO5 M=1,k-1
Xi(M) = X(M) 1 X1 AND Y1 ARE TEMPORARY STORAGE ARRAYS
5 Y1(M) = Y(M) ! WITH THE SAME DIMENSIONS AS X AND Y.
L=0
DO 10 M =k, NX1
L=L+1
X(L) = X(M)
10 Y(L)=Y(M)
N2 =NX1-k+1
DO15 M=1,k-1
X(N2+ M) = X1(M)
15 Y(N2+M)=Y1(M)
X(NX1+1)=X(1)
Y(NX1+1)=Y(1)
X(NX1+2)=X(2)
Y(NX1+2)=Y(2)
END

NSWCDD/TR-93/345

V. SUBROUTINE SOLV: ALGORITHM C

After using FST, XINT calls SOLV in order to find the remaining intersection points of INTX.
SOLV takes as input the coordinates of the end points of a directed edge of XY and the end points of a
directed edge of UV and determines if the two lines cross. The coordinates of the intersection point are
given as output and a parameter MO is assigned one of the output values: 1, 2, 3. If MO = 1, then the
lines do not croes. If MO = 2, then the lines croes inside their end points and the intersection point is
accepted as a new point of INTX. If MO =3, then the two edges overlap and the crossing point
coincides with at least one of the four end points that has already been found by ITR. The procedure

to determine the crossing point is the same as described for FST and the same equations hold.

Of course once MO returns a value, XINT must determine how to proceed and not miss any
remaining intersection points. If MO = 3, then we have found a previous intersection point, so we treat
it as a croesing point, as if MO = 2, but do not store it in our INTX arrays WW and ZZ. Hence, it is
sufficient to have a way of proceeding in the two different situations MO =1 and MO =2. The
procedures are described in Section VI with the use of the function INT.

V1. SUBROUTINE XINT (PART 2)

In this section we describe how the remaining points of INTX are determined by using, in
addition to MO, two parameters DEL and IDEL. DEL, as given by (4), is used whenever MO = 2. Its
sign determines ‘whether, for the next cycle, the j index associated with UV should be incremented or
whether the i index associated with XY should be incremented. Also, when MO =2 IDEL is set to
DEL/|DEL|. It is used when MO =1 and its sign determines whether j or i should be incremented for

the next cycle.

We begin here with the assumption that the first intersection point ¢ has been found by FST
and the XY and UV arrays have been reordered by SORT as described above. SOLV is called with
input coordinates (x;, y;) of vertex z; and (uj, vj) of w; starting with i = j = 1. Its outputs are MO = 2,
the coordinates of the intersection point ¢, and DEL. We assume for the first intersection point ¢ that
DEL > 0. Thus the angle with vertex at ¢, measured in a counterclockwise direction from the line
segment cw, to the line segment cz,, is positive. This means that at least a part of 2,2, will belong to
INTX, so we increment the index j. Thus in the next cycle SOLV will be called to decide if z,z, and
w,w3 have an intersection point. However before the call is made, INT is called to see if starting with
Z, & successive set of points Z = {2,, 23, ..., Z,,} have already been found by ITR (see below for a
description of the function INT). If this is not the case then SOLV considers 2,2, and wow, for the next
crossing. Otherwise the set Z is not empty for some m such that 2 < m < NX1 and i is set to m. Then
SOLYV considers z,,2,, , ; and w,w, for the next intersection. The parameter IDEL is set to one.

NSWCDD/TR-93/345

If on the other hand DEL < 0, then the roles of the XY and UV edges are interchanged and
IDEL = -1.

The role of IDEL comes into play if the output from SOLV at some stage gives MO = 1, which
implies that the XY and UV edges under consideration do not croes. In this case, if IDEL =1 then j is
incremented by one, and if IDEL = — 1 then i is incremented by one. No consideration is given to

points previously found by ITR as was done with the Z sequence when MO = 2.

If MO = 3, then SOLV has obtained a value for DEL that is numerically zero. Thus the two
edges under consideration are parallel and overlap; if they do not overlap then MO =1 and XINT
proceeds as described in the preceding paragraph. In case of overlap, the end points of the overlap
belonging to INTX have already been obtained by ITR. The indices are advanced as described for
MO =2.

FUNCTION INT - CALLED BY XINT

The function INT(x, y, k) is used to determine if x is one of the first k elements of the WW
array and if y is one of the first k elements of the array ZZ. If both conditions are true then INT # 0;
otherwise INT = 0. INT is called by XINT with k = K1, thz number of vertices of INTX found by ITR,
(see page 3), i.e., it examines x and y against the elements of WW and ZZ, which are the arrays

containing the coordinates of the intersection points obtained by ITR.

NSWCDD/TR-93/345

REFERENCES

Chin, F., Sampeon, J., Wang, C. A., Unifying Approach for a Class of Problems in the
Computational Geometry of Polygons, Visual Compt. (1), #2, Oct 1985, pp. 124-132.

Morris, A., NSWC Library of Mathematics Subroutines, Report NSWCDD/TR-92/425,
Naval Surface Warfare Center, Dahlgren, VA. 22448-5000, Jan 1993.

Patnaik, L.M., Sheney, R.S., Drishnan, D., Set Theoretic Operations on Polygons
Using the Scan-Grid Approach, Computer Aided Design (18), #5, Jun 1986,
PP. 275-279.

Shamos, M. L., Hoey, D., Geometric Intersection Problems, Seventeeenth Annual IEEE
Symposium on Foundations of Computer Science, Oct 1976, pp. 208-215.

Toussaint, G. T., Simple Linear Algorithm for Intersecting Convezr Polygons, Visual
Compt. (1), #2, Oct 1985, pp. 1188-1223.

Widmayer, P., Wu, Y.F., Schlag, M.D.F., Wong, C.K., On Some Union end Intersection
Problems for Polygons with Fized Orientations, Computing (36), #3, 1986, pp 183-197.

NSWCDD/TR-93/345

EXAMPLES USING FINTX, BASED ON INTSEC

A-1/A-2

NSWCDD/TR-93/345

EXAMPLES USING FINTX, BASED ON INTSEC

Here we give some examples of convex polygons XY and UV for which the intersection INTX
is determined using the Lahey Fortran code, FINTX, based on the INTSEC algorithm. A figure is
given for each example showing the geometry of XY and UV. The format of the examples is explained
below.

LX,Y specify the ith vertex and its (x,y) coordinates. In Example 2, the first line refers to
x(1) = 8.0, y(1) = 0.0; J,U,V specify the jth vertex and its (u,v) coordinates. In Example 2, the sixth
line refers to u(2) = 4.0, v(2) = 2.0.

The next group of data is the result of using ITR. It specifies the vertices of UV contained in
XY followed by the vertices of XY contained in UV. In Example 2, the nineth line indicates that [u(2),
v(2)] or w, is contained in XY and is stored as the first element in WW and ZZ. Note LW = 1. Line 10
indicates that the first vertex of XY, z,, is contained in UV and its coordinates are stored in the second
element of the arrays WW and ZZ. Note LZ = 1.

FST refers to the algorithm that determines the first intersection point of INTX not found by
ITR. In Example 2, P and Q refer to the x and y coordinates of this intersection point, which is noted
on the figure by ¢, i.e.,, P=x=6.50, Q =y = 2.0.

Next MO,L,J,P,Q, DEL are given. They refer to input to and output from SOLV. On line 14
of Example 2, the input is x(3), y(3), u(2), v(2), the output is MO =2, the coordinates of the
intersection point x = P =6.00 and y = Q = 0.0, and DEL = 32. Hence for Example 2, SOLV yields
the result that the line segment 2,2, of XY and wows of UV have an intersection point x = 6.00,
y = 0.0. The fact that DEL > 0 means that J will be increased by one for the next cycle that can be
seen in line 15. But I is also incremented by one, since z, is an element found by ITR at
x(4) = x(1) = 8.00, y(4) = y(1) = 0.0.

Finally, INTX is given in terms of the coordinates of its vertices that are stored in the arrays
W and Z. For Example 2, there are four distinct points (vertices of INTX), the first of which is stored
in W(1) = 6.00, Z(1) = 0.0, as shown on line 17.

NSWCDD/TR-93/345

EXAMPLE 1
LX,Y 1 8.000000
LX,Y 2 5.000000
LX,Y 3 0.000000
LX,Y 4 8.000000
3,U,V 1 8.000000
J,U,V 2 2.000000.
JL,U,V 3 8.000000
J,U,V 4 8.000000
FST,P,Q §5.750000
MO,LJ,P,Q,DEL 2
MO,LJ,P,Q,DEL 2
MO,LJ,P,Q,DEL 2
MO,1,J,P,Q,DEL 1
MO,1J,P,Q,DEL 2
MO,LJ,P,Q,DEL 1
MO,1,J,P,Q,DEL 2

JI,W,Z 1 7.000000
JI,W,Z2 2 5.750000
JI,W,Z 3 3.750000
J,W,Z 4 3.235204

EXAMPLE 2

0.000000
4.000000
0.000000
0.000000

3.000000
3.600000
1.000000
3.000000

3.000000

5.750000 3.000000 -24.0
3.750000 3.000000 24.0
3.235294 2.588235 -34.0

7.000000 1.333333 18.0

L N]

1
1
2
2
2
3
4

§.750000 3.000000 -24.0

1.333333
3.000000
3.000000
2.588235

4 B¢ 24 ¢
< e 4 e

-

| —d
-

-

1 8.000000 0.000000
2 5.000000 4.000000
3 0.000000 0.000000
4 8.000000 0.000000
1
2
3

LU,V 11.000000 2.000000
U, 4.000000 2.000000
3L, U,¥ 8.000000 -2.000000
J,U,V 4 11.000000 2.000000

KWW, ZZ,LW 2 1 4.000000 2.000000 1

LK,WW2Z,1LZ 1 2

8.000000 0.000000 1

FST,P,Q 6.500000 2.000000

MO,L3,P,Q,DEL
MO,1,J,P,Q,DEL
MO,L3,P,Q,DEL
MO,L3,P,Q,DEL
MO,1,3,P,Q,DEL

J,W,Z 1 6.000000
JI,W,Z 2 8.000000
JLW,Z 3 6.500000
JI,W,Z 4 4.000000

N =0 =

1 6.500000 2.000000 -28.0
2
2 6.000000 0.000000 32.0
3
4 6.500000 2.000000 -28.0

0.000000
0.000000
2.000000
2.000000

oo G e

A4

(X))
c
@3 ®.9)
@.,1)
0.0) 8.0)
()
c
(11,2
0.0)
82

NSWCDD/TR-93/345
EXAMPLE 3
LX,Y 1 10.000000 0.000000
LX,Y 2 6.000000 8.000000
LX,Y 3 0.000000 0.000000
LX,Y

4 10.000000 0.000000 8.9

1 11.000000 5.000000
2 4.000000 5.000000
3 9.000000 2.000000
4 11.000000 5.000000 .5 ¢

J1K,WW,ZZLW 2 1 4.000000 5.000000 1
JKWW,ZZLW 3 2 9.000000 2.000000 1
FST,P,Q 7.500000 5.000000 . ®2

MO,LJ,P,Q,DEL 2 1 1 7.500000 5.000000 -56.0
MO,1,J,P,QDEL 1 2 3
MO,LJ,P,Q.DEL 1 3 3
MO,LJ,P,Q,DEL 2 4 3 9.000000 2.000000 28.0
MO,L1,P,Q,DEL 2 4 4 7.500000 5.000000 -56.0

JI,W,Z 1 9.000000 2.000000
JI,W,Z 2 7.500000 5.000000
JI,W,Z 3 4.000000 5.000000

caaea
<<<<

(115

L T N

EXAMPLE 4
LX,Y 1 8.000000 0.000000
LX,Y 2 6.000000 6.000000
LX,Y 3 0.000000 0.000000
LX,Y 4 8.000000 0.000000
3,0,V 1 20.000000 4.000000
J,U,V 2 5.000000 4.000000
J,U,V 3 0.000000 9.000000
J,U,V 4 10.000000 <.59n000

JK,WW,ZZ,LW 2 1 5.000000 4.000000 1
JLK,WW,2ZLW 3 2 0.000000 0..7000 O
FST,P,Q 6.666867 4.000000

MO,LJ,P,Q,DEL 2 6.666667 4.000000 -30.0
MO,L,3,P,Q,DEL 2 0.000000 0.000000 -36.0
MO,1,J,P,Q,DEL 2 0.000000 0.000000 -32.0
MO,1J,P,Q,DEL 2 7.058824 2.823529 68.0
MO,LJ,P,Q,DEL 2 6.666667 4.000000 -30.0
J3,W,Z 1 0.000000 0.000000
JI,W,Z 2 7.058824 2.823529
JI,W,Z 3 6.666667 4.000000
JI,W,Z 4 5.000000 4.000000

o DD e
L3 NN

A-5

NSWCDD/TR-93/345
EXAMPLE 5
LX,Y 1 8.000000 0.000000
LX,Y 2 6.000000 6.000000
LX,Y 3 0.000000 0.000000
LX,Y 4 8.000000 0.000000
3,U,V 1 11.000000 4.000000
J,U,V 2 4.000000 4.000000
1,U,V 3 2.000000 2.000000
1,U,V 4 11.000000 4.000000

JKWWZZ LW 2

1 4.000000 4.000000 1

JJK,WW,ZZLW 3 2 2.000000 2.000000 1

FST,P,Q 6.666667

MO,LJ,P,Q,DEL
MO,1,3,P,Q,DEL
MO,LJ,P,Q,DEL
MO,LJ,P,Q,DEL
MO,LJ,P,Q,DEL

JIL,W,Z 1 2.000000
JI,W,Z 2 6.965517
JI,W,Z 3 6.666667
JI,W,Z 4 4.000000

NN =N

4.000000

1 1 6.666667 4.000000 -42.0
2 3 2.000000 2.000000 -42.0
313

4 3 6.965517 3.103448 58.0
4 4 0.666667 4.000000 -42.0

2.000000
3.103448
4.000000
4.000000

EXAMPLE 6
LX,Y 10.000000
LX,Y 5.000000
LX,Y 0.000000
LX, 10.000000

-

l-l'-l“-l!-l
caaa
<<<<e =

-

PP OO Ny N
b
)

0.000000
5.000000
0.000000
0.000000

2.000000
5.000000
2.000000
2.000000

JKWW,2Z LW 2 1 5.000000 5.000000 0
JKWW2ZZLW 3 2 2.000000 2.000000 1

FST,P,Q 8.000000

MO,L3,P,Q,DEL 2
MO,LJ,P,Q,DEL 2
MO,LJ,P,Q,DEL 3
MO,LJ,P,Q,DEL 1
MO,LJ,P,Q,DEL 2

JI,W,Z 1 2.000000
3, W,Z2 2 8.000000
JI3,W,Z 3 5.000000

2.000000

1 1 8.000000 2.000000 40.0
2 2 5.000000 5.000000 40.0
2 3 5.000000 5.000000 0.0
3 4

4 4 8.000000 2.000000 40.0

2.000000
2.000000
5.000000

A-6

“4 ¢ (11,4

2.2
©0 T
5
@2 (10.2)
©.0 (10,0)

|

EXAMPLE 7

LX,
LX
LX
LX

8.000000 0.000000
3.000000 35.000000
0.000000 0.000000
8.000000 0.000000

0.000000 3.000000
8.000000 * 1.000000
3.000000 5.000000
0.000000 3.000000

e e

F Y PR A N

v

LU
U
U,
U
3K

<<<<

* vy

NSWCDD/TR-93/345

JKWWZZLW 3 1 3.000000 5.000000 0

FST,P,Q 6.666667 1.333333

MO,LJ,P,Q,DEL 6.666667
MO,LJ,P,Q,DEL 3.000000
MO,LJ,P,Q,DEL 3.000000
MO,1,3,P,Q,DEL 1.565217
MO,1,3,P,Q,DEL
MO,L3,P,Q,DEL 6.666667
I, W,Z 1 6.666667 1.333333

JI,W,Z 2 3.000000 5.000000
I, W,Z 3 1565217 2.608696

N =N NN
BN N
o oo SN e

EXAMPLE 8
LX,Y 8.000000 0.000000
LX, Y 4.000000 4.000000
LX,Y 0.000000 0.000000
LX,Y

3.000000 -2.000000
7.000000 3.000000
1.000000 3.000000
3.000000 -2.000000

»Q 6.111111 1.888889

6.111111
85.000000
3.000000
1.571429
2.200000
4.600000
6.111111

2.200000 0.000000
4.600000 0.000000
6.111111 1.888889
5.000000 3.000000
3.000000 3.000000
1.571429 1.571429

-
-

-

1
2
3
4 8.000000 0.000000
1
2
3
4

<<<e<

-

St e St &
caac

-

:

MO,LJ,P,Q,DEL 2
MO,LJ,P,Q,DEL 2
MO,LJ,P,Q,DEL 2
MO,1,J,P,Q,DEL 2
MO,LJ,P,Q,DEL 2
MO,L3,P,Q,DEL 2
MO,LJ,P,Q,DEL 2

N,W,2
I,W,2
I,W,2
H,W,2
H,W,2
N,W,2

NN e
e G0N N

(- N N N

1.333333 30.0
5.000000 37.0
5.000000 9.0
2.608696 -46.0

1.333333 30.0

1.888889 36.0
3.000000 -24.0
3.000000 24.0
1.571429 -28.0
0.000000 40.0
0.000000 -40.0
1.888889 36.0

A-7

(~ X))
©3
®.1)
©.0 ®0
@9
(13) .3
C
©.0) @®.0)
62

EXAMPLE 9
LX,Y 1 0.000000 0.000000
LX,Y 2 8.000000 0.000000
LX,Y 3 6.000000 4.000000
LX,Y 4 0.000000 0.000000
J ’ U, v l ‘-m '2nm
J,U,V 2 6.000000 4.000000
J,U,V 3 0.000000 0.000000
J,U,V 4 6.000000 -2.000000

NSWCDD/TR-93/345

JJKWW,ZZLW 2 1 6.000000 4.000000 0
JLK,WW,2ZLW 3 2 0.000000 0.000000 0

FST,P,Q 6.000000 0.500000

MO,LJ,P,Q, DEL
MO,1J,P,Q,DEL
MO,1,3,P,Q,DEL
MO,1,J,P,Q,DEL
MO,1,3,P,Q,DEL

JI,W,Z 1 0.000000
JI,W,Z2 2 6.000000
JIL,W,Z 3 6.000000

NN -

EXAMPLE 10

o N
e e

0.000000
0.000000
4.000000

I~
>

4.000000
8.000000
0.000000
4.000000

S St et
coaa Xex
e e e ¢t
Y Y N T T

-
-

7.000000
4.000000
2.000000
7.000000

1.000000
5.000000
5.000000
1.000000

0.000000
4.000000
0.000000
0.000000

6.000000 0.000000 -48.0

0.000000 0.000000 -36.0
0.000000 0.000000 16.0
6.000000 0.000000 -48.0

JK,WWZZLW 2 1 4.000000 4.000000 1
LK,WW,2ZLZ 1 2 4.000000 1.000000 1
FST,P,Q 5.285714 2.285714
1 5.285714 2.285714 -28.0

MO,LJ,P,Q,DEL
MO,L13,P,Q,DEL
MO,LJ,P,Q,DEL
MO,1,3,P,Q,DEL
MO,LJ,P,Q,DEL

2
1
2
1
2

JI,W,Z 1 4.000000
W, Z 2 5.285714
JI,W,Z 3 4.000000
JI,W,Z 4 3.000000

1
2 2
3 2 3.000000
4 3

2.000000 24.0

4 4 5.285714 2.285714 -28.0

1.000000
2.285714
4.000000
2.000000

A-8

6.4
0.0 c @0
6.2
0.5) | ®.5
c
@)
20 7.9

NSWCDD/TR-93/345
EXAMPLE 11

LX,Y 1 0.000000 0.000000

LX.Y 2 5.000000 0.000000

LX,Y 3 3.000000 5.000000

LX.Y 4 0.000000 3.000000

LX.Y 5 0.000000 0.000000

L,U,V 1 0.000000 -2.000000

J,U,V 2 5.000000 2.000000 0.0

LUV 3 0.000000 6.000000 3.5

LUV 4 0.000000 -2.000000

LK,WWZ2ZLZ 1 1 0.000000 0.000000 1

LK,WW,ZZLZ 4 2 0.000000 3.000000 1 ©3)
MO,LJ,P,QDEL 2 1 1 2500000 0.000000-20.0 0 .
MO,LJ,P,Q,DEL 2 2 1 4.393939 1.515152 33.0 v c 0)
MO,LJ,P,Q,DEL 2 2 2 3.8285290 2.941176 -17.0
MO,LJ,P,Q,DEL 2 3 2 2045455 4.363636 22.0 0.2
MO,LJ,P,Q.DEL 2 5 3 0.000000 0.000000 40.0 v
MO,LJ,P,QDEL 2 5 4 2.500000 0.000000 -20.0
I3, W,Z 1 0.000000 0.000000
JL,W,Z 2 2.500000 0.000000
IIL,W,Z 3 4303039 1.515152
JILW,Z 4 3.823520 2.941176
JILW,Z 5 2.045455 4.363636
31, W,Z 6 0.000000 3.000000
EXAMPLE 12
LX,Y 1 0.000000 0.000000
LX,Y 2 5.000000 0.000000
LX,Y 3 5.000000 2.000000
LX,Y 4 3.000000 5.000000
LX,Y 5 0.000000 3.000000 (0.6)
LX,Y 6 0.000000 0.000000 a5
J, U'v l oom ‘2om
U,V 2 5.000000 2.000000
3,U,V 3 0.000000 6.000000 ©.3)
J, U’v ‘ 0-m ‘2-m M
IKWW,ZZLW 2 1 5.000000 2.000000 0
LK,WW,ZZLZ 1 2 0.000000 0.000000 1 (©.0) o ®.0
LKWW,2ZLZ 5 3 0.000000 3.000000 1
FST,P,Q 2.500000 0.000000 ©0-2

MO,LJ,P,Q,DEL 2 1 1 2500000 0.000000 -20.0
MO,LJ,P,Q,DEL 2 2 2 5.000000 2.000000 -10.0
MO,LJ,P,Q,DEL 2 3 2 5.000000 2.000000 -7.0

A9

NSWCDD/TR-93/345

-
—y
-

4 2 2045455 4.363636 22.0
6 3 0.000000 0.000000 40.0
6 4 2.500000 0.000000 -20.0

1 0.000000 0.000000
2 2.500000 0.000000
3 5.000000 2.000000
4
§

EEE
899
Ll o
H:-IH
B)
o
8
[N X

-
-

-
-

2.045455 4.363636
0.000000 3.000000

ol Gt Gt Gt ey
'-ll-l'ﬁll-ll-l
£EEss
NNNNN

EXAMPLE 13
LX,Y 1 0.000000 0.000000
LX,Y 2 6.000000 0.000000
LX,Y 3 0.000000 6.000000
LX, Y 4 0.000000 0.000000
J,U0,V 1 1.000000 3.000000
U,V 2 2.000000 1.000000
J, U,V 3 3.000000 1.000000
J,U,V 4 4.000000 2.000000
J,U,V 5 3.000000 5.000000
3,U,V 6 1.000000 3.000000

JLJKWW,ZZLW 1 1 1.000000 3.000000 1
JKWW,ZZLW 2 2 2.000000 1.000000 1
LK,WW,ZZ,LW 3 3 3.000000 1.000000 1
JKWW,ZZLW 4 4 4.000000 2.000000 1

FST,P,Q 2.000000 4.000000

MO,1,J,P,Q,DEL 2 1 1 2.000000 4.000000 -24.0
MO,LJ,P,Q,DEL 1
MO,1,1,P,Q,DEL 1
2
2

MO,LJ,P,Q,DEL 4.000000 2.000000 12.0
MO,LJ,P,Q,DEL 2.000000 4.000000 -24.0

,W,2 2.000000 1.000000
3.000000 1.000000
2.000000
2.000000 4.000000
1.000000 3.000000

o D D e

5
§
5
6

N o BN
i
.§

A-10

NSWCDD/TR-93/345

DISTRIBUTION
COPIES
DOD ACTIVITIES (CONUS)
ATTN CMP/PMA 280 1
CMP/PMA 281 1
CMP/PMA 282 1
NAVAL AIR SYSTEMS COMMAND
CRUISE MISSILE PROJECT
NAVAL AIR SYSTEMS COMMAND HEADQUARTERS
WASHINGTON DC 20361-1014
ATTN SPAWAR 31 1

COMMANDER
SPACE AND NAVAL WARFARE SYSTEMS COMMAND
WASHINGTON DC 20363-5100

ATTN N8l 1
CHIEF OF NAVAL OPERATIONS

DEPARTMENT OF THE NAVY

WASHINGTON DC 20350-2000

ATTN J8 1
JOINT CHIEFS OF STAFF

THE PENTAGON

WASHINGTON DC 20318-0001

DEFENSE TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA VA 22304-6145 12

ATTN PROVOST 1
NAVAL POST GRADUATE SCHOOL
MONTEREY CA 93943-5000

ATTN GIFT AND EXCHANGE DIV 4
LIBRARY OF CONGRESS
WASHINGTON DC 20540

INTERNAL

E 231
E 232

K10 J.SLOOP
K104 A. DIDONATO
K12 W.ORMSBY
K13 G. TALLANT
LO4 S.PARKER
LIOMP S. WOOD

L1l S. TALLANT
N74 (GIDEP)

bt D b=t bt b b OV b DD €O

M

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information s estimated to average | hour pet response. :ncluding the time fOr reviewing INStIUCHONS, searching exsting datd sources,
gathenng and maintaining the data needed. and leting and re g the collection of informat: Send ts regarang thea burcen estimate or any other aspect of this
coltectron of information, including suggestions for reducing this burden. 1o Washington Headquarters Services. Directorate for information Opevations and Reports. 1215 iefterson
Dawis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704 0188). Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1993 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
An Algorithm to Find the Intersection of Two Convex Polygons

6. AUTHOR(S)
Armido R. DiDonato

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORY NUMBER
Naval Surface Warfare Center NSWCDD/TR-93/345

Dahilgren Division (Code K104)
Dahlgren, VA 22448-5000

10. SPONSORING/MONITORING
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

An algorithm is given that finds the intersection of two convex polygons. It is coded in Fortran for the IBM PC
desktop computer. The program is robust and fast. It has been used successfully in targeting applications
that require a rapid determination of the common intersection of more than 100 convex polygons, each
specified by more than 150 vertices.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Closed, Convex Polygons 27
Algorithm, INTSEC 16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19 SECURITY CLASSIFICATION { 20. LIMITATION OF ABSTRACT

OF REPORT QF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Pres iteed by ANSI St 799 18
po

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that
this information be consistent with the rest of the report, particularly the cover and its title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet

optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date including
day, month, and year, if available (e.g. 1 Jan 88). Must
Cite at least the year.

Block 3. Type of Report and Dates Covered. State
whether report is interim, final, etc. If applicable, enter
inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from the
part of the report that provides the most meaningful
and complete information. When a report is prepared
in more than one volume, repeat the primary title, add
volume number, and include subtitle for the specific
volume. On classified documents enter the title
classification in parentheses.

Block 5. Funding Numbers. To include contract and
grant numbers; may include program element
number(s), project number(s), task number(s), and
work unit number(s). Use the following labels:

C - Contract PR - Project
G - Grant TA - Task
PE - Program WU - Work Unit

Element Accession No.
BLOCK 6. Author(s). Name(s) of person(s) responsibie
for writing the report, performing the research, or
credited with the content of the report. if editor or
compiler, this should follow the name(s).

Block 7. Performing Organization Name(s) and
address(es). Seif-explanatory.

Block 8. Performing Organization Report Number.
Enter the unique alphanumeric report number(s)

assigned by the organization performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s) and
Address(es). Seif-explanatory.

Block 10. Sponsoring/Monitoring Agency Report
Number. (If Known)

Block 11. Supplementary Notes. Enter information not
included elsewhere such as: Prepared in cooperation
with...; Trans. of...; To be published in.... When a
report is revised, include a statement whether the new
report supersedes or supplements the older report.

Block 12a. Distribution/Availability Statement .
Denotes public availability or limitations. Cite any
availability to the public. Enter additional limitations
or special markings in all capitals (e.g. NOFORN, REL,
iTAR).

DOD - See DoDD 5230.24, “Distribution
Statements on Technical Documents.”

DOE - See authorities.

NASA - See Handbook NHB 2200.2

NTIS - Leaveblank

Block 12b. Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from
the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA - Leaveblank.

NTIS - Leaveblank.

Block 13. Abstract Include a brief (Maximum 200
words) factual summary of the most significant
information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number
of pages.

Block 16. Price Code. Enter appropriate price code
(NTIS only)

Block 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in

accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of this page.

Block 20. Limitation of Abstract. This block must be
completed to assign a limitation to the abstract.
Enter either UL (unlimited or SAR (same as report).
An entry in this block is necessary if the abstract is to
be limited. If blank, the abstract is assumed to be
unlimited

Standard Form 298 Back (Rev. 2-89)

