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Introduction

The subject of hot corrosion (deposit-modified, gaseous corrosion) of both nickel
and cobalt alloys has received considerable attention in recent years because of the
deleterious effects this form of degradation can produce on alloys exposed to combus-
tion gases; e.g., gas turbines, fireside corrosion of boiler tubes, incinerators, etc.
Most investigators in the field ale in agreement that deposition of alkali sulfates; e.g.,
Na 2SO4 , which results from salt ingestion into the engine, alkali metals in the fuel,
and sulfur gases from combustion of fuels is a normal precursor to hot corrosion.
This problem appears to be more serious in marine environments due to the large
amount of salts that are ingested with the intake air. Von Doering and Bergman [1],
as well as Bornstein and DeCrescente [21, concluded that Na 2SO4 is formed in
turbine engines operating in such environments according to the following reactions:

2NaCI + SO 2 = 1/2 02 + H20 = Na 2SO 4 + 2HCI (1)

2NaCI + S03 + H20 = Na 2SO 4 + 2 HCI (2)

It has been established that hot corrosion may take place in the temperature
range between approximately 1200°F and 1900 0 F. It is not considered to be a
problem above 1900°F where deposits of sulfates are not significant, nor bulow about
1200°F where the deposits usually are solid. At temperatures between 1200OF and
1500°F a form of degradation called low-temperature hot corrosion is often observed
where SO3 in the gas is required to maintain this attack. Reaction rates far in
excess o. oxidation rates have been noted in hot corrosion environmens at elevated
temperatures, however, and salt deposition at lower temperatures, as well as certain
phases formed in alloys at the lower tempeiatures, can affect the high temperature
oxidation behavior.

A variety of techniques can be used to study hot corrosion attack of alloys.
Three widely used approaches are: (1) laboratory tests in which samples are pre-
coated with Na 2SO4 and exposed to gases with controlled compositions [3,4], (2) labo-
ratory tests in whi-h samples are immersed in molten salts such as Na2SO4 and NaCI
(crucible tests) [51, and (3) dynamic rig testing which attempts to establish an environ-
meni similar to that existing in gas turbine engines [4,6]. The laboratory tests using
deposits must be used with cafe since these conditions are different from use condi-
tions. Nevertheless, such tests do have tLomparative value when hot corrosion
atack is observed since alloy behavior can be compared and microstructural features
documented for defined conditions. The purp)ose of this investigation was to comptre
the oxidation and hot corrosion of two superilloys and demonstrate the efficacy of a
laboratory test that employed specimens prccoatcd with Na2NO4. Also, the hot corro-
sion resistance of an aluminide coating for the protection of one of the superalloys
was assessed.

Materials and Procedures

The superalloys selected were Rene 100 (nickel-base) and X-40 (cobalt-base)
which weie cast by Howmet Corporation* into bars approximately 152.4 mm long by

*1owmnet Corporation, Austcnal M"iroca,,1 Division, Roy Sircct, Doscr, NJ



12.7 mm in diameter. These alloys were used since both had compositions; e.g.,
refractory metal concentrations, which could make them susceptible to ho corro-
sion attack. The chemical compositions of the alloys in weight percent are shown below.

Cr W Ni C Fe S Zr P

X-40 25.10 7.70 10.40 0.5 0.27 0.003 002 0.01

Rene 100 960 -- Bal 0.17 0.15 0.001 0.06

Mn SI Co Mo TI Al V B

X-40 0.10 0.10 Bal ........

Rene 100 0.01 0.04 14.98 3.00 432 5.50 1 08 0.013

The protective coating selected for study was CODEP B, a proprietary coating
formulated by General Electric Company (contains aluminum, titanium, and carbon) and
applied by Walbar Laboratories, Peabody, MA.

Specimens were machined from these bars in the form of discs, 3.18 mm thick by
12.7 mm in diameter, polished through 0/2 emery, rinsed in ethanol, and weighed. Speci-
mens in this condition were used for oxidation studies, whereas specimens used for hot
corrosion and coating studies were further prepared as follows: specimens wcrc placed
on a hot plate at 480°F and sprayed with a saturated solution of Na2SO4 until the de-
sired amount per unit area of 1 mg/cm 2 was obtained. The thin coating of Na2SO4produced in this manner showed good adherence and appeared uniform in thickness.

Etchants used for metallurgical examination of the superalloys were:

Rene 100: 80 cc H20, 20 cc HCI, 20 cc H20 2 (30%)

X-40: 50 cc H20, 50 cc HCI, 20 cc H20 2 (3%)

The Mettler TGA apparatus was used for both oxidation and hot corrosion
kinetic studies. Two procedures were utilized. 5In the first, the furnace chamber con-
taining the specimen was evacuated to 5 x 10- torr prior to flushing with argon and
then re-evacuated. Ar .%,n was next introduced into the system until a pressure
slightly greater than atmospheric was obtained and the furnace heated to the desired
temperature at a heatt -g rate of 77F per minute. When at temperature, air was
intro2uced into the. ,'ysf,-n at a flow rate of 57 cm/min and the weight change auto-
matically and continuou,ly recorded. A more detailed explanation of this procedure,
together with the type of apparatus employed, has been described elsewhere 17,81.
The specimen is thus subjected to an argon preheat treatment in this procedure. In
the secoad procedure, the furnace, after being heated to the desired temperature, was
lowered over a quartz furnace chamber containing the specimen as air was introduced
at a flow rate of 57 cni/min and the weight change recorded automatically and contin-
uously. Specimens used in this procedu~e were not exposed to an argon preheat treat-
ment. In both procedures the reaction wits terminated by replacing the air Nkith
argon. The first procedure was used for the oxidation iind hot corrosion of both
superalloys, whereas the second was follox cd for the hot corrosion tests only



Results and Discussion

Oxidation

The data obtained for X-40 are presented in Figure 1 where weight changes as
a function of time are presented for a number of temperatures between 1475 0F to
22000 F. These data, with the exception of the 2200°F test, approximate a parabolic
rate law with rate constants in reasonable agreement with those for growth of Cr 20 3
scales on alloys [9]. Parabolic kinetics are also followed at 22000 F, but the rate con-
stant is significantly less than that for growth of Cr 20 3 and this may result from the
formation of volatile products; i.e., Cr0 3, at this temperature.

1.4

S 1.2

1.0- 1475F
0.8 0 1600'T

0 1700OF
0. 6 

18250F
0.4- - 2200°F

0.2

0.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0
Time, Hours

Figure 1. Oxidation of X-40: Air Flow Rat) = 57 cm/min, Pressure = 760 Torr.

The oxidatio,i behavior of Renc 100 (see Figure 2) was poor compared to that for
X-40; this was c;pecially the case at the higher temperatures. Examination of' Figure 2
shows that the weight gains for Rene 100 after two hours were almost always greater
than those for X-40 exposed to the same temperature for six hours. Moreover, the
weight change/time plots for Rene 100 had shapes for 2100()F and 2200OF that indicated
the oxide scales were cracking at the temperature of oxidation. Thcse data conformed
to a parabolic rate law; however, rate constants greater than those for the growth of
nickel oxide scales were obtained. For example, at 2200')F a rate constant of 108

(g2/m4-s) was obtained lor Rene 100. Inspection of the composition or Rene 1(X) sug-
gest that A120 3 scales could be formed on this alloy but probably only after extensive
amounts of transient oxidation during which oxides such as NiO, Cr 203, CoO, and TiO-
are formed. The data which has been obtained indicates A120 3 scales may begin to de-
velop but that cracking must render this process incffcctive. The alloy, thcrefore, has
poor oxidation resistance compared to X-40, especially at temperaturcs tlbo,,c 1900(F.
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Figure 2. Oxidation of Rene 100: Air Flow Rate = 57 cm/min, Pressure = 760 Torr.

Cyclic oxidation tests were not performed because it was apparent from the
isothermal results that Rene 100 would oxidize rapidly and that X-40 was a
chromia-former.

Hot Corrosion

The weight change data for hot corrosion experiments must always be examined
with care since gaseous products can be formed in addition to condensed phases at
the surfaces of specimens. The weight change versus time curves for hot corrosion
of X-40 always exhibited an initial rapid increase followed by a long period of very
small weight changes (see Figure 3). The weight changes were always .ignificantly
larger than those for oxidation, as can be seen by comparing the data presented in
Figures 1 and 3. Furthermore, the initial rapid increase in weight due to the
presence of Na 2SO4 became greater as the amount of Na 2SO4 was increased (see
Figure 3).

In Figures 4 and 5 weight change data for X-40 are presented for the two dif-
ferent procedures used in the hot corrosion tests. In the experiments involving the pre-
treatment with argon, SO2 was identified (by a starch-iodate test) as an effluent
which indicates that th. Na 2SO4 may be decomposing according to the reaction.

Na2SO4 = Na20 + S02 1/2 02 (3)
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Figure 3. Hot corrosion versus Na2SO4 concentration on X-40 at 16000F. Air Flow Rate = 57 cm/min,
Pressure = 760 Torr.
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Figure 4. Hot corrosion of X 40 with 1 mg Na2SO 4/cm 2 Air Flow Rate = 57 cmi/mn, Pressuie = 760 Tort,
Ar pretreated.
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amount of tungsten in this alloy, it appears that oxides of tungsten must have been
formed and reacted with the Na 2 SO 4 to produce an acidic melt that causes
alloy-induced acidic fluxing to take place [5,9]. Such attack does not occur with the
argon pretreatment since the Na 2SO 4 decomposes and is not present during that part
of the experiment where air is present.

The hot corrosion of X-40 became more severe at temperatures of 2100°F and
22000 F, as shown in Figure 6. Attack was evident after a few minutes of exposure.
The amount of degradation was much more than the amount of Na 2SO 4. Such
results show that oxidation products must be sustaining the rapid degradation. This
is consistent with alloy-induced acidic fluxing.

50

• -- 2200OF Oxidation
40 No Sodium Sulfate

2100OF 1mg/cm
2

"Bb Sodium Sulfate
30 2200F I mg/cm 2

Sodium Sulfate

"20

S10

0"1

0.0 1.0 2.0 3.0 4.0 5.0
Time, Minutes

Figure 6. Comparison of oxidation and hot corrosion of X-40 at elevated temperatures

Results obtained from hot corrosion tests with Rene 100 are presented in Figure 7.
Very severe attack is obvious upon comparison of the hot corrosion data with tha!
for oxidation. The effects are especially severe at temperatures of' 1800('F and above
where the data again suggest degradation via an alloy-induced acidic fluxing process
originating from the molybdenum and vanadium in Rene 100. Experiments were also
performed where Na 2SO 4-coated specimens were exposed at 1500('F for two hours
and then re-exposed at 2100OF without further addition of Na2 SO4. The results are
compared to hot corrosion and oxidation data obtained at 2200()F in Figure 8.
It is evident that the exposure at 1500()F has caused the hot corro,ion at 2100')F to
be more severe. This probably has occurred by decreasing the time required to
initiate the ailoy-induced acidic fluxing at 2100()F and, hence, %,eight changes even
greater than hot corrosion at 2200()F are observed.

7
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Figure 7. Hot corrosion of Rene 100 with 1 mg Na2SO4/cm 2: Air Flow Rate = 57 cm/mm, Pressure = 760 Torr
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Figure 8. Oxidation versus hot corrosion of Rene 100 Air Flow Rate = 57 cm/mm, Pressure 760 Torr



Metallographic Analyses of Degraded Specimens

-kesults obtained from metallographic examination of specimens exposed to the
hot corrosion tests were consistent with the weight change data. The microstructural
features of the as-fabricated alloys are presented in Figure 9. Both alloys exhibit
large grains composed of cored dendrites which are more readily seen in the nickel-
base alloy. Carbides were evident as an interdendritic network distributed throughout
both alloys. The major carbide in this network is believed to be Cr23C6 in X-40
[10], and also probably in Rene 100 also.

'.f .. Large
'" . . rains of

. .,,dendrites

9Inter
.. dendrtic',' , .:,,Q ' ",-' " . ' ,- -- ., ' network of

.', 7 , .t carbides,

S. "' "~ " *probably
.. ,.., t , _"tJ " " " r2306

Figure9.As -cast c
-*.... . . ; ,'

X-40 Rene 100

Figure 9. As~cast condition. Mag. l00X

Photomicrographs showing features associated with hot corrosion of Rene 100 arc
presented in Figures 10 and 11. At all temperatures (see Figure 10) two zones were
evident. The outermost layer (A) was found to consist chiefly of oxides. The major
phase in this zone appeared to be NiO: however, the proportions of NiCr 2 0 4 and
NiMoO 4 increased as the second zone (B) was approached. This latter /one con-
sisted of the substrate depleted of chromium (white) and a grey sullfide phase. This
sulfide phase is presumed to be mainly chromium sulfides based upon results obtained
by Seybolt fill and Hamilton 112] on nickel-base alloys with similar compositions.
Chromium has a large affinity for sulfur, and when sulfur is present in the environ-
merit, chromium sulfides are usually formed in the depleted zone which develops
due to oxidation as well as the lormation of the chromium sulfides. Vcry often
preferential oxidation of the sulfide is evident at 1700'T and 1900"F (see Figure 10)

o



At 2100°F and 2200°F oxidation of the depleted zone occurs by a rather uniform fron-
tal attack where particles of alloy (white) are encompassed with oxide (see Figures 10
and 11). Such morphologies are consistent with alloy-induced acidic fluxing caused by
oxidation of the molybdenum and vanadium in the Rene 100.

A-A-

B B-

C i A I '. L O. ,; " '

B 7.

N -1r0 NNoO

,. ,5

1700OF 1900OF 2100OF

Figure 10. Hot corrosion of Rene 100 after two hours Mag. 100OX

A. NiO, NiO4*Cr2O3, NiM0O4
B. Chromium depleted zone (white) containing Cr sulfides (grey)
C. Substrate

Microstructures developed during the hot corrosion oi X-40 at 1700')F and
1825')F are presented in Figure 12. An external oxide scale (A) is evident. X-ray
diffraction analysis of this zone indicated the outermost portion to be composed of'
NiO and cobalt oxides. The inner portion of' this zonc also contained these oxides,
as well as large amounts of spinel phascs; namely, NiCr20 4 and CoCr20 4 . Prcferen-
tial oxidation of the X-40 was also evident. This appeared to occur at alloy grain
boundaries where sulfides had been formed in the alloy (see Figure 12). No positive
identification of sulfides in the oxide scale was obtained by X-ray analyses. This is
consistent with the sulfides in the substrate becoming oxidiled (131. Sulfide formation
followed by oxidation is a common feature for some forms of hot corrosion. This
type of preferential attack causes increased oxidation and can eventually result in the
onset of alloy-induced acidic fluxing, whereby tungsten in the X-40 becomes oxidized
and combines with the Na2SO4 to form an acidic deposit.

It)



The limited coating test results show that penetration of the coating occurs after
exposure periods of less than 200 hour, at temperatures of 1600°F and above. There-
fore, the Rene 100/CODEP B system is not suitable for application where conditions
that cause hot corrosion attack are 1,:esent.

Concmlsions

1. The oxidation behavior of Rene 100 was poor compared to that of the X-40
alloy, especially at temperatures above 19000 F.

2. The superalloy X-40 was found to be more resistant to the initiation of hot
) orrosion than Rene 100. Both alloys, however, eventually undergo attack at rates
consistent with the alloy-induced acidic fluxing mechanism.

3. Both alloys degrade by similar mechanisms. During the initiation stage,
sulfides are formed within the alloys which eventually become preferentially oxidized.
Such preferential oxidation of sulfide results in more rapid oxidation, and also in the
formation of refractory metal oxides involving the elements tungsten, molybdenum,
and vanadium. Reaction of the refractory metal oxides with Na 2 SO 4 leads to the
development of acidic melts that cause catastrophic degradation of these two alloys.

4. Exposure -t temperatures as low as 1500"F shortened the initiation stage at
higher temperatures. SuiCides were formed at the lower temperature and they rapidly
oxidized at the higher temperatures.

5. Repeated applications of Na2SO4 resulted in the initiation of hot corrosion
attack after shorter exposure times than for single applications.

6. An aluminide coating, CODEP B, on Rene 100 caused the initiation of hot
corrosion to be delayed. Attack did occur, however, when cumulative applications of
Na 2SO4 were used. The coatings were penetrated by the Na2SO4 in localized areas
after exposure times of less than 200 hours.

7. The test which has been used induces degradation tor a specific set of condi-
tions and, therefore, care must be exercised in extrapolating the results to other
conditions. This test has validity for hot corrosion mechanisms whereby the degrada-
tion process is sustained by reaction products from the alloy. It, therefore, can be
used to compare the time to establish such conditions in alloys. Rene 100 Is more
susceptible to this condition than X-40. When alloys do not undergo alloy-induced
acidic fluxing, gas composition, deposit composition, and amount of the deposit play
very important roles in the amount and type of degradation that occurs. The hot
coriosion test used in this report would not be appropriate under those condition,.
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The alloy X-40 is more resistant to hot corrosion than Rene 100, probably due
to its higher chromium concentration and the cracking of the oxide scale on the
Rene 100 alloy. Both alloys, however, exhibit features that show the propagation
mode of hot corrosion has been reached after relatively short initiation stages; this is
especially the case at temperatures above 1800 0 F. It is, therefore, apparent that
these alloys should not be used uncoated under conditions where hot corrosion attack
can be expected.

Hot Corrosion of Coated Rene 100

Since Rene 100 was so susceptible to hot corrosion, specimens of Rene 100 were
aluminized by using the CODEP B process. A scanning electron photomicrograph of
the surface of a coated specimen is presented in Figure 13. Several nodules are evident
above the surface of the coating. These nodules appear to be small clusters of pack
powder. X-ray diffraction analysis confirmed this coating to be nickel-aluminide (NiAI).

Figure 13. As-coated Rene 100/CODEP
B system. XRDA shows nickel alumin-
ide, NiAI nodules, and small clusters of
pack powder. Mag. 45X

xn. % J A

Hot corrosion of CODEP B-coated Rene 100 was examined at 1600')F and
1800(F using single, as well as multiple, additions of Na2SO4 and the second proce-
dure for heating the specimens. Only single applications of Na2SO4 were used at
22000F.

At 1600°F both single and multiple additions of Na2 S04 resulted in visible
coating failure after 50 hours at temperature. The attack usually was 'uch that the
coating was penetrated in localiLed areas (see Figure 14). After penetration ot the
coating substrate attack became evident as indicated by large amounts of corrosion
products (see Figure 15).
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Figure 14. Hot corrosion of Rene 100/CODEP B system after two applications of
Na2SO 4 for 50 hours at 16000F. Coating failure in localized areas. Mag. 7X

Figure 15. Hot corrosion of Rene 100/CODEP 8 system after 900 hours at 1600OF
Large amounts of substrate corrosion products. '-g 7X

At 1800OF the coated specimen with one application Of "N,-S04 wils terminated
after 250 hours. No visual evidence of failure was apparent and only a small weig~ht
gain was observed (2.4 mg/cm2 ). Wht.,.i cumulative z-dditions of N~i2SO 4 were used it
25-hour intervals, visual evidence A' penetratiorn o[ the coating became apparent after



175 hours. The localized nature of the attack was not as obvious as at 1600 0F.
Total failure of the coating occurred after 200 hours of exposure, Photographs
comparing the degradation of coated Rene 100 in tests using single and multiple
applications of Na2SO4 are presented in Figures 16a and 16b, respectively.

Figure 16. Hot corrosion of Rene
100/CODEP 8system at18000F. ~'
Mag. 2X 3"

Single Application Multiple Applications
of Na2SO 4  of Na 2SO4

a b

At 22000F, the coated system was exposed for 35 hours with one application of
Na2SO4. The nodules observed in the as-coated condition became covered with a dark
blue product (see Figure 17). It appeared that coating failure was initiating at these sites.

,yure 17 Hot corrosion of Rene 100/CODEP 8 system after 35 hours at 2200°F
Single application of Na 2SO4 Mag 7X
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The limited coating test results show that penetration of the coating occurs after
exposure periods of less than 200 hour, at temperatures of 1600°F and above. There-
fore, the Rene 100/CODEP B system is not suitable for application where conditions
that cause hot corrosion attack are f,:esent.

Conclusions

1. The oxidation behavior of Rene 100 was poor compared to that of the X-40
alloy, especially at temperatures above 1900 0F.

2. The superalloy X-40 was found to be more resistant to the initiation of hot
,;orrosion than Rene 100. Both alloys, however, eventually undergo attack at rates
consistent with the alloy-induced acidic fluxing mechanism.

3. Both alloys degrade by similar mechanisms. During the initiation stage,
sulfides are formed within the alloys which eventually become preferentially oxidized.
Such preferential oxidation of sulfide results in more rapid oxidation, and also in the
formation of refractory metal oxides involving the elements tungsten, molybdenum,
and vanadium. Reaction of the refractory metal oxides with Na 2 SO 4 leads to the
development of acidic melts that cause catastrophic degradation of these two alloys.

4. Exposure -t temperatures as low as 1500°F shortened the initiation stage at
higher temperatures. SuIfides were foimed at the lower temperature and they rapidly
oxidized at the higher temperatures.

5. Repeated applications of Na 2 SO 4 resulted in the initiation of hot corrosion
attack after shorter exposure times than for single applications.

6. An aluminide coating, CODEP B, on Rene 100 caused the initiation of hot
corrosion to be delayed. Attack did occur, however, when cumulative applications of
Na 2 SO 4 were used. The coatings were penetrated by the Na 2SO4 in localized areas
after exposure times of less than 200 hours.

7. The test which has been used induces degradation for a specific set of condi-
tions and, therefore, care must be exercised in extrapolating the results to other
conditions. This test has validity for hot corrosion mechanisms whereby the degrada-
tion process is sustained by reaction products from the alloy. It, therefore, can be
used to compare the time to establish such conditions in alloys. Rene 100 is more
susceptible to this condition than X-40. When alloys do not undergo alloy-induLcd
acidic fluxing, gas composition, deposit composition, and amount of the deposit play
very important roles in the amount and type of degradation that occurs. The hot
coriosion test used in this report would not be appropriate under those condition,.
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