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EVALUATION

This is the final technical report for the task, “Chip-Level Testability,” which wus part
of a Rome Laboratory program titled “Chip-Through-System Testability.” The goals of this
program include allocation of system-level testability requirements to subsystems, develop-
ment of guidelines for the use of test bus standards (such as the IEEE Std 1149.1 Boundary

Scan Bus), and the establishment of chip-level testability measurement and built-in-test re-

quirements that would permit the bottom-up 'mplementuhon of testable systems. The latter
goal is the subject of this technical report.

This report outlines the fundamental considerations, decmonl, and procedures mvolved
in providing the building blocks of a lnghly-teatable electronic system. A testable system
is composed of testable components in testable configurations; both top-down teetability
allocation procedures and bottom-up testability implementation procedures deud-end when
low-levei testability features are not exploitable at higher levels.

Most technical discussions of “testability” do not bother to define the term. Instead,
testability is often talked about in generic and abstract terms that are devoid of any relation-
ship to lf;he solution of eagineering design, manufacture, and support problems. This report
will make such discussions indefensible in the future. A complete hierarchy of testability-
related factors, measures, and cost function mappings is presented here. The relationships
between testability and its concrmmitant design penalties have been extensively discussed
elsewhere; this report extends that approach by discussing in clear fashion the competitive
nature of the testability requirements themselves.

Even more important than the exhaustive lint of testability attributes is the culling-down
of the list to a relatively small set of testability attributes that possess two properties: they
are botli useful in practice and practical to obiain. TlLus, a set of testability attributes
are preoented that form a reascnable basis for the selection of achievable and measurable
teltzbihty requirements. These are chip-level testability requirements that address eystem-
level concerna.

To satisfy stringent testability requirements appropriate enabling mechanisms must be
provided. Design-for-testability (DFT) and bnilt-in-test (BIT) techniques were analyzed
and characterized according to both their impact on testability attributes and their design
penalties. The analyses were based on case studies that involved redesigns of sample circuits.
Eleven ‘achniques were considered in some depth, and three were characterized in detail.

This report provides a detailed set of guidelines for the telection of chin-level testability
requirements. It provides a balanced and authoritative discussion of the DFT and BIT
techniques that are needed to satisfy those requirements. It will be useful to System Program
Offices, project engineers, and design and test engineers.

WARREN H. DEBANY JR., PH. D
Project Engmeer




1. INTRODUCTION

The objective of this research effort is to establish guidelines that will assist system
developers in specifying consistent, necessary, and achievable chip level testability
‘ requirements. This program is an extension of earlier research on testability mea-
" surement and BIT evaluation [1,2,3], where BIT techniques were investigated and

toois/techniques identified for estimating the cost of chip level testability. To this

end, a bottom-up design procedure is recommended herein that emphasizes the im-
portance of chip testability estimation and Built-In Test (BIT) evaluation during chip
design to achieve the goal of minimizing system life-cycle cost. |

A relationship between testability, BIT, and life-cycle cost is established by noting
that an item’s availability, reliability, maintainability, and life-cycle cost are of pri-
mary importance at the system level when determining the overall worth of a dxgxtal
system. These interrelated parameters are further defined as follows:

1. Availability is the fraction of time a system is available for use,

2. Reliability is the conditional probability that the system is operating properly
at time ¢ > 0, given that the system is operational at t=0,

3. Maintainability relates to the ease with which a system fault can be detected,
isolated, and repaired /replaced, and
4. Life-Cycle Cost includes:
= Development
- Manufacture
~ Installation

- Operation

— Maintenance

- Replacement.

Ot erving these definitions, it is evident that one should attempt to minimize
life-cycle cost while maximizing availability to increase the worth of the system.

. S




The three “ilities” and life-cycle cost are related since life-cycle cost is related
to reliability and maintainability, which are in turn functionally related to system
availability. Considering a repairable system with a mean fault cycle, the inherent
availability A;(0 < A; < 1) is given by

MTTF w)
MTTF + MTTD + MTTR A

A=

where

MTTF = Mean Time To Tailure
MTTD = Mean Time To Detect
MTTR = Mean Time To Repair

This equation reveals that the inherent availability of a system can be increased by
reducing MTTD and MTTR. Such reductions in MTTD and MTTR can be achieved
by incorporating cost-effective testability into a system during design and develop-
ment of the system. In an earth-based environment, testing can be performed through
use of Automatic Test Equipment (ATE) or BIT. Alternatively, in a spacébased en-
vironment BIT is the logical choice for performing system tests.

When considering the cost-effectiveness of chip testability and the selection of
BIT, two quesiions arise are: “What is the cost of testability?” and “Which chip
level BIT techniques are appropriate?” This program addresses these quwtxons by
perforxmng tkree tasks as follows:

Task 1 - Develop a Theory of Testability Measurement

Task 2 - Assessment of RIT/DFT Techniqués
Task 8 - Develop Chip Level Testability Guidelines

Tasks 1 and 2 are closely related to the'work performed by RTT under RL contract
No. F30602-87-C-0105 (1,2,3].

Task 1 is accomplishcd by performing three subtasks. Subtask 1.1 consists of
. developing a Testability Attribute Set (TAS) consisting of testability factors and




measures for chosen attribute categories. The attribute categories are established hy
associating testability and the cost of testing to the cost-related areas (a) test genera-
tion, (b) test application, and (c) favlt isolation and repair. Five testability attribute
categories are identified that encompass these three areas, and-testability factors and’
measures are identified for each attribute category.. Testability factors (gate count,
package count, fan-out, fault count, etc.), which are determined primarily from a
proposed design, are indirectly related to the cost of testing a device. Testability
messures (difficulty of obtaining tests, test set statistics, etc.) are quantities that are

" directly related to test cost.

The testability factors and measures identified in Subtask 1.1 can be combined
with appropriate cost measures to compute meaningful estimates of test cost pro-
vided they can be estimated with a known confidence interval. In this regard, Sub-
task 1.2 consists of evaluating existing thability Measurement Techniques (TMTs).
The purpose of Subtask 1.2 is to assess the capabilities and limitations of testabil-
ity tools/techniques in providing quantified measures of an item’s testability and in
assessing their potential for estimating the costs associated with testing of digital
electronic systems. In Subtask 1.3, the TAS from Subtask 1.1 is prioritized 2nd eval-
uated a.coording to the TMT results of Subtask 1.2, resulting in the development of a

- Feasible Testability Attribute Set (FTAS). The FTAS is a subset of the TAS that is

derived by considering practicality and estimation cost. The FTAS is then combined
with TMT to establish a Testability Measurement Technique Set (TMTS) which can
be used to estimate each of the attributes in the: FTAS.

Task 2 is the identification and assessment of DFT/BIT techniques that may be
attractive for use in digital systems. The two subtasks of this task are: (Subtask 2.1)
systematic enumeration of currently available DFT/BIT techniques and their relative
order of importance as jndged by their relevance to digital system design; (Subtask
2.2) development of a design penalty set which consists of generic factors associated
with the addition of DFT/BIT that adversely impact system design.

Task 3 is to develop chip level testability guideﬁnes that incorporate the TMTS
from Task 1 and the DFT/BIT techniques from Task 2. These guidelines, contained in
this report, recommend a bottom-up procedure for assessing and validating the testa-




bility of a design during various stages of system development. This procedure will

aid system developers in specifying cost-effective chip level testability requirements.

In this report it is assumed that the system being developed contains only digital
.chips. Hence, the guidelines are nct directly applicable’ to hybrid chips that con-
tain both analog and digital circuitry. Recognizing that components of new systems
' (especially above the chip level) may contain both analog and digital circuitry, the
information contained herein is but one step toward developing a unified approach to
specifying testability requirements for analog/digital components at all levels of the
system hierarchy.




2. SPECIFICATION OF TESTABILITY
REQUIREMENTS

- Testability is viewed as a design characteristic that enhances system availability by
contributing to fault detection and fault isolation, and thus system repair. The ob-
served goal of testability is to reduce system life-cycle cost. Since there is significant
up-front cost asscciated with introducing testability into a new design, the question
then arises as to what procedure should be used to specify necessary and sufficient
testability requirements and thereby obtain cost-effective testability.

A preliminary step toward specifying lower level testability requirements is the -
establishment of system testability requirements which, in many cases, are not stated
explicitly. They can be derived by noting that they are functionally related to the
givea system requirements. Some examples of system requirements that are closely
related to testability requirements are: -

(a) Reliability requirements (MTTF, etc.)

(b) Maintainability requirements (MTTD, MTTR, etc.)
(c) Functional requirements (throughput, etc.)

(d) Physical mqmremenu (size, weight, power drain, etc.)

‘Component testability requirements (chip, board, etc.) can then be established
that satisfy the system testability requirements. Two approaches to specifying testa-

bility requirements, the top-down approach and the bottom-up approach, are briefly
. explored in the following paragraphs.

2.1. Top-down Approach (Alternative #1»)

The top-down approach to specifying testability requirements is an iterative procedure
that consists of an initial allocation of system testability requirements to lower levels
as follows:

1. Allocate system testability requirements to subsystems,
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2. Allocate subsystem testability reqﬁirements to modules,

3. Allocate module testability requirements to boards, and -

4. Allocate board testability requirements to chips.

The distribution of testability requirements to lower levels would not nemsa.ﬁly be

- uniforni. Those components that are known to be easy to test could be allocated more
stringeai testability requirements to allow a reduction of testability requirements on
other low level components that are more difficult to test. The probability of fault
occurrence in an item, which is influenced by item complexity, 'technblogy, environ-
ment, etc., should also be considered when deviating from a uniform distribution
of testability requirements to lower level components. Unfortunately, no method is
available for obtaining an accurate estimate of probability of fault occurrence for a
chip tkat has not been designed.

As a simple example of the top-down approach, assume the system fault coverage
requirernent is 0.99 for detectable single siuck-at faults. This system fault coverage
requirement can be satisfied by placing a fault coverage requirement of 0.99 on every
lower level component, including component 1/O and the interconnections between
comporents (uniform distribution of fault coverage throughout the system).

After the initial allocation of testability requirements to lower levels within the
system, development could proceed by :

1. Designing the lower level components (with chosen testability features),

2. Reallocating system testability requirements when specified low level testabil-
ity requirements are too stringent (hardware/time required to meet low level
testability requirements cannot be satisfied),

3. Repeating steps 1 and 2 until lower level testability requirementﬁ are satisfied,

- 4. Verifying that system testability requirements are satisfied.

This top-down approach to testability allocaﬁon can undoubtedly be used to de-
sign testable systems. However, such testability will not necessarily be cost-effective




in cases where new chip designs are involved since the top-down approach does not
consider the cost of testability when allocating lower level testability requirements.
~ Further, one cannot know what testability requirements are too stringent until pre-
liminary chip designs (with chosen testability features) have been evaluated for testa-
bility. Hence, the top-down approach could result in inconsistent and unnecessary

testability requirements.

2.2. Bottom-up Approach (Alternative #2)

The bottoin-up approach to specifying testability requir'ements‘is also an iterative
procedure that involves: o

. establishihg functional requirements for lower level oomponents.(subsystem,'
modiile, board, chip) that are consistent with system functional requirements,

. performing preliminary chip designs using judiciously chosen testability features
that are appropriate for the chosen technology and chip architecture,

3. estimating cost/performance of chip level testability from preliminary chip de-
signs, '

. estimating cost/performance of board/module/subsystem level testability by
exploring alternative higher level testability features, '

5. specifying testability requirements from results obtained in steps 3 and 4,

6. evaluating system testability from testability features chosen in step 5, and

7. repeating steps 2 through 6 until system testability requirements are satisfied.

Steps 3 and 4 of this bottom-up procedure focus on evaluating the cost/performance
of testability alternatives which is necessary to assure that cost-effective testability
is incerporated into the new design. In this way, the bottom-up approach will result
in consistent, necessary, and achievable testability requirements at all levels of the

system hierarchy.




A comparison of the two approaches to specifying testability requirements reveals
that the top-down approach is directed toward finding a set of testability requirements'
at various levels of the system hierarchy that will satisfy system testability require-
ments, without regard to whether or not the requirements result in cost-effective .
testability. Alternatively, the bottom-up approach focuses on minimizing the cost of
testability by incorporating the necessary and sufficient amount of testability at each '
level of the system hierarchy. | '




3. CHIP LEVEL TESTABILITY REQUIREMENTS
GUIDELINES |

3.1. Recommended Procedure

When fdmmlé.ting guidelines for setting chip level iestability requirements, it is im-

portant to recognize that unachievable chip testability requirements are not mean-
ingful and do not contribute to the goal of cost-effective chip testability. This being
the case, the system developer should specify chip testability requirements that are
achievable with known DFT/BIT techniques. This objective can be met by investi-
gating the testability of a preliminary chip design (or designs) prior to setting chip
testability requirements. Noﬁng that the cost of testability (hardware, test time,

etc) increases rapidly with the amount of testability incorporated into a chip de- '
sign, the system developer should also establish chip testability requirements that are
consistent and necessary to system testability requirements. Given these objectives
(achievable, consistent, and necessary chip testability requirements), it is concluded

~ that the bottom-up approach outlired in previous section is the only realistic proce-

dure for establishing chip testability requirements.

‘A flow diagram of the recommended procedure for setting chip testability require-
ments is sketched in Figure 3.1. He.e it is assumed that chip functional requirements
have been derived from system requiremente, and information on DFT/BIT is avail-
able to the system developer. The procedure shown in Figure 3.1 is essentially an
iterative three-step procedure that involves

\ Step A: Establishing achievable testability requirements for all chips,
Step B: Developing higher level testability reyuirements,
Step C: Establishing that DFT/BIT is sufficient and necessary.

Associated with each step in the procedure for setting chip testability requirements

is alset of interrelated issues that confront the system developer. Further discussion
oft ) issues appears immediately below.







3.1.1. Setting Chip Testability Requirements

3.1.1.1, Preliminary Chip Design with DFT/BIT

The first step (step A) in the bottom-up procedure for setting chip testability re-
quirements is the development of a preliminary chip design with judiciously chosen
DFT/BIT. During this step many issues must be addressed to achieve the goal of
designing a testable chip with cost-effective DFT/ BIT. Design issues related to chip
testability include

e Technology (TTL NMOS CMOS, GaAs, etc)

e Chip Function

~ o Chip Architecture (structured, unstructured logic, etc.)

e CFT techniéues (a.d hoc, structured)

. Type of BIT (oh-board test, off-board test)
o BIT test mode (off-line, on-line)

o BIT test set (deterministic, pseudorandom)

o BIT techniques (BILBO, errér-detecting codes, etc.)

o Fault-tolerance (error-maskmg, self-repair)

° Chlp Pa.rtmonmg

o Silicon area allocated to DFT/BIT

o Chip simulation (transistoi level, gate level, etc.)
e Design verification

It may not be apparent how some of the above issues impact testability. For

example, technology is typically associated with performance. How is technology

11
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related to testability? How are the other issues listed above related to testability?
The following discussion of each issue is included to address these questions and also
emphasize the importance of these issues to the system developer who strives to
" specify testability requirements. '

o Technology (TTL, NMOS, CMOS, GaAs, etc.) - Technology is typically

associated with performance since, in state-of-the-art designs, performance is
one of the primary driving forces when identifying the technology to be used.
Other issues typically considered when choosing a technology include scale of
integration, power, compatibility with other technologies, and cost. Technology
is also an important testability issue because each technology has unique failure

. mechanisms and failure modes. The system developer should be aware that

chip failures, and our ability to model such failures and generate test sets to
detect important faults, are related to technology [4,5]. Also, test application
can vary widely in terms of test head (interface between chip and chip tester),
ATE requirements, etc.

Chip Function - Chip function must be considered when selecting a DFT/BIT

technique since many important DFT/BIT are not universally applicable. Some

examples of the relationships between DFT/BIT applicability and chip function -

- It is not cost-effective vo use scan design (one of the DFT alternatives) on
a RAM memory chip. Scan design is an attractive alternative for unstruc-
tured logic without embedded RAM/ROM memory.

— The linear ervor-detecting codes (parity, Hamming, BCH, etc.) are appli-
cable for detecting errors that occur on data paths or in memory. They are
not generally applicable for detecting errors that occur while performing
‘nonlinear operations (in a nonlinear operation the sum of two code words
is not another code word).

- Residue codes are applicable for concurrent detection of errors that oc-
cur when performing arithmetic operations (addition, multiplication, etc.).

12

[ : l : Mo
i . . . | N . /
. C e . ' . N




The are not cost-effective for detecting errors that occur over data paths

or in memory.

The system developer should be aware that chip performance may be degraded
somewhat by the incorporation of DFT/BIT. Such degradation must be within
acceptable limits for the chosen DFT/BIT Othervnse, another DFT/BIT al-

ternative must be considered.

¢ DFT techniques (ad hoc, structured) - The system developer must de-
cide whether ad hoc or structured DFT techniques are appropriate in a given
application. Ad hoc DFT (initialization, breaking global feedback péths, etc.)
can be used to improve the testability of a sequential circuit. Alternatively, a
_structured DFT technique can be used to incorporate state-of-the-art testabil-
ity into a new chip design. The use of a structured DFT technique is highly
recommended for unstructured sequential logic. :

¢ Type of BIT (external test, built-in test) - Test mode options include
.’ built-in test, external test, or a combination thereof. External test is carried
out by applying test vectors from a source external to the system under test.
Built-in self-test is accomplished by using test vectors that are stored within
~ the system or generated within the system by circuitry such as the linear feed-
* back shift register (LFSR). Design for Testability is compatible with any chosen
combination of test mode options. The system developer siould strive to select ‘
, A _ the test modes that are oost-eﬁ'ectlve for the given applxcatlon Some questlons N
T e be answered are: - -

— Does the env_.onment in which the system will be used lend itself to the
use of portable test equipment? If not, built-in test should be used. For
example, built-in test is the logical choice for performing tests on an aircraft
controller while the aircraft is on a mission.

= Do the system requirements for fault detection, fault diagnosis, and repair

_requirements permit one to choose between external and built-in test? The
total time required to perform tests using built-in test is a small fraction of
the time required when using external test equipment. f MTTD/MTTR

13




requirements are quite low, built-in test may be the only realistic test

mode.

— Can existing portable test equipmenf; perform the required chip tests? Will
new portable test equipment have to be developed?

e BIT test mode (off-line, on-line) - On-line test, which can be either concur-
rent or background, is performed to detect faults that occur while the system
is performing its intended function. Off-line test, performed when the system is
not in operation, can be performed by either built-in or external test equipment.
One question to be addressed by the system developer is whether of not the mis-
sion requirements require the use of on-line test. If on-line concurrent| test is
required, the error-detecting/correcting codes can be used to detect errcrs that
occur on data lines, memory, or arithmetic operations. More generally, {'eplica-
tion is a form of on-line concurrent built-in test that can be used to detect and
mask errors that occur in a replicated component. : ‘ '

BIT test set (deterministic, pseudorandom) - The system develop?r must
decide whether to use deterministic test vectors, pseudorandom test vectors, or
a combination thereof to test the chip. Deterministic test vectors are reiatively
expensive to generate and must be stored within the system to perform : uilt-in
- test. Such test vectors can also be stored external to the system and applied
| by porta.Ble' test equipment to achieve the desired tesis. On the othexl hand,
| pseudorandom test vectors are readily generated at the time they are needed
" by clocking an LFSR which has been initialized prior to start of the test. The
set of pseudorandom test vectors required to obtain a specified fault cover-
- age is vypically much larger than the required set of deterministic test vectors. -
- Comparing pseudorandom: test and deterministic test, the pseudorandom is less
- expensive to implement and is preferred when the fault coverage requirement
can be arhieved in an acceptable test application time interva'.

BIT selection (BILBO, error-detecting codes, etc.) - When selecting
a BIT technique for use at any level of the system hiearchy, it is necessary to
consider the following items to assure that BIT is optimum (or near optimum)
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for the intended application:

— Applicability of BIT technigues: The chosen BIT technique must be an
applicable test technique. For exainpie, a Hamming code is not applicable _
for detecting errors in a parallel multlpher A residue code is apphca.ble T
for concurrent test on the multiplier. '

— Performance of applicable BIT: The chosen BIT technique .aust achieve
the testability goal. For example, assume the stated goal is to cohcurrently
detect all single or multiple bit-errors that can occur over a data path. A
parity code or Hamming code is not capable of achlevmg this objectlve
Replication is one approach to meeting this requirement.

— Cost of applicable BIT: The chosen BIT technique must be cost-effective.
For example, assume the requirement is simply to detect single bit-errors
that occur over a data path while the chip is performing its intended func-
tion. Any one of the linear codes (parity, Hamming, BCH, etc.) with a
minimum Hamming distance dpy > 2 could be used to satisfy the require-
ment, In this case the parity code is the appropriate choxce since it requires N\
significantly less hardware to implement. ' \'\.;

o Fault-tolerance (error-masking, self-repair) — System availability can be ' -
increased by incorporating redundancy into the chips so that they are fault-
tolerant. It is well-known that the vast majority of system failures are not .

) permanent but are instead transient in naturs [6] Error-detectmg/oorrectmg , i
codes (data. redundancy) can be used to mask errors that occur during system o L
operation. Alternatively, a faulty component can be automatically replaced with . [

_ a spere to achieve self-repair (hardware redundancy). Time redundancy in the
form of data retransmission can also be used to implement fault tolerance. The
use of fault-tolerance to implement testability is expensive since its implemen-
tation requires some form of redundancy (hardware, data, or time). This being -
the case, it should be used sparingly to sa.tlsfy system testability/reliability
requirements in a cost-effective manner.

15 | | B2




e Chip Partitioning - Chip partitioning into testable blocks of logic can be

. achieved by a carefully conceived ad hoc procedure or as an integral part of a
structured design for testability technique. In either case, the prima.ry objective
of partitioning is minimize the number of test vectors required to control circuit
nodes and observe the logic output to determine whether or not an error is
detected. '

Silicon area allotted to DFT/BIT - How much silicon area on a chip should
be allotted to DFT/BIT? This very difficult question is partially answered by
nofing that testability must be cost-effective to justify occupying chip area that
would otherwise have been used for functionality. Silicon area should be allotted
to those chip testability features that contribute to a reduction in life cycle cost
of the system in which the chip is used. It is noteworthy that 28 VHSIC Phase
I chip designs contained DFT/BIT, and the percentage of equivalent gates on a
chip that were allotted to DFT/BIT ranged from 0.1% to 33%][7]. The relatively
high value of 33% was used by IBM on the CMAC chip to obtain a fault coverage

of greater than 99% of detectable single stuck-at faults. ‘

Chip simulation (transistor level, gate level, etc.) - Chip simulation
is necessary during chip design to establish functionality and perform the test
generation and fault simulation that is necessary to assure that the chip is
testable with the chosen testability features.

Design verification - Design verification is related to testability to the ex-
tent that functional test vectors generated early in the design process during
functional simulation can contribute to the process of verifying that a gate level
design is functionally correct.

Focuging on the objective of step A, which is to develop a preliminary chip design
containing judiciously chosen DFT/BIT), it is evident that the above issues must be
considered by the system developer when striving to select the optimum DFT/BIT.
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3.1.1.2. Chip Testability Evaluation

Testability evaluation of the preliminary chip design is an essential step in the bottom- A

ap approach to specifying achievable chip testability requirements that are ultimately
necessary and sufficient. This step consists of obtaining relatively low-cost estimates
of testability performance and cost, with meaningful bounds on the estimates, for
the preliminary chip design. As indicated in Figure 3.2, this is accomplished by
selecting a set of applicable testability attributes (factors and measures), obtaining
estimates for the testability attributes during preliminary chip design (with bounds
on the estimates), and using the estimated vnalues of the testability attributes and
DFT/BIT'design penalties as a basis for specifying chip testability requirements.
Issues related to performing testability evaluation on the preliminary cl.up dwxgn
include the following:

. = Testability factors (indirectly related to cost of testability)

— Testability measures (directly related to cost of testability)

- Methods for estimating testability nieasures (in polyﬁomial time)
. = Software tools to estimate testability measures

— DFT/BIT design penalties (chip area, 1/0 pins, etc.)

The use of practical testability measures and associated software tools to esti-

mate chip testability in polynomial tiine permits (and even enconrages) alternative
DFT/BIT techniques to be considered during prelimirary chip design. More detailed
information on testabiiity measures and tools/techniques is presented in Section 3.2.

The availability of information on the cost and performance of alternative DFT/BIT
techniques is alsv essential to achieving the goal of specifying necessary and sufficient
chip testability requirements. Such information contributes to the selection of opti-
mum (or near optimum) DFT/BIT for a particular application. Further discussion
of DFT/BIT design penaities appears in Section 4.2.
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3.1.2. Setting Higher Level Testability Requirements

~ While chip testability is the primary focus of this report, it is important to realize that

higher level testability requirements (board, module, etc.) must also be established
to achieve the testability goal of specifying cost-effective testability requirements for
all system components. Issues related to Step B, establishing hngher level (board,
module, etc.) testability requirements, include the following: :

~ Achievable testability requirements (higher levels)
~ Necessary testability requiremeats (higher levels)
~ Consistent testability requirements (higher levels)

The question then arises as to what reqmrenlents are needed at the higher levels? This
question is addressed by considering the block diagram representation of higher level
digital system components shown in anurg 3.3. This sketch embodies the concept
that -
(a) a digital board containing only chips!can be completely tested by ’esting the
chips, the interconnections between the chips, and the board I/0,

®)a digital module containing only boar%ls can be completely tested by testing the
boards, the interconnections between the boards, and the module IO, and

(c) a digital subsystem containing only niI dules can be completely tested by testing
the modules, the interconnections between modules, and the subsystem 1/0,
and . _

(d) a digital system containing only subsystems can be completely tested by testing
the subsystems, the interconnections between subsystems, and the system 1/0.

These observations about testing higher level components indicate that a system
containing only digital chips can be throughly tested by testing

o all ckips in the digital system,
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)

e all interconnéctions between chips,

o all interconnections between boards,

e all interponnections between modules,

e all interqonnections.bet'w‘een subsystems, aﬁd

o the system 1/0.

Hence, the seemingly difficult task of setting higﬁer level testability requirements
is reduced to setting testability requirements on interconnections between compo-

‘nents (chins/boards/modules/subsystems) and the system I/O. The system developer

should specify that interconnections between components be 100% tested for occur-
rence stuck-at-0/stuck-at-1 faults that may occur during manufacture or in tke field.
Tests for these common faults would also detect many bridging faults that are much
more difficult to detect. Testability requirements or interconnections and component
I/O can be satisfied by incorporating boundary scan at hxgher levels in the system

design.
3.1.3. Testability Requirements Evaluation

As depicted in Figure 3.1, system testabilify is estimated (using the requirements
specified for chips and higher levels) to establish that the chosen chip level DFT/BIT

capability does in fact satisfy system testability requirements. This computation can

also be used to answer the questions

(1) Is the chosen DFT/BIT sufficient?
(2) I the chosen DFT/BIT necessary?
The chosen chip level DFT/BIT, which satisfies the choeen chip testability require-

ments, is sufficient when computations show that the DFT/BIT satisfies system testa-
bility requirements are satisfied. However, resulting system testability may exceed

‘the system testability requirements, and in such case the chosen amount of chip level
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DFT/BIT may not be neoeséary. When the computed system testability far exceeds
the system testability requirements, it is appropriate to reduce the amount of chip
level DFT/BIT which involves a redesign of one or more chips as indicated in Fig-
ure 3.1. ’

3.2. Chip Testabili_ty Estimation

With the rapidly increasing costs associated with the testing of digital electronic
systems, much attention has recently been focused on the use of testability a.nalysié
and design for testability (DFT) techniques. Their goal is to cost-effectively assess
and improve those design characteristics of an item that significantly increase the
costs associated with testing. . ‘ |

Testability analysis should be applied early in the design process if it is to provide
its maximum benefit. A testability analysis technique should provide an estimate
of the difficulty of peforming a test-related task in such a way that the results can
be used cost-effectively in making engineering tradeoffs. For example, there are two
basic requirements for testability analysis methods used to assess an the difficulty of
test generation for an item [8]:

1. The computational complexity should be significantly lower than that of test
generation.

2. The c#lcula.ted testability measures should reflect the potential difficulties for a
specific strategy of test generation.

Many of the problems associated with the testing of digital electronic systems
have been shown to belong to the class of NP-hard or NP-complete problems and
thus, in the worst case, require computational effort that grows exponentially with
the size of the problem. Still others, such as fault simulation, have been shown to be
of polynomial complexity. It is obvious that problems of these complexities cannot
be solved exactly in linear time. The goal of testability analysis is to use inexpensive
and efficient heuristics to provide a reasonably close estimate (perhaps with bounds)
of the desired measure(s).




3.2.1. Survey of Testability Tools/Techniques
| 3.2.1.1. Test Generation Tools and Techniques

One of the three important areas associated with testability is test generation[1}.
There are presently no known practical methods for automatically generating tests
for an arbitrary, general, sequential circuit. However, the inclusion of design-for-
b testability techniques allows one to treat a sequential item as being combinational for
testing purposes. For the most pirf, this simplification can lead to substantial cost
savings since test generation for combinational circuits is a well-understood procedure.

It is also important to note that testability analysis can be used to provide heuris-
tical ghidanoe in test generation algorithms. Many Automatic Test Pattern Gen-
eration (ATPG) tools use probabilistic or deterministic controllability/observability e
(C/O) measures as heuristics in their propagation (i.e., propagation of D or D from o
the fault site toward the primary output) and Justlﬁcatxon (conslstency check after‘ . ’;' .
the propagation of D or D to the primary output) phases. '

The D-Algorithm[9]), PODEM[10], FAN[11], and GIPS[12] are four representative
automatic test generation tools/techniques. Of these tools, the first three are algo-
rithms which select a {arget fault and attempt to generate a test for it. This is done
by attempting to justify a “good” value that is complementary to the “faulty” value
on the target node, and propagating the effects of this value to an observable output.
I conflicts occur in the node assignments, revisions are made in the assigned values
until both objectives are either satisfied or all possibilities are exhausted. This implies i

- - that these three methods, if left unchecked, are guaranteed to find a test for the target ‘
fault if a test for that fault exists. The last tool, GIPS, is a low-cost methé)d which

attempts to generate a test for a fault but does not attempt to resolve any \conflicts
in the nodal assignments. If a conflict does occur (most often due to the o ence .
of reconvergent fan-out), GIPS deliberately does not attempt to resolve it. Instead, N |
it chooses an assignment for the node in conflict and continues to assign values to " /_,;/\:\"5'
other nodes based on this choice until the primary inputs have been justified. This ‘ SN
often results in other faults along the same sensitized path of the target fault| being K4
detected even though the initial target fault was not detected by the generated pat- {
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tern. However, GIPS does not gué.r;mtee that a test for a specific fault will be found
even if the fault is non-redundant. :

A list of some of the test generation tools and where they may be applied are listed:

in Tables 3.1 and 3.2[1]. More information about the capabilities and limitations of
these tools is available in the detailed evaluations enclosed as appendices in an earlier

report [3]

3.2.1.2. Fault Simulation Tools and Techriques

Traditionally, fault simulation has been used to verify the effectiveness of the gener-
ated test set by providing an indication of the percentage of faults that are detected
by the applied test set. It is also used to create fault dictionaries to aid in the isola-
tion of faults to a particular component or group of components. There are presently
four different methods of fault simulation; serial, parallel, deductive, and concurrent.
Serial and parallel fault simulation are rarely used nowadays due to their slow run-
times and their limited ability to handle multiple signal states [30]. Deductive and
concurrent methods are faster, but they have large memory requirements due to their
use of dynamic fault lists. '

. The basic principle behind fault simulation is to perform a simulation of the item
under faulty conditions and compare the response to that of the fault-frec simulation.

I the presence of a fault produces ar ‘ncorrect value on one or more of the outputs,
- the fault in question is said to be detected. Otherwise, it is undetected for that

particular input pattern. Most conventional fault simulators use the stuck-at fault -

model, although many can also account for stuck-open faults and transistor shorts.
Each of the four methods of fault simulation differ in the manner in which they process
~ the faulty circuit. The serial approach invokes a complete simulation of the circuit
with a single inserted fault. Thus, a total of m passes are required to complete the
simulation where m is the total number of faults. Parallel fault simulation is different
in that one can process as many zs n faults in parallel where n is the number of bits
in a word on the host computer. For an item with m faults, [m/n] passes are needed
~ to complete the simulation where [m/n] is the smallest integer greater than or equal
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Table 3.1. Test Generation Tools/Techniques

o Single Path Sensitization (IBM/AT&T)[13]

. DALG (D-algorithm; IBM)[9,14]

o SCIRTSS (Sequentia! Circuit Test Search System; University of Arizona) [15]
o TEST/80 (Testability and Test Generation Algorithm; Breuer & Friedma.ﬁ) [16]
¢ PODEM (Test Generatlon Algorithm; IBM)[10,17]

¢ FAN (Test Generation Algonthm Osa.ka. Umverslty)[ll 18]

° HITS (Hierarchical Integrated Test Slmulator, Naval Air Engmeermg
Center)[lQ] ‘

- o TEGAS-5 (Test Generation and Fault Sxmula.txon, Calma Company)[20]

o ATWIG (Automatic TPG with Inherent Gmdance; Siemens)[21]

o HITEST (Knowledge Based Test Generation System; Cirrus Computers)[22]
¢ RTG (Register Level Test Generator; AT&T)[23] |

o SMART & FAST (Test Generator for Scan-Design Circuite; AT&T)[24]

o ESPRIT (Enhanced Statistical Production of Test Vectors, GE-Calma. and
BNR)|[25] '

e SOCRATES (Structure-oriented Cost reducing Automatic Test Generation Sys-
- tem; Siemens)[26] _ :

‘o 9-V algorithm (9-Value Algorithm)[27]
10-V algorithm (10-Value Algorithm)[28]
16-V algorithm (16-Value Algorithm)[29}

N
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Table 3.2. Test Generation Tool Comparison
Tool Date | Fault “Type of Logic Network
Name Model | Combinational [ Sequential*
Syn. | Asyn.
DALG 1966 | Stuck-At X .
SCIRTSS 1977 | Stuck-At X X
| TEST/80 1979 | Stuck-At X X X
PODEM 1981 | Stuck-At |- X
FAN 1983 | Stuck-At X ‘
HITS 1983 | Stuck-At X X
TEGAS-5 1984 | Stuck-At X
ATWIG 1984 | Stuck-At X X
HITEST 1984 | Stuck-At X X
RTG 1985 | Stuck-At X X
SMART & FAST | 1986 | Stuck-At X
ESPRIT 1986 | Stuck-At X
SOCRATES 1987 | Stuck-At X

* (Syn = syn~hronous, Asyn = asynchronous)
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to the real number m/n [18].

For reasons previously mentioned, deductive and concurrent are the prevalent -

types of fault simulators in use today and are examples of event-driven simulators.

~ The deductive approach consists of simulating the fault-free logic only and “deducing”

the detectable faults from the “good” state of the item under test. A disadvantage
of this implicit simulation method is that it requires the complete re-evaluation of
a fault list when the fault list changes. On the other hand, the cuncurrent method
simulates faults explicitly so that fault lists are modified in the portions of the item
where the faulty behavior is different from the fault-free behavior. This allows for
an even’greater speedup in terms of simulation time at the expense of more required
INEemory space. ‘ '

Due to the limitations of fault simulation, recent efforts have focused on the devel-
opment of approximate algorithms which are less memory intensive and have linear
or near-linear run-times. Since the complexity of fault simulation is on the order
of O(n?) to O(n®)[31], where n is the number of gates, most of these approximate
methods have advantages over conventional fault simulation. Proponents o_f these

techniques point out that fault simulation is based on the use of a fault model which |

is iteelf only an approximation, thus the use of fault simulation to find a precise cover-

age is somewhat inefficient. Rather, it may be better to use approximate algorithms

which provide relatively tight estimates and require lower computational effort than
traditional fault simulation algorithms. A list of some of the currently available fault
simulators and their corresponding technijues is shown in Tables 3.3 and 3.4.

3.2.1.3. Testability Measurement Tools and Techniques

There are several practical applications for testability analysis. Most of the its early
uses were directed toward identifying those portions of an item which had poor testa-
bility. This information could then be used by the design engineer to modify the
item in such a manner as to improve the testability of the deficient areas. The key to
effective use of testability analysis in this application is the quality of ihe testability
measures obtained from the analysis. It has been reported[43] that testability mea-
sures are often a poor indication of the testability of individual nodes. This results
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Table 3.3. Fault Simulation Tools

o TEGAS-5 (Calma Company)[20]

¢ Daisy Fault Simulator (Daisy Systems Corporation)([20]
¢ VERIFAULT (Gateway Déign Automation)[32]

o HILO (GenRad)[20]

o CADAT (HHB-Systems)[20]

o COFIS (Matra Design Systems)[20]

o LOGCAP II (Phoenix Data Systems)[20]

¢ THEMIS (ane Computer)[20]

o BIFAS (Silvar-Lisco)[20]

e SILOS (SimuTec)[20]

- o LASAR (Logic Automated Stimulus and Response; Teradyne Inc.)[20]
. Zycaa'Fault Evaluator (Zycad Corporation)[20]

o MegaFAULT (Daisy Systems Corporation)[33] |

o FAUST (University of Illinois)[34]

o HITS (Naval Air Engineering Center)[19)]

Belated Tools

o STAFAN (Statistical Fault Analysis; AT&T)[35,36,37]

¢ TRUE (Téatability Refinement by Undetectable Fault Estimation)(38,39]
o FAULT-BLASTER (Probabilistic fast fault grader; BNR)[40]

o AFS (Approximate Fault Simulator; Toshiba)[41]

"o CPT (Critical Path Tracing; AT&T)[42]
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_ Table 3.4. Fault Simulation Techniques

Tool Simulation Fault Model
Technique(s)
'TEGAS-5 | Parallel Stuck-At, Short
DAISY Serial, Stuck-At, Open
Concurrent
VERIFAULT | Concurrent | Stuck-At
HILO Parallel, Stuck-At, Inhibit Event, Short
Concurrent :
CADAT Concurrent | Stuck-At
COFIS Coucurrent | Stuck-At, Open, Short
LOGCAP II | Coucurrent | Stuck-At, Open,
Transistor Short
THEMIS Concurrent | Stuck-At, Open,
o MOS Transistor Stuck-At
"BIFAS Parallel Stuck-At
"SILOS (Proprietary) Stuck-At, Open,
' Transistor Short
_ LASAR Concurrent | Stuck-At, Open, Shor
- - [ZYCAD Concurrent | Stuck-At, Open,
" | Transistor Short
MegaFAULT | Concurrent | Stuck-At _
| FAUST Concurrent | Stuck-At, Open,
' Transistor Short -
HITS Concurrent | Stuck-At




from the simplifying assumptions that are used in testability analysis to improve the

speed and ease of use. Yet, there are indications that testability measures do provide
a good indication of which sets of faults are more difficult to test. Thus, if the de-
signer uses proper judgement and caution in his interpretation, testability measures
can provide useful and meaningful information relating to the testability of the item.

Another application for testability measures is that of heuristics in guided auto-
matic test pattern generation. The controllability/observability (C/O) cost measures
are used to provide an indication of which lines are easier to control or observe when
attempting to justify a value on a specific node or propagate the value to an ob-
servable location. Several studies[44,45,46] have demonstrated that C/O measures
can reduce the time and cost associated with deterministic test generation. More
recently, testability analysis has been used to assess the random pattern testability
of an item. Probabilistic measures relating to the detectability of each fault can be
" obtained from an item and can be used to predict the fault coverage for a specified
test length. Since deterministic test generation can be very expensive even for purely
combinational circuits, an indication of whether an item can be satisfactorily tested
with random patterns can result in significant cost savings.

Most testability analysis alg‘drithms operate by parsing a topological or struc-
tural description of the item and then by providing' a quantified measure related to
the item’s intrinsic testability characteristics. There are presently four basic types
of testability analysis tools available[47]: fault detectability tools, simulation-based
tools, heuristic scoring tools, and nodal dependency tools. Fault detectability tools
can be further divided into deterministic and probabilistic methods. Tables 3.5
and 3.6 contain a list of some \ f the currently available tools as well as some in-
formation regarding their level o¥ applicability. More detailed evaluations of SCOAP,
PREDICT, CPT, and STAFAN be found in {3)].
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Table 3.5. Testability Measurement Tools/Techniques

CHECKLIST TOOLS
o CODMOD (Consolla and Danner Model; RADC PCB checklist)[48,49,50]
¢ MILMOD (Military Model; MIL-STD-2165)[49,50,51]
TROLLABILITY-OBSERVABILITY TOOLS
‘ Deterministic:

' ' o TESTSCREEN (Testability Analysis Program; Sperry Research Center)[52]
o TMEAS (Testability Measurement Program; AT&T){53]
e SCOAP (SANDIA  Controllability/Observability = Program; - . SANDIA

Laboratories)[54,55) ‘ .
¢ ITFOM (Inherent Testability Figure of Merit; Sperry-Univac Corporation)[56)
o CAMELOT (Computer-aided Measure for Logic Testability; Cirrus Computers)[57]
o ITTAP (Interactive Testability Analysis Program; ITT)[58]

e COMET (Controllability and Observability Measure for Testability; United 1

Technologies){59]
e VICTOR (VLSI Identifier of Controllability, Testability, Observability, and Redun-
dancy; University of California)[60) N

e COPTR (Controllability-Observability-Predictability-Testability Report; Calma)[61}

- o« HECTOR (Heuristic Controllability & Observability Analysis; Siemens)[62,46,12] .
o CAFIT (Computer Aided Fault Isolation/Testability; NOSC)[63,64] PR
o A Calculus of Testability at the Functional Level (S. Takasaki; N on Electric)[65] o -

Probabilistic:
e COP (Controllability/Observability Program; BNR)[66]
o PREDICT (Probabilistic Estimation of Digital Circuit Testability; AT&T){67)
¢ PROTEST (Probabilistic Testability Analysis; University of Karlsruhe)[68] ‘ .
o ENTROPY (Information Theory Estimate of Testability)[69,70] e

"DEPENDENCY LOGIC MODELING TOOLS:
o STAT (System Testability Analysis Tool; Supersedes LOGMOD; DETEX)(71] |
e LONGMOD (Longendorfer Model; Northrop) [49] N
o STAMP (System Testability and Maintenance Program; ARINC)[50,72] S
Ot'her Testability Measurement Tools:

g ' e TRI-MOD (Mission Effectiveness Testability Analysis; Giordano Associates)[73] ' '\ -
' o HAT (Heuristic Advisor for Testability; University of Illinois)[74] - )
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Table 3.6; Testability Tool Comparison

Level Withiﬂ System

Tool "Date | Type of System ‘
Analog | Digital { Chip | Board | Subsystem | System
CODMOD 1980 X X :
MILMOD 1985 X X X X X X
TEST SCREEN | 1979 X X X
TMEAS 1979 X X X - X X
SCOAP 1980 X X X X X
ITFOM 1981 X X X X X
| CAMELOT 1981 X X X X X
ITTAP 1982 X X X X X
COMET 1982 X X :
{ VICTOR 1982 X X
COPTR 1983 X X
HECTOR 1984 X X
CAFIT 1988 X X X X X X
' COP 1984 X | X
PREDICT 1985 X X
PROTEST 1985 X X
ENTROPY
STAT 1988 X X X X X X
LONGMOD 1982 X X X X X X
STAMP 1984 X X | X X X X
TRI-MOD 1984 X X X X X X
HAT 1985 X X X X X
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3.2.2. Comprehensive List of Testability Measures

3.2.2.1. Testability Attribute Set Development

The goal of this endeavor is to develop a comprehensive list of well-defined testa-
bility attributes. Testability attributes consist of a set of testability factors and a
set of Wiﬁty measures. Testability factors (gate count, package count, etc.) are
indirectly related to thc cost of testing a device, while testability measures (node
operaticns per fault, CPU seconds per detected fault, etc.) are directly related to

test cost.

3.2.2.1.1. Testability Attribute Categories

Tesubiiity is a design characteristic that enhances system a.vaila.Bility by contributing -
to fault detection and fault isolation, and thus system repair. More specifically, the
incorporation of testability into a design accomplishes the following [75,76]:

1. Allows the status of a system (operable, inoperable, or degraded) or any of its
* subsystems to be determined in a confident and timely fashion, and

2. Facilitates fault isolation to a replaceable unit, a.nd thereby contributes directly
to system repair. :

Some interrelated quantities that influence testa;biiity are (1) failure mechanisms
for the item being considered, (2) chosen fault population, (3) complexity of the item
(number of equivalent gates), (4) architecture of the item (affects controllability and
observability of nodes within the item), (5) number of test vectors required to sat-
isfy fault detection/isolation requirements, (6) availability of test equipment required
to perform fault detection/isolation tests on the item, and (7) how easy the test
equipmeat is to use.

Obeerving the above definition of testability and the existence of interrelated quan-
tities that influence testability, it is further recognized that the following design at-
tributes directly impact testability:




1. Item architecture (chip/board/subsystem/system)

2. Methodology for partitioning system into testable units

3. Synchronous/asynchronous design | |

4. Chosen semiconductor technology

5. Presence/absence of interoperability design standards

6. Pmenbe/ absence ;)f standardized maintenance interfaces

7. Presence/abscnce of design for testability techniques

8. Fault isolation methodology |

By considering the above definition of testability and design attributes that di-

rectly impact testability, it is further recognized that the following three areas dxrectly
impact the cost of testablhty

1. Test generation
~ 2. Test application

3. Fault isolation and repair

Test generation consists of generating test vectors (or test sequences) and record-
~ ing the associated “good circuit response” established by applying the test vectors
(sequences) to the known good circuit. The cost of test generation for fault detection
is primarily influenced by the fault detection requirements, the architecture, and the
topology of the item being considered. Test generation for general combinational
logic is known to be NP-complete [77], and cost-effective methods for generating test
sequences for general sequential logic are not yet developed.

Test application for fault detection consists of applying test vectors to an item
and analyzing the item response to detect the presence of a fault. When the system
is located in a ground-based environment, portable ATE and/or low-cost off-line BIT




are typically used to apply test vectors (deterministic and/or pseudorandom) to an
item and to analyze the item response. Alternatively, a system located in a space-
based environment must rely on off-line BIT (e.g., signature analysis, BILBO) and
concurrent BIT (e.g., error detecting/correcting codes) to detect the presence of a
system fault. In either environment, the cost of test application is related to the
specific design style/criteria used during system development.

Fault isolation consists of performihg tests on a faulty system to isolate a fault to
a line-replaceable unit so that the faulty LRU may be replaced. Thus, fault isolation
test vectors (sequences) must be available in order to accomplish fault isolation. When
test points are judiciously located within a system and are monitored during fault
detection tests, the fault detection test vectors may also be used for fault isolation.
The system architecture and the BIT techniques chosen during system development

" will greatly impact the cost of fault isolaticn. It is then evident that the cost of

fault isolation and repair is heavily influenced by (a) item architecture, (b) design

- style/criteria, and (c) effectiveness of BIT.

~ This discussion suggats that the three 1mporta.nt areas tha.t impact testability
can be related to the following five attribute categories:

(a) Difficulty of obtaining tests for fault detection (i.e., test vectors a.nd/or
test sequences),

(b) Test set length and fault coverage statistics,
(c) Adherence to a specific design style or.design criteria,
(d) Difficulty of achieving fault isolation, and

~ (e) Effectiveness of BIT.

These categories are discussed further in the following section, and factors and
measures are identified for each category. It should be noted that the five attribute
categories are not disjoint; certain relevant testability factors and/or measures can

appear in more than one category.
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3.2.2.1.2. Tectability Factors and Measures

Testability factors {gate count, package count, fan-out, fault count, etc.) are obtained
from a proposed design. These factors are indirectly related to the cost of testing a
device. Therefore, quantification of each testability factor is necessary if it is to be
useful when estimating the cost of testability.

Testability measures proposed herein (difficulty of obtaining tests, test set statis-
tics, etc.) are quantities that are directly related to test cost. For example, fault
coverage can be defined as the conditional probability that a fault is detected, given
that a fault has occurred [78]. Fault coverage is then a measure of the effectiveness
of a test set to detect faults from a given fault population. The following is a com-
prehensive list of testability factors and testability measures for the five attribute
categories [1]. The code used is “F” or “M” for factor or measure, “A” through “E”
representing the category, followed by an integer. Associated with each measure is
a representative set of units. In some cases the size of the circuit, etc., may be in
“gates” or “faults” or some other meaningful unit. Fractions may be weighted by
failure rates, gate counts, transistor counts, etc.

3.2.2.1.2.1. Factors and Measures for Category A

Category A is “diﬂiCﬁlty of obtaining tests for fault detection.” As éointed out earlier,

the test generation problem is known to be NP-complete[77]. This means that, in the -

worst case, the CPU time required to compute a set of test vectors for single stuck-
_at faults in combinational logic increases exponentially as the number of logic gates
and inputs increases linearly. The problem is even more challenging for sequential
logic as no practical, cost-effective, test generation techniques are known for general
sequential logic circuits. It is then evident that Category A will have a major impact
on the cost of testability. The following is a comprehensive list of testability factors
and testability measures for this category. ‘

Factors for Category A (chip/board/subsystem/system levels)
(Category A: Difficulty of Obtaining Tests for Fault Detection)
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(FA1l) Numter of items (gates/chips/boards/subsysterns)

(FA2) Amount of embedded memory (e.g., ROM, RAM) | | - -

(FA3) Amount of fan-out ' | /

(FA4) Amount of reconvergent fa.n-out | | L

: (FAS) Number of feedback loops

(FAG) Difficulty of achieving circuit initialization
| (FAT) Chosen fault population

(FAS) -Number of Jetectable faults
~ (FA9) Number of undetectable faults | o | |
(FAm) Number of equivalence classes for detectable faults | | | 1/
(FA11) Number of faults in each fault equivalence class | | R I
(FA1‘2)' Signal probabilities : | L
(fA13) Px:obability_ of detection for each fault | | '

(FA14) E»se of ‘éontrolling ard observing internal nodes (e.g., number of node assign-
ments to establish a logic value at a node from the primary input and observe \
the value at the pnmary output) | o

| (FA15) Fractxon of chxp/board/subsystem/system tested by nonconcurrent BIT
(FA16) Fraction of nonconcurrent BIT that applies to scannable logic AN "
" (FA17) Fraction of chip/boacd/subsystem/system tested by concurrent BIT ‘ o i
. (FA18) Number of test vectors required to evaluate capa.blhty of concurrent BIT ; |
o (FA19) Preeenoe/.wsence of design for testablhty |

(FA20) Presence/absence of test structures to facilitate a hierarchical test methodology
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(FA21) Methodology used to partition a chip/board/subsystem/system for test

(FA22) Length of scan chains

(FA23) Amount of sequential logic without scan capability

" (FA24) Number of test points |

(FA25) Location of test points

(FA26) Number of 1/O pins

(F.;27) Amount of asynchronous logic

(FA28) Amount of available computing capability (for test generation)
(FA29) Availability of software tools (for test generation)

Measures for Category A (chip/board/subsystem/system levels)
(Catégory A: Difficulty of Obtaining Tests for Fault Detection)

(MA1) Number of node operations per fault for combinational logic (node operations

per fault)

(MA2) Number of node operations per test vector for combinational logic (node opera-
tions per test vector)

(MA3) Number of CPU seconds per fault for combinational logic (C'PU ‘seconds per

Jaslt)

(MA4) Number of CPU seconds per test vector for combinational logic (CPU seconds
per test vector)

(MAS5) Number of node operations per fault for unscannable sequential logic (node op-
erations per fault)

(MA6) Number of node operations per test sequence for unscannable sequential logic
{node operations per test sequence)
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| (MA7) Number of CPU seconds per fault for unscannable sequential logic (CPU seconds
per fault)

(MA8) Number of CPU seconds per test sequence for unscannable sequential logic (CPU
seconds per test sequence) :

(MA9) Number of CPU seconds to compute opttmal input line signal probabzhttes for
random testing (CPU seconds per item)

MAL10) Percentage of detectable faults in the item’s fault population (faults per fault)

MAL11) Percentage Aof detectable faults in the item’s fault population with probability of

detection below a specified threshold (faults per fault)
MA12) Percentage of item for which deterministic test vectors shall be generated (gates
per gate)

MA13) Percentage of item tested with BIT that requires determmzstzc test gcncratzon
(gates per gate)

| MA14) Pmence/eba_ence of design for testdbility {paég/fail measure)

MAL15) Presence/absence of test structures to facilitate a hierarchical test methodology
- (pass/fail measure)

MA16) Number of CPU aeconds per test vector for fault simulation ( CPU seconds per
test vcctor)

3.2.2.1.2.2. Factors and Measures for Categoiy B

Category B is “test set length and fault coverage statistics.” This category is closely
associated with test generation as well as test application. Test set size is directly
related to test coat since CPU time required to generate and fault simulate the tests
increases with the length of the test set. In addition, storage for the deterministic
test set and time required to apply the test set increases with size of the test set.
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The following is a comprehensive list of testability factors and testability measures

for category B.

Factors fpt Category B (chip/ board / subsysfem/system levels)
(Categbry B: Test Set Length and Fault Coverage Statistics)

' (FB1) Total number of faults
(FB2) Detectable fault count

(FB3) Presence/absence of structural design-for-testability prowsxons such as parti-
tioning for test, scan design, use of easily testable logic anjays, control over
feedback loops during test, etc.

(FB4) Number and location of available I/O (including test points) |

(FB5) Initialization methodology employed for sequential logic, i.e., master reset versus
homing sequences, etc. |

(FB6) Ease of controlling and QBserving internal nodes

(FB7) Number of sequential states in a design that does not have scan features

(FB8) Amount of asynchronous logic present |

(FBQ) Length of each scan chain if a scan technique is implemented
(FB10) Number of reconvergent fan-out nodes in a combinational network
(FB11) Probability of occurrence of each fault
(FB12) Strategies and algorithms used in test generation
(FB13) Number of fan-out-free subnetworks present in a combinational network
(FB14) Test set sizes of the fa.n-out.-fre‘e subnetworks present in a combinational network

(FB15) Probability of detection of each fault




(FB16) Expected test length for each fault
(FB17) Gate fan-in counts

| (FB18) Number of légic levels in » comt:ina.tiona.l network
(FBle Sequencing used in input stimuli #pplication
(FB20) Methods of error detection used at the outputs of a‘n'item” X
(FB21) Fault latency | o
(FB22) Error latency

. (FB23) Node toggling counts oBtained by logic simulation

' (FB24) Number of primary inputs upon which eacl primary output of a combinational
logic block is dependent upon (input widths of individual cones of logic)

(FB25) Extent of overlap of individual cones of lognc
(FBZG) Presence of unoontrollable feedback loops, and the number of states of the
components in each uncontrollable feedback loop

Measures for Categorj B (chip/board/subsystem/system levels)
(Category B: Test Set Length and Fault Zoverage Statistics)

(MBI) Fault covemge obtcmed when using a given test sct Cfaults }ter fault)
(MB2) Detectable-fault coverage obtamed when using a ywcn test set (faults per fault)

(MB3) Number of deterministic test vectors required to obtain a speczﬁcd detectable
- Joult coverage (test vectors per item)

' (MB4) Nember of deterministic test vectors required to detect a given subset of all
detectable faults (c g critical faults with high probability’ of occurrence) (test
" vectors per item)
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(MB5) Number of test vectors needed to detect a covered fault when using a given test
set and test application strategy (test vectors per fault) '

(MB6) Number of random/pseudorandom test vectors required to obtain a specified
detectable-fault coverage (test vectors per item)

(MB7) Number of random/pseudorandom test vectors required to elect a given subset
of faults with a specified level of confidence (test vectors per item)

(MBg) thther or not a given subset of faults is detected, when using a given test set
(pass/fail measure)

(MB9) Size of pseudo-exhaustive test set for a combinational logic circuit (test vectors

per item)

(MB10) Number of random/pseudorandom test vectors aﬁplied until the incremental fault

coverage per test vector block (of given size) drops below a given threshold (test
vectors per item)

(MB11) Detectable-fault coverage obtained when the incremental fault coverage per test
vector block (of given size) drops below a given threshold when applying ran-
dom/pseudorandom test vectors (faults per fault)

3.2.2.1.2.3. Factors and Measures for Category C

Category C is “adherence to a specific design style or criteria.” This category is of
primary importance to all of test generation, test applicatiqn, and fault isolation and
repair as shown earlier in Figure 2. This category emphasizes that testability must be
considered during system design and development to produce a system that satisfies
testability requirements. A comprehensive list of testability factors and testability
measures for Category C is presented immediately below.

Factors for Category C (chip/board/subsystem/system levels)
(Category C: Adherence to a Specific Design Style or Criteria)
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(FC1) Gate fan-in counts S | | . I
(FC2) .Ability to externally load registers (serial or parallel methods) | / A
(FC3) Modularity of the design |
(FC4) .Presenoe/ absence of wired logic AND/OR coﬁnections
(FC5) Length of scan chains
(FC6) Number of external clocks
(FCT7) Presence/absence of redundant logic and/or nodes
'(FC8) Interconnection of items (bus-oriented or point-to-point) | | o
(FC9) Presence/absence of dynamic circuitry
(FC10) Presence/ absence of counters or timers to implement déla.ys (avoid one-shets)
(FC11) Number of levels in a combinational logic circuit |
(FC12) Amount of m@ti&l logic. | ‘
(FC13) Presence/sbsence of special hardware to break feedback loops during test |
(FC14) Number and complexity of ambiguity gréups _ . o / -
(FC15) Ability to disable internal clocks during testing N B
(FC16) .Presenoe/ absence of chip bypass capability during hierarchical test

(FC17) Presence/absence of pull-up resistors on tristate buses or on “fixed” logic con-
nections

e .. - (FC18) Capability of existing ATE to perform a desired test ' . i 4 =

7 _f.f,Meas»ures for Category C (chip/board/subsystem/system levels)
(Caiegoiy C: Adherence to a Specific Design Style or Criteria) R £ Fl




(MCI) Presence /absence of an initialization methodology (power-on/master reset, hom-
ing sequence, etc.) (pass/fail measure)

(MC2) Percentage of synchronous logic (gates per gate)
(MC3) Percentage of sequential logic that is scannable (gates per gate)

(MC4) Percentage of an item that is tested by either external methods or BIT, or both
(gates per gate) '

(MC5) Presence/absence of a hirrarchical test structure (e.g., TM and ETM buses,
masntenance controllers, boundary scan) (pass/fail measure)

(MC6) Presence/absence of DFT technigues such as module partitioning-for-test and/or
the use of easily testable logic structures (pass/fail measure)

(MC7) Percentage of an item tested by concurrent BIT (gates per gate)

(MCB8) Percentage of an item tested by nonconcurrent BIT (gates per gate)

3.2.2.1.2.4. Factors and Measures for Category D

Category D is “difficulty of achieving fault isolation.” To incorporate fault isolation
capability into a system, one should consider the following steps during system design
‘and development. ' .

(1) Identify ambiguity groups of items,

(2) Select cost-effective test techniques (deterministic or pseudorandom) to be used
to perform fault isolation tests,

(3) Determine where the test vectors are to be applied and where the test points
are to be located,

(4) Compute test sequences capable of detecting the presence of a fault in an am-
biguity group, and




(5) Develop procedures for analyzing test response as required to achieve fault iso-
lation to one of the ambiguity groups.

A fault’s ambiguity group consists of a set of possible “locations” where the fault
may be present. The ambiguity group may be a set of gates, éhips, boards, modules,
or boxes; most often it consists of “replaceable units” At the present time, ad hoc
procedures are used for identification of ambiguity groups, test point placement, and
selection of test techniques.

In a controlled environment (where all inputs to an ambiguity group are control-
lable, all ambiguity group outputs are observable, and there are no feedback paths
from another ambiguity group), the problem of generating tests for fault isolation

. is essentially the same as the test generation problem encountered when considering
- Category A. That is, it is NP-ccr)mplete[77]. When several ambiguity groups are in-
terconnected (i.e., several ambiguity groups of chips on a board) and all test vectors

~ are to be applied from the board 1prima.ry inputs, the test generation problem and the

problem of analyzing test response is increased many-fold. Except for special cases,

i is not cost-effective to perfonﬁ fault ieolation on a complex board by performing
tests from the board I/O. One approach being considered by the test community
for circumventing this extremel difficult problem on a digital board is to use chips
with built-in self-test and provxde boundary scan on each chip to permxt testing of
interconnections between chips J.nd the board 1/0.

Takmg mto account the ma.ny facets of the fault isolation problem, a comprehen-
sive list of testability factors and testability measures for Category D is presented
below. - - ’ '

. Factors for Category D (board/sﬁbsystem/system levels)
" (Category D: Difficulty of Achieving Fault Isolation)

- (FD1) Number of items (chxps/boa.rds/subsystems/replaoeable umts) |
(FD2) Amount of asynchronous logic '
(FD3) Amount of feedback between chips/boards/subsystems
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(FD4) Amount of uncontrollable feedback between chips/boards/subsystems

(FD5)‘ Number of ambiguity groups (at each level)
(FD6) Number of states iﬁ each amubiguity group. '
(FD7) Number of 6verla.p‘ping‘ axﬁbiguity groups
(FDS) ‘Number of ambiguity group I/O pins

(FD9) Fault count for each ambiguity group
(FD10) Probabiny of detection for each fault
(FD11) Ease of controlling/observing internal nodes
(FD12) Number of isolatable fauits
(FD13) Number of faults that are not isolatable
| (FD14) ‘Ntlxmber of test points
(FD15) Location of test points
(FD16) Presence/ absence of hierarchical fault isqlatioh methodology

- (FD17) Amount of BIT |

o (FD18) BIT fault detection capability

(FD19) BIT false alarm rate _ .
(FD20) Amount of available corﬁputing capability for fault isolation analysis

(FD21) Availability of software tools (for board/subsystem/system level fault isolation
test generation)

Measures for Category D (board/subsystem/system levels)
(Category D: Difficulty of achieving Fault Isolation)
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(MD1) Number of node operations per isolated fault (node operations per fault)

(MD2) Number of node operations per fault isolation test sequence (node operations per

~ test sequence)
(MD3) Number of CPU seconds per isolated fault (CPU seconds per fault)

 (MD4) Number of CPU seconds per fault isolation test sequence (CPU seconds pér test
sequence)

(MD5) Ambiguity group size (items per ambiguity group) .

(MD6) Percentage of detected faults that are isolated to an ambzgu:ty group of speczﬁed
size or less (faults per fault)

(MD7) Numbcr of test vectors required to isolate an isolatable fault when using a given
test set and fault isolation strateyy (test vectors per fault)

(MD8) Number of test vectors required to achieve a specified fault isolation coverage
when using a given fault isolation strategy (test vectors per item)

(MD9) Percentage of system with concurrent built-in test that provides for fault detec-
tion and fault isolation to an ambiguity group (gatcs per gate)

(MDIO) Prescnce or absence of hierarchical fault :solatmn mcthodology (pass/fail mea-
sure)

3.2.2.1.2.5. Factors and Measures for Category E

Category E is “effectiveness of BIT.” In the increasingly complex digital systems
currently being developed, and especially space-based systems where external test
(using ATE) is not an option, BIT is an attractive alternative for detecting faults.
In many instances BIT can also be used to isolate the faulty item. This being the
case, it is essential that the effectiveness of BIT be measured to assure that system




testability requirements are sa.tlsﬁed To this end, testabxhty factors and measures .

for Category E are presented below.

Factors for Cafegory E (chip/board /subsystem/system levels)
(Category E: Eﬂ’ectlveness of BIT)

(FE1) Total nﬁmber of faults in logic covered by BIT
(FE2) Total numb;eerf faults detectable by BIT
(FE3) Presence/absence of design-for-testability -
(FE4) Number and location of 1/O (including test points)
(FES) Initializa.tiép methodclogy employed for sequential logic
(FE6) Length of test sequences required to test sequential logic
(FE7) Amount of asynchronous logic present
(FE8) Probability of occurrence of each fault
(FE9) Probability of detection of each fault
(FE10) Detectability proﬁle of the portion of the item tested by BIT

(FE11) Expected test length for each fault when using BIT

(FE12) Sequencing of input stimuli application by BIT . S

(FEIS) Methods of error detection, logging, compaction, and reporting used by BIT
(FE14) Isolation strategies and algorithms employed by BIT

(FE15) Design of BIT circuitry

(FE16) BIT failure rate

(FE17) Fault latency




(FEIFS) Error latency

(FE19) Number of components in unbroken feedba.ck lbops

Measures for C~iegory E (board /subsystem/system levels)
(Category E: Effectiveness of BIT)

 (ME1) Detectable-fault coverage obtained by using BIT (faults per fault)

(ME2) Whether or not BIT detects a given subset of the fault population (e.g., critical
Jaults with high probability of occurrence) (pass/fail measure)

(ME3) Percentage of detected faults that are correctly isolated by BIT to an ambiguity
group of specified size or less (faults per fault)

(ME4) Whether or not BIT correctly wolates a given subset of thc detected Jault popu-
lation to an ambiguity group of specified size or less (pass/fail measun)

(ME5) Percentage of “Item Failed” indications provided by BIT that are due ezclusively
to BIT faults (BIT alarms per alarm)

(ME6) Number of test vectors needed by BIT to detect a covered fault when using a
given test set and test application strategy (test vectors per fault)

(MET7) Number of test vectors needed by BIT to isolate an isolatable fault when using
a given test set and fault isolation strategy (test vectors per fault)

(ME8) Reconfiguration time for fault-tolerant systems with self-repair capability (sec-
onds per reconfiguration) '

(ME9) System recovery time after reconfiguration (seconds per recovery)

‘ (ME10) Completeness or quality of recovery measured in terms of '%efformance and re-

A liability of the recovered system over performance and reliability of the original
system before failure (throughput rate per throughput rate and/or reliability of
the recovered system over that of the original system)
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3.2.2.1.3. Summary of Measures

The comprehensive list of testability measures presented in the preceding section are
summarized immediately below to provide the reader with insight into the types of
measures that have been identified in each attribute category.

Category A: Difficulty Obtaining Tests for Fault Detection
¢ Time required to generate deterministic tests (MA1 through MAS)

o Time required to generate optimum input line signal probabilities for random
testing (MA9) = '

o Percentage of detectable faults in item’s fault population (MA10 and MA11)
o Design for testability measures (MA12 through MA15)

o Fault simulation time (MA16)

Category B: Test Set Length and Fault Coveragz Statistics

o Fault coverage obtained from a given test set (MB1, MB2, MBS, and MB11)
o Number of deterministic test vectors required (MB3, MB4, MB5)

o Number of rahdom/pseudorandorn test vectors required (MB6, MB7, MB9Y,
MB10) | |

Category C: Adherence to a Specific Design Style of Criteria

o Architecture related (MC2, MC3)

¢ Design for testability measures (MC1, MC4, MC5, MC6, MC7, MCS8)

- Category D: Difficulty of Achieving Fault Isolation
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e Time required to generate fault isolation tests (MDI, MD2, MD3, MD4)
o Fault isolation cowlrerage‘ (MD6)
o Number of test vectors required (MD7, MD8)

o Design for testability measures (MDS5, MD9, MD10)

Category E: Effectiveness of BIT

¢ Faull d xction coverage (ME1, ME2) -

o Fault isolation coverage (ME3, ME4)

e Fault alarm rate (MES5)

e Number of tdst vectors required (MEG,.ME7)
. Self-repair/recovery (MES, ME, ME10)

3.2.3. Methods for Estimating/Evaluating Measures

As discussed earlier in section 3.2, testability estimation is attractive only when the

cost of estimating a chosen measure is significantly less than the cost of actually .

incorporating testability into a new design or performing the test-related task (such
a8 test generation or fault simulation). This implies that testability measures of
interest are feasible, where a feasible measure is readily estimated (with bounds on
~ the estimate). The question then arises as to which of the measures presented in
section 3.2.2 are feasible. This question has been addressed by considering known
methods for estimating the measures with results presented below in Table 3.7 [1].
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Table 3.7. Methods for Estimating/Evaluating Measures (Continued)

MEASURE

METHOD

COMMENTS

- MA1

MA2

MA3

MAS

MA7

MAS

Estimation
of C/O

(SCOAP) [54,55]

* Linear run-time

* Combinational cr
synchronous
sequential logic

* Accurate for
fan-out-free logic

* No proven bounds on
error for logic with
reconvergent fan-out

Estimation
of C/O

(HECTOR) [12,46,62]

* Linear run-time

* An extension of SCOAP

* High correlation to
the actual number of node
assignments when using
GIPS to generate tests

* No proven bounds on
error

Statistical
approach

(fault sampling
and test
generation)

* Maximum run-time
is approximately
proportional to sample
size when a limit is
placed on test vector
generation time
(or number of backtracks)
per fault

* Combinational or
synchronous sequential logic

* Confidence interval
is established for the
average value of each
measure
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Table 3.7: Methods for Estimating/Evaluating Measures (Continued)

MEASURE

METHOD

—COMMENTS

MA9

PROTEST [68]

* Exponential run-time
in the worst case

* Estimates optimum values
for signal probabilities

* Combinational logic

* No proven bounds on error
if approximations are made

MA10

VICTOR [60]

* Linear run-time and
memory requirement

* Combinational logic

* Lower bound on MA10

CAFIT [78,14,63)

* Polynomial run-time and
memory requirement
* Combinational or

synchronous sequential logic

* Upper bound on MA10

PROTEST [68)

* Polynomial run-time and
memory requirement
* Combinational logic

* Upper bound on MA10 -
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Table 3.7: Methods for Estimating/Evaluating Measures (Continued)

MEASTIRE

METHOD

COMMENTS

MAll

‘COP [66]
PREDICT [67]
PROTEST [68]

* Polynomial run-time
and memory requirement

* Combinational logic

* No proven bounds on error

* PREDICT can determine exact
fault detection probabilities
in exponential time

. Cutting
algorithm [79]

* Polynomial run-time

* Combinational logic

* Lower bound on detection
probability; hence, an upper
bound on MA11l. However,
the lower bound on detection
probability is invariably 0,
so its usefulness is limited.

STAFAN [35]

* Linear run-time and
memory requirement

* Combinational or
synchronous sequential logic

* No proven bounds on error
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Table 3.7: Methods for Estimating/Evaluating Measures (Continued)

. [

'MEASURE | METHOD COMMENTS
MA12 Gate Count | * Linear run-time
‘ : . * Exact values obtained
MA13
MAl4
Determine
from * Pass/fail measures
MA15 knowlodge may be of value in
of chosen | an expert system
DFT/BIT environment
techniques
MA16 Statistical | * Run-time and memory requirement
' approach less than for full fault simulation
= * Combinational or
(test set synchronous sequential logic
sampling and | * Confiderce interval is
' fault established for an upper
simulation) | bound on MA16
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Table 3.7: Methods for Estimating/Evaluating Measures (Continued)

simulation)

MEASURE METHOD ~COMMENTS
STAFAN [35,36,37] | * Linear run-time and
MB1 o memory requirement
: * Combinational or
synchronous sequential logic
* No proven bounds on error
MB2 Fast Fault * Linear run-time and
. Grader [40] memory requirement
* Combinational logic
* No proven bounds on error
Critical Path * Nearly linear run-time and
Tracing [42] memory requirement
* Combinational logic
* Lower bouud on MB1 or MB2
Approximate Linear run-tune and
Fault memory requirement
Simulator [41] * Combinational logic
synchronous sequential logic
* No proven bounds on error
Fault ¥ Polynomial run-time
Simulation * Memory requirement may be
excessive when using concurrent
fault simulation
* Multiple levels of item
hierarchy can be simulated
* Exact value established for MB1
* Exact value established for MB2
if detectable fault set is known;
\ otherwise, a lower bound on MB2
Statistical * Run-time and memory requirement
approach less than for full fault simulation
* Multiple levels of item
(fault sampling hierarchy can be simulated
and fault * Confidence interval for exact
value of M31

* Confidence interval for exact
value of MB2 if detectable fault
set is known; otherwise, a
confidence interval for a lower

bound on MB2
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Table 3.7: Methods for Estimating/Evaluating Measures (Continued) |

[MEASURE METHOD COMMENTS
Test ¥ Linear run-time and
MB3 Counting [80,81,82] | memory requirement
* Combinational or
* Lower bound on MB3 or
MB4 when detectable fault -
set is known; otherwise,
' no proven bound on error
MB4 Fan-out-Tree ¥ Linear run-time and

Subnetworks [83] memory requirement
* Combinational logic
| * Upper bound on MB3 or MB4;

lower bound on MB3 if circuit
does not have redundancy
— Known Results | * Exact test set size

on required test in some cases
set sige for * Upper or lower bounds on
PLAs, RAMs, and test set size in other cases
other special
circuits (84,85)
-1 . Cntical Path Nearly linear run-time and
MBS Tracing [42] memory requirement
: * Combinational logic

* No proven bounds on error
Fast Fault ¥ Tinear run-time and
Grader [40] * Memory requirement
* Combinational logic
* No proven bounds on error
Fault ¥ Polynomial run-time
Simulation * Memory requirements may be
excessive when using concurrent
fault simulation
* Multiple levels of item
hierarchy can be simulated
* Exact value established for MBS
Statistical ¥ Run-time and memory requirement
approach less than for full fault simulation
* Multiple levels of item
(fault sampling hierarchy can be simulated
and fauit * Confidence interval is
simulation) established for the average
value of MBS
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Table 3.7: Methods for Estimating/Evaluating Measures (Continued) /

COMMENTS

MEASURE ! METHOD
Analysis usiug * Polyromial run-time
MB6 signal - * Combinational logic
probabilities * Cutting algorithm determines
and lower bound on fault
fault detertion detection probability; hence,
MB7 probabilities an upper bound on MB6, MB7,
and MB10, and a lower bound
-Cutting algorithm [79] | ¢a MBil
-COP [66] * COP, PREDICT (approximate
MB10 -PREDICT [57] version), and PROTEST have
-PROTEST [68] no proven bounds on error
: - Critical Path * Nearly linear run-tirae
MBI11 Tracing [42] and m»mory requirement
: * Combinational logic
* Upper bound on MB6, MB7, and
MB10; lower bound on MB11
Fault ¥ Polynomial run-time
Simulation * Memory requirement may be
excessive when using concurrent
fault simulation
* Multiple levels of item
* hierarchy can be simulated
* Exact value established for MB6, MB7, MB10,
and MBI11 if detectable fault
population is known; otherwise,
an upper bound on MB6, MB7, and
MBI10, and a lower bound on MB11
Critical Path ¥ Nearly linear run-time and
MB8 Tracing [42] memory requirement
* Combinational logic
* Worst-case (conservative)
estimate
Fault Polynomal run-time
Simulation * Memory requirement may be

excessive when using concurrent
fault simulation

* Multiple levels of item
hierarchy can be simulated

* Exact value established for MBS
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Table 3.7: Methods for Estimating/Evaluating Measures (Continued)

[MEASURE METHOD COMMENTS
Analysis * Polynomial run-time
using * Combinational logic
, - linear codes’ * Upper bound on MB9
MB9 and the ,

logic structure [86,87]

Algorithmic
procedures [88,89]

* Polynomial run-time
* Combinational logic

* Upper hound on MB9
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Table 3.7: Methods for Fstimating/Evaluating Measures (Continued) -

MEASURE

COMMENTS

METHOD
MC1 Determine | * Pass/fail measures may
from the be of value in an expert
final design system environment
MGC5 of the system
MCé
MC2 Gate Count | * Linear run-time
‘ * Exact value is determined
MC3
MC4
MC7
MC8

-




Table 3.7: Mg_thods for Estimating/Evaluating Measures (Continued)

MEASURE METHOD COMMENTS
Estimation * Linear run-time
! MD1 . of C/O * Combinational or
: ' : synchronous sequential logic
- SCOAP [54,55] | * Accurate for
HECTOR (12,46,62) | fan-out-free logic
MD2 | * No proven bounds on
error for logic with
reconvergent fan-out
Statistical | * Maximum run-time
MD3 approach is approximately
' proportional to sample
size when a limit is
(fault sampling placed on test vector
MD4 and test generation time
generation) (or number of backtracks)
per fault
* Combinational or
synchronous sequential logic
* Confidence interval
is established for
average value of each
measure
Logic Model * Polynomial run-time
Analysis * Combinational or
MD5 synchronous sequential logic
' . STAT [71] * Each item is associated
_ with an ambiguity group
STAMP [50,72] | * Assumes a perfect test
set and hence yields a
lower bound on MD5




Table 3.7: Methods for Estimating/Evaluating Measures (Continued)

(fault sampling

MEASURE| METHOD COMMENTS
Fault * Polynomial run-time
MDé6 Simulation | * Memory requirement may be
excessive when using
concurrent fault simulation
* Multiple levels of item hierarchy
MD7 can be simulated
* True value is established for
MD6 or MD7
Statistical * Run-time and memory
approach requiremert less than

for full fault simulation
* Confidence interval established

of the system

and fault for average value of MD6 or MD7
simulation) '
Information | * Polynomial run-time
MD8 Theory * Combinational or
approach [90] | synchronous sequential logic
* No proven bounds on error
Gate Count | * Linear run-time
MD9 | * Exact value is established
- - for the measure -
Determine * Pass/fail measures may
MD10 fiom the be of value in an expert
final design system environment
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Table 3.7: Methods for Estimating/Evaluating Measures (Continued)

MEASURF.

METHOD

COMMENTS

STAFAN [35,36,37]

* Linear run-time and
memory requirement

* Combinational or
synchronous sequential logic

* No proven bounds on error

ME1

Fast Fault
Grader (40}

* Linear run-time and
memory requirement

* Combinational logic

* No proven bounds on error

Critical Path
Tracing [42]

* Nearly linear run-time and
memory requirernent

* Combinational logic

* Lower bounds on ME1 (1)

Approximate
Fault
Simulator [41]

* Linear run-time and
memory requirement
* Combinational or

- synchronous sequential logic
.| * No proven bounds on error

Fault
Simulation

* Polynomial run-time

* Memory requirement may be
excessive when using concurrent
fault simulation

* Multiple levels of item
hierarchy can be simulated

* Exact value is established for ME1
if detectable fault set is known;
otherwise, a lower bound on ME1(1)

Statistical

~ approach

(fault sampling
and fault
simulation)

¥ Run-time and memory requirement
less than for full fault simulation

* Multiple levels of item
hierarchy can be simulated

* Confidence interval for exact
value of ME1 if detectable fault
set is known; otherwise, a
confidence interval for a lower

~ bound on ME1(1)

63




Table 3.7: Methods for Estimating/Evaluating Measures (Continued)

MEASURE

METHOD

COMMENTS

ME2

Critical Path
Tracing [42)

* Nearly linear run-time and
memory requirement '

* Combinational logic

* Worst-case (conservative)
estimate (1)

Fault
Simulation

* Polynomial run-time

* Memory requirement may be
excessive when using concurrent
fault simulation

* Multiple levels of item
hierarchy can be simulated

* Exact value for ME2 (1)

ME3

Fault
Simulation

* Polynomial run-time

* Memory requirement may be
excessive when using concurrent
fault simulation

* Multiple levels of item -
hierarchy can be simulated

* Exact value is established
for ME3

Statistical
“approach

(fault sampling

* Run-time and memory requirement
less than for full fault simulation
* Multiple levels of item
hierarchy can be simulated

and fault * Confidence interval is established
simulation) . | for ME3 (1)
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“Table 3.7: Methocis for Estinia.ting/ Evaluating Measures (Continued)

COMMENTS

MEASURE | METHOD
' Fault * Polynomial run-time
Simulation | * Memory requirement may be
: excessive when using concurrent
ME4 fault simulation
* Multiple levels of item
hierarchy can be simulated
* Exact value is established
for ME4 (1)
System * Polynomial run-time
MES5 simulation | * Multiple levels of item
' and analysis | hierarchy can be simulated |
by employing | * Confidence interval is
, simulated fault | determined for the
MES insertion _average value of each
measure when fault
| population is sampled (1)

'} * Under certain assumptions, an
upper bound can be obtained
for ME5

ME9
— -} Failure modes | * No proven bounds
and effects on error
analvsis
ME10 -




Table 3.7: Methods for Estimating/Evaluating Measures (Continued)

METHOD

« T . L
L= P s P S TN O S

"MEASURE COMMENTS
Critical Path | * Nearly linear run-time and
Tracing [42] memory requirement
* Combinational logic
. * Upper bound on MEG6 (1)
. Fast Fault Linear run-time and
MEé Grader [40] memory requirement
o * Combinational logic
* No proven bounds on error
“Fault ¥ Polynomial run-time
Simulation * Memory requirement may be
: excessive when usihg concurrent
fault simulation |
* Multiple levels of item
hierarchy can be simulated
* Exact value is established
for MES (1) |

Statistical | * Run-time and memory requirement

approach less than for full fault simulation
; * Multiple levels of item
(fault sampling | hierarchy can be simulated
and fault * Confidence interval is established
simulation) for the average value of MEG (1)
Fault * Polynomial run-time
Simulation * Memory requirement may be
excessive when using concurrent
fault simulation
MET? * Multiple levels of item
hierarchy can be simulated
* True value is established
for ME7 (1)

Statistical * Run-time and memory requirement
approach less than for full fault simulation
(test set * Confidence interval is established
(test set for the average value of ME7 (1)

sampling and ‘
fault
simulation
(1) Assumes ideal BIT error detection
capability.
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- 3.2.4. Recommended Testability MeaSures

Measure feasibility and usefulness are the criteria used in the following paragraphs
for establishing a recommended set of measures and techniques for estimating chip
level testability.

3.2.4.1. Feasible measures

A measure is deemed feasible if it can be estimated with computational effort that
grows only polynomially (preferably linearly) with the size of the circuit. The feasi-

bility of each measure is established by considering the entries in Table 3.7 and the -

associated references that describe the estimation methods. Measure feasibility re-
sults [1] are presented below in Tables 3.8 through 3.12 (one table for each testability
attribute category). Observing these tables, a feasibility score of 1(CL) indicates that
the measure is feasible for combinational logié, and a feasibility score of 1(SL) shows
that the measure is feasible for synchronous sequential logic. In this regard, each
measure in Table 3.7 with a feasibility score of l(Cf..) and/or 1(SL) is regarded as a
feasible measure. : : '

3.2.4.2. Useful Measures

Measure usefulness is a primary consideration when identifying practical measures for
estimating test cost. A qualitative indication of measure usefulness is established by
~- considering the applicability of each measure and developing an associated usefulness
score.

To this end, it is noted that test cost occurs during all phases of the system life cy-
cle that include research and development, manufacture, and field. For example, test
cost is incurred when test patterns are generated during research and development,
when tests are applied during manufacture to verify that the item is good before
shipping, and when maintenance tests are performed in the field.

Test cost is also functionally related to the system hierarchy (chip, board, etc.)
and the associated test strategy. That is, a hypothetical module containing fifty chips
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with sequential logic on some chips is typically very difficult to test completely (if

possible) when testing is performed at the module 1/0. Alternatively, it would be
much less time censuming to thoroughly test the module by using a hierarchal test '
strategy such as (a) performing chip level tests, (b) testing interconnections between
chips, and finally (c) testing the module I/O. A qua.nﬁta.tive indication of measure
usefulness is thus derived by considering the system hierarchy and the applicability
of each measure to categories of the system life cycle. Measure applicability results|1]
are presented below in Tables 3.8 through 3.12. '

3.2.4.3. Recommended Measures
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Table 3.8. Measure Recommendation (Category A)

Measure Feasibility

and Usefulness Measure
Proposed | Feasible!!) | Useful | Recommended
' Measure | (Yes/No) | (Yes/No) | (Yes/No)

MA1l v

thru Yes (CL) Yes Yes

MA4

MA5

thru Yes (CL) Yes Yes

MAS Yes (SL)

MA9 No (CL) No No

MAS No (SL)

MA10 Yes (CL) Yes
Yes (SL) Yes

MA11 Yes (CL) No

: No (SL) ‘No

MA12 | Yes(CL) Yes
Yes (SL) Yes

MA13 Yes (CL) Yes Yes
Yes (SL)

MA14 Yes (CL) Yes Yes

and Yes (SL) : - --

MA15

MA16 Yes (CL) Yes
Yes (SL) Yes '

(1)(CL = Combinational Logic; SL = Sequential Logic)
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Table 3.9. Measure Recommendation (Category B)

Measure Feasibility
and Usefulness Measure
Proposed | Feasible®W | Useful | Recommended
Measure | (Yes/No) | (Yes/No) (Yes/No)
MB1 Yes (CL) Yes Yes
Yes (SL)
"MB2 Yes (CL) Yes Yes
Yes (SL) ‘
MB3 Yes (CL) - Yes Yes
' "] No (SL) :
MB4 Yes (CL) No No
No (SL)
MBS Yes (CL) Yes Yes
Yes (SL)
MB6 Yes (CL) Yes Yes
. Yes (SL)
MB7 Yes (CL) No No
Yes (SL)
MBS Yes (CL) No No
_ Yes (SL)
MB9 Yes (CL) Yes Yes
No (SL) .
MB10 Yes (CL) No No
Yes (SL)
MBi1 Yes (CL) Yes Yes
Yes (SL)

(1)(CL = Combinational Logic; SL = Sequential Logic)
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Table 3.10. Measure Recommendation (Category C)

Measure Feasibility

- Measure

. . and Usefulness :
Proposed | Feasiblel) | Useful | Recommended
Measure | (Yes/No) | (Yes/No) (Yes/No) -
MC1 Yes (SL) Yes Yes
MC2 Yes (CL) Yes Yes

| Yes (SL)
MC3 Yes (CL) Yes Yes
: Yes (SL)
MC4 Yes (CL) Yes Yes
Yes (SL)
MC5 Yes (SL) Yes Yes
MC6 Yes (SL) Yes Yes
MC7 | Yes(CL) Yes Yes
| Yes (SL) '
Yes Yes

MC8 Yes (CL)

Yes (SL)

®)(CL

= Combinational Logic; SL = Sequential Logic)

\
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Table 3.11. Measure Recommendation (Category D)

Measure Feasibility

: and Usefulness Meszure
Proposed | Feasible | Useful | Recommunded
. Measure | (Yes/No) | (Yes/No) (Yes/No)
MD1 Yes (CL) Yes Yes
. Yes (SL)
MD2 Yes (CL) Yes Yes
Yes (SL) '
MD3 Yes (CL) Yes Yes
Yes (SL)
.MD4 Yes (CL) Yes Yes
| Yes (SL)
MD5 Yes (CL) Yes Yes
Yes (SL)
“MD6 Yes (CL) Yes Yes
Yes (SL) '
MD7 Yes (CL) Yes Yes
Yes (SL)
MD8 No (CL) Yes No
No (SL) :
MD9 Yes (CL) Yes Yes
Yes (SL) 4
MD10 Yes (CL) Yes Yes
) Yes (SL)

)(cL = Combinational Logic; SL = Sequential Logic)
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Table 3.12. Measure R;eoomm_endatfon (Category E)

Measure Feasibility
' and Usefulness Measure
Proposed | Feasible® | Useful | Recommended
Measure | (Yes/No) | (Yes/No) (Yes/No)
ME1 Yes (CL) Yes - Yes
. Yes (SL)
"ME2 Yes (CL) No No
Yes (SL)
ME3 Yes (CL) Yes Yes
‘ Yes (SL)
"ME4 Yes (CL) No No
.| Yes (SL)
MES Yes (CL) No. No
: Yes (SL)
MES6 Yes (CL) Yes Yes
| Yes (SL)
ME7? | Yes (CL) Yes Yes
Yes (SL)
"MES No (CL) Yes No
No (SL) ‘
“ME9 Yes (CL) No No
Yes (SL)
"ME10 Yes (CL) No No
‘ Yes (SL)

m(CL = Combinational Logic; SL = Sequential Logic)
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3.2.5. Examples

8.2.5.1. Estimating Test Generation Time
3.2.5.1.1. Statistical Anproach to Evaluating Measures

Recognizing that test generation is very expensive for large blocks of combinational
logic, it would be beneficial to estimate in polynomial time the cost of computing
test vectors for combinational/sequential logic to achieve the goal of cstimating the
cost of testability. For example, consider measure MA4 which is defined as “the
number of CPU seconds per test vector for combinational logic.” There are no known
polynomial time algorithms for estimating MA4 with exact bounds; therefore, it is

reasoné.ble to consider a statistical approach which results in a confidence interval for

the measure[91]. After obtaining a confidence interval for MA4, we can multiply by
Q (lower bound on required number of test vectors to completely test the logic) to
establish a confidence interval for the lower bound on CPU time required to obtain a

set of test vectors for detecting all detectable faults in the given combinational logic

circuit.

38.2.5.1.1.1. Some Assumptions

The application of statistics to the estimation problem is accomplished by méking

. the following assumptions: ‘ : S

1. Assume that each failure of interest can be modeled as a single stuck-at fault.
With this assumption, the fault population consists of the set of all single stuck-
at faults. The actual number of faults in the fault population is a function of a
number of parameters that include (a) the chosen circuit, (b) the circuit model
(transistor level, gate level, etc.), (c) the semiconductor technology, and (d) the
types of failures being considered. Some of these faults may be redundant, and
therefore undetectable by applying a test vector to the circuit primarv input
lines ard observing the primary output lines.

2. Assume there are M detectable faults in given circuit.
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the set {Fy, Fy, ..., F}, ..., Fn}.

Assume each detectable fault equivalence class is equally likely to be chosen
during test generation (the uniform probability mass function is suggested as
an alternative to the actual function which is typically unknown).

.. Assume the chosen fault-dependent test generation procedure (i.e., one which

targets specific faults and not a sensitized path) is capable of computing a test
vector for each detectable fault. In general, there will be many test vectors for
each fault, and the actual test vector generated will depend on the specific fault
selected and the test generation algorithm. :

. Assume a representative fault f; is selected from each fault equivalence class F;

to establish the fault set {fi, f2, ., fiy ooy SN}

Assume CPU time ¢; is the test generation time for fault f;. Each ¢; is a
function of parameters that include (a) the circuit being considered, (b) the test
generation algorithm, and (c) the throughput of the computer being used. The
CPU times that correspond to fault classes in the detectable fault population
are contained in the set {t1, 82, ..stN}.

Each ¢; in the set of CPU times is assumed to be a constant. That is, the

algorithm used always follows the same steps when computing a test for fault

£

3.2.5.1.1.2. Confidence Interval Determinatioxi

Now consider an experiment on a given circuit that consists of randomly sampling the
set {f1, f3, s fiy -y SN} and observing the computer GPU time required to generate
each test vector. An outcome of the experiment, the CPU time required to generate
a test vector, will be a finite (or countably infinite) number of computer clock cycles.
Hence, the sample space is discrete since it contains finite or countably infinite
number of sample points. Points in the sample space’are mutually exclusive, and
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each point is called an elementary event. Each collection of like points in the sample

space is referred to as an event to which a probability is assigned.

For example, let “number of CPU seconds per test vector for combinational logic”
be the random variable, denoted by T. (Recall that a one-dimensional random variable
x is a function that maps points in a sample space to points on the real x-axis). T is
a discrete random variable since it is associated with a discrete sample space.

Associated with discrete random variable T is the probability mass furction p(T).
It p(T) were known, one could compute the exact mean y, where 1 is the average CPU
time required to compute a test vector for the circuit being considered. Similarly, one

" could evaluate the exact variance o3, where o, is a measure of the dispersion of p(T).
" More specifically,

=T p(T) (31)

and

o? =3 (T: ~ u)*- p(T3). (2)

Unfortunately, p(T) is unknown for any given logic circuit, and for this reason
precise values of 4 and o? cannot be determined. '

An alternative approach is to use samplihg theory and establish a confidence
interval for the desired quantity u. This can be accomplished by proceeding as follows:

1. Choose k samples from the set {t;,tg',...r;t&}r,w with repla.cémenwt,' to obtain
(TI’T27-°'Tk)’

2. View the resuliing sample mean ji; as a new random variable, and

3. Invoke the central-limit theorem which states that the sample mean j; is ap-
proximately normally distributed [92]. The approximation improves as sample
size increases, and in the following discussion it is assumed that sample size k is
large enough to assure that ji is for all practical purposes a normally distributed
random variable. -
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Assuming a finite population of fault classes and random sampling with replace-
ment, the expected value and variance of this new random variable are[93)]

E() = | (63)
and
2

Verli) =%, o (3.4)

Knowledge that the sample mean ji; is approximately normally distributed sug-
gests that we attempt to estimate its mean and variance.

The k values {T1T3,...,Ti} can be established as follows:

1. Identify detectable fault equivalence classes for the given circuit,

2. Select a represent.ative fault from each fault class to establish the set {f1, f2, ..., fn},

3. Randomly select a fault from the set {f1, f2,.., N},

4. Generate a test vector to detect the fault (an alternative fault may have to
be selected if the algorithm backtrack lnmt is exceeded) and record the test

generation time,

5. Repeat steps (3) and (4) as required to obtain {T,T3,...,Tk}.

A sample value of estimator ji, (denoted by 7, ), which is an unbiased estimate of =~

W, is then computed by using

L |
=13 (35)
=1 .

Observing (3.4), an estimate of the population variance ¢ is needed to estimate
the variance of the new random variable fi;. Noting that we are dealing with a finite
~ set of N events and sampling is performed with replacement, «n unbiased estimate of

the population variance 02, denoted by S?, is given by[93].
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1 k
§?= 1 Y (Ti— )’ (3.6)
i=1

An estimate for the variance of the normally distributed sample mean, denoted
by S, is then obtained by inserting (3.6) into (3.4) to obtain

k
S=raoy DR (37)

Observing the results thus far, we can use (3.5) to obtain an unbiased estimate
of the desired quantity u. Assuming the continuous approximation of discrete mass

function p(T) is normally distributed, j is also approximately normally distributed -

even for small sample size. Then, for the case where k& > 30, we can use (3.7) to obtain
the following approximate confidence interval for i (with a 1-a level of confidence)[93]:

Pe—23 Sp<p<M+zg-5p , (3.8)

where z,; is the point along the abscissa of the standard normal N(0,1) such that
the area under the upper tail to the right of z,, is a/2.

When k < 30, (3.8) can produce inaccurate results due to error in estimating the
population variance 2. This, in turn, can result in a poor confidence interval. The
problem associated with small sample size is overcome by introducing the Student
t-distribution with k-1 degrees of freedom [92,93] to obtain the following confidence
interval for u (with a 1-a level of confidence):

Bu—ty - Sgp<pu<pp+ig-S (39)

The quantity ¢g in (3.9) is defined to be the point along the abscissa of the t-
distribution probability density function p(t) such that the area under the upper tail
of p(t) to the right of tg is equal to §. That is, P(t > tg) = £. Equation (3.9) has
been observed to be highly reliable even when T is considerably different from the
normal([93].
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For example, assume a sample size k=30 is chosen for a given hypnthetical circuit
that has a total of N=200 detectable fault classes. Aiso assume that sample values for
T;, when inserted into (3.5) and (3.7), produce the estimates %, = 4.770 CPU seconds
per test vector and standard deviation Sz, = 0.120. To obtain a 98% confidence
interval for the true mean p, refer to a table of values for the t-distribution with
k-1=29 degrees of freedom and @ = (1 ~ 0.98) = 0.02. From[93] it is observed
that tg = 2.462. Inserting these values into (3.9), the required interval (with 98%

confidence) is

4770 - (2462) - (0.120) < p < 4770 + (2.462) -0.120)  (3.10)
or
4.475 < s < 5.065. e
3.2.5.1.1.3. Estimating Sample Size

Sample size k must be chosen prior to performing a random experiment to obtain
B, an unbiased estimate for the population mean p. Unfortunately, a precise sample
size cannot be determined when the population probability mass function p(T) is
unknown. However, a reasonable estimate for k can be established when information

is available concerning the dispersion of p(T).

For example, assume p(T) is normally distributed with unknown mean # and . -
known variance o;. Focusing on the confidence interval for the sample mean, we are

100(1 — a) percent confident that f, deviates from the p by less than E where[93]

E=(z) % | (3.12)

This implies that k be chosen so that

k= (2 %)2,' | (3.13)
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Exemplifying the use of (3.13), assume we are considering a normal process with

- unknown mean p and known standard deviation o = 1.770. Assume further that we
want to know the sample size requi. ed to be 95% sure (2,2 = 1.960) that the true
mean u lies within E=9.50 of the sample mean 7. Inserting these qua.ntities into
(3.13), we find that '

- 1.770 2 . ! .
k= (1960 o) 48 (3.14)

It is conjectured that (3.13) can also be used to estimate sample size when p(T)
differs significantly from the normal, provided an accurate value can be established
for the variance of p(T). Assuming no information about the dispersion of p(T) is
available, one can obtain an estimate for o2 by choosing a small sample»éize (e.g.,
k=30) and using (3.6) to obtain an initial estimate for the population variance. Then,
increase the sample size in small increments and monitor the convergence of the result

produced by (3.6).

3.2.5.1.1.4. A Step-By-Step Procedure

In summary, the proposed statistical approach to estimating measures such as MA4
can be carried out as follows: '

1. Select a sample size k that produces a sample mean %, thaf is good estimate of
the true mean . Equation (3.13) may be helpful when choosing the appropriate
value for k. Sample size will typically range from k=30 to k=1000.

2. Determine all localized fault classes for the given circuit. For example, a stuck-
at-0 on any NAND gate input is equivalent to the NAND gate output stuck-at-
1. The number N, of localized fault classes establishes an upper bound on N
(recall that N is the number of detectable fault equivalence classes for the given
circuit). '

3. Select a representative fault from each fault class to establish the set { f, f2, ..., fzv, }-

4. Randomly select a fault from the set {/,, f3, ..., fa, } with replacement.
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5. Using a chosen test generation algorithm (PODEM, FAN, et'c.), compute a
test vector for the fault chosen in step (4). Record the CPU time required to
compute the test vector. In this regard, a limit is typically placed on the number

" of backtracks that are alloved when attempting to generate a test for a chosen
fault§ this backtrack limit reduces overall test generation time since it constrains
the time spent attempting to generate tests for redundant faults. Assuming we
are performing an experiment to estimate MA4, the “number of CPU seconds
per test vector for combinational logic,” the CPU time that does not result in a
test vector should be excluded when creating the set {T},T3,...,Ti}. In effect,
we are assuming that all hard-to-detect faults that force the algorithm to exceed
the backtrack limit are redundant, even though test vectors generated for other
faults might possibly detect such hard-to-detect faults. (Alternatively, each
backtrack limit CPU time should be included in the set {T},T3,...,T:} when
the experiment is performed to generate an estimate for MA3, the “number of
CPU seconds per fault for combinational logic”; the resulting confidence interval
for MA3 can then be multiplied by N; to obtain a confidence interval for an
upper bound on total CPU time required for test generation.) Return to step
(4) when consxdenng MAA4 and the backtrack limit is exceeded.

6. Repeat steps (4) and (5) as necessary to obtain the set of CPU times {1}, T3, ..., Tk}

7. Use equa.tlon (3.5) to compute 7, an estimate of b

8. Use equatlon (3.7) to compute Sz, an estimate for the sta.nda.rd dev1a.t10n of

the approximately normally distributed sample mean. Use Nl, as found in step
(2), in place of N to obtain a conservative estimate for Sz.

9. Choose a confidence level Cy. For example, let C, = 0.98.

10. Compute a, where a = 1 — C;. Letting C, = 0.98, we observe that a =

(1-0.98) = 0.02.

11. From a table of values for the Student t-distribution, determine the value for
tg that corresponds to k-1 degrees of freedom and the known value of a. For
example, k-1=120 and a = 0.02 results in tg = 2.358.
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12. Insert the known values for 7, Sy, and tg into (3.9) to obtain the desired
confidence interval with chosen level of confidence CL.

If the confidence interval is wider than desired for a chosen confidence level Cp,
the interval can be reduced by increasing sample size k and repeating (or extending)
the random experiment. In this regard, the increased value of k reduces both S;,-; and
the quantity tg.

8.2.5.1.2. Using the Confidence Interval to Estimate Cost

The above step-by-step procedure for obtaining a confidence interval for a cost-related
measure (€.g., measure MA4) relies on sampling theory to obtain the desired estimate.
When developing the procedure, it was necessary to rely on the central-limit theo-
rem to establish that the sample mean (viéwed as a random variable) is normally
distributed. For example, the random variable fi, defined earlier as “the number
of CPU seconds per test vector for combinational logic,” is essentially normally dis-
tributed for sufficiently large sample size k.

Now suppose it is desired to determine the distribution of a new random variable
Zq, where Zg is defined to be “the number of CPU seconds per Q test vectors for
combinational logic.” Observing that available information about the population
mean g is contained in the distribution of the sample mean jix, Zq is assumed to be
linearly related to £ as follows:

\

\\ Z9=Q " i (3.15)
The p\robability density function for Zg is then a scaled version of that observed
for i wit
E(Zo) = B(Q-fw) = Q-4 (3.16)
and
Var(Zg) = Var(Q - ) = Q* - Var(iy). (3.17)
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Observing (3.16) and (3.17), simple relationships exist between the expected value
of and variance of Zg and that of ji;. Equation (3.9) can then be modified to obtain
the following confidence interval for the mean of Zg, denoted by g as follows:

3 - QF—ts Q- Sp<pg<Q-Fi+i3-Q-Sp (3.18) I8

This relation is exemplified by considering an earlier example that produced equa-
tion (3.11), where the range on “number of CPU seconds per test vector for combina-
tional logic,” is 4.475 < u < 5.065. For a known lower bound on test set sizeof Q=200 .~ =~ & -
test vectors, the range on 200, the “number of CPU seconds per 200 test vectors for ) /
combinational logic” is found using equation (i3.18) as

200 - 4.770 — 2.462 - 200 - 0.120 < p200 < 200 - 4.770 + 2.462 - 200 - (0.120)  (3.19)

or

895 < pago < 1013. ' (3.20)

In the proposed step-by-step procedure for estimating MA4, the CPU time that
does not result in a test vector is excluded from the set {T},T,...,Tx}. Equation
(3.20) then indicates that a Jower bound on CPU time required to compute a set of
test vectors for detecting all detectable single stuck-at faults in the hypothetical circuit
lies in the interval 895 CPU seconds and 1013 CPU seconds (with 98% confidence).

The statistical approach to estimating test generation time is further demonstrated
in reference [91], where a “test generation time” confidence interval is established for
the 74181 ALU and the AM25505 multiplier. In each case, the actual test generation
time lies within the 95% confidence limits as expected.
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3.2.5.2. Estimating Test Set Size

3.2.5.2.1, Bounds on Test Set Size

When evalua.tmg a preliminary clnp design that includes scan path testab:hty, the
question arises as to how many test vectors are tequxred to detect all detectable faults
in the various blocks of corrbinational logic. One approach to answering this question
is to make use of an éxisting test generation algorithm to compute a test set for each
block of combinationzl logic. This approach can be very expensive for large redundant
combinational circuits as the computer time required to generate.a test set increases
exponentially with the number of circuit gates and primary inputs.

. An alternative and relatively inexpensive approach to determining the testability
of a combinational circuit is to establish bounds on test set size. Such bounds can

be computed in worst-case polynomial time by using the test counting procedure-

proposed by Debany[83]. This procedure, which was developed by considering circuits
that contain AONN (AND, OR, NAND, NOR) and XOR gates, is outlined and
exemplified in the following paragraphs.

3.2.5.2.1.1. Test Counting Procedure

Results presented by Debany ([83], theorems 5.24 and 6.14) show that O(G) oper-
ations are required to find the minimum or maximum cardinality of any complete
test set for a given AONN or XOR fanout-free network containing G gates. Ia addi-
tion, the lower and upper bounds on test set size for a fanout-free network are not
affected when they are fanout-free subnetworks of another network. These obser-
vations produced the following theorem for obtaining bounds on test set size for a
general combinational logic network which may be irredundant or redundant(83].

Theorem 7.4: Let C be a general combinational network (irredundant or redundant),
with set of irredundant test sets I;; and set of irredundant test sequences Rf, and C
is composed of n distinct maximal fanout-free subnetworks Cj, Cs, ... C,. Then

e () < 3> Loas (1) -

=1
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b. Lues (BS) < 3 Lmas (Re,) -

=1

c. Furthermore, if C is an irnnedundant network

Lmin (IC) 2 mazx {me(lcu)} *

i=1..n
where,

Ic, which exists if and only if C is irredunda.nt, is the set bomposed of the
following sets:

— All partial test éets that are irredundant and detect.a.ll single stuck-at-0
(stuck-at-1) faults and no single stuc’-at-1 (stuck-at-0) faults.

= All complete test sets that are irredundant and detect all single stuck-at
faults. ‘

Ig, is the set composed of all irredundant test sets for circuit C;, where C; is
the standalone version of the ith fanout-free subaetwork of C,

Ry, is the set composed of all irredundant test sequences for circuit C;,
Lumin(Ic,) is the minimal cardinality of any complete test set in 1@,
Lumas(Ic,) is the mmmal cardinality of any complete test set in Ig,,
L,,,.-.(R;g,.) is the minimal length of any complete test seq in Re;, and

Lmas(Rg,) is the maximal length of any complete test seq in Re,.

establishing bounds on test set size for a given combinational logic network:

1. Identify all maximal fanout-free subnetworks in the given combinational logic
network.

oy SRR L L L e

This theorem and related discussion in [83] suggests the following procedure for




2. Establish bounds on the number of irredundant test vectors required to test

é@_éh of the fanout-free subnetworks.

3. Use theorem 7.4 and the results from step (2) to establish bounds on test set

size for the given combinational logic network.

3.2.5.2.1.2. Test Counting Experiments

Test counting experiments reported in [83) that use fanout-free subnetworke for es-

timating bounds on test set size are presented in Table 3.13. The 15 columns of

Table 3.13 contain the following information:

) @_]m]_ gives the number of primary inputs to each network (N ) Column 2

gives the nun ber of gates in each model. This number is the count of primitives
in the model and can vary according to modeling style. Column 3 gives the
number of fanout-free subnetworks in each medel. : '

Every network was subjected to (single) fault simulation, where all 2N input
combinations (for networks with N primary inputs as given in Column 1) were
graded for fault detection. Fault simulation was performed using the Hierarchi- -

cal Integrated Test Simulator (HITS) in two modes. The first mode found the

total number of faults undetected after 2N tests. The second mode found the set

of all faults detected by each of the 2V tests. Column 4 gives the total number

of single faults considered by HITS. Column 5 gives “he number of undetectable
faults as reported by HITS, that is, the number of faults that are not detected
by any of the 2N possible tests. Only the models with 0 undetectable faults are
irredundant with respect to all single faults. Note that Columns 4 and 5 are
not filled in for networks that contain XOR clements as primitive gates. This is
because HITS, as with all known commercially available fault simulators, faults
only the lines and so does not require an n-input XOR element to be tested

with all 2N input combinations. The greatest percentage of undetectable faults
occurs in the case of Network 25(8.2%).
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o Column 6 is the lower bound for Lmin(X), and Colamns 7 and 8 are the upper
bounds for Lmaz(T;) and Lonin(RL), respectively, as given in Theorem 7.4. In
giving a lower bound for Lun(I;) for each network, the assumption is made that
Ic exists for each network (i.e., that all faults are detectable in each network)
when in fact that is not true for 24 of the 39 networks. However, as noted above,
“nearly all” of the faults are detectable in each network.

In order to check the test count bounds, it would be desirable to find the true
values for Lmin(Tg), Lme=(I), and Lmaz(R%). However, it is essentially im-
possible to find (and prove) the true values for these quantities for any of the
networks considered here. In lieu of using algorithms to provide the exact an-
swers are applied heuristics to find good estimates. One such heuristic is a
Ege_d_z procedure which seeks to find a close-to-global-optimum result by find-
ing a local optimum on each of a sequence of steps [94]. A greedy minimization
procedure was applied to find the estimates for Lpin(IL) given in Column 9,
where the procedure sequentially selected tests that maximized the additional
number of detected faults on each step. A greedy minimization procedure was
also applied to find the estimates for Lmaz(Ry) given in Column 10, where the
procedure sequentially selected tests that minimized the additional number of
detected faults on each step (although in order for the resulting collection of
tests to be irredundant at least one new fault had to be detected by each test).
Every number in Column 9 has been verified as being the cardinality of an ir-
redundant test set. Every number in Column 10 has been verified as being the
length of an irredundant test sequence, although each corresponding test set is

~ irredundant. No similar computationally efficient means of estimating Lmaz(¥c)

is known.

Qghmng_n;li are derived using work published by Hayes{95]). For each nei-
work, Column 11 gives II, the total number of distince input Joutput paths in
the network. Column 12 gives Hayes’ upper bound on Lmin(Ic) based on the
assumption that multidimensional path sensitization may be required (where
N is the number of primary inputs and M is the number of primary outputs).
Column 13 gives Hayes’ upper bound based on the assumption that only single
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path sensitization is required.

o One hundred test sequences were created by selectiny tests at random until all
detectable faults were detected. The test sequences obtained were then reduced
to irredundant test sequences. Column 14 gives the mean length of each set of
random test sequences. @lumn 15 gives the standard deviations of the lengths
in Column 14.

The bounds of Hayes were included for comparison with results obtained by using
fanout-free subnetworks. The Hayes bounds are true bounds but are extremely high
when compared to the bounds for Lya-(Ig) and Lyez(RE). The bounds for Lz (1)
and Lpy..(R{) are somewhat high because the results were obtained without consid-
ering information about the fanout structure of the general networks. Héyes’ bounds
are very high because he takes into account every possible consequence of reconvergent
fanout.

The randomly generated irredundant test sequences are provided for comparison
because many commercial test pattern generation systems perform in exactly that
manner. Fault simulation is now far cheaper than deterministic test generation be-
cause of the availabili*y of fast concurrent fault simulators and new special purpose
simulation hardware that embed concurrent fault simulation algorithms.

The Reed-Muller canonical (RMC) forms for the network Networks 38 and 39,

~ are included not only because they each contain a la.rge XOR fanout-free subnetwork
but also out of interest in the use of RMC networks for enhancing testability. It
was shown by Reddy[96] that for any N-varizble RMC realization (including an extra
control input) at most 3N+4 tests are required. Networks 38 and 39 realize 5-variable
functions (even though they have 6 primary inputs) so the number of tests required
.is at most 19. This number is 1.73 times the greedy minimum and is greater than the
mean number of tests in random irredundant test sequences. Tests were generated for
the RMC form using the test generation algorithm of [97] to obtain a test sequence
of length 19. The test sequence, applied in the order generated by the procedure,
contained 12 irredundant tests. This is only one more test than the greedy minimum.
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4. CHIP LEVEL DFT/BIT

The system deveioper must have information on perfermance and cost of alternative
DFT/BIT techniques to select the appropriate chip level testability for a new chip
design. To this end, task 2 of this program involves the assessment of IDFT/BIT
techniques for enhancing fault detection and diagnosis during the R&:D, manufacture,
and the operational phases. Test mode options such as on-line, off-line, built-in test,
external test, and énhancements for fault-tolerance (e.g., correction, masking, and
recovery), are also considered. |

4.1. Alternative DFT/BIT Techniques

Numerous DFT/BIT techniques, and variations thereof, have been proposed for en-
hancing the testability of digital circuits at all levels of the system hierarchy. The
focus of this research is at the chip level, and the techniques that are available for
enhancing chip level testability can be caiegorized as follows:

o DFT techniques

- Ad hoc

- Structured
¢ Off-line/On-line BIT techniques
- Oft-line o
- On-line
o Fault-tolerant techniques
~ Hardware redundancy

-~ Data redundancy
~ Time redundancy




(- D

These categories are further described in Figure 4.1, Figure 4.2, and Figure 4.3,
where taxonomies DFT/BIT techniques are presented. Nearly all of the of DFT/BIT -
techniques presented in the taxonomies have been used at one time or another by the
test engineers to enhance chip testability, and the system developer should consider

- using one or more of these techniques when selecting testability features for a new

chip design.

Viewing tLe three DFT/BIT taxonomies, the question arises as to which of the
many DFT/BIT techniques should be given high-priority by the system developer.
That is, which of the techniques are known to be practical from the point of view of
wst/perfoﬁnanoe? To answer this question, detailed descriptions of selected DFT,
BIT, and fault-tolerant techniques, including performance and design penalty infor-
mation, have been documented in a recent research report(2]. Rgéults presented in
the research report, combined with DFT/BIT research performed in this program,
indicate that the sixteen DFT/BIT techniques have been used extensively by the test
community and should be given primary consideration by the system developer. The

- sixteen techniques are identified and prioritized in the following section of this report.

4.2. DFT/BIT Selection

When specifying chip level DFT/BIT for a preliminary chip design, the testability ob-
jective is to select those techniques that ultimately satisfy system testability require-
ments in a cost-effective manner. This section discusses DFT/BIT cost/performance
tradroﬂ's and identifies high-priority DFT/BIT techniques for consideration by the
system developer as he strives to achieve this testability goal.

4.2.1. Cost/Performance tradeoffs

As discussed earlier in section .0, the system developer can use a combination of
DFT/BIT to increase system reliability and maintainability as required to satisfy
system requirements. More specifically, a combination of DFT (ad hoc and/or struc-
tured) and BIT (signature a.alysis, boundary scan, etc.) can be used to decrease
the time required to detect and isolate a fault. Tkis results in a reduction in MTTD
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and MTTR which translates to an imprbvement in maintainability. On-line BIT
(Hamming codes, replication, etc.) can also be used to mask errors which increases
- MTTF and improves reliability. A major component of the price to be paid for
‘these improvements is the up-front research and development required to select the
appropriate DFT/BIT for each chip design. ' '

_ The quantities MTTD, MTTR, and MTTF are observed to be useful as system
level performance metrics when evaluating the impact of alternative DFT/BIT tech-
niques on system reliability and maintainability. These high level metrics can also
be used at the chip level (they are functionally related to the testability factors and
measures presented in section 3.0). In this regard, important chip level testability
metrics for evaluating the effectiveness of DFT/BIT include the following:

1. fault coverage (fraction of detectable faults that are detected by a given te.: set
and test application procedure)

2. error latency (time interval between first error occurrence and error detection,
al! errors being observed at the logic output)

3. chip level MTTD (the mean time required to detect the presence of a fault in a
block-of logic by a given test sct and test application procedure)

The observation that chip level Desi'gn for Testability can increase fault coverage,

decrease error latency, and decrease chip level MTTD cannot be overemphasized. Thé‘

- system developer must recognize that design for testability is absolutely essential
for the development of testable VLSI chips. Also, design for testability at higher
levels of the system hierarchy (use of test busses, boundary scan, etc.) is the only
cost-effective way to satisfy stringent system testability requirements. For example,
Williams and Parker([98] state that the number of test vectors N required to completely
~ test a sequential machine from the I/O can range up to N = 2™*" where “m” is the
number of machine states and “n” is the number of primary input lines[98]. A value of

=48 and n=16 results in N = 2% test vectors. Assuming 1 microsecond is required
for application of each test vector, approximately 584,000 years would be required to
apply 284 test vectors to the circuit. This problem can be solved by using a Design for
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Testability technique (2] to allow internal nodes to be controlled and observed with a
relatively small number of test vectors. This example is included to emphasize that
a carefully selected combination of DFT and BIT can be used to enhance reliability
and maintainability in a cost-effective manner.

DFT/ BIT design penalties to be considered at the chip level (and also at higher
levels of the assembly) include the following:

¢ Design constraints imposed by a particular DFT/BIT technique

¢ Increase in development.costs. |

o Increase in construction costs

* | Performance degradation

e Silicon area cost

e Additional power requix:ed

¢ Number of additional 1/0 pins required

e Weight increase (a*. higher levels of assembly.)

e Maintainability of BIT

¢ Reliability of BIT

o DFT/BIT software requirements
Available performance and design penalty information on several important DFT/BIT
techniques appears in a recent research report[2] that focused on the assessment of
DFT/BIT techniques. The techniques described in the research report are practical

techniques that are generally recognized by the test community as being attractive
techniques for consideration when developing testable and reliable digital systems.
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4.2.2. High-Priority DFT/BIT Techniques

Prioritization of the DFT/BIT techniques shown in Figure 4.1, Figure 4.2, and Fig-

" ure 4.3 is accomplished by considering the performance/cost of the techniques and
their impact on system life-cycle cost. For example, in space-based applications the
cost of loss of a satellite and the impact of such a loss on achieving mission ob-
jectives are especially important. Stated differently, the most important DFT/BIT
techniques are those that increase system availability by increasing MTTF and de-
creasing MTTD and MTTR (see Section 1). Increased availability is achieved by
using DFT/BIT techniques that are cost-effective and provide for thorough testing
and fault-tolerance. Based on these criteria and knowledge of the va.ridus techniques
as reflected in the data base information, sixteen of the most important DFT/BIT
techniques are identified and prioritized immediately below. - B

High Priority DFT Techniques:

'o Scan Design
- Level-Sensitive Scan Design (LSSD) {2]
- TITUS Scan [2] ’

¢ Boundary Scan [2]

o Standard Test Port (IEEE Std 1149.1) [99]

 High Priority Off-line BIT Techniques:
o Scan Test (Off-line test performed on a scan design) [2]
° Sign#ture Analysis [2]

High Priority On-line BIT Techni;lues:

o Parity Codes [2]

e Hamming Codes 2]
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o M-out-of-N Codes [100,101]

e Checksum Codes [101,102)

¢ Residue Codes [1C1,103]

¢ Short Cyclic Codss [101,102]

¢ Binary BCH Codes [101,102]

¢ Reed-Solomon Codes [101l,102] |
o Fire Codes [1‘01,102]

o Replication [2]

The bigh priority DFT and off-line BIT techniques listed above are state-of-the-art
teci. siques for enhancing chip testability in a cost-effective manner. These techniques, 4
which can also be used to detect and isolate faults at all levels of the system hierarchy,
should be given primary consideration by the system devéloper when confronted with
the problem of incorporating testability at the chip level.

‘Similarly, the high priority on-line BIT techniquds are useful in applications that
require detection and isolation of errors that occur while the system is performing its
intended function. For exanple, the short cyclic codes refer to binary cyclic codes
with relatively few check digiis (other cyclic codes include the BCH codes, RS codes,
and Fire codes). The short cyclic codes are used primarily for error detection or
single-bit error correction. More specifically, a cyclic Hamming code with distance
dmy = 3 is a short cyclic code that can be used to detect single or double-bit errors
that occur when data is transferred over a data path.

Recognizing that knowledge in the area of digital system testability is expanding
rapidly due to the efforts of many researchers, the system designer should take note
- that the above list of practical DFT/BIT techniques is a “temporary” list that will
expand with time. To this end, RTI has evaluated several homogeneous DFT/BIT
techniques to identify promising techniques fur consideration by the system developer.
This research effort is described immediately below.
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4.2.3. Evaluation of Homogeneous DFT/BIT Techniques -

This section contains an evaluation of several homogencous DFT/BIT techniques,

where “homogencous” refers to techniques that are suitable for incorporation into
a structured design methodology. The chosen téchniqucs are evaluated against a
common set of criteria involving such factors as performance degradation, testabil-
ity enhancement, overhead incurred, and suitability for automation in a CAD/CAE
environment.

As circuit integration levels have increased rapidly over the years, so have the
costs associated with testing these devices. To help alleviate these high costs caused

in part by the reduced accessibility of internal nodes, a number of DFT and BIT

techniques have been proposed either to improve the testability of integrated circuits
or to make them aelf-tésting. A few techniques such as scan design, and other scan
path techniques, have been automated and incorporated into a CAD system which

automatically implements the scan path into the design. However, scan path methods

still may suffer from the exorbitant costs which are associated with automatic test
pattern generation (ATPG).

An alternative method of reducing the costs associated with the testing of VLSI
devices is through the ure of BIT techniques such as BILBO [104] and Signature
Analysis (SA) [105] which provide an on-chip self-test capability. These techniques
make use of a special structure called a Linear Feedback Shift Register (LFSR) [106]
which is easily implemented in hardware. A maximal-length LFSR of length n can
be used to generate 2* — 1 pseudorandom patterns which can be applied at-speed
to the circuit-under-test (CUT). One advantage of using an LFSR for pseudorandom
test pattern generation is that it allows one to test for delay faults (which may not
necessarily be detected during deterministic testing) since the pseudorandom patterns
can be applied at-speed. In addition, the time-consuming and costly task of generating
and storing deterministic test patterns is eliminated. »

A number of studies [107,108) have shown the economic benefits of incorporating
self-test logic on VLSI circuits. The use of BIT techniques significantly impacts
not only component testing, but has a positive impact on higher levels of testing
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throughout the life-cycle. If BIT has as positive an impact as these studies show,

the question arises as to why BIT has yet to be accepted in the design community?
It seems a number of factors are involved which have, to dat«, prevented BIT from
being widcly used. One factor is the direct negative impact that BIT has on chip area

" and perf(')imanoe. Many designers are relu-tant to the devote the 10-20% overhead

that is typically required to implement BIT functions. Since most designers are
not necessarily familiar with testability requirements, they typically do not regard
testability as a design parameter. | '

An additional barrier to the acceptance of DFT and BIT methods is the lack of a
structured des’gn methodology for incorporating these techniques into the design and

~ development rhases. At present, most techniques that are incorporated into a design

arc imp,ementad in an ad hoc fashion at the discretion of the design team. This is due
to the lack of CAD tools that remove the burden of inserting DFT/BIT methods from
the de-igners. Some progress has been made in recent years in the design automation
of DFT and BIT features. CAD tools such as TITUS [109] and VENUS [110} have
automated the incorporation of scan techniques into the design process. Although
the incorporation of scan paths has made great inroads into reducing the complexity .
of testing VLSI devices, problems still exist with the high costs associated with test
pattern generation, long test application times, and the need to store large amounts
of data for these particular methods.

4.2.3.1. Alternative Techniques

RTI technical personnel searched technical journals, conference proceedings, books,
and other available sources to identify alternative homogeneous DFT/BIT techniques.
The literature search was conducted in two separate phases. In the initial literature
search, a total of 16 techniques were identified as being potential techniques for ho-
mogeneous DFT/BIT. These techniques and a reference source are listed in Table 4.1.
After conducting a feasibility study of each of these techniques, it was deemed that
techniques 12, 13, 14, 15, and 16 were less promising than the others and were thus
climinated from furthcr study. Additional literature references were then tracked
down and studied to determine the technical capabilities and limitations of the re-
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Table 4.1. Techniques Found During the Literature Search

Technique Author Reference

1) Circular BIST Stroud - ITC 1989
2) Circular Self-Test Path (CSTP) Pilarski DAC 1987
3) Design Methodology Ambler ITC 1986
Incorporating Self-Test (DEMIST)
4) Built-In Exhaustive Test (BEST)  Krasniewski ITC 1985
5) Simultaneous Self-Test (SST) ‘Bardell ITC 1982 ,
6) LSSD On-Chip Self-Test (LOCST) LeBlanc Design & Test Nov. 1984
7) Pseudo-Exhaustive Test McCluskey  Trans. on Computers June 1984
8) Weighted Random Tesi Wunderlich  ITC 1988
9) ICL/ASTA Iliman ITC 1989
10)LSSD Eichelberger DAC 1977
11) CrossCheck Gheewala  DAC 1989
12) Cyclic Analysis Testing Burkness U.S. Patent 4,680,761
System '
13) External Self-Test Using Segers ITC 1981
Scan Path &
14) Mixed-Mode Self-Test : El-Ziq ITC 1984
15) Centralized Verification McCluskey  Custom IC Conf. 1987
Test g '
16) L3-BILBO hletz ITC 1987

maining 11 techniques.

4.2.3.2. Evaluation C.iteria

To make a proper evaluation and comparison of the DFT/BIT techniques identified
above, RTI has developed a set of evaluation criteria to characterize and assess the
capabilities and deficiencies of each technique. The criteria were developed by focusing
ou three distinctive areas: (1) performance, (2) cost, and (3) applhcability.

The developed set contains nine distinctive criterion categories of which three
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categofies are divided into two subcategories each. Four of the criterion categories
are used to evaluate the cost of each technique. Three categories deal with the
performance of the techniques while the remaining two criterion categories are used

L S S

E to measure the applicability of the techniques. The criteria set is defined below.
| Criterion #1 — Hardware Overhead

1a) Logic Overhead — The amount of extra logic needed to incorporate the chosen
BIT technique in the design. The overhead will be defined in terms of additional
2-input CMOS gate equivalents. Low overhead will merit a high score.

1b) 1/0 Pin Overhead — the number of additional I/O pius needed to implement
this technique. This has a large impact on packagmg costs. A low number of extra
1/0 merits a high score.

Criterion #2 — Fault Coverage

2a) Stuck-at Coverage — The ratio of the number of faults detected by the technique
to the number of detectable faults. This is a measure of the efiectiveness of the BIT
technique. The fault model assumed is the single stuck-at fault model. High coverages
merit a high score.

2b) Delay/Opens/Bndgmg Faults Coverage — The applicability of the method for

_ testing delay faults is the major concern of this criterion. Other types of faults,
such as bridging faults, opens, shorts, etc., should also be given consideraticn. Good
coverage of these types of faults merits a high score.

Criterion #3 — Test Run-Time
The number of clock cycles needed to run the entire BIT sequence. Some techniqﬁes

_ may require more than a single test session to complete the test or may require some
serial data shifting to set vp and conclude the testing session. This is a measure
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of the overall test application time. ‘Also, some techniques require a slow clock for
performing certain tasks which can significantly lengthen uae test time. Short test

times merit high scores.

Criterion #4 — Performance Degradation

The reduction in chip performance (during the normal system mode of operation)
caused by the delay associated with the additional BIT circuitry. Low degradation

merits a high score.
Criterion #5 — Relative Ease of Automation

Although the techniques chosen for inclusion .in this comparative investigation are .
all suitable for automation in a CAD environment, this criterion will measure the
relative differences in the ability to automate different techniquw. Techniques that
are simple overlays of an existing design or that can be easily automated merit high

scores.
Criterion #6 —- £xternal Accessibility and Interface Requirements

6a) External Accessibility by System Diagnostics/ ATE — The ease with which main-
tenance processors or external ATE can access the results of the self-test sequence.
In some cases, external ATE cannot control or monitor the testing procedure at the
operational speed of the device under test. This may result in special needs for the
test equipment to be compatible with a given BIT technique. Techniques with good
accessibility merit high scores.

6b) JTAG Compatibility — Compatibility of the technique with the JTAG/IEEE
1149.1 Test Port standard. The test port can be used to support the self-test func-
tions, transfer test data to and from the device under test, and pass self-tests status
information to the maintenance processor. A technique which can use the JTAG
standard to communicate control and test data to and from the device merits a high
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score.

Criterion #7 — Applicability/Compatibility to Different Circuit Struc-
tures : '

The ability of the technique to be-'é,ppﬁed to different types of circuits such as
datapath-intensive circuits, finite-state machine controllers, cr circuits with various
special logic structures such as RAM a.xid PLA. In addition, this criterion will also
reflect the compatibility of some techhiques towards other structured BIT techniques
such as Scan or special structured techniques for RAM, PLA, etc. Téc_hniques which
are applicable to a wide range of different circuit structures merit a high score.

Criterion #8 — Life-Cycle Usefulness

The ability of the chosen technique to be used throughout the life-cycle of the circuit
at each level of testing that is required. Some techniques may not be useful during
production testing due to the need for large amounts of serial data. In other cases,
certain techniques may not be uscful during field-level testing due to complex ATE
interface requirements. This criterion will attempt to measure the degree to which
the technique can be applied at all levels of testing. Techniques which can be used
at many levels of testing througheut the life-cycle of a product merit a high score.

_Criterion #9 — Expected Computational Expense

The amount of CPU time expected for the automation software to complete the trans-
lation of a design into a self-testing design. This criterion includes the computational
expense that may be required to generate deterministic test vectors and/or the cost
in computing the near-optimal weights needed for weighted random vectors. This
criterion is important from the end-uset’s point of view in that he would like to know
approximately how much CPU effort will be needed to do the design translation.
Some consideration sheuld also be given to the memory requirements (i.e., a few
Mbytes versus a few hundred Mbytes). Techniques with low computational expenses
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merit a high score.

4.2.3.3. Criteria Weighting Factors

To reflect the relative importance of the criteriza during the preliminary screening
process, a set of weighting factors was developed. These weighting factors are used
to multiply the score assigned to each technique for the various criteria such that an

overall figure of merit can be obtained which reflects the importance of each criterion.

This figure of merit is obtained by summing the weighted criterion scores together.

During the life-cycle of an integrated circuit, the relative importance of these crite-
ria may change. For example, maintenance technicians who service fielded equipment
do not really care how difficult it was to automate the self-test technique in a circuit.
Rather, they are more concerned with how quickly they can diagnose the failure and
how difficult it will be to interface with the failed system. To reflect the changes
in importance that can occur, three sets of weighting factors were developed. These

weights reflect the relative importance of the criteria at the following phases: (1) the

- Research, Design, and Development (R&D) phase, (2) the Manufacturing phase, and
(3) the phase where the equipment is operating in the field (the Field phase). Thus,
a figure of merit score can be obtained for each technique from these three points of

view. An overall figure of merit score can then be obtained by summing the individual

scores. The weight factors are shown in Table 4.2.

4.2.3.4. Promising BIT Techniques

Each of the DFT/BIT techniques identified above was subjected to an evaluation
using the twelve criteria developed previously. The evaluation was performed based
on the technical information gathered during the literature search. For each criterion,
a score of Low, Medium, or High was assessed for each technique based on it‘ relative
performance when compared to the other techniques being studied. Qualitatile scores
of this nature were used rather than a numerical score. An accurate numerical score
for each criterion was difficult to assign based on the technical information that had

been gathered. Even though some of the techniques had specific information regarding
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Table 4.2. Criteria Weighting Factors

Rl R e R R S

Criterion R&D Manufacturing Field
Logic Overhead 15 15 0
I/0 Overhead 5 10 5
Fault Coverage 15 15 15
Delay Fault Coverage 5 10 15
Test Run-Time 5 15 20
Performance Degradation 10 10 5
Ease of Automation 10 0 0
External Accessibility 5 10 15
JTAG Compatibility 5 5 15
Applicability to Ckts. 10 0 0
Life-Cycle Usefulness 5 10 10
Computational Expense 10 0 0
Total 100 100 100 -
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their performance and costs, RTI personnel decided that only relative scores could
be assigned at this point in the program The scores assigned to each technique are
shown in Table 4.3 '

To use the weighting factors that were dei/eloped these qualitative scores must be
converted into a numerical score. To accomplish this, the followmg numerical scores

are assigned:

Low 0 points
Medium 5 points
High 10 points .

For each technique, the individual criterion scores are multiplied by the respective

- weighting factor for the R&D, Manufacturing, and Field points of view. The weighted
criterion scores are then totaled to produce a total combined score for each of the three
viewpoints as shown in Table 4.4. These totals are then further summed together to
produce an overall figure of merit as shown in che last column. ' ‘

Based on the results shown in Table 4.4, it was observed that three techmques ‘

scored significantly above the average score of 194.5. These three techniques were
(in order) (1) CrossCheck, (2) the LSSD On-Chip Self-Test (LOCST) technique, and
(3) the Circular BIST technique. A detailed description of each of these potentially
attractive DFT/BIT techniques appears in Appendix A of this report. |
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Table 4.3. Relative Scores for Each DFT/BIT Technique
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Table 4.3. Relative Scores for Each DFT/BIT Technique (continued)
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Table 4.4. Preliminary Screening Scores

7
A
\
. 2 gt it 8 :
s (RIROSREL G L Tt ) e i AV RS T PaiBiiliede &

Technique R&D Manufacturing Field Total

Circular BIST 52.5
CSsTP ’ 40
LOCST 85
BEST 42.5
- DEMIST 475
SST 65
Pseudo-exhaustive 60
Test
Weighted Random 65
Test
ICL/ASTA 52.5
LSSD 70
CrossCheck 82.5
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75
57.5
(A
62.5
57.5
571.5
60

60
55

62.5
82.5

85
62.5
65
80
7.5
70
65

€5
70

57.5
80

212.5
160
220
185

182.5

192.5
185

190

1775

190
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-8, CONCLUSIONS

The objective of this research effort is to establish guidelines that will assist system
developers in specifying consistent, necessary, and achievable chip level testability
requirements. Such guidelines will contribute to solving tiic more general problem of
setting cost-eflective testability requirements at all levels of the systei hierarchy.

Section 2 of this report discusses two approaches (top-down and bottom-up strate-
gies) to setting testability requirements. The top-down approach consists of distribut-
ing system testability requirements to lower levels and ultimately to the chip level.
The top-down approach is not attractive since the resulting chip requirements may be
unnecessary or unachievable. Such requirements ultimately result in chip testability
enhancement that is not cost-effective.

Alternatively, the bottom-up approach is a procedure for setting chip testability
rei;uirements that are consistent, necessary, and achievable. Testability evaluation
of the preliminary chip design, containing judiciously chosen DFT/BIT, is an essen-
tial step in bottom-up approach to specifying optimum (or near optimum) testability
requirements. Testability is evaluated by estimating testability attributes of the pro-
posed chip design. The resulting DFT/BIT cost/performance tradeoffs then provide
a basis for establishing cost-effective testability requirements. A set of recomumended
testability measures, along with methods for estimating the measures with meaningful
bounds or confidence intervals for the estimates, appear in Section 3.

Section 4 presents a comprehensxve list of testamhty techmques and identifies

sixteen high-priority DFT/BIT techniques that should be given primary consideration

when incorporating testability into a new chip design. These selective use of these
chip level testability techniques can result in cost-effective tmta.bilify enhancement of
new chip designs. Several homogeneous DFT/BIT techniques are also evaluated to
identify promising techniques for consideration by the system developer.
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1. STRUCTURED BIT TECHNIQUES

FULL NAME OF TECHNIQUE: _
Technique #1 - Circular Built-In Self-Test et

DEFINITION OF TECHNIQUE: . -
Circular BIST is an off-line BIT technique which provides both pseudorandom Co
test generation and test response ccmpaction at the chip-level and is based on the ..
feedback shift register approach. In tais technique, system registers are selectively RIS
replaced by special BIST registers which are connected in a circular path forming a '
feedback shift register. The construction of this feedback shift register creates a data P
compaction capability with the results of the compactor used as the input stimuli in T
the next clock cycle for the circuitry under test. Upon completion of the self-test N
sequence, the chip status can be held in storage until it can be accessed by system b
diagnostics or ATE equipment. L

DESCRIPTION OF TECHNIQUE:

In the Circular BIST technique, system registers are selectively replaced by a
special BIST flip-flop which can operate in one of four modes; reset, shift, system,
and BiST. Each BIST flip-flop contains two data inputs; a system data input and a
serial data input. The BIST flip-flops are each connected in a chain by linking the
serial input of one BIST flip-flop to the output of a previous BIST flip-flop. The last N
BIST flip-flop in the chain is then connected to the serial input of the first BIST e
flip-flop, thereby forming a circular path as shown below in Figure 1.1. ' ,

In addition to the chain of BIST flip-flops, a Signature Analysis Register (SAR) )
is included in the Circular BIST path in order to compact the output response of ' N
: the Circular BIST chain into a reference signature. The SAR is included within the A
Circular BIST chain in order to increase its length and reduce the probability that
the circular path will enter a short loop of repeating test patterns known as limit :
e cycling. , _

' During each clock cycle of the BIST sequence, the output response of the CUT is

compacted into a signature which is applied as the next test pattern to the circuit. A M
BIST controller located on-chip initiates the BIST sequence by resetting all BIST and

- SAR flip-flops. By applying a single clock cycle for each level ol sequential depth in T
the design, the entire sequential circuit can be put into a knowu, reproducible state. ,/

The controller then puts the circuit into the BIST mode where the initialized value
in the circular BIST register is applied o the general sequential logic. The output
value of each logic cone is then compacted and shifted one cycle for use as the next
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CASE HISTORY OF IMPLEM

input pattern to the circuit. As the BIST sequence continues, each bit propagates
to the SAR whereby it undergoes normal data compaction associated with signature
analysis. After a specified number of clock cycles (determined by the controller), the
SAR is disabled from any further data compaction until the signature is read by ATE
or by the maintenance processor used in system diagnostics.

Seven Circular BIST implementation exainples are described below [Reference
#3]. Each description contains information on chip area overhead, number of system
flip-flops, number of system flip-flops which have been replaced by the BIST flip-flop,
percentage of the device tested by the circular BIST technique, and fault coverage
obtained on the portion of the device which is tested by circular BIST.

CASE HISTORY OF IMPLEMENTATION (#1):

evice #1 is a production device which has been fielded for three years and
contains 1,820 system gates wntl 8K bits of on-board RAM.

1. Chip ares overhead = 9.‘79{’6

2. Number of System Flip-ﬂclps =152
3. Number of BIST Flip-flops = 92

4. Portion of chip tested = l,&)%

|
5. Effective chip fault coveraie = 93.4%

NTATION (#2):

Production device in produc[‘. manufacturing stage with 16,820 system gates.

1. Chip area overhea& = 18.5%

2. Total Number of System Flip-flops = 920
3. Number of BIST Flip-flops = 739

4. Portion of chip tested = 97%

5. Effective chip fault coverage = 91.6%

CASE HISTORY OF IMPLEMENTATION (#3):

Production device in product manufacturing stage with 16,215 system gates.
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- 1. Chip area overhead = 14.5%

2. Total Number of System Flip-flops = 983
3. Number of BIST Flip-flops = 576
4. Portion of chip tested = 93%

..
5. Effective chip fault coverage = 92.5% : N

. | -IB
CASE HISTORY OF IMPLEMENTATION (#4): ' - \

Production device in product manufacturing stage with 5,360 system gates.

: 1. Chip area overhead = 6.6% ol
2. Total Numb& of Systerﬁ Flip-flops = 248 _ A
3. Number of BIST Flip-flops = 72 | "'
4. Portion of chip tested = 39%
| 5. Effrctive chip fault coverage = 90.3%

CASE HISTORY OF IMPLEMENTATION (#5):

Production device in product manufacturing stage with 5,674 system gates and
2K bits of on-board RAM. -

1. Chip area overhead = 13.6% _ ' B N

2. Total Number of System Flip-flops -——-'358 |
3. Number of BIST Flip-flops = 230

4. Portion of chip tested = 100% ,

5. Effective chip fault coverage = 91.0:% :
CASE HISTORY OF IMPLEMENTATION (#6): -

Production device in product menufacturing stage with 13,937 system gates and :
32K bits of on-board RAM. -

1. Chip area overhead = 7.4% ' _ g
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2. Total Number of System Flip-flops = 784
3. Number of BIST Flip-flops = £75
* 4. Portion of chip tested = 99%

5. Effective chip fault coverage unknown at publication time

CASE HISTORY OF IMPLEMENTATION (#7):

Production device in product manufacturing stage w:th 15,394 system gates and
8K bits of on-board RAM. ,

1. Chip area overhead = 13.1%
2. Total Number of System Flip-flops = 790
3. Number of BIST Flip-flops = 656
4. Portion of chip tested = 99% |
5. Effective chip fault coverage unknown at éubliqation time

SIMILAR TECHNIQUE (#1): Circular Self-Test Path (CSTP)

- SIMILAR TECHNIQUE (#2): Highly Integrated Logic Device Observer (HILDO)

(See reference #6)

‘COMPLEMENTARY TECHNIQUE (#1):

A number of BIST techniques h~ve been proposed for hlghly regular structures
such as RAMs and PLAs which can be integrated with circular BIST. One such
technique is expliined in detail in Reference #5.

COMPLEMENTAFY TECHNIQUE (#2)

Scan methods can be considered as a com;. ementary technique since a partial
scan path is implemented in the BIST register via the shift mode. By adding a
serial input pin and an external mode pin, a complete scan capability can be easily
accommodated with this technique.

GENERIC DESIGN PROCEDURES:
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. The first step necessary to implement the Circular BIST method in a design
is to selectively replace the system flip-flops with the special BIST flip-flop of
Figure 1.2 below. Further work on developing a near-optimal selection of flip-
flops to be replaced is needed. However, the current approach is to replace those

_ fiip-flops whose combinational logic input cone exceeds a user-defined number
of inputs such as ihree. T'hLe reasoning behind this approach is that flip-flops

* with small combinational logic input cones are assumed easily testable and can

be readily tested by the outputs of the circular BIST chain.

. Any BIST flip-flop elements which reside in the critical timing paths of the
circuit can then be removed in order to reduce the impact of the BIST circuitry
on the device performance.

. Any BIST flip-flops which result in 2 register adjacency condition should be
reconfigured or removed to reduce the chance of error masking.

. Input multiplc :ers are added to isolate the system data from the circular BIST
data in order to have reproducible results. Otherwise, the logic value sequences
at the circuit primary inputs will affect the value of the signature in the SAR
at the conclusion of the self-test sequence.

. The BIST controller and SAR must be added to the circuit to control the self-
test sequence and to store the compressed signature until accessed by system
diagnostics or external ATE equipment.

6. Additional I/O pins are added for the BIST controller and the serial interface
to the SAR.

LOGIC STRUCTURES USED OR REQUIRED:

 System registers in the design are selectively replaced by the BIST Flip-Flop shown
in Figure 1.2 whose operational modes are listed in Table 1.1.

These BIST flip-flops are connected in a circular path by chaining the output of
one to the serial data input of the adjacent one. The last BIST flip output is connected
to the serial data input of the first BIST flip-flop as shown earlier in Figure 1.1.

In the Circular BIST method, a Signature Analysis Register (SAR) is also included
within the BIST chain and is strategically located to facilitate easy access during
system diagnostics. The SAR stores the signature resulting from the self-test sequence
until it can be read by the tester or the system test controller. In addition to the
SAR, 2:1 multiplexers are required at the circuit inputs to effectively isolate the input
system data from the BIST circuitry in order to obtain reproducible results. All of
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Figure 1.1. Architecture of the Circular BIST Technique
Do——wd
B0e—— |
= e
Q——o0
Blo—| VAN |
l clock
Figure 1.2. BIST Flip-Flop
B0 | Bl | Valueat Z | Mode \
010 0 Reset | .
0|1 S Shift
110 D System
111 DeS BIST
Table 1.1. BIST Flip-Flop Operational Modes
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this circuitry is controlled by a BIST control circuit which must be included on-board
the device. ' :

-

AVAILABLE TOOL (#1):
CONES - Behavioral Model Synthesis System developed at AT&T Bell Labs

AVAILABLE TOOL (#2):

CKT (Circuit Know Thyself) - CAD Tool developed at AT&T Engineering Re-
search Center

EXTERNAL INTERFACE REQUIREMENTS:

Through I/O pins which control the operational mode sequence and provide access
to the SAR.

INTERFACE TO ATE OR MAINTENANCE PROCESSORS:

The signature r&eultihg from the self-test sequence needs to be provided to either
the ATE or Maintenance Processor for comparison to the known good signature.
Access to the signature can be provided through a serial interface.

AEB‘LIQABLE TO ON-LINE CONCURRENT TEST? No
A.EELIQABLE TO OFF-LINE CHIP TEST? Yes |
APPLICABLE TO ENGINEERING TEST? Yes
W&M Yes
APPLICABLE TO COMBINATIONAL LOGIC? No

APPLICABLE TO SEQUENTIAL LOGIC? Yes

APPLICABLE TO MEMORY (RAM/ROM)? No

SBEQEIC_QIRQHIT_IXEES.IQ_SMHIQHJIJS_ARELIQAB_LE;
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FAULT DETECTION COVERAGE:
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Particularly attractive for general sequential logic in that the Circular BIST tech-
nique can be readily automated. .

Compared to the test sets typically generated by the D-Algorithm (or other de-
terministic ATPG), the number of test patterns for the circular BIST technique is

larger.

IMPACT ON T<ST APPLICATION TIME:

In general, BIST techniques exhibit shorter test application times due to the at-
speed generation and application of test patterns without the need for long shift
sequences to scan in test vectors and scan out test responses as required for scan
methods. The circular BIST technique seems especially attractive in that the test
patterns are applied at-speed to the CUT. The required test time to generate the same
number of different test patterns has been shown to be around 5% more than that
of an ideal generator. One of the more attractive features of this method compared
to other self-test methods is that the whole chip is tested in one session , whereas an
exhaustively self-testing chip may reqmre multiple test sessions in order to test each
combinational block.

Most of the reported results in using circular BIST indicate fault coverage levels
in excess of 9% could readily be obtained. :

1. Logic gateoverhead in the circular BIST technique is roughly equivalent to that
associated with scan methods. Reported results indicate an area overhead of
6-19% and a logic overhead of 6-28%. Compared to other self-test techniques

such as BILBO which use multifunctional reglsters, The amount of overhead
for circular BIST is smaller.

2. Some performance degradation is expected due to the extra logic required in
the BIST registers unless measures are taken to remove BIST flip-flops from the .
critical paths in the design.

3. At least three additional I/O pins are required to configure the DUT into the
proper operational mode (normal or test mode), and to access the resulting

.
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signature. More additional I/O pins may be depending on the complexity of
the self-test controller.

EFFECTIVENESS INFORMATION:

As with other data compression techniques such as signature analysis, some errors
which may occur during the self-test operation may result in a signature identical to
“the good-circuit value. The classical model for signature analysis has an error escape
probability of 2-*, where k is the length of the SAR.

A number of simulation studies by Pilarski [Reference #2] and Stroud [Reference
#1] have shown that after an initial setup time, the test patterns generated by the
circular BIST chain exhibit good pseudorandom properties. However, the problem of
register adjacency has been shown to cause fault masking in certain cases resulting
in lower effectiveness of the technique.

Another problem which can limit the effectiveness of this technique is limit cy-
cling. Limit cycling occurs when only a small subset of the pseudorandoin patterns
is generated before the circular path enters a repeating loop. In such cases, the effec-
tiveness of the circular BIST technique is severely hampered by the low fault coverage
which is obtained. It has been noted by Pradhan et. al. [Reference #4] that the prob-
ability of entering a loop during the test running time can be decreased by increasing
the length n of the circular path. In circuits with only a few system flip-flops, the
probability of limit cycling can be reduced by inserting extra BIST registers at the
expense of mcreased overhead.
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2. STRUCTURED BIT TECHNIQUES

FULL NAME OF TECHNIQUE
Technique #2 - LSSD On-Chip Seif-Test (LOCST)

DEFINITION OF TECHNIQUE

LOCST is an off-line BIT technique which provides both pseudorandom test gen-
eration and test response compaction at the chip-level and is based on the feedback
shift register approach. This technique assumes that the device will be designed ac-
cording to ihe Level-Sensitive Scan Design (LSSD) methodology. The input register
is configured into a pseudorandom pattern generator (PRPG) which applies patterns
to both the application logic and also provides patterns serially to the LSSD Shift
Register Latches (SRL) configured in a scan chain. Similarly, the output registers are
. configured into a signature analyzer (SA) which compresses the output data stream
into a unique signature.

DESCRIPTION OF TECHNIQUE

The LOCST technique complements the normal LSSD scan path testing method-
ology by implementing a pseudorandom-based self-test capability with only a nominal

increase in overhead circuitry. The ideal implementation involves adding boundary

scan registers to all primary inputs and outputs. These boundary SRLs are trans-
parent during normal system operation but can act as shift registers, PRPGs, or
SAs during test mode. If the overhead associated with boundary scan is too high,

functional SRLs can be modified to support these self-test features. The LOCST o

architecture is shown below in Figure 2.1.

During self-test mode, the input SRL register is configured as a maximal-length .

pseudorandom pattern generator. An initial non-zero “seed” is placed into the PRPG
and the internal SRLs and the output SA are initialized (often to the all zero state).
Pseudorandom vectors ure then serially shifted into the internal scan SRLs through
the operation of the chift clocks. When the internal SRL register is fiilled, the func-
tional clocks are activated for one cycle. In this manner, pseudorandom data is
provided to the chip from the internal SRL register and from the PRPG which also
feeds part of the application logic. When the internal SRL register is filled, the func-
tional clocks are activated for one cycle. This captures the application logic responses
into the internal register as well as the output register. However, the output register
has been configured as a signature analyzer and thus compresses the parallel output
response. Next, the shift clocks are cycled to completely shift out the internal SRL

N

——— " . e




RARR AR /
Input SRLYPRPG —
r‘f"il‘ )
I Tnternal SRL oo
~ Combinational
Logic
L—s] OupuSRUSA  }— spO | i }

IR |

Figure 2.1. LOCST Architecture for an LSSD-based design

register into the signature analyzer. In this manner, the internal response of the ap-
plication logic is serially compressed and mixed with the previously captured parallel
response in the output SA. While this shifting is taking place, the next pseudoran-
dom pattern is being serially shifted into the internal SRL from the PRPG. When the
final response has been shifted into the SA, the new pseudorandom pattern has been
shifted into the internal SRL register and the entire test cycle repeats. This cycle is
repeated until the fault coverage reaches an acceptable level or until the test pattern :
cycle begins to repeat. ,
Three devices that incorporate the LOCST techmque are described immediately S '

below Each of these devices performs a digital signal processing function. The =~ =
overhead rate reported (<2%} does not account for the LSSD overhead or the cverhead
associated with the On-Chip Monitor (OCM), part of which controls the self-test logic.

" 'In addition, the interior logic fault coverage is the statistical fault coverage for the
portlon of the devxce tested by LOCST method w1th 95% confidence.

| CASE HISTORY OF IMPLEMENTATION (#1)
'1 Chxp area overhead < 2.0% . , A
2 Number of Systemn SRLs = 213 | ]
5 Number of Random Patterns = 2000 - - .




4.
5.
6.

R T W

Percentage of interior logic = 87.5%
Interior logic fault coverage = 97.3%

Test time (IMHz Scan clock rate) = 0.43 sec

CASE HISTORY OF IMPLEMENTATION (#2)

1.
2. Total Number of Syster.: SRLs = 230
3. Number of Random Patterns = 500
4, |
5
6

Chip area overhead < 2.0%

Percentage of interior logic = 79.0%

. Interior logic fault coverage = 97.5%
. Test time (IMHz Scan clock rate) = 0.12 sec

CASE HISTORY OF IMPLEMENTATION (#3)

1.
2.
3.
4.
5.

Chip area overhead < 2.0%

Total Number of System Flip-flops = 223
Number of Random Patterr'xs = 3000
Percentage of interior logic = 85.0%
Interior logic fault coverage = 97.7%

6. Test time (1MHz Scan clock rate) = 0.67 sec

SIMILAR TECHNIQUE (#1)

. Mixed-Mode Self Test (MMST) [Reference #5]

SIMILAR TECHNIQUE (#2)




Random Test Socket [Reference #4]

SIMILAR TECHNIQUE (#3)
Centralized Verification Testing (CYT) [Reference #6]

COMPLEMENTARY TECHNIQUE (#1)

LSSD Scan Test can be considered as a complemenutary technique to LOCST since
a scan path is implemented in the DUT. Deterministic testing can still be peiformed
according to the normal LSSD methodology of scanning in internal states, applying
parallel test vectors, and scanning out the test responses.

GENERIC DESIGN PROCEDURES

1. The first step necessary to implement the LOCST method in a design is to
add transparent boundary scan SRLs to the primary inputs and outputs. If
a boundary scan capability is not to be incorporated into the design, then
additional transparent SRLs must be added for those primary inputs which feed
combinational logic blocks directly. These transparent input latches operate
only in the test mode and are disabled during normal system operation. In
similar fashion, transparent latches are added to primary outputs which are not
dire<tly fed by SRLs. ‘ ‘

2. The input latches are then modified to provide a capability for generating pseu-
dorandom test patterns. Multiplexers are added to isolate the internal latches
from the input and output SRLs. The output SRLs are modified to support a
serial and parallel signature analysis capability.

3. The OCM module is modified to control the self-test logic in addition to the
LSSD scan test methocology that it already supports.

4. Additional I/O pins are added for the OCM inputs and outputs.

LOGIC STRUCTURES USED OR REQUIRED

Ideally, transparent boundary scan SRLs are added to each of the primary inputs
and outputs for use in external testing of board interconnect and isolation of chip
logic from other devices. These SRLs are also used to form the PRPG and SA during

_ self-test mode. In addition to the basic SRL of the LSSD design methodology, a few

additional multiplexers, feedback gates, and coatrol logic are required to implement
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the LOCST technique. The feedback gates are used in the input and output LFSRs

for pseudorandom pattern generation and signature analysis. Some contrel logic may

be needed to disable the data port system clocks in the input LFSR to isolate the

gystem data from the self-test sequence in order to obtain a reproducible test. The

multiplexers are needed to enable the feedback circuitry and isolate the internal scan
- - path from the serial data inpnt pin as shown below in Figure 2.2.

SCAN DATA IN, SDI

Exclusive
OR

Figure 2.2. Arrangement of SRLs for LSSD Self-Test

AVAILABLE TOOL (#1):

No tools have been reported. However, the implementation of this techniqﬁe for
- an LSSD-based design is a very sinuple overlay of the functional design. Tools do exist
to convert a design into one that adheres to an LSSD design methodology.

EXTERNAL INTERFACE REQUIREMENTS

Through I/O pins which control the operationa! mode sequence and provide access
to the shift register latches. In the LOCST implementation, an On-Chip Monitor
(OCM) is included to control the test procedure (including the self-test circuitry).
Eight additional I/O pins are required for testing purposes. According to reference
#1, six of these are required for the self-test logic, most of these being SRL cloc
phases. :

s

INTERFACE TO ATE OR MAINTENANCE PRQCESSQ&S

The signature resulting from the self-test sequence needs to be provided to either
the ATE or Maintenance Processor for comparison to the known good signature.
Access to the signature is provided through a serial interface. The initial seed vector
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for the PRPG is usually provided through an external serial interface althoﬁgh it is
possible to store it on board the device. Careful control of the external clock sequence
is required to perform this self-test technique. ' ‘

W No
'APPLICABLE TO OFL-LINE CHIP TEST? Yes
APPLICABLE TO ENGINEERING TEST? Probably not, due to the compression

of response data by the output signature analyzer. However, some research has been
done whereby diagnosis of failures can be done using random pattern testing through
the collection of additional response data [Reference #7].

APPLICABLE TO PRODUCTION TEST?

Probably not, due to the slow test application speed caused by the serial data
transfer. In addition, the I/O logic is not tested by LOCST and requires some ad-
ditional deterministic testing (easily done if boundary scan is included) for this type
of logic. Since a much greater number of random patterns is needed to achieve the
same fault coverage obtained in deterministic testing, this technique will require much
Ionger test application times than normal deterministic LSSD testing. Thxs technique
is best aulted for board and module level testing.

APPLICABLE TO COMBINATIONAL LOGIC? No

APPLICABLE TO SEQUENTIAL LOGIC? Yes

APPLICABLE TO MEMORY (RAM/ROM)? No

SPECIFIC CIRCUIT TYPES TO WHICH IT IS APPLICABLE

Particularly attractive for general sequential logic in that the LOCST Self-Test
technique can be readily automated. For circuits with embedded RAM, additional
techniques must be applied to the RAM circuitry since LOCST will not completely
test these. ,

Since pseudorandom patterns are being generated while the serial shifting through
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the SRL chain is taking place, large numbers of vectors are “wasted”. A lower bound
on the number of unique vectors is (2" —1/m); where n is the length of the pseudoran-
dom test pattern generator and m is the number of SRLs in the internal scan path.
This effect where only a subset of all possible patterns is applied before the cycle
begins to repeat is known as limit-cycling. The number of unique patterns which are
applied to the DUT is ' ‘ '

p = Number of patterns = LCM((2" -1),m)/m

Y where LCM represents the least common multiple of the two arguments. Thus, if the
least common multiple of the two arguments is their product, then and only then can
the full set of 2" — 1 patterns be applied. If there exits a least common multiple ¢,

~ such that ' ‘

. g#Fm*2"-1

then limit-cycling will occur after the p* “good” pattern since the patterns will
repeat. Limit cycling can be avoided by adding extra non-functional (dummy) SRLs
B to the internal scan chain such that the least common multiple of m and 2" - 1 is
: their product. These extra dummy SRLs could then be used as a transparent latch to
sample key nodes that are difficult to observe during the exercising of the functional
clocks in the self-test sequence.

IMPACT ON TEST APPLICATION TIME

Since this technique requires large amounts of serial shiiting of pseudorandom
patterns throughout the SRL chain, test times tend to be slow compared to other
self-test methods. This method can support some at-speed testing of the application
logic if the functional clock pulse occurs very soon after the test pattern has been

possible with LOCST. The self-test time can be reduced if multiple scan paths are
used which are loaded in parallel with data from the PRPG. Pseudorandom data
can be fed to the multiple paths simultancously from the PRPG or from different
taps. The test responses can then be compacted using a p=rallel signature analyzer.
Since multiple scan paths are supported, fewer shifts will be required to scan in each
pseudorandom vector to the internal SRLs, thereby reducing the self-test time.

The reported results in using circular BIST indicate fault coverage levels in excess
of 80% could readily be obtained with test pattern sets under 3000 vectors. The

shifted into place. Nevertheless, complete coverage of all delay faults is generally not -




relatively low total coverages result from the inability of the LOCST technique to
test the I/0O latch circuitry. It should be noted that coverages in excess of 95% were
obtained using less than 3000 vectors on the portion of the devices which were being
directly tested .y the self-test circuitry. The overall coverage figures are moderated
by the portions of the davice not testable by the LOCST technique. However, if
. one includes boundary scan, very good coverages can be obtzined by augmenting the
self-test with a few functlonal patterns to test the Chlp boundary.

. 4

1. Logic gate overhead in the LOCST technique is 2% above the overhead associ-

ated with the LSSD scan path. Total overhead including the LSSD and OCM
control circuitry is estimated wround 15% of the total logic. The boundary scan
logic can also impact the overhead, although this logic could be incorporated in
the I/O pads themselves, thus minimizing the core logic overhead. '

2. At least six additional I/0 pins are required to control the self-test procedure A

Most of these are requu'ed for additional test clock phases.

EFFECTIVENESS INFORMATION

As with other data compression techniques such as signature analysis, some errors
which may occur during the self-test operation may result in a signature identical to
the good-circuit value. The classical model for signature analysis has an error escape
probability of 2-*, where k is the length of the SAR.

As mentioned earlier, most of the chip boundary logic as well as pa.rt of the OCM
module are not tested by the LOCST method. By including some additional func-
tional tests for the boundary scan logic, a high level of coverage seems plausible. The
problems associated with the LOCST technique ar~ the long self-test time required
and the difficulty of obtaining good delay fault co- crage. Also, the overhead :an be
fairly significant if one accounts for the LSSD ove:head in addition to the self-test
circuitry.

In terms of automation, the LOCST technique can be easily incorporated into
a LSSD-based design. Since the VENUS system already supports tiie LSSD design
methodology, this technique should be fairly easy to incorporate into the VENUS
system. This technique seems fairly attractive in that it has low overhead (when
designing with the LSSD methodology) and provided good overall coverage of a device
when supplemented by boundary & -- tests.

LITERATURE REFERENCES
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3. STRUCTURED BIT TECHNIQUES

FULL NAME OF TECHNIQUE:
Techmque #3 CrossCheck

DEFINITION OF TECHNIQUE

CrossCheck is currently being applied to enhance the testablhty, automatic test
pattern generation, and fault coverage of a gate array design. The base array is pre-
designed and manufactured by the chip manufacturer to include a grid of probe lines
and sense lines and the associated test controller. The gate or cell is also predesigned
to incorporate a small sampling transistor. When the logic design is completed, the
user’s design is superimposed on the base array. Figure 3.1 shows the user’s design
superimposed on the base array. In this arrangement the gate of the sampling tran-

sistor is connecied to the probe line, the drain to the sense line, and the source to

the output of the gate or cell. Figure 3.2 shows a more detail schematics of the gates
(or cells), probe lines, sense lines, and their connections. In rormal operation, the

sampling transistor is switched off and the gate output is disconnected from the sense

line. In testing mode, the sampling transistor is switched on by the active probe
line and connects the gate output to the sense line. Thus, the crosspoint switches at
the intersections of probe lines and sense lines provide a large number of test points
(or check points) that can be accessed or observed externally. This nearly 100 per
cent observability is the major contribution to the enhanced testability in the Cross-
Check technique. The software, part of the CrossCheck methodology, offers the ASIC
‘designer controllability by taking advantage of the high nbservability to reduce the
search space and to speed up (reportedly 40 times faster) the test generation and
fault simulation processes. The speed up is due to the fact that faults are observed
at the point of their occurrence and do not need to be propagated to the outputs.

Currently, CrossCheck does not implement Built-In-Self-Test (BIST) technique.
But CrossCheck is compatible with the proposed JTAG test bus standard and there-
fore can incorporate BIST and other scan testing techniques.

DESCRIPTION OF TECHNIQUE:

The key structure of the CrossCheck test is a grid of test points designed and
built into an ASIC’s base array by the chip’s manufacturer. The test points are
formed and addressed through probe lines and sense lines. For a base array with
100 probe lines and 100 sense lines, there are 100x100=10,000 test points that are
externally accessible. The access to the test points is controlled by the test controller
cell through the probe line driver and the sense line receiver. The linear feedback
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shift register (LFSR) may also be used to compress the test outputs received from
the sense line receiver. The four (or optionally five) I/O pins on the chip provide
access to the test controller which is designed to be compatible with the proposed
IEEE 1149.1 (JTAG) testbus standards.

The user develops his logic design as usual. The design is then placed and routed
in such a way that when the ASIC is fabricated, the design is automatically super-
imposed onto the base array which embeds the probe structure as described above.
The gate or cell in the CrossCheck technology is predesigned to include a very small
* transistor at the cell’s output end to provide connections between the cell and the
probe line and the sense line.

The source of the transistor is connected to the output of the cell, the drain to
the sense line, and the gate to the probe line. The output of the cell is transferred,
through the transistor, to the sense line when the transistor is oq'which is triggered
by the active probe line. Thus the small transistor serves as a switch that connects
or disconnects a cell’s output to the sense lines depending on whether the probe
line is active or inactive. In normal.operation, the switch transistor is switched off
to disconnect the cell from the associated sense line. In test u{ode the transistor
is switched on to allow the value of the associated node to be read onto the sense
line. The GO/NO-GO testing can be performed by capturing the response of the
circuit in the form of a signature and then reading out the signature through the
TDO pin. Signature generation involves selecting the probe line in the gate array one
at a time, loading the sense line values into the signature register, and then clocking
the signature register. ' |

Similarly, the value of any test point can be read out through Lhe TDO pin when
performing diagnostic access. CrossCheck is compatible with the proposed JTAG test
bus standard and can accommodate BIST or other scan techniques. Figure 3.3 shows
the CrossCheck test architecture which is similar to the JTAG test architecture. The
important difference is the provision of test point array, probe line driver, and the
sense line receivers in the CrossCheck. :

Since the crosspoint switching transistors are integrated with the logic cells of the
ASIC, they do not cause additional routing capacitance to the design. They do add
a small overlap capacitance which is about 1 per cent for a typical fan-in load at
the output of the logic gate. The increase in overall capacitance, including wiring
capacitance, is 0.2 per cent for a typical design with a fan-out of two. Thus, the small
additional capacitance has a negligible effect on propagation delay and the system
performance. The area overhead due to test points and the associated test control
logic is about 10 per cent on a 10,000-gate gate array ASIC. For a larger gate array,
the proportion of the area overhead will be smaller.

34




Bt o ENGA

Bt .:.'i?m{f}__l#_}?f,}',ﬁ‘!,ii'ﬂ,v.“‘v;!’jﬁ@;‘_‘ 2

—f Control Register |~ Probe Register |—| 1D Register |
- 1 : M|

|

| Signal Drivers |

-BIST
Pattern

Y v v ¥

Ll Test Point Ammray .
' *  TDO
(Test Data Out)

D1
 (TestDeta In) -
L]

TCK
(Test Clock)

11

M P Y Y

——1 Sense Line Receivers |

(Test Mode Enable) % DataRegiswer
[ "1 UscrDuta Regser _

Figure 3.3. CrossCheck Test Structure

35




. R RN B R R B b Dt e L e b e S enisgt

The average fault coverage for ten ISCAS combinational circuits ranging from
six gates to 3568 gates was about 99.6 percent with 1000 pseudo-random test pat-
terns. For benchmarks with two 10,000-gate CMOS gate array, Circuitl and Cir-
cuit2, the CrossCheck technique showed significantly higher fault coverage than the
non-CrossCheck methods. These designs contained deeply buried sequential logic,
complex decoders driven from buried instruction registers, 16 and 24 bit counters,
and contro! state machine. For Circuitl, the CrossCheck achieved 99.6 percent fault
coverage while the conventional technique only reached 72.8 percent fault coverage.
The total test generation and fault simulation time on a SUN3/160 was about 4 hours
for CrossCheck and about 146 hours for conventional technique. For Circuit2, the
CrossCheck had 99.8 percent fault coverage and the conventional technique had 92.5
percent fault coverage.

TESTING METHODOLC GY

"‘The large number of built-in test pom«*s will result in nearly 100 per cent ohserv-
ability. The software is then applied to improve the cont:ollability. The test pattern
automatically generated by the software can be used to supplement the original func-
tional patterns created by the designer. The first step of the testing is to initialize
the circuit to a stable and known state. The fault detection is then proceeded in the
following steps:

1. Run fault simulation with the user-developed functional test patterns If higher
- fault coverage is required, then supplement the functional vectors with the vec-
tors automatically generated by the CrossCheck. Alternatively, the user can
choose to generate all the test vectors automatically using CrossCheck.

2. CrossCheck can detect stuck-at fault and other faults. To detect faults that
may not be detected by the stuck-at fault model, apply a complementary signal
on the test point via sense line and make an analog measurement of the signal
amplitude on the test point. The non-stuck-at faults such as bridging faults,
internal shorts and opens usually cause the device to operate out of its noise
margin.

3. To prepare for ATE testing, expand the test pattern set into low level test
bus patterns. The signature values missing from the expansion can be read out
from the TDO pin. This involves selecting the probe lines one at a time, loading
the sense line values into the signature register (MISR), and then clocking the
signature register.

4. Add the missing TDO values to the test patterns before ATE translation can
begin.
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5. Perform the GO/NO-GO testing to screen out bad chips. The user may also

run dla.gnostxc testing to determine process-related problems.

If the scan cr BIT structure is incorporated in the ASIC, then the procedures for
running the scan or BIT can be applied.

SIMILAR TECHN,IQUE (#1):

Test Point Placement to simplify Fault Detection [Reference #5]

1. In CrossCheck, cells (or gates) are modified to include a small sampling tran
gistor. Also needed are a modified base array that consists of probe lines, sense
lines, probe line driver, sense line driver, and the test controller along with
extra test pins TMS, TCK, TDI, and TDO. Thes: zre all predesigned and
manufactured by the chip manufacturer. Therefore the designer proceeds the
logic design as usual. The designer is not required to specifically implement
certain design-for-testability structures.

2. If the CrossCheck is to incorporate boundary or BIT technique, then the design
procedures for these techniques should be applied.

LOGIC STRUCTURES USED OR REQUIRED:

The gate or cell needs to be modified to incorporate a small sampling transistor
as shown in Figure 3.1. A base array that provides a grid of probe lines and sense
lines, a probe line driver, a sense line receiver, a test controller with four test pms are
also required in the CrossCheck technique. :

AVAILABLE TOOL:

The tools for implementing the CrossCheck methodology is available from Cross- -

Check Technology, Inc. and possibly from LSI Logic Corporation.

EXTERNAL INTERFACE REQUIREMENTS:

Four extra pins are needed for the CrossCheck technique: TMS (Test Mode), TCK
(Test Clock), TDI (Test Data In), and TDO (Test Data Out).

F E MAINTENANCE ESSORS:
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* The test pattern set, which consists of test patterns and high level test instructions,
must be expanded into low level test bus patterns. The signature values missing from
the expansion can be read out from the TDO pin and added to the test patterns
before ATE translation can begin.

APPLICABLE TO ON-LINE CONC[]RR.ENT TEST?
- NO. :

APPLICABLE TQ OFF.LINE CHIP TEST?

.y

138

APPLICABLE TO ENGINEERING TEST?

Yes
APPLICABLE TO PRODUCTION TEST?

Yes ‘
APPLICABLE TO COMBINATIONAL LOGIC?

Yes

APPLICABLE TO SEQUENTIAL LOGIC?
Yes

APPLICABLE TO MEMORY (RAM/ROM)?
No '

IFIC CI IT TYPES TO WHICH IT IS APPLICABLE:
Synchronous digital circuits, especially gate array and standard cell designs.

P N TEST PATTE ET SIZE:

The test pattern generation process proceeds with pseudo-random patterns, fol-

~ lowed by weighted pseudo-random patterns, and then finally deterministic patterns.
The weighied pseudo-random pattern is based on the back-tracking of undetected
faults. The size of the test pattern set generated by the CrossCheck is usually smaller
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than other pseudo-random techniques because each test. pattern can dctect many
faults due to the high observability, smaller search space, and the skorter path for
propagating fault effects. However, due to iis pseudo-random nature, the test pattern

* size in CrossCheck is larger than that of a user-developed functional test patterns.

But it takes much longer time to develop a high fault coverage test patterns manually.

IMPACT ON TEST APPLICATION TIME:

The fault simulation is very fast since the fault structures do not have to be
propagated through complex blocks of logic to an observable point.

FAULT DETECTION COVERAGE:

The fault coverage of 98 to 99 percent can be easily achieved. This is because
the CrossCheck technique uses not only the stuck-at fault model but also other fault
models such as transistor opens and shorts, net opens, and net bridging to uncover
those faults that a.re not detected by the stuck-at approach.

!

Since the crostomt sthchmg transnstors are integrated with the logic cells of the

'ASIC, they do not cause additional routing capacitance to the design. They do add

a small overlap capacitance which is about 1 per cent for a typical fan-in load at
the output of the logic gate.' The increase in overall capacitance, including wiring

capacitance, is 0. i per cent for a typical design with a fan-out of two. Thus, the small

additional capacitance has a negligible effect on propagation delay and the system
performance. Thé area overhead due to the grid of test points and the associated test
control logic is about 10 per cent on a 10,000-gate gate array ASIC. For a larger gate
array, the ptoportlon of the area overhead will be smaller.

Four extra pins per chip are needed for test mode control, test clock, test data
input, and test data output.

F ATION:

CrossCheck provides an attractive and efficient approach to the problems of ASIC
testakility and automatic test pattern generation. The CrossCheck technology is cur-
rently being applied by LSI Logic to CMOS channelless gate-array design. According
to the literature, CrossCheck can also be applied to channeled gate-array, standard
cell, or even custom design styles, though possibly with more area penalty. The
concept is also applicable to other process types including BiCMOS, and Bipolar.
Due mainly to the nearly 100 per cent observability, the technology can also greatly
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facilitate the testing of boards and systexﬁs. Aeferences indicated that CrossCheck,
with negligible speed penality and about 10 per cent area overhead, is iess painful
to implement than scan or BIST techni~es. It is worth noting that CrossCheck is

compatible with other design-for-testabih., techniques such as scan, BIST, and the

proposed JTAG standard and uses the same four test pins, namely TMS, TCK, TDI,
and TDO. One of the literature references indicated that CMOS dynamic logic can
not be tested with the CrossCheck technique. If this is the case, alternative designs
may be worked out to incorporate the CrossChzck method.
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ROME LABORATORY

Rome Laboratory plans and executes an tnterdtséiplinary program in re-
search, development, test, and technology transition in support of Atr
Force Command, Control, Communications and Intelligence (C31) activities
for all Air Force platforms. It also executes selected acquisit(on programs
in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD Program Officvs (POs) and other
ESD elements to perform effective acquisition of ford systems. In addition,

'Rome Laboratory's technology supports other AFSC Product Divisions, the

Air Force user community, and other DCD and non-DOD agencies. Rome
Laboratory matntains technical competence and research programs in areas
{ncluding, but not limited to, communications, command and control, battle
management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-
sing, %olld state sciences, photonics, electromagnetic technology, supeF
conductivity, and electronic reliabtltty/matntdinabiltty and testability..
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