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Introduction

The subject of hot corrosion (deposit-modified, gaseous corrosion) of both nickel
and cobalt alloys has received considerable attention in recent years because cf the
deleterious effects this form of degradation can produce on alloys exposed to combus-
tion gases; e.g., gas turbines, fireside corrosion of boiler tubes, incinerators, etc.

Most investigators in the field aie in agreement that deposition of alkali sulfates; e.g.,
Na;SQy4, which results from salt ingestion into the engine, alkali metals in the fuel,
and sulfur gases from combustion of fuels is a normal precursor to hot corrosion.
This problem appears to be more serious in marine environments due to the large
amount of salts that are ingested with the intake air. Von Doering and Bergman [1],
as well as Bornstein and DeCrescente [2], concluded that NazSOy4 is formed in
turbine engines operating in such environments according to the following reactions:

2NaCl + SO, = 1/2 Oy + Hy0 = NaySO4 + 2HCI (1)
2NaCl + SO3 + Hy0 = NaySO4 + 2 HCI (2)

It has been established that hot corrosion may take place in the temperaturc
range between approximately 1200°F and 1900°F. It is not considered to bc a
problem above 1900°F where deposits of sulfates arc not significant, nor bclow about
1200°F where the deposits usually are solid. At temperatures between 1200°F and
1500°F a form of degradation called low-temperature hot corrosion is often obscrved
where SOj3 in the gas is rcquired to maintain this attack. Recaction rates far in
excess 0. oxidation rates have been noted in hot corrosion environmen.s at clevated
temperatures, however, and salt dcposition at lower temperatures, as well as certain
phases formed in alloys at the lower tempe.atures, can affect the high temperature
oxidation behavior.

A variety of techniques can be used to study hot corrosion attack of alloys.
Three widely used approaches are: (1) laboratory tests in which samples are pre-
coated with Na;SCy4 and exposed to gases with controlled compositions [3,4], (2) labo-
ratory tests in whi_h samples are immersed in molten salts such as NaySOy4 and NaCl
(crucible tests) [S], and (3) dynamic rig testing which attempts to cstablish an environ-
ment similar to that existing in gas turbine engines [4,6]. The laboratory tests using
deposits must be used with care since these conditions are different from use condi-
tions. Nevertheless, such tests do have comparative value when hot corrosion
aitack is obscrved since alloy behavior can be compared and microstructural features
documented for defined conditions.  The purpose of this investigation was to compare
the oxidation and hot corrosion of two superalloys and demonstrate the cfficacy of a
laboratory test that employed specimens precoated with NapyNOy.  Also, the hot corro-
sion resistance of an aluminide coating for the protection of onc of the superalloys
was assessed.

Materials and Procedures

The superalloys selected were Rene 100 (nickel-base) and X-40 (cobalt-basc)
which were cast by Howmet Corporation* into bars approximately 152.4 mm long by

*Howmet Corporation, Austenal Microcast Division, Roy Street, Doser, NJ
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12.7 mm in diameter. Thesc alloys were used since both had compositions; e.g.,
refractory mctal concentrations, which could make them susceptible to hot corro-
sion attack. The chemical compositions of the alloys in weight percent are shown below.

Cr w Ni Cc Fe S Zr P

X-40 25.10 7.70 10.40 0.5 0.27 0.003 002 0.01

Rene 100 960 - Bal 0.17 0.15 0.001 0.06 -

Mn Si Co Mo Ti Al v B

X-40 0.10 0.10 Bal - - - - -
Rene 100 | 0.01 0.04 14.98 3.00 432 5.50 108 0.013

The protective coating selectcd for study was CODEP B, a proprictary coating
formulated by General Electric Company (contains aluminum, titanium, and carbon) and
applied by Walbar Laboratories, Peabody, MA.

Specimens were machined from these bars in the form of discs, 3.18 mm thick by
12.7 mm in diameter, polished through 0/2 cmery, rinsed in cthanol, and weighed. Speci-
mens in this condition were used for oxidation studies, whercas specimens used for hot
corrosion and coating studics were further prepared as follows:  specimens were placed
on a hot plate at 480°F and sprayed with a saturated solution of NaySOy until the de-
sired amount per unit arca of 1 mg/cm® was obtained. The thin coating of Na;SOy
produced in this manner showed good adherence and appeared uniform in thickness.

Etchants used for metallurgical examination of the supcralloys were:
Rene 100: 80 cc HyO, 20 cec HCL, 20 cc H0, (30%)
X-40: 50 cc Hy0, 50 cc HCI, 20 cc HyO, (3%)

The Mettler TGA apparatus was used for both oxidation and hot corrosion
kinctic studies. Two procedures were utilized.  In the first, the furnace chamber con-
taining the specimen was evacuated to 5 x 10 torr prior to flushing with argon and
then re-cvacuated.  Arpon was next introduced into the system until a pressure
slightly greater than atmospheric was obtained and the furnace heated to the desired
temperature at a heatiag rate of 77°F per minute.  When at temperature, air was
introtuced into the system at 2 flow rate of 57 cm/min and the weight change auto-
matically and continuou.ly recorded. A more detailed explanation of this procedure,
together with the type of apparatus employed, has been described clsewhere (7.8,
The specimen is thus subjected to an argon preheat treatment in this procedure.  In
the sceoad procedure, the furnace, after being heated to the desired temperature, was
lowered over a quartz furnace chamber containing the specimen as air was introduced
at a flow rate of 57 cm/min and the weight change recorded automatically and contin-
uously. Specimens used in this proceduce were not exposed to an argon preheat treat-
ment.  In both procedures the reaction was terminated by replacing the air with
argon.  The first procedure was used for the oxidation and hot corrosion of both
superalloys, whercas the sccond was followed for the hot corrosion tests only

to




Results and Discussion

Oxidation

The data obtained for X-40 are presented in Figure 1 where weight changes as
a function of time are presented for a number of temperatures between 1475°F to
2200°F. These data, with the exception of the 2200°F test, approximate a parabolic
rate law with rate constants in reasonable agreement with those for growth of CryOj3
scales on alloys [9]. Parabolic kinetics are also followed at 2200°F, but the rate con-
stant is significantly less than that for growth of Cr,O3 and this may result from the
formation of volatile products; i.e., CrOs, at this temperature.

2
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Figure 1. Oxidation of X-40: Air Flow Raty = 57 cm/min, Pressure = 760 Torr.

The oxidatiors behavior of Renc 100 (sce Figure 2) was poor compared to that for
X-40; this was cspecially the case at the higher temperatures.  Examination of Figure 2
shows that the weight gains for Renc 100 after two hours were almost always greater
than those for X-40 exposed to the same temperature for six hours. Morcover, the
weight change/time plots for Rene 100 had shapes for 2100°F and 2200°F that indicated
the oxide scales were cracking at the temperature of oxidation. These data conformed
to a parabolic rate law; however, ratc constants greater thdn those for the growth of
m(,kc,l oxide scales were obtained.  For example, at 2200°F a rate constant of 107
(g 2/m’ -s) was obtained for Rene 100. Inspection of the composition of Rene 100 sug-
gest that Al O3 scales could be formed on this alloy but probably only after extensive
amounts of transicnt oxidation during which oxides such as NiO, Cr;03, CoO, and TiO,
arc formed. The data which has been obtained indicates AlyO3 scales may begin 1o de-
velop but that cracking must render this process incficctive.  The alloy, therefore, has
poor oxidation resistance compared to X-40, especially at temperatures above 1900°F.
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Figure 2. Oxidation of Rene 100: Air Flow Rate = 57 cm/min, Pressure = 760 Torr.

Cyclic oxidation tests were not performed because it was apparent {rom the
isothermal results that Rene 100 would oxidize rapidly and that X-40 was a
chromia-former.

Hot Corrosion

The weight change data for hot corrosion experiments must always be examined
with care since gaseous products can be formed in addition to condensed phases at
the surfaces of specimens. The weight change versus time curves for hot corrosion
of X-40 always exhibited an initial rapid incrcase followed by a long period of very
small weight changes (sec Figure 3). The weight changes were always wignificantly
larger than those for oxidation, as can be scen by comparing the data presented in
Figures 1 and 3. Furthermore, the initial rapid increase in weight due to the
presence of NaySOy4 became greater as the amount of NaySOy was increased (sce
Figurce 3).

In Figures 4 and 5§ weight change data for X-40 are presented for the two dil-
ferent procedures used in the hot corrosion tests.  In the experiments involving the pre-
treatment with argon, SO, was identified (by a starch-iodate test) as an effluent
which indicates that the NapSOy may be decomposing according to the reaction.

Na,SO4 = NaO + SO, 12 Oy 3

4-
|
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Weight Gain, mg/cm
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Time, Hours

Figure 3. Hot corrosion versus NazSO4 concentration on X-40 at 1600°F. Air Flow Rate = 57 cm/min,
Pressure = 760 Torr.
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Figure 4. Hot corrosion of X 40 with 1 mg NazSOs/cm? Air Flow Rate = 57 cm/min, Pressuie = 760 Torr,

Ar pretreated.
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Figure 5, Hot Corre zion of X.40 with2 mg NaxS04/cm2 Air Flow Rate = 57 cm/min, Pressure = 760 Torr,
No Ar Pretreatment,

The presence of NayO was also determineq by a basicity tesy (NayO makes
NayS0, basic in aqueous solutions), All of the weight change daqy are greater thyp
those for Oxidation jp the absence of NayS0, and the deposit, therefore, atfected (pe
Corrosion process, p th: case of the argon Pretreatmeny the aceeleration
is restricted to the very eariy Slages. The effect of temperature jg Maximum jp the
range of 1475°p o 1600°F, These results indicate that during the argon pretrea.
ment some sujfige phases are formed o the surfaces of the X.4¢ Specimens.  Thg
probably varjes with temperatyre and becomeg less at the highe, temperatyreg due to
higher Josses of SO, vig decomposition of the NayS0,. The increased oxidatjon,
therefore, would pe Caused by (he Oxidation of the sulfides which subsides the
sulfides are Converted (o oxides, Iy g importan, o erphasize that whijje the Na,S0,
has caused increaseq attack, this attack jg very smal] Compared (o what wil] pe
observed when alloy indyceg acidje fluxing begins 1o become importan;,

The weight change dary Obtained for the samples heated in ajr (see Figure 5) are
influenceq by the gradual incregge in temperature of the specimen (the Specimen wyg
found o reach the egy temperatyre after appmximately 1o minutes), weight fogseg
due 1o SO, evolution frop, the Na,S0,, and the formation of corrosion products
On the surfaces of the Specimens, Ay temperatyreg between 1475°F ¢, I700°F 1he
results are pey much differeng from the argon pretreatmenty exhibiting 4 nitia
larger increase jp weight lolfowey by a leveling ofp of the corrosion ryqeq. These
data are believed ¢ be less reliable thap those obtaineqd with the ATgon pretregyeg
Samples since, the latter, the weighy losses resulting fron dccomposition of
Na,S0, occurred prior (g the bcginning of the Weight change Measuremenys, The
Tesults obtaineg with the X. 40 specimen Cxposed ¢ gy and heated 1825°F how, .
ever, show (hyy Very severe dltack hay oceurred. In yiew of the relatively large



amount of tungsten in this ailoy, it appears that oxides of tungsten must have been
formed and reacted with the NajSO; to produce an acidic melt that causes
alioy-induced acidic fluxing to take place [5,9]. Such attack does not occur with the
argon pretreatment since the Nap;SO4 decomposes and is not present during that part
of the experiment where air is present.

The hot corrosion of X-40 became more severe at temperatures of 2100°F and
2200°F, as shown in Figure 6. Attack was evident afier 2 few minutes of exposure.
The amount of degradation was much more than the amount of NaySO4. Such
results show that oxidation products must be sustaining the rapid dcgradation. This
is consistent with alloy-induced acidic fluxing.

2200°F Oxidation
No Sodium Sulfate

2100°F lmg/cm2
Sodium Sulfate

2
2200°F 1mg/cm
Sodium Sulfate

Weight Gain, mg/cm 2

0.0 1.0 2.0 3.0 4.0 5.0
Time, Minutes

Figure 6. Comparison of oxidation and hot corrosion of X-40 at elevated temperatures

Results obtained from hot corrosion tests with Rene 100 are presented in Figure 7.
Very severe attack is obvious upon comparison of the hot corrosion data with that
for oxidation. The cffects are especially severe at temperatures of 1800°F and above
where the data again suggest degradation via an alloy-induced acidic tluxing process
originating from thc molybdenum and vanadium in Rene 100, Experiments were also
performed where NaySOy-coated specimens were exposed at 1500°F for two hours
and then re-exposed at 2100°F without further addition of Na»SO,. The results are
compared to hot corrosion and oxidation data obtained at 2200°F in Figure 8.
It is cvident that the exposurc at 1500°F has caused the hot corrosion at 2100°F 1o
be more severe.  This probably has occurred by decreasing the time required to
initiate the ailoy-induced acidic fluxing at 2100°F and, hence, weight changes cven
greater than hot corrosion at 2200°F are obscrved.
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Figure 7. Hot corrosion of Rene 100 with 1 mg Na2S0s/cm?; Air Flow Rate = 57 cm/min, Pressure = 760 Torr
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Figure 8. Oxidation versus hot corrosion of Rene 100 Air Flow Rate = §7 cm/min, Pressure = 760 Torr




Metallographic Analyses of Degraded Specimens

-Kesults obtained from metallographic examination of specimens exposed to the
hot corrosion tests were consistent with the weight change data. The microstructural
features of the as-fabricated allcys are presented in Figure 9. Both alloys exhibit
large grains composed of cored cendrites which are more readily seen in the nickel-
base alloy. Carbides were evident as an interdendritic network distributed throughout
both alloys. The major carbide in this network is believed to be Cry3Cq in X-40
[10], and also probably in Rene 100 also.
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Figure 9. As-cast condition. Mag. 100X

Photomicrograpis showing features associated with hot corrosion of Rene 100 arc
prescated in Figures 10 and 11, At all temperatures (see Figure 10) two zones were
evicent. The outermost layer (A) was found to consist chictly of oxides. The major
phase in this zone appeared to be NiO: however, the proportions of NiCraOy and
NiMoOy increased as the second cone (B) was approached.  This latter zone con-
sisted of the substrate depleted of chromium (white) and a grey suifide phase.  This
sulfide phase is presumed to be mainly chromium sullides based upon results obtained
by Scybolt [11] and Hamilton [12] on nickel-base alloys with similar compositions.
Chromium has a large alfinity for sulfur, and when sulfur is present in the environ-
ment, chromium sulfides are usually tormed in the depleted zone which develops
duc o oxidaticn as well as the formation of the chromium sulfides.  Very often
preferential oxidation of the sulfide is cvident at 1700°F and 1900°F (sce Figure 10)




At 2100°F and 2200°F oxidation of the depleted zone occurs by a rather uniform fron-
tal attack where particles of alloy (white) are encompassed with oxide (see Figures 10
and 11). Such morphologies are consistent with alloy-induced acidic fluxing caused by
oxidation of the molybdenum and vanadium in the Rene 100.

1700°F 1900°F 2100°F

Figure 10. Hot corrosion of Rene 100 after two hours Mag. 1000X

Legend

A. NIO, NiO48Cr203, NiMoO4

B. Chromium depleted zone (white) containing Cr sulfides {grey)
C. Substrate

Microstructures developed during the hot corrosion of X-40 at 1700°F and
1825°F arc presented in Figure 12. An external oxide scale (A) is cvident.  X-ray
diffraction analysis of this zone indicated the outermost portion to be composed of
NiO and cobalt oxides. The inner portion ol this cone also contained these oxides,
as well as large amounts of spincl phases: namely, NiCr;Oy4 and CoCr;04. Preferen-
tial oxidation of the X-40 was also evident. This appeared to occur at alloy grain
boundaries where sulfides had been formed in the alloy (sce Figure 12). No positive
identification of sulfides in the oxide scale was obtained by X-ray analyses. This is
consistent with the sulfides in the substrate becoming oxidized [13]. Sulfide formation
followed by oxidation is a common feature for some forms of hot corrosion.  This
type of preferential attack causcs increased oxidation and can eventually result in the
onsct of alloy-induced acidic {luxing, whereby tungsten in the X-40 becomes oxidized
and combines with the NasSOy to form an acidic deposit.

10
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The limited coating test results show that penetration of the coating occurs after
exposure periods of less than 200 hour, at temperatures of 1600°F and above. There-
fore, the Rene 100/CODEP B system is not suitable for application where conditions
that cause hot corrosion attack are p:esent.

Conclusions

1. The oxidation behavior of Rene 100 was poor compared to that of the X-40
alioy, especially at temperatures above 1900°F.

2. The superalloy X-40 was found to be more resistant to the initiation of hot
corrosion than Rene 100. Both alloys, however, eventually undergo attack at rates
consistent with the alloy-induced acidic fluxing mechanisn.

3. Both alloys degrade by similar mechanisms. During the initiation stage,
sulfides are formed within the alloys which eventually become prefcrentially oxidized.
Such preferential oxidation of sulfide results in more rapid oxidation, and also in the
formation of refractory metal oxides involving the elements tungsten, molybdenum,
and vanadium. Reaction of the refractory metal oxides with Na,;SOy lcads to the
development of acidic melts that cause catastrophic degradation of these two alloys.

4. Exposure :¢ temperatures as low as 1500°F shortened the initiation stage at
higher temperatures. Sulfides werc formed at the lower temperature and they rapidly
oxidized at the higher temperatures.

5. Repeated applications of NaySOy4 resulted in the initiation of hot corrosion
attack after shorter exposure times than for single applications.

6. An aluminide coating, CODEP B, on Rene 100 caused the initiation of hot
corrosion to be delayed. Attack did occur, however, when cumulative applications of
NaSO4 were used. The coatings were penetrated by the NapSOy in localized arcas
after exposure times of less than 200 hours.

7. The test which has becn used induces degradation for a specific set ol condi-
tions and, therefore, care must be excrcised in extrapolating the results to other
conditions. This test has validity for hot corrosion mechanisms whereby the degrada-
tion process is sustaincd by reaction products {rom the alloy. It, thercfore, can be
used to compare the time to establish such conditions in alloys. Rene 100 s more
susceptible to this condition than X-40. When alloys do not undergo alloy-induced
acidic fluxing, gas composition, deposit composition, and amount of the deposit play
very important roles in the amount and type of degradation that occurs. The hot
corrosion test used in this report would not be appropriate under those conditions,




The alloy X-40 is more resistant to hot corrosion than Rene 100, probably due
to its higher chromium concentration and the cracking of the oxide scale on the
Rene 100 alloy. Both alloys, however, exhibit features that show the propagation
mode of hot corrosion has been reached after relatively short initiation stages; this is
especially the case at temperatures above 1800°F. It is, therefore, apparent that
these alloys should not be used uncoated under conditions where hot corrosion attack
can be expected.

Hot Corrosion of Coated Rene 100

Since Rene 100 was so susceptible to hot corrosion, specimens of Rene 100 were
aluminized by using the CODEP B process. A scanning electron photomicrograph of
the surface of a coated specimen is presented in Figure 13. Scveral nodules are cvident
above the surface of the coating. These nodules appear to be small clusters of pack
powder. X-ray diffraction analysis confirmed this coating to be nickel-aluminide (NiAl).

Figure 13. As-coated Rene 100/CODEP r
B system. XRDA shows nickel alumin- . .
ide, NiAl nodules, and small clusters of . '
pack powder. Mag. 45X .

-
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Hot corrosion of CODEP B-coated Rene 100 was examined at 1600°F and
1800°F using single, as well as multiple, additions of Na>SOy and the sccond proce-
durcot'or heating the specimens. Only single applications of Na;SOy were used at
2200°F.

At 1600°F both single and multiple additions of Na,SOy resulted in visible
coating failure alter 50 hours at temperature.  The attack usually was such that the
coating was penetrated in localized areas (sce Figure 14).  After penetration ot the
coating substrate attack became evident as indicated by large amounts ol corrosion
products (sce Figure 15).




Figure 14. Hot corrosion of Rene 100/CODEP B system after two applications of
Na2S04 for 50 hours at 1600°F. Coating failure in localized areas. Mag. 7X

Figure 15. Hot corrosion of Rene 100/CODEP B system after 900 hours at 1600°F
Large amounts of substrate corrosion products. #*1g 7X

At 1800°F the coated specimen with onc application of MaSOy4 was terminated
after 250 hours. No visual evidence of failure was apparent and only a small weight
gain was observed (2.4 mg/cmz). Whea cumulative additions of NSOy were used at
25-hour intervals, visual evidence of penctration of the coating became apparent after
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175 hours. The localized nature of the attack was not as obvious as at 1600°F.
Total failure of the coating occurred after 200 hours of exposurc. Photographs
comparing the degradation of coated Rene 100 in tests using single and multiple
applications of Na;SO4 are presented in Figures 16a and 16b, respectively.

Figure 16. Hot corrosion of Rene
100/CODEP B system at 1800°F.
Mag. 2X

Single Application  Multiple Applications
of Na;S0q4 of Na2SOy4

a b

At 2200°F, the coated system was exposed for 35 hours with onc application of
NapSO4. The nodules observed in the as-coated condition became covered with a dark
blue product (see Figurc 17). It appearcd that coating lailure was initiating at these sites.

«gure 17 Hot corrosion of Rene 100/CODEP 8 system after 35 hours at 2200°F
Single apphcation of Na;S04 Mag 7X
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The limited coating test results show that penetration of the coating occurs after
exposure periods of less than 200 hour, at temperatures of 1600°F and above. There-
fore, the Rene 100/CODEP B system is not suitable for application where conditions
that cause hot corrosion attack are p:esent.

Conclusions

1. The oxidation behavior of Rene 100 was poor compared to that of the X-40
alloy, especially at temperatures above 1900°F.

2. The superalloy X-40 was found to be more resistant to the initiation of hot
corrosion than Rene 100. Both alloys, however, eventually undergo attack at ratcs
consistent with the alloy-induced acidic fluxing mechanism.

3. Both alloys degrade by similar mechanisms. During the initiation stage,
sulfides are formed within the alloys which eventually become preferentially oxidized.
Such preferential oxidation of sulfide results in more rapid oxidation, and also in the
formation of refractory metal oxides involving thec elements tungsten, molybdenum,
and vanadium. Reaction of the refractory metal oxides with Na;SOy4 lcads to the
development of acidic melts that cause catastrophic degradation of these two alloys.

4. Exposure :t temperaturcs as low as 1500°F shortened the initiation stage at
higher temperatures. Sulfides were formed at the lower temperature and they rapidly
oxidized at the higher temperaturcs.

5. Repeated applications of Na;SOy4 resulted in the initiation of hot corrosion
attack after shorter exposure times than for single applications.

6. Ar aluminide coating, CODEP B, on Rene 100 caused the initiation of hot
corrosion to be delayed. Attack did occur, however, when cumulative applications of
Na;SO4 were used. The coatings were penetrated by the NapySOy in localized arcas
after exposure times of less than 200 hours.

7. The test which has been used induces degradation for a specific set of condi-
tions and, therefore, care must be cxcrcised in extrapolating the results to other
conditions. This test has validity for hot corrosion mechanisms whereby the degrada-
tion process is sustaincd by reaction products from the alloy. It therefore, can be
used to compare the time to establish such conditions in alloys. Rene 100 is more
susceptible to this condition than X-40. When alloys do not undergo alloy-induced
acidic fluxing, gas composition, deposit composition, and amount of the deposit play
very important roles in the amount and type of degradation that occurs.  The hot
cortosion test used in this report would not be appropriate under those condition:.
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