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ABSTRACT

This thesis uses a linear systems approach and the Fourier transform as the

basis for a microcomputer program to model pulsed ultrasonic wave propagation.

The program computes the acoustic potential in a plane at a given distance from the

source. The mathematical development establishes the importance of the total

impulse response as the Green's function, meeting the boundary conditions and

solving the wave equation. Four excitation functions are presented. The square and

circular piston excitations are used to verify the program. Excitation functions also

modeled are the circularly truncated Gaussian distribution and the circularly

truncated Bessel profile. All programs were written using the MATLAB software

package. This work provides a computationally efficient means to analyze pulsed

ultrasonic wave propagation as a spatially filtered source.
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I. INTRODUCTION

The propagation characteristics of continuously radiated monochromatic

ultrasonic sources are well solved through application of the angular spectrum

technique [Ref. 1] or Fresnel integrals. More frequently, however, acoustic imaging,

tissue characterization, and physical acoustics applications tend to use pulsed sound.

The propagation of pulsed ultrasound with arbitrary temporal and spatial components

is not understood to the same degree. A path to greater understanding is the

development of a reliable, easy method of diffraction prediction. This thesis examines

an approach based on linear systems theory and the Fourier transform. The thesis

goal was to achieve a readily usable method of predicting pulsed wave diffraction in

a time-efficient and accurate manner in order to examine the wave diffraction.

The basic method of the spatial impulse response was introduced by

Stepanishen [Refs. 2-5], reviewed by Harris [Ref. 61, and modified by Guyomar and

Powers [Refs. 7- 10]. The Guyomar/Powers approach differed by the use of linear

systems theory. Linear systems theory revealed the importance of the total impulse

response and its equivalence to the Green's function. Furthermore, the spatial

impulse response functions are found in the spatial transform (Fourier) domain.

Working in the transform domain allowed propagation of the wave to be viewed as

a time-varying spatial filter applied to the spatial spectrum of the input excitation.
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The advantage of this method is that it provides the diffracted field from an

insonifying wave with arbitrary temporal and spatial dependence in a computationally

efficient form. By use of the Fourier transform, an amenable computer

implementation of this technique using FFT ioutines is possible.

The desired benefit of a fast, time-efficient computer implementation to

calculate the acoustic potential or pressure is to aid in ultrasonic transducer design

for medical, acoustic imaging, and mine warfare applications. With a knowledge of

wave diffraction phenomenon a diffracted wave reflected from an unknown object

can be used to provide information about the object. This type of system must be

portable as well as time-efficient, which is very achievable given the trends in

computer technology. Computers have become faster and have increased memory

capacity while their size has decreased. Other benefits are derived from the use of

the matrix manipulation program, MATLAB, and the ability to expand this

implementation to cases involving lossy media. Because M-A TLAB is readily available

on the commercial market, it requires no special equipment for computer

implementation.

Previous computer implementations have been Fortran coded [Ref. II] to be

run on mainframes and microcomputers. The specific goal of the microcomputer

implementation by Merrill [Ref. 11] was a run time under 30 minutes; this goal was

achieved. Merrill first attempted to use MATLAB, but failed due to limitations on

computer memory and MATLAB array size. The present thesis work focused on

implementation of the method via MATLAB code, the addition of a Bessel profile
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excitation, and a comparison between the Gaussian wave and the Bessel wave.

Further study of these excitations appears in Chapter IV.

Chapter 11 consists of the problem description. including the source-to-

observation plane geometry, a discussion on the linear systems approach. the

mathematical development, and an overview of MATLAB and AXUM. Chapter III

consists of a discussion of the two program modules, the acoustic filter module.

ACFILM, and the acoustic propagation module, ACPROP.M. Chapter IV starts

with the set of defining parameters. These parameters are then used for an

explanation of the program's verification and an investigation •; ether input

excitation functions. Following a summary in Chapter V, Appendices A and D give

detailed explanations of ACFILM and ACPROP.M, respectively. The source code

follows each respective explanation in Appendices B and E. Appendix C gives

examples of the filters generated by the code in Appendix B. The source code of the

excitation functions is given in Appendix F. Examples of the outputs for Gaussian

and Bessel inputs are given in Appendices G and H, respectively.
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II. PROBLEM DESCRIPTION

Before assembling a computer implementation, we must first understand the

problem. What follows here is an explanation of the problem beginning with the

description of the geometry in the first section. Section two continues the explanation

into the linear systems approach. The third section proceeds through the

mathematical development of the problem and ties in the Fourier transform. The

theory presented in the first three sections was derived from the works of Guyomar

and Powers (Refs. 7, 8, 9, and 10]. The final section gives an overview of the tools

used for generating the inputs, outputs, and output graphics.

A. GEOMETRY

The problem geometry is shown in Fig. 1. The acoustic velocity potential

o(x,y,z) is to be calculated at an arbitrary point in the positive-z half-space given a

z-directed velocity in a portion of the source plane. The source's z-directed velocity

is spatially and temporally arbitrary and is rigidly baffled (i.e., equal to zero) in the

region outside the source. Furthermore, it is assumed that the spatial and temporal

components of the z velocity are separable, having the form at the input plane

v,(x,y,o,t)= T(t)s(xy). (1)
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A linear, homogeneous, and lossless (in this case) medium is assumed to be present

between the source and observation point. [Refs. 7, 8, 9, and 10]

A

RECEIVERPLANE

z

y
SOURCE

.. \ X PLANE

//

Figure 1. Source-to-receiver geometry.

B. LINEAR SYSTEMS APPROACH

Linear systems solutions are applied to systems that are linear and time-

invariant. A linear systems solution approach to this problem is possible because

propagation in a linear homogeneous media is a linear, space-invariant process [Ref.

7]. In linear systems the impulse response is the response of the system to an

impulsive input. The total impulse response h(xy,z,t) of a system is produced by an

input of the form 6(xy)6(t); this is shown in Fig. 2(a). Figure 2(b) shows the spatial

impulse response p(xy,zt), defined as the response to an excitation of the form
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64(x,y) (t) PROPAGATION h(xy,z,t)
>1 &

BOUNDARY CONDITIONS

(a)

S(X,y)~t)( PROPAGATION p
>1 &

BOUNDARY CONDITIONS

(b)

I PROPAGATIONs(.X,y) T(t) $x ~,

>1 &
tBOUNDARY CONDITIONS

(c)

Figure 2. Block diagram of the (a) total impulse response, (b) spatial impulse
response, and (c) general solution.
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s(x,y)6(t). Note that an arbitrary spatial input has been substituted for the impulsive

spatial input. Recall from linear systems theory that the solution for an arbitrary

input (spatial of temporal) is the convolution of the input with the system's total

impulse response; therefore, the spatial impulse response in this case is given by

p(XZ,t) = s(x~y) I Y* h(x,y,z,t) (2)

where * indicates convolution with respect to the variable shown.

The general solution has a linear systems representation, as shown in Fig. 2(c),

where

O(xy,z,t) = s(xy)7(t) • • h(xyt,,O. (3)

Substituting Eq. (2) into Eq. (3) gives

O(X%,y4z., -- M )0 I P(XYt). (4)

It follows from Fig. 2(c) and Eqs. (2) and (4) that the key to the solution is finding

the spatial impulse response p(xy,z,t) which is, itself, dependent on the total impulse

response of the system h(x~y,z,t). The total impulse response of the system is the

propagation field that results from an impulsive source, as in Fig. 2(a), that solves the

wave equation and satisfies the boundary conditions. The solution to the wave

equation satisfying the boundary conditions is commonly known as the Green's

function; hence, the total impulse response is simply the Green's function. Therefore,

once the Green's function is known, the total impulse response is also known, and

7



the problem becomes a triple convolution between an excitation source which is

spatially and temporally arbitrary (and assumed to be known), and the systems' total

impulse response or Green's function. [Refs. 7, 9, and 103

C. MATHEMATICAL DEVELOPMENT

The wave equation for lossless, rigidly baffled media solved by Green's function

is

q27 - 1 a2 0. (5)c- at,

The general solution of Fig. 2(c) gives the result in terms of the acoustic potential

0 which must be found from a z velocity input. To relate acoustic velocity to acoustic

potential the following relationship is used

v(x1y,40 = - V4(x,y,z,A (6)

resulting in the z velocity component given by

v~xy~~) Wtx'Y'z40 (7)

0z

Since the wave equation is in terms of c (the acoustic velocity in the media) and time

t, the partial derivative with respect to z must be related to these two parameters.

This is done by using the fact that a wave traveling in the positive-z direction has

an argument of the form ct-z, resulting in the relationship

8



Oz at2- cv2 . (8)

Applying Eq. (8) to Eq. (7) gives the z velocity at the input plane z=0 as

I-(XyZ, 8 (x0ycO't). (9)
at

Equation (9) requires the acoustic potential at the input plane. It was assumed

in Eq. (1) that the z velocity is separable which implies a separable acoustic

potential. Such an acoustic potential has the form

O(.y,O,t)-- s(.y)r(t) (10)

at the z=0 plane. If Eq. (10) is substituted into Eq. (9) and the partial derivative

carried out, then Eq. (9) becomes

(11)
vzxvzt =- CS(x v)rt).

A comparison of the z velocities given in Eqs. (1) and (11) indicates that T(t) is

equivalent to cr '(t) where r '(t) is the time derivative of the time component of the

acoustic potential given in Eq. (10). Equation (11) is now the input in Fig. 2(c).

As stated earlier, the general solution of Fig. 2(c) is solved by the Green's

function. For the standard wave equation (for lossless media), Eq. (5), and rigidly

baffled boundary conditions the applicable Green's function is

h(xy,z,t)- 6(ct-z) (12)
2,rR

9



where R = /x2 +y-2 .-: [Ref. 9]. Substituting this in Eq. (2) provides the spatial impulse

response

p(x,y,z,t) = s(x~y) h• •(xyvz~t)

*6(ct-t) 
(13)

= s(x'y) * 7Y2rrR

Of course, the substitution will trickle through Eqs. (3) and (4).

The double convolution in Eq. (13) is arduous to compute and not easily

computer implemented. The Fourier transform furnishes a convenient method to

resolve this dilemma by using the Fourier property that convolution in the spatial

domain becomes multiplication in the transform domain. Applying this property to

the relationship depicted in Fig. 2(b) and taking the two-dimensional spatial Fourier

transform of Eq. (13) results in the relationship shown in Fig. 3.

f~, 6t)PROPAGAINfh~,t
&

BOUNDARY CONDITIONS

Figure 3. The spatial impulse response in the Fourier transborm domain.
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Thus the spatial impulse response in the spatial transfer domain is the product of the

anguiar spectrum of the source 9 and the propagation transfer function h. written

symbolically as

•(ff, = £(ffv)ii(ffzj)" (14)

Here the Green's function has been substituted in as the total impulse response.

Taking the two-dimensional spatial Fourier transform of the Green's function in Eq.

(12) gives the propagation transfer function

48(ct - 0)'I
[ 2 J (15)

2Jo(p Vc7t2-H(ct-z)

where the relationship

R- n C S (p C ~t 0 Z (16)

was applied where p = -fy-,2. The term H(ct-z) is the step function.

Equation (15) exhibits two important points. The first point is that the

propagation transfer function is a Bessel of the first kind of zero order. Secondly, the

propagation transfer function can be identified as a time-varying spatial filter having

a Bessel shape. These filters are produced by AC FIL.M.

Equation (13) is for an input that is temporally impulsive and spatially

arbitrary. Taking the inverse two-dimensional spatial transform of Eq. (13) would, in

11



this case, give a final result since convolution with an impulse is the same function

at the time that the impulse occurred. To account for a non-impulsive time input

component, the convolution of Eq. (4) must be carried out: Eq. (17) gives the

solution,

4(x,y¢,z0t = r 0e)?-'{(f0'xf,~z,)} (17)

where p is the product of the angular spectrum of the source 9 and the propagation

transfer function h. Since only temporally impulsive inputs are simulated in the

examples that follow, the convolution in Eq. (17) was not computed for our cases.

Our final solution, therefore, reduces to taking the inverse 2-D spatial Fourier

transform of the spatial impulse response p. The thesis simulates the spatial impulse

response solution for the input excitation function distribution chosen by the user in

the program module ACPROP.M.

The program that implements these equations is discussed in Chapter III and

detailed in Appendices B and D. Illustrative examples of the time-varying filters and

outputs follow in the Chapter IV discussion with more examples supplied in

Appendices C, G, and H. The tool of implementation for the program was MATLAB

with graphical assistance provided by AXUM. An overview of both follows in the

next section.

12



D. TOOLS EMPLOYED

1. MATLAB OVERVIEW

MATLAB is a high-performance, interactive, scientific and engineering

numeric computation software package. The name comes from MATrix LABorator.y;

hence, the basic data element is a matrix which does not require dimensioning.

MATLAB, however, has evolved into a versatile scientific "spreadsheet" for numeric

calculations. A major advantage of MATLAB is that traditional programming is not

needed since problems and solutions are expressed just as they would be written

mathematically. Another distinct advantage is MATLAB's expansion capability

through the use of preprogramed functions, such as calculation of the two-

dimensional FFTs and Bessel function. [Ref. 12]

A function is one of two types of m-files (called m-files for the ".m" suffix);

the other is a script file. Script files are used to automate long sequences of

commands including functions. Arguments are not passed i to script files. Functions,

however, may have arguments passed into them. Another difference between the two

file types is that the first line of a function file begins with the word "function" and

all variables used in the function are local. Examples of script files in this thesis

include ACFIL.M and AC PROP.M. Examples of functions include the input

functions (see Appendix F), the three dimensional graphing function mesh, and the

two "ft" functions that realize the Fourier transform. [Ref. 12]

The two "fft" functions employed for the Fourier transform are fft2 and

fftshift. The fft2 function is a two-dimensional fast Fourier transform and is

13



Figure 4. Illustration of the center versus comer geometry.

repetitively used throughout the program. Before the fft2 operation is performed it

is necessary to execute the fftshift function. Figure 4 shows a rectangular Table input

before (left image) and after (right image) execution of fhift. The center geometry

is convenient for viewing; however, a phase shift is introduced if the ffP2 operation

is applied to this geometry because of the lateral translation of the object away from

the origin. MATLAB, recognizing the introduced phase shift, solved the problem with

the fftshift function. In the comer geometry (the right image of Fig. 4) MATLAB

assumes replication on all sides, forming a function that is periodic in both the x and

y directions. The assumed replication forms an identical function at the origin and

hence, the correct phase is preserved through the ff2 operation. In keeping with

MATLAB terminology, the variables used to encode the preceeding equations that

14



are in the center geometry have the indicator "shft" appearing in their names; those

in the corner geometry have no such indicator. The same logic applies to the inverse

Fourier operation (ifft2). The interested reader is referred the MATLAB User's

Guide [Ref. 12] for more details. Both geometries can be viewed using the mesh

command.

Because MATLAB normalizes the plot display, its 3-D graphics using mesh

are outstanding for comparing relative shapes. Unfortunately, MATLAB has no

option to display 3-D graphics with axes. A forthcoming version of MATLAB,

MATLAB4, addresses this weakness. MATLAB4, however, is not curreiitiy available

commercially. Due to the three dimensional graphing weakness in the current version

of MATLAB, another graphics package was used. The input and output data was

formatted in ASCII by MATLAB and stored on disk. The data was then imported

into the graphic package AXUM.

2. OVERVIEW OF AXUM

AXUM is an interactive software package for technical graphics and data

analysis. Produced by TriMetrix Inc., AXUM allows easy manipulation of raw data

imported from MATLAB in ASCII format (data may also be imported from several

other formats). Once imported, data manipulation can he carried out by AXUM

through use of the Tramfoim and Convert menu options. Then the data is arranged

under the History menu using the MA72GRID routine, so that the desired surface

plot can be generated. The MA72GRID routine produces three columns of data from

the original matrix by placing each element of acoustic potential data in the "z" data

15



column with the indices from the matrix in the 'x" and "y" columns. Once processed.

the data is ready for graphing. [Ref. 13]

The Graph menu gives various options for controlling the graph's attributes and

general aesthetics. Once the desired axes intervals, labels, and titles have been set.

the graph can be displayed in one of two windows, the Edit Screen or the View

window. Whereas the K"ew window is simply for viewing, the Edit Screen window

allows changes to be made to the graph while it is displayed. (This is time consuming

because the graph is redrawn after each change.) A useful feature of the Edit Screen.

however, is the capbility to rotate and tilt the graph interactively so that the

preferred aspect is achieved. After establishing the desired attributes, the graph can

be saved as a graph or as an image. [Ref. 13] The concept of saving the graphs as

images is another very useful feature because it allows a single graph format to be

assembled and saved as a graph template on which the images may be overlaid. The

example figures of this thesis were created in this manner (see Appendices C, G, and

H).
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III. MATLAB MODELING OF EQUATIONS

This chapter discusses the two MATLAB script files, ACFILM and

ACPROP.M. Together, the script files form the two modules of the program that

simulates acoustic wave diffraction via implementation of the concepts and equations

presented in the previous chapter. The program was written in two modules due to

the time consuming computation of the Bessel functions for the filters. Modularity

also allows the propagation module to be run for several different input functions

without having to recalculate the filters. A working narrative of ACFILM opens the

discussion, followed by a working narrative of ACPROP.M. The excitation functions,

or input functions, will be included under the ACPROP.M heading. A brief

summary of the program steps follows in the final section.

A. ACOUSTIC FILTER MODULE

The script file AC FILM for ACoustic FILter (referred to as ACFIL

hereafter) computes the time-varying Bessel filters of Eq. (15), repeated here for

convenience as

(aJ5(ct)hQ~4i,t =o - 2=R J (18)

-1zpyctz)H(ctz.

17



In the discussion that follows equation variables are in bold and the related

MATLAB code variables are in italics. Before discussing the coding of Eq. (18), the

basic setup must be explained.

The basic setup consists of setting the size of the array and the sampling

frequency. The variable N denotes the number of points on a side in the base array

creating an NxN matrix. Initially N was given a value of 64 as in previous work [Refs.

7-11]. Once the program result was verified, N was increased by a factor of two to

128. Note that both values of N are powers of two; this was done to make use

MATLAB's faster radix-2 "fft" function. Making N an even number, however, caused

the point of singular information, the center of symmetry, to fall between matrix

elements. To force the center of symmetry NO to coincide with a matrix element, the

center was located at

No (') + 1. (9

Equation (19) results in an offset geometry as shown in Fig. 5.

The offset center (NONO) divided the base array into four matrices, all with

different sizes. The fact that the matrices have different sizes is important in the use

of symmetry because only one quadrant of information is actually computed. We

calculated the data for the NOx(NO- 1) points in Quadrant I. In addition data was

calculated for an additional column (N0xi) located at the right side of Quadrant I.

(The extra column was required to compute all of the values in the other three

quadrants using symmetry.) Quadrants II, III, and IV were determined from
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Figure 5. Offset geometry of base array matrix.

Quadrant I using symmetry with MATLAB's "flip" commands. The use of symmetry

in this manner was employed in both program modules.

The number of time samples (or number of time slices), M, was set at 64.

Initially, this was to emulate previous work [Refs. 7-11]; however, the resolution

proved to be adequate for the follow-on simulations. Though there are 64 time

slices, only 61 filters are generated by the MATLAB implementation of Eq. (18). The

Heaviside step function in Eq. (18) was simulated by arbitrarily setting a variable

Step to three which produces all-zero rows for the first three time slices. The result

is that M-Step, or 61, time slices actually require computing. Since the first three
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time slices are zero, the computations start with the fourth time slice at time zic and

proceed to the time value, timemax, provided by the user.

Referring back to Eq. (18), it is seen that the argument to the Bessel function

that generates the time-varying spatial filter is composed of four variables. Of the

four, only the time t varies within the program. In the MATLAB code time t is

represented by the variable time. As previously stated, filter generation does not start

until time z/c and is linearly incremented to the maximum time of propagation

time max. The source-to-receiver distance z was assigned the value z = 10 cm in the

MATLAB code and c, the acoustic velocity in the medium, was assigned the value

c = 1500 m/s. This value of c is the velocity of sound in water. The value of z was

originally chosen to parallel previous work [Refs. 7-11] and was found to be

convenient for subsequent simulations. The value of time-max was set to 150 As for

the verification phase and to 375 As for the remainder of the simulations.

Consequently, time ranged from 66.667 As to 150 As (or 375 As) in 61 increments.

The final variable in the Bessel argument to be examined is p. In the

MATLAB code p has the name rho and has a maximum value, rho-max, of 200. The

value of rho max = 200 was arbitrarily chosen; however, the 200 value chosen

follows the work done by Merrill [Ref. 11]. Although rho is not time-varying, it does

vary with spatial frequency,

P = FX(20)

A vector having NO- I points extending from 0 to rho max was then formed. Then
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Figure 6. Construction of rho shown graphically.

the vector was used in the MATLAB routine meshdom [Ref. 12] to form two

identical matrices rhox and rhoy. The meshdom routine takes the vector and forms

a matrix with the same spacing in the x direction, rhox, and the same spacing in the

y direction, rhoy. The two matrices rhox and rhoy represent f. and f. in Eq. (20) and

Fig. 6 which shows graphically the construction of rho. In Fig. 6 f. and f. are in terms

of the column and row numbers, respectively. The row index runs from I to NO; the

column index runs from NO to N. The fz axis can be rescaled to units of spatial

frequency (J',) with units ot cycles/m. This is represented in Fig. 6 by the f, axis

labeling.
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The combination of rho and the other variables forms the argument arg to the

MATLAB Bessel function. Since time varies for each time slice, arg varies for each

time slice generating a filter per time slice. After generation each filter is stored to

disk for use by AC_PROP.M. The variables N, NO, M, and Step are also stored to

disk for use by ACPROP.M. The interested reader can find a detailed explanation

and the source code in Appendices A and B, respectively. Graphical examples of the

time-varying filters are include as Appendix C.

B. ACOUSTIC PROPAGATION MODULE

The script file ACPROP.M for ACoustic PROPagation (referred to hereafter

as ACPROP) takes the user's chosen input function and simulates the propagation

as a function of time. ACPROP computes the spatial impulse response p(xy,zt) of

Eq. (21)

p(x,y,7.,t) W{ (ff) hVX Y IZ,} (21

using the Green's function, or time-varying Bessel filters, produced by ACFIL In

Eq. (21), Jr- is the inverse spatial Fourier transform operator and the - denotes a

transfer domain quantity. To accomplish the computation of p(xy,z~t), ACPROP first

loads the variables passed from AC=FIL Once complete, ACPROP queries the user

to make an input function choice.

The user is given four input functions from which to choose; these choices are

Circle, Table, Gaussian, and Bessel. The Table and Circle are uniformly distributed
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having the shape of a square and a circle, respectively (commonly known as the

square and circular piston). The Gaussian and Bessel are truncated circular functions

that have the indicated distribution within the circle. Pursuant to the input function

choice, the user also is asked to input the circle diameter d (or square width w in the

case of the Table); d (and w) were set to 11 for program verification. Once the

program was verified, the diameter d was increased to 51, coinciding with the

increase of N to 128. Examples for N = 128 and d = 25 are included in Apendices

G and H. In the case of the Gaussian and Bessel, the user is further requested to

input the standard deviation a or a scaling factor a, respectively. These two function

defining parameters were varied on a case by case basis. (Appendices G and H

provide examples.) To review the input functions, see the source codes contained in

Appendix F. The variable shftinput (the reader is reminded that "shft" in a variable

name indicates the center geometry as discussed in Chapter II) holds the array

generated by the function written to model the chosen excitation function.

From shftinput, F_input is created by shifting (fftshift) shftinput to a corner

geometry and then taking the two dimensional spatial Fourier transform (ffi2). As

explained in Chapter II, the ffishift operator is necessary before the Fourier operation

to maintain the correct phase relationship in the transform operation. With a shift

back to the center geometry, the angular spectrum of the source Y(f. J.), called

Fshftinput in the program, is created. The propagation transfer function h(f4,fy,z ,t)

from Eq. (18) must now be loaded so that the angular spectrum-propagation transfer

function product M1i on the right side of Eq. (21) can be formed. The multiplication
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is a repetitive one since Fshft_input must form a product with the filter (or

appropriate propagation transfer function) from each time slice. This repetitive

multiplication is accomplished with a loop.

Looping allows loading of each successive filter / to form the product of 9 and

/ (called Fshft_output). To get the desired result of Eq. (21), the two-dimensional

inverse spatial Fourier transform (iffl2) must be taken. Before this can be done,

F_output is formed by shifting Fshftoutput. Executing the inverse transform yields

output which is then shifted to give shftoutput. The array shftoutput represents the

output of the time slice that the loop is currently computing; shft-output does not

depict the acoustic potential (or propagation pattern) through time, it only depicts

the acoustic potential at a specific time.

To produce the desired output, the center row (row NO) of shft output is taken

and placed in the matrix outputplot as the mh column (m is the loop counter wh *,

relates directly to the time slice number, i.e., when m = 4, the computations for time

slice four are performed). This results in a matrix whose size is NxM when Step zero-

rows are added that preceed the fourth time slice's NO row. The output examples in

Appendices G and H are graphical interpretations of output.plot. Results generated

in this manner are given in Chapter IV for all of the excitation functions. More

examples of output plot generated by the Gaussian and Bessel excitations are given

in Appendices G and H, respectively. A detailed explanation of ACQPROP is

provided in Appendix D and the source code in Appendix E.
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C. PROGRAM SUMMARY

The previous two sections gave an overview of the two program modules,

ACFIL and ACPROP, including the code variable names and values assigned.

What follows here is a summary of the steps that the program accomplishes. Step one

is accomplished by ACFIL In this step the M-Step filters to be used by ACPROP

are generated and saved.

ACPROP generates the user specified excitation function s(xy). Then the

angular spectrum of the source E(fxjfy) is computed by taking the 2-D spatial Fourier

transform of s(xy). The product EiI is computed for each time slice via a loop. In the

loop, the inverse 2-D transform of the 9A product forms an output for the specific

time slice. The center row (the row that contain singular information) of that output

is then placed in successive columns of a new matrix to form the final output,

In the following chapter, examples of the final outputs are given. The

excitations used for verification, as previously related, are the Table and Circle

excitation functions. New values, as explain in this chapter, were then used for the

simulation of the Gaussian and Bessel excitations.
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IV. NUMERICAL SIMULATION

In the previous chapter, a functional explanation of the two program modules

was given including values assigned. The first section reiterates the defining

parameters, gives a brief explanation of each, and gives the parameter's units. In the

following section, the defining parameters are given the values used to verify correct

operation of the program. The last section presents results for the Gaussian and the

Bessel excitation functions.

A. DEFINING PARAMETERS

A defining parameter is a parameter that delineates an aspect of the basic

setup upon which all the remaining parameters or variables depend. In the work of

this thesis there are two sets of defining parameters - those for the filter generation

and those for generation of the excitation functions. The filter parameters are found

at the beginning of ACFIL ACPROP queries the user for the excitation function

parameters.

The defining parameters found in ACFIL include N, M, Step, c, z, timemax,

and rhomax. The first parameter N sets the dimensions of the base array giving the

number of sample points. The dimensions of the base array are, therefore, NxN

where N is required to be a power of two. Making N a power of two allows

MATLAB to use a high-speed radix-2 fast Fourier transform algorithm [Ref. 12] to
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compute the spatial transforms. The next parameter M is the number of time

samples; this means there are M time slices. Of these M time slices, M-Step require

filters to be computed; the parameter Step is the number of leading-zero rows in the

NxM output array; as explained in the preceding chapter, this simulates the Heaviside

step function. The parameters N, M, and Step are unitless and are stored by ACFIL

in a file for use by AC PROP.

The remaining defining parameters of AC_FIL have units and are used only in

the computations of the filters. The acoustic velocity in the medium, free-space in

this case, is denoted by the parameter c having the units meters per second. The

source-to-reception point distance has the designation z in units of meters. The

maximum time of propagation time-max has units of seconds. The spatial-frequency

radius of the filters rho-max (or rho) has units of inverse length (i.e., m- 1, cm,- , etc.).

The unit of length depends on the area to be represented by the base array. These

four parameters relate directly to Eq. (18) and are the parameters that dictate the

diffraction properties of the filters. Table I summarizes the defining parameters

found in AC FIL

Another important set of defining parameters is the set that defines the user

chosen input. These input defining parameters are entered by the user when

requested by ACPROP. Once the input function is chosen, the diameter of the

truncation circle d is input. (The width of the table w (vice d) is input in the case of

the Table excitation.) The parameters d (or w) are expressed as the number of

points, out of N total points, that define the diameter (or width) of the function.
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TABLE I. SUMMARY OF THE DEFINING

PARAMETERS IN ACFIL
20=

DEFINING PARAMETERS

N Size of square base array

M Number of time slices

Step Number of leading zero-rows

c Acoustic velocity in media (m/s)

z Distance, source-to-receiver (in)

time max Maximum time of propagation (s)

rhomar Spatial radius of the filters (length-')

To transition from a diameter in terms of a number of points to an actual

metric value, two equations were needed. The equations are

1
AX = (22)

and

d = k Ax. (23)

In Eqs. (22) and (23) Ax is the length of a segment. In Eq. (22) P9o is the maximum

spatial radius. In Eq. (23) k is the number of segments and d is the diameter (or

width for the Table function). To determine the metric diameter Eq. (22) was used

to solve for Ax by setting p,. to 200 - 1. This value resulted in a Ax of 2.5x10- 3 m

or 2.5 mm.
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If the Gaussian excitation is selected, the standard deviation a is input upon

request. In a Bessel excitation selection the scaling factor a is input when requested.

Table II gives a summary of the defining parameters used in ACPROP.

TABLE II. SUMMARY OF THE DEFINING

PARAMETERS USED IN ACPROP.

DEFINING PARAMETERS

N Size of square base array

M Number of time slices

Step Number of leading zero-rows

d Diameter of excitation function
(number of sample points)

w Width of Table excitation function
(number of sample points)

a Gaussian standard deviation

a Bessel scaling factor

B. PROGRAM VERIFICATION

In verifying the program output, two excitation function were used, the Table

and the Circle. The outputs generated by the program from these excitations were

compared to the results found in the literature for validation. After a general

explanation about the generation, formatting, and titling of the outputs, the two

excitation functions are presented. The Table, the first verification function, is then

discussed and a table of defining parameters is given. The second verification
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function, the Circle, follows with a similar discussion and table of defining

parameters.

1. Results Format

The graphical outputs for the two excitation functions used for verification,

the Table and the Circle, were generated, formatted, and titled in the same manner.

The outputs are for a source-to-receiver distance of z = 10 cm. Each shows data for

64 time slices including 3 leading all-zero columns which simulate the step function.

Since the outputs were formed by taking the center row of acoustic potential

information p(.x0,1O,t) for each time slice (placed in the final output matrix as a

column), only 1/N of the output data is actually presented. This is done so that the

three dimensional output images display the magnitude at the receiver plane as a

function of the propagation time, up to time-max, and radial distance from the center

row, about which the outputs are symmetrical. Along with the 3-D image, a side view

is provided.

The side views are a plot of magnitude ( (xO, 1O,: ) versus propagation

time for various values of x with the same scaling as in the 3-D image. Since the data

is symmetric about the radial center, the plot is from the radial center out to and

including the first all-zero row. Of course the radial distance to the first all-zero row

depends on the maximum time of propagation. The side views, therefore, give

numerical information that is more easily extracted for quantitative analysis, as well

as other features that are not easily seen in the 3-D images. The spatial excitation

function s(xy) are also given with those of the outputs.
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The titling of the images for the Table and the Circle follows the same

•,eneralformat, (excication type) (diameter/width) for an input and t exci cation

cype)O(diameter/width) for an output. In the case of the side views, the prefix sv

is added to the output title. Examples of the titling are Til, a Table input excitation

function of width w = 11 samples; TOll, the 3-D output of the Table excitation with

width 11 samples; and svTOll, the side view of the output for the Table excitation

with width 11 samples.

2. Table Impulse Excitation

The first excitation function to be run by the program was the Table.

There were several reasons to use the Table as the first input; the table function is

an easy function to implement and the results could be readily compared to results

found in the literature [Refs. 7, 9, 10, and 11]. A list of the defining parameters used

is provided in Table III.

The values of N, M, z, timemar, rhomax, and w chosen in Table III parallel

those found in the literature used for validation. The acoustic velocity c of 1500 m/s

is the velocity in water. To simulate the step function a number Step of leading zero-

rows was incorporated and arbitrarily set to three. The results were comparable to

those in the literature and are presented (with the input functions) in Figs. 7 and 8.

The input images of Figs. 7 and 8 titled T-11 and T_15 show an input

amplitude of one. Here the widths w = 11 and w = 15 samples translate into metric
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Figure 7. Table input and output with output side %iew for w 11
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TABLE 111. DEFINING PARAMETERS FOR THE TABLE USED

FOR VERIFICATION.

DEFINING PARAMETERS

NAME VALUE SUMMARY

N 64 Size of square base array

M 64 Number of time slices

Step 3 Number of leading zero-rows

c 1500 Acoustic velocity in media (m/s)

z 0.1 Distance, source-to-receiver (m)

time-max 1.5 x 10 -4 Maximum time of propagation (s)

rho-max 200 Spatial radius of the filters (length-')

w 11, 15 Widths of Table (samples)

widths of w = 2.5 cm and w = 3.5 cm, respectively. In the w = 11 case, k = 10 was

the input in Eq. (23) and, in the w = 15 case, the input was k = 2.2 samples. Note

that the X and Y axes of the input images range from 0 to 64, delineating a 64x64

base array. The two output images are titled TO1I1 and TO15 with their respective

side views titled svTO11 and svTO15. These output images show several interesting

features.

The outputs present the magnitude of the acoustic potential at an

observation point 10 cm from the source, p(xO,lO, t). A diffraction duration from the

initial impulse (t = 0) to t = time-max (150 4s) is represented as a function of

radial distance; i.e.,p(x,O,1O,O) top(x,O,10,150) is represented. This gives the 3-D view

of the general diffraction through time. At t = z/c, after the leading zero-rows, it is
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observed that the output is a scaled replica of the input. As time passes, the potential

is a combination of waves from various points of the source. The development of

"tails," explained in terms of edge waves [Ref. 71, can be seen in the 3-D images. The

magnitude of the "tails" approaching zero as time becomes very large is shown in the

side views. Also in the side views, the step function is easily identified since the

potential remains zero until the fourth time increment (where t = z/c) at which point

the magnitude "steps" up to a value of two; the factor of two is a result of the

multiplicative constant in Eq. (18). Also of note are the overshoots having a

maximum magnitude of 2.11 (both cases) ar.d the undershoots (hard to see in these

two cases); these are due to the additive nature of the interference patterns of the

waves originating on the edges of the discontinuous source.

3. Circle Impulse Excitation

The defining parameters for the Circle excitation are the same as those

introduced in Table III with the exception that only the d = 15 case is presented. A

diameter d = 15 samples translates into a metric diameter of d = 3.5 cm. Again the

results are comparable to those found in the literature [Refs. 9 and 11]. Figure 9

gives the input function and the ensuing outputs. As in the Table case the base array

is a 64x64 matrix with the propagation pattern formed by successive p(xO,O, t) time

slices. The results in Fig. 9 for the Circle excitation are much the same as those for

the Table in Fig. 8. The "tails," however, shown in the 3-D image of Fig. 9 are

rounded instead of cornered as in the Table output. Though the Table output holds

its magnitude for a longer time, the maximum for the Circle output is greater at 2.21.
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Also the drop off from the maximum is steeper for the Circle. The greater maximum

and steeper drop off are due to the equal distance of all edge points from the center.

This same geometric influence also accounts for the Circle holding the input value

for a shorter duration. Just as the interference patterns added to a maximum greater

than the input, the interference patterns also combine to give a more negative

minimum. This lower minimum is easily seen in the side view image in Fig. 9. The

negative undershoot was present for the Table; however, it has a magnitude five

times greater for the Circle.

C. OTHER INPUT EXCITATIONS

Having verified the operation of the program to a high degree of confidence,

the defining parameters were changed and other excitation functions evaluated. The

first change was to increase N by a factor of two from 64 to 128. Previously, software

and computer hardware limited the size of the base array to a 64x64. The increase

to N = 128 translated to increased sampling and spatial resolution. Since the size of

the base array was increased, the base diameter d of each excitation function must

be increased (double the number of segments) in order to model a source with the

same metric size as in the 64x64 case. This simply translates to increased spatial

sampling. A diameter of d = 51 samples (a metric diameter of d = 12.5 cm from Eq.

(23) when k = 50 is the input) gave the best graphic results and was therefore used

as the base diameter. The changes in N and d motivated a change in the propagation

time as well.
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Increasing the size of the base array allowed an incre:.,e in the widths of the

excitation functions. This necessitated a longer propagation time so that the full

effects of propagation could develop. As a result, the maximum time of propagation

time max was increased to 375 gs. This value of time max allowed the "tails" to form

and present a trend.

Once the values of N, d, and time-max were set, the program was ready for the

other excitation functions. The first to be presented is a circularly truncated Gaussian

distribution function. Following the Gaussian, a circularly truncated Bessel profiled

function is examined. These two excitation function outputs are generated and

formatted the same. The titles have a similar structure.

As with the Table and Circle, the Gaussian and Bessel outputs are generated

by a successive compilation of the p(xO,1O,t) vectors. This means that all the x-values

of acoustic potential at y = 0 and z = 10 cm at time t were placed in successive rows

of the output matrices. In these cases, however, time started at t = z/c and ran until

time-max of 375 gs in 61 time slices. The result was a 64x128 matrix of acoustic

potential as a function of propagation time and radial distance once the simulated

step function was added. As with the previous excitation function the input images

represent the spatially arbitrary (but assumed known) source s(xy) that is impulsive

in time.
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Titling of the input and output images is similar to that used for the Table and

Circle; (excitation zype)_(paramecric informarionJ for an input and

(excitation cype)O(parametric information) for an output. The (parametric

information) has the form (standard deviacion)x(base diameter) for the

Gaussian and (scaling factor times 104) for the Bessel. Additionally, the side

views have the prefix sv appended. Input examples are G_5x51 for a Gaussian with

a standard deviation a = 5 and B_2500 for a Bessel with scaling factor a = 1/4. Both

having a base diameter d = 51.

1. Gaussian Distributed Excitation

Though the Gaussian has been investigated before [Refs. 7, 8, 9, and 101,

it has not been studied as a 128x128 array. For convenience, the defining parameters

are listed in Table IV. Figure 10 is the input and resulting output where the input

image is titled G_5x51 and the output image is titled GO5x51.

The Gaussian excitation function has been normalized by the maximum

value of the computed Gaussian (see the Gaussian source code titled CRCGAUS.M

in Appendix F). This normalization is shown in the input image of Fig. 10 by the

maximum amplitude of one. Displayed as an NxN array, this input image has a

standard deviation of a = 5 and a l/e point of 10.17 samples from the center, having

metric equivalent of r = 2.54 cm. The diffraction of this input is shown in the output

images, GO5x51 and svGO5x5l, of Fig. 10.

The 3-D image shows a diffraction pattern that is well established by time

t= timemax, forming two spreading "tails." The "tails," as well as the rest of the
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TABLE IV. EXAMPLE DEFINING PARAMETERS FOR A

GAUSSIAN EXCITATION.

DEFINING PARAMETERS

NAME VALUE SUMMARY

N 128 Size of square base array

M 64 Number of time slices

Step 3 Number of leading zero-rows

c 1500 Acoustic velocity in media (m/s)

z 0.1 Distance, source-to-receiver (m)

timemax 375x10-6  Maximum time of propagation (s)

rho max 200 Spatial radius of filters (length-')

d 51 Diameter of excitation function
(samples)

a 5 Gaussian standard deviation

diffraction pattern, are smoothly rounded. This rounding is the result of the

continuity of th4 Gaussian distribution. A discontinuity, as in the previous two

"excitation shapes, would result in a characteristic over and undershoot of the

maximum and minimum inputs. Again, the results for this Gaussian excitation

conformed to those found in the literature [Refs. 7-101. The Bessel excitation was

then run and the results compared to those of the Gaussian.
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2. Bessel-Profiled Excitation

Results for the Bessel excitation produced by CRCBES.M (Appendix F)

were generated, as previously discussed, for the set of defining parameters listed in

Table V. The resulting input and output are shown in Fig. 11. In Fig. 11 the input

and output images are respectively titled B_2500 and B02500. Since the output is

formed by taking successive p(&,0lO,t) vectors, three peaks appear in the 3-D image.

These three peaks correspond to the center peak and the points on the two crests

directly adjacent to the center. As a result of having three peaks, three "tails" are

present. The "tails," however, are smooth because a Bessel function is a continuous

function. Also worth noting in the 3-D image is the simulated step function, more

visible here due to the oscillations of a Bessel. The output side view shows the

positive to negative oscillations of a Bessel function.

Comparing the Gaussian and Bessel outputs, it is seen that the Gaussian's

magnitude retention is slightly longer than that of the Bessel. This is due to the more

gradual decrease in magnitude vice the steeper decrease required of the Bessel so

that it can become negative. Still no hard conclusions can be drawn without further

analysis.
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Figure 11. Bessel profiled input and output with side view for a =1/4.
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TABLE V. EXAMPLE DEFINING PARAMETERS FOR A
BESSEL EXCITATION.

DEFINING PARAMETERS

I 128 Size of square base array

M 64 Number of time slices

Step 3 Number of leading zero-rows

c 1500 Acoustic velocity in media (m/s)

z 0.1 Distance, source-to-receiver (m)

time max 375x10-6  Maximum time of propagation (s)

rho max 200 Spatial radius of filters (length-')

d 51 Diameter of excitation function
(samples)

a 1/4 Bessel scaling factor
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V. SUMMARY

This thesis presented a MATLAB implementation of a Fourier approach to

ultrasonic wave propagation. A mathematical development using linear systems that

found the acoustic potential from an arbitrary spatial and temporal source was

presented. In the mathematical development, it was shown that the Green's function

solving the appropriate wave equation and satisfying the boundary conditions is the

total impulse response of the system. Through double and triple convolutions, the

acoustic potential could be found for any source separable in time and space. Use

of the 2-D spatial Fourier transform, however, translated the convolution to

multiplication in the spatial frequency domain. This made the MATLAB

implementation easier.

After an overview of MATLAB and the graphics program AXUM, a functional

description of the program was furnished. The program modules ACFIL and

ACPROP both made use of symmetry. AC FIL generated the time-varying filters,

the most time consuming process, while ACPROP accomplished the remaining

computations making use of MATLAB's "fft2" function. Details of both modules as

well as the source code have been included in the Appendices for the interested

reader.

Several examples were delineated in the body of this thesis. First, the Table and
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the Circle were presented as the program verification excitations: the results

conformed to those found in the literature. Then two newer excitation functions, the

Gaussian and the Bessel, were presented. More examples of the Gaussian and the

Bessel have been included in the Appendices.

The underlying result was an accurate and efficient computer implementztion

of the linear systems approach to ultrasonic wave propagation. The efficiency was

derived from the modularization of the program so that consecutive runs could be

made without recomputing the most time consuming portion, the filters. Also, the use

of MATLAB's "fft2" function bypassed tedious and time-inefficient convolution

integrals. Finally, both modules made use of symmetry by computing only one

quadrant of data which was then manipulated into the remaining quadrants. An

advantage to using MATLAB was the ease of expansion that could be accomplished

with the program.

The work of this thesis concentrated on a source with rigidly baffled boundary

conditions and a lossless media. Cases that include free space and resiliently baffled

boundary conditions as well as lossy media, linear and quadratic lossy media, could

be incorporated. A few facts worth noting here are that the free space and resilient

baffle boundary conditions can be expressed in terms of the rigid baffle case [Ref.

8] and that the lossy media and lossless media transfer functions are interdependent

[Ref. 10]. Furthermore, new excitation functions such as a phased array or a focused

source could also be incorporated. Improvements are needed in the area of analysis

such as the Gaussian versus Bessel propagation comparison and extending the
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technique to sources that are not time and space separable such as new non-

diffracting waves [Ref. 14].
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APPENDIX A. DETAILED EXPLANATION OF AC FILM

The following explanation addressing the first program module ACFIL is

intended to supplement the functional explanation found in the body of this thesis

and the comments in the source code found in Appendix B. Prior knowledge of

MATLAB is assumed, as is familiarity with information previously presented. In this

explanation, MATLAB commands will be lower-case bold and variables will be as

they appear in the code and in italics. The reader is referred to Ref. 12 for more

details on the MATLAB commands contained in this appendix.

The primary task of ACFIL is the generation of the time-varying, Bessel

profiled, spatial filters. AC FIL opens up with some preliminary housekeeping by

clearing the RAM and deleting all the .mat files from previous runs. Having cleaned

up, the next chore is to set the values of the defining parameters (N, M, Step, c, z,

time-max, and rho-max) and compute NO (a function of N). Having set the defining

parameters, the four matrices and two vectors used throughout the program are

initialized with the zeros command. This initialization saves processing time [Ref. 121.

The next duty is the formation of the time vector using the command linspace. The

linspace command generates a vector whose M-Step points are linearly spaced from

z/c to time-max, inclusive. The ensuing task makes use of the save command to

create a file named ACFIL.MAT in which the variables N, NO, M, and Step are
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saved for use in AC PROP. The next several procedures compute the non-time

varying portion of the argument for the Bessel function.

The first NO-i terms of the vector rhom are given the values from 0 to

rho max with the linspace command. Since the larger of the quadrants has NO

columns, rhom is modified by stipulating as the NO term the sum of the second term

and the NO--1 term. Then two arrays rhox and rhoy are created from rhom by the

meshdom command. The two arrays are NOxNO arrays where each row has the

corresponding value from the rhom vector (i.e., row one has the value from column

one, row NO has the value from column NO, etc.). The radial distance p, called rho

in ACFIL, is the square root of the sum of the squares of rhox and rhoy. The

elements of rho are computed on an element-by-element basis; this is accomplished

by the dots in the command line rho = sqrt(rhox.^2 + hoy.^2) and results in an

NOxNO rho matrix. That completes the computation of the non-time varying portion

of the Bessel argument.

The remainder of the program is a loop which computes the filter for each time

slice. A loop counter m running from I to M-Step is utilized for the 61 time slices

with the number of the current time slice displayed as a result of the fprintf

command. The next two chores compute an NOxNO Bessel array named temp whose

maximum value is temp(33,1) ((rowcolumn) format) giving temp a quadrant I

orientation.

First, the Bessel function argument arg is computed as the product of rho and

sqrt((c^2)*(time(m)A2)-(z"2)). Subsequently, temp is calculated by the besseln
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function with arguments 0 and arg; here, 0 is the integer order of the Bessel function.

The filter variable PROP is then generated from temp.

Each PROP (or filter) is an NxN array formed by setting rows 1 to NO and

columns NO to N of PROP equal to rows 1 to NO and columns 1 to NO-! of temp.

Quadrant II of PROP is formed by the command flipir which flips temp about

column one. A similar command flipud is used to flip rows 2 through NO of PROP

about row NO completing the formation of the entire PROP array. This construction

can be viewed by removing the optional comment indicators %*% found directly

before the mesh commands. The final task is saving the filter PROP for use by

AC PROP.

Saving PROP is a two step sequence. Step one of the sequence appends the

time slice number m to each PROP. This is accomplished by setting the variable

vname equal to the string PROP_0m (for m < 10) or PROP m (for m > 10) in

which the command int2str replaces m with its numerical value. The eval command

then assigns the values found in PROP to the string found in vname; this effectively

renames each filter PROP-{time slice number}. To save each filter, the eval

command is again employed. The two command lines

eval(['save ac',int2str(N),'x0',int2str(m),' ',vname I
%*% eval(['save e:\AC_OUT~ac',int2str(N),'xO',int2str(m),'.dat', vname,'/ascii']);

both save each filter in a file named ACNx0m where int2str replaces the variables

with the current values. The second eval command, however, saves the file with a

.DAT suffix in ASCII format to the E disk drive in the directory AC OUT. The
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above command line examples are for the m < 10 filters; there are similar command

lines for the m > 10 filters. The final step in the loop is to ready PROP and vname

for the next pass by clearing PROP and vname.
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APPENDIX B. SOURCE CODE FOR AC FILM

The following is the source code used to generate the time-varying filters as

discussed in Chapters II and III. AC FILM was written in block format with each

block headed by a descriptive comment to explain the block's function. The code

includes many optional instructions indicated by the leading %*% symbol. Deleting

this symbol will enact that line of code on succeeding program runs. This, of course,

varies the output; however, the outputs necessary to a successful run of ACPROP.M

are the file ACFILMAT and the files ACVxrn.MAT (m is an index number from

01 to 61). AC FILMAT contains variables needed in ACPROP.M. The ACNxm

files contain the filters (in a variable named PROP m) that correspond to the time

slice index m.

AC FILM SOURCE CODE

**** ACFIL.M ****

%% This program generates an Acoustic Propagation Transfer
%4 Function, a time varying spatial filter, for use in
%% ACPROP.M to simulate acoustic wave diffraction.

William H. Reid December 1992

clear; % Remove all variables from RAM.
!del ac*x*.mat % Remove files from a previous run.

N - 128; % Size of square base array.
H - 64; % Number of time slices.
NO - (N/2)+I; % Defines center of square base array.
Step - 3; % Number of leading zero time slices,

% simulates the step function.
c - 1500; % Velocity of the acoustic wave, (m/s).
z - 0.1; % Distance to the observation plane, (m).

time-max - 3.75e-4; % Maximum time of propagation,
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% time at the final time slice. (sec).
rhomax - 200; % Spatial radius of the filter.

% Lsqrt(rhox^2 + rhoy'21.

%% Matrices initialization to reduce processing time.
PROP - zeros(N); temp - zeros(NO);
arg - zeros(NO); rhom - zeros(NO,l);
rho - zeros(NO); time - zeros(M-Step,l);

%% Generate M-Step time slices between z/c and time max.
time - linspace(z/c,time_max,M-Step);

%% Save those variables necessary for ACPROP.M.
save ACFIL N NO M Step;

%% Generate NO-I values of "rhom" from 0 to rho max.
rhom - linspace(O,rhomax,NO-l);

%% Add additional increment to rhom to compensate for off center
%% orientation of the final N x N matrix.

rhom - [rhom (rhom(NO-l)+rhom(2))];

%% Create two NO x NO arrays of rhomax values for function evaluation.
[rhox,rhoyj - meshdom(rhom,rhom);

%% 64lculace "rho", an NO x NO matrix of radial distances for use in
%% the argument to •he Bessel function within the loop.

rho- sqrt(rhox.A2 + rhoy.^2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% START LOOP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Generate M-Step filter matrices, the filter at each time slice.

for m - 1:(M - Step)
fprintf('%3.Of',m); % Display m value for user progress report.

%% Create an NO x NO array of argument values for the Bessel function.
arg - row * sqrt( (cA2)*(time(m)A2)-(z^2));

%% Evaluate the zero order Bessel for each argument value,
%% creates an NO x NO array called "temp".

temp - 2*besseln(O,arg);

%% Form each N x N filter matrix called "PROP" from "temp".
%% (The optional mesh commands are for viewing the construction steps.)

PROP(I:NO,NO:N) - temp(l:NO,l:NO-l);
%*% mesh(PROP);title ('Quadrant I');pause

PROP(I:NO,1:NO) - fliplr(temp);
%*% mesh(PROP);title('Quadrants I & II'); pause

PROP(NO:N,l:N) -flipud(PROP(2:NO,l:N));
%*% mesh(PROP);title(['Filter at time slice ',int2str(m)j); pause
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%% Append the time slice number (loop iteration) to the variable
%% name PROP, i.e. PROP 01, PROP_02 .... for m < 10 and PROP_10,
%% PROP 11.... for m - 10 to 4-Step

if m < 10,
vname - ['PROP_0',int2str(m)];
eval([vname,'- PROP ;'1);

else
vname - ['PROP_',int2str(m)3;
eval([vname,'- PROP ;']);

end

%% Save each time slice filter in a file named ac(N)x(m),
%% (i.e. PROP 05 in ac128x05). The files can be saved to another drive
%% path in ascii format for use with other graphics software.

if m < 10,
eval(['save ac',int2str(N),'xO',int2str(m),' ',vname I ):

%*% eval(['save e:\AC OUT\ac',int2str(N),'xO',int2str(m),'.dat',
vname,'/ascii']);

else
eval(['save ac',inr2str(N),'x',int2str(m),' ',vname ] );

%*% eval(['save e:\AC OUT\ac' ,int2str(N),'x' ,int2str(m),'.dat',

vname,'/ascii']);
end

eval(['clear PROP ',vname]); % Clear PROP for next loop pass.

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END LOOP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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APPENDIX C. EXAMPLES OF THE TIME-VARYING BESSEL FILTERS

This appendix contains examples of the time-varying filters produced by

ACFIL Only a select few of the total number M (61 in the cases given throughout

this thesis) are provided. The first at time z/c is a plane with amplitude two; this is

because the input argument to the Bessel function is zero giving an output value of

one. This uniform plane produces an output for time slice one that is a scaled replica

of the input. The remainder of the filters illustrate the time variance and how the

filters collapse inward with time. Each filter is a 128x128 array representation in the

spatial frequency domain.
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Figure 13. Example filter at time slices 15, 20, 30, and 40.
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Figure 14. Example filter at time slices 50, 60, and 61.
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APPENDIX D. DETAILED EXPLANATION OF AC PROP.M

The following explanation addresses the program Mlodule ACPROP. This

explanation assumes familiarity with MATLALB and the functional explanation in the

body of this thesis. The source code for ACPROP is given in Appendix E. The

MATLAB commands in this explanation are in lower-case bold and the variables are

in italics as they appear in the code. The reader is referred to Ref. 12 for more

details on the MATLAB commands contained in this appendix.

ACPROP starts off with housecleaning by clearing RAM, the screen, and any

residual graphics. The next task is to load the file ACFIL.MAT which contains the

variables N, NO, M, and Step. Then the command format compact is executed to save

space on the monitor screen for the interactive portion of the program.

The next block of code uses the disp command to display information for the

user and the input command to retrieve the user's input. The user is requested to

select one of the four input excitation functions or to strike "enter" to select the

default function found in square brackets (i.e., []). After selection of the excitation

function, the program then requests values for the appropriate function-defining

parameters; again, default values are found in square brackets. A function call is then

made to the selected function file and the excitation function is generated and

returned to the variable shftinput ("shft" in a variable name indicates center
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geometry; see Chapter II). Two files called InFile Name and OutFile Name are then

created. These files are used for exporting the input function and output data,

respectively, to AXUM. The image titles in the figures throughout the thesis and

appendices are the names found in InFileName and OutFileName. ACPROP's

next chore is saving InFile_Name to the indicated directory as a .DAT file in ASCII

format and then ciearing InFileName from RAM. The next several blocks of code

operate on the chosen input function.

First, the mesh command generates a 3-D graphic of shft-input. The command

subplot(221) that precedes mesh divides the screen into two sections vertically and

horizontally. This forms quadrants with the input graphic being placed in quadrant

1. The subplot is executed so that the input and output can be viewed together at the

program's end.

An option to generate a MATLAB formatte .4 file of the graphic, called a meta

file, follows. The meta file is used to produce a hard copy of the graphic from

MATLAB. Options, indicated with %*%, are included throughout the code. The

option to mesh for viewing follows each manipulation in the process of formulating

the output. Other options include viewing the absolute value of the 2-D Fourier

transform of the input, viewing the absolute value of the output, and saving the

output of each time slice.

After viewing shftinput, input is formed by using the ifishift command to shift

the input to the corner geometry (recall the discussion of Fig. (4)). Shifting of the

input prior to taking the 2-D Fourier transform is necessary to maintain the proper
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phase relationship in the transform (as discussed in Chapter II). The next procedure

is taking the 2-D Fourier transform of input to form Finput.The fMt2 command

effects the transform. Once in the transform domain, the time domain

representations input and shft input are cleared from RAM. The remaining input

process is the fttshift of F_input back to the center geometry forming Fshftinput.

RAM is again freed by removal of F~input. The disp command then informs the user

that the program is "performing array multiplication."

The array multiplication is a repetitive operation in that it is performed for

each time slice. As with the filter module, a loop with counter m is employed.

Running from 1 to M-Step, the current time slice m is displayed utilizing the fprintf

command. The first operation in the loop is to load the ACNvxn file that contains

filter m. This is accomplished in two steps; first the variable filenamel is used to

assemble the correct file name. The ensuing eval command executes the load

command on the file name contained in filenainel. Then filenamel is cleared from

RAM. Once the file is loaded into RAM, the program has access to the filter;

however, the name of the filter is not known to the program. Again the eval

command is employed so that vnamel holds the filter name PROPre. Now the filter

input product is computed on an element-by-element basis. The command line

Fshftoutput = (vnamel .* (Fshftinput)); produces the transfer domain center

geometry output Fshftoutput.

The output Fshft output is then transformed back to the time domain in a

three-step procedure. Steps one and three are shifts using the Mshift command at
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both ends of the inverse 2-D spatial Fourier transform iffi2 command. The result is

the output shft output for the m" time slice. After clearing RAM. the center row

(row NO) of shzft.output is placed in column m + Step of the final output outputjplot.

Before the loop ends, an option to save and export shftoutput for each time slice has

been included. To exercise this or any option, simply remove the %*% at the start of

the command line.

When m is equal to M-Step, the program exits the loop where the contents of

output..plot are saved to the appropriate directory in either MATLAB format or

ASCII format. The succeeding block of code gives the option of viewing the output

in three different views and producing a MATLAB meta file. Finally, the absolute

value of the output is displayed in quadrant 4 with the input in quadrant 1 via the

subplot(224) command.

62



APPENDIX E. SOURCE CODE FOR AC PROP.M

The following is the source code for ACPROP.M used to produce various

outputs including those discussed in Chapter IV. ACPROP was written in blocks

with each block headed with a descriptive comment to explain the block's function.

This also makes it easy to follow the computation from inputs to output. Inputs to

ACPROP are imported from ACFIL in the file AC_FIL.MAT and the files

ACNxm.MAT (m is an index number from 01 to 61). The program solicits user input

to determine the input excitation. AC PROP then computes the output.

The format of the output can be changed by the user. Before running the

program, the user can remove the optional comment markers indicated with %*%

to produce and/or view the output in the desired format. This allows the data to be

saved and exported in ASCII format for use with other graphics programs (such as

AXUM, see Chapter II).

ACPROP.M SOURCE CODE

, ,, ,ACPROP.M *, ,
%% This program performs transient-wave acoustic propagation
%% simulations. It uses the time varying spatial filters called PROP_m

%% to compute the Acoustic Propagation Transfer Function. The PROPm
%% files are generated by AC FIL.M and are titled "acNxm.mat" where
"%% "N" and "im" are numbers.

William H. Reid December 1992

%*% !del ABSOUT.met % Remove output from last run.

clear; clg; clc;
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%% Load the parameters generated by ACFIL.M.

load AC FIL.MAT

format compact % Set compact format for screen display.

%% Generate the INPUT function from user interface.
N % Display the size of the square base array.
disp('N is the width of the base.'); disp(' ');

disp('Please select the excitation function:');
disp(' -> C - Circle T - Table G - Gaussian B - Bessel <-');

disp(' ');
disp('Please, capital letters only! Strike "enter" after selection.');
disp(' Default values are in [ ].');

inputfunc - input('Please enter an excitation function letter

(0]:' ,'s )I
if isempty(inputfunc)

inputfunc - 'G'
end

if input-func - 'C',
d - input('Please enter an ODD diameter, [51], d - I);

if isempty(d)
d - 51

end
shft input - crcle(d,N);
InFileName - [inputfunc,'_',int2str(d)]; % Name a file to

% hold the input function.

OutFileName - [input func,'O',int2str(d)]; % Name a file to
% hold the output.

elseif input func - 'T,
w - input('Please enter an ODD width, [11], w - I);

if isempty(w)
w - 11

end
shftinput - table(w,N);
d - w;
InFile Name - [inputfunc,' _',int2str(d)j;
OutFileName - [inputfunc, O',int2str(d)1;

elseif input func - 'G',
sigma - input('Please enter the standard deviation, [101,

sigma "
if isempty(sigma)

sigma - 10
end

d - input('Please enter an ODD diameter, [51), d -

if isempty(d)
d - 51
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end
shft input - crcgaus(sigma,d,N);
InFileName - Tinput_func,'_',int2str(sigma),':',int2str(d)];
OutFile Name - [inputfunc,'O',int2str(sigma),'x',int2str(d)];

elseif input func - 'B',
a - input('Please enter a width scaling factor,[.3125], a -

if isempty(a)
a - 0.3125

end
d - input('Please enter the ODD diameter, [51], d -

if isempty(d)
d - 51

end
shftinput - crcbess(a,d,N);
q - a * le4;
InFileName - [inputfunc,' _',int2str(q)];

OutFileName - [inputfunc,'O',int2str(q)];

else
disp(' ');
disp('Incorrect Excitation Function Selection!');
error('Restart ACPROP.. .to try again.');

end

%% Save the input function placed in "InFileName" in ascii format for
%% use with other graphics software.
eval(['save e:\',InFile_Name,'.dat shft input /ascii']);

%% Remove "InFile Name" from memory.
clear InFileName;

%% Display the input function for viewing in a subplot so the output
%% can also be display.
subplot(221),mesh(shftinput);title('SHFTINPUT'); pause(2);
%*% meta InPut % Optional, used to create a MATLAB hard copy.
%*% clg

%% Shift input quadrants and take the 2-D FFT to produce FINPUT.
%% Shifting swaps quadrants I & III and II & IV. This is necessary
%% for taking the 2-D Fourier transform (fft2).
input - (fftshift(shftinput));

%*% mesh(input);title('INpUT ') % Optional for viewing INPUT.
%*% pause(2);clg

F input - fft2(input);
%*% mesh(F input);title('FINPUT ') % Optional for viewing FINPUT.
%*% pause(2);clg

clear input shft input; % Free RAM.

%% Shift F input in preparation of multiplication with PROPm.

65



Fshtt_input - fftshift(F input);
%*% mesh(Fshftinput);title('FSHFTINPUT ') % Optional for viewing

%*% pause(2);clg % Fshft input.

clear F input; % Free RAM.

%% Plot the absolute value of the fft2 of "shft input." '"his is optional

%% and is for viewing only.
%*% mesh(abs(Fshftinput)); title('ABS(FSHIFTINPUT)')
%*% pause(2);clg

%% Element by element arrray multiplication of the transfer function
%% filter in "PROPim" and "Fshftinput."
disp('Performing array multiplication....');

%%%%%%%%%%%%%%%%%%%%%%%%%%%% START LOOP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for m - l:M-Step

fprintf('%2.0f,',m) % Display m value for user progress report.

%% Give the variable "filenamel" the name of the file containing
%% "PROP im" and then load that file.

if m < 10,
filenamel - ['ac',int2str(N),'xO',int2str(m)];

else
filenamel - ['ac',int2str(N),'x',int2str(m)];

end
eval(['Iload ',filenamel] );
clear filenamel; % Free RAM.

%% Set the variable "vnamel" equal to "PROP im" then multiply by
%% "Fshft input" to form the output "Fshftoutput."

if m < 10,
eval(['vnemcl - PROP_O',int2str(m),';']);

else
eval(['vnamel - PROP ',int2str(m),';']);

end
Fshft_output - (vnamel .* (Fshft_input));

%*% mesh(Fshft_output); title('FSHFTOUTPUT ') % Optional for

%*% pause(2); clg; % viewing "Fshftoutput."
clear vnamel; % Make "vname!" ready for next pass.
eval(['clear PROP O',int2str(m),';']); % Clear unneeded variables
eval(['clear PROP_',int2str(m),';']); % to free RAM.

%% Shift "Fshft output" to corner geometry prior to taking the inverse
%% 2-D Fourier transform, ifft2. Take the inverse transform to produce
%% "output." Then shift "output" back to the center geometry to produce
%% the diffracted wave at time slice "m" called "shftoutput."

F output - fftshift(Fshft_output);
"I** mesh(Foutput); title('FOUTPUT ') % Optional for viewing
%*% pause(2); clg; % "F_output."

clear Fshft_output; % Free RAM.
output - (ifft2(F_output));
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%*% mesh(output); title('OUTPUT '); % Optional for viewing
%*% pause(2); cig; % "output."

shftoutput - fftshift(output);
%*% mesh(shft output); title('SHFTOUTPUT '); % Optional for

%*% pause(2); cig: % viewing "shftoutput."
clear Foutput; clear output; % Free RAM.

%% For optional view of the magnitude of the shifted output,
"%% "shft output."

%*% mesh(abs(shftoutput)); title('ABS(SHFTOUTPUT)');
%*% pause(2); clg;

%% Save the NO (center) row of shifted output in the m-th column
%% of "outputplot." This creates an N x m+Step matrix whose columns
%% show the reduction in amplitude and the spreading of the wave.

outputplot(l:N,m+Step) - (shft_output(NO,1:N))';

%% Save the N x N matrix "shft output" in a file whose name is
"%% "inputfunc" OUT "m".dat. A Gaussian, for example, would be
%% G_OUT 12.dat on the 12-th loop interation. This is optional for
%% graphics use by other software.

%*% vname4 - ('shft output',int2str(m)];
%*% eval([vname4,'- shft_outp.t ,']);
%*% if m < 10,

%*% eval(['save E:\',inputfunc,'_OUT_0',int2str(m),'.dat',
vname4,' /ascii']);

%*% else
%*% eval(['save E:\',input_func,'_OUT_',int2str(m),'.dat ',

vname4,' /ascii']);
%*% end
%*% eval(['clear shft output ',vname4]); % Get ready for next pass.

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End loop %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Save the contents of "output-plot" in a MATLAB file and as an ascii
%% file.

%*% filename - ['ACO',int2str(d),'x',int2str(m)];
%*% eval(f'save ',filename,' outputplot'] );
eval(['save e:\',OutFileName,'.dat outputplot /ascii']);

%% An optional plot of three views of "outputplot."
%*% subplot(121), mesh(rot90(output plot,l));
%*% subplot(122), mesh(rot90(outputplot,2));
%*% pause(2); clg;
%*% mesh(rot90(output_plot,3)),title('OUTPUT');
%*% pause(3);

%*% meta OUT_3 % Optional, for producing a MATLAB
% hard copy of the third view.
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%% Simultaneously display the input and output.

subplot(224),

mesh(rot90(abs(output_plot),3)),title(,OUTPUT-absolute value',';
pause(3)

%*% meta ABSOUT % For producing a MATLAB hard copy.
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APPENDIX F. SOURCE CODE FOR INPUT EXCITATIONS

The following source code is for the input excitation choices given to the user

in ACPROP. Each is written as a MATLAB function and can be used

independently of AC FIL or ACPROP. The input excitations are the uniform

square (TABLE(wN)), the uniform circle (CRCLE(dN)), the circularly truncated

Gaussian (CRCGAUS(sigma,d,N)), and the circularly truncated Bessel

(CRCBES(a,d,N)) where w is the width of the square, d is the diameter of the circle,

sigma is the standard deviation of the Gaussian distribution, a is a scaling factor, and

N is the size of the base array.

TABLE.M SOURCE CODE

function Y - table(w,N)
% TABLE.M: Y - table(w,N)
%Program for generating a uniform square excitation function.
% December 1992 William H. Reid
% Based on TABLE.M by JG Upton

% w is the WIDTH of the table. (ODD integer)
% N is the WIDTH of the square base. (EVEN integer)
% Example: z - table(33,64);

% Check that w is an odd integer.
if rem(w,2) < 0.1;
error('The width of the table must be an ODD integer.');
else;
end;

% Check that N is an even integer.
if rem(N,2) -- 0.0;
error('The width of the square base must be an EVEN integer.');
else;
end;
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NO - (N/2)+I; % NO is the base array's center.
wO - ceil(w/2); % wO is the mid-point of the table.
Y - zeros(N); % Initialize matrices to reduce
temp - zeros(NO-1); % processing time.

temp(l:wO,l:wO) - ones(wO); % Set amplitude to one.

% Generate the entire N x N input function array.
Y(NO:N,NO:N) - temp;
Y(2:NO,NO:N) - rot9o(temp);
Y(2:NO,2:NO) - rot90(temp,2);
Y(NO:N,2:NO) - rot90(temp,3);

% To test input distribution: mesh(Y)

CRCLE.M SOURCE CODE

function Y - crcle(d,N)
% CRCLE.M: Y - crcle(d,N)
% Program for generating uniform circular excitation functions
% December 1992 William H. Reid
% Based on CRCLE.M by JG Upton

% d is the DIAMETER of the circle. (ODD integer)
% N is the WIDTH of the square base. (EVEN integer)
% Example: z - crcle(33,64);

% Check that d is an odd integer.
if rem(d,2) < 0.1;
error('The diameter of the crcle function must be an ODD

integer.');
else;
end;

% Check that N is an even integer.
if rem(N,2) -- 0.0;
error('The width of the square base must be an EVEN integer.');
else;
end;

NO - (N/2)+I; % NO is the base array's center.
r - d/2; % r is the circle's radius.

% Initialize matrices to reduce processing time.
Y - zeros(N);
temp - zeros(NO-l);
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% Set amplitude to one inside the circle's radius.
for m - 1:r+l:

for n - 1:r+l;
if sqrt((m-l)^2 + (n-I)A2) <- r;
temp(m,n) - 1;
end;

end;
end;

% Generate the entire N x N input function.
Y(NO:N,NO:N) - temp;
Y(2:NO,NO:N) - flipud(temp);
Y(2:NO,2:NO) - rot9O(temp,2);
Y(NO:N,2:NO) - fliplr(temp);

% To test input function distribution: mesh(Y)

CRCGAUS.M SOURCE CODE

function Y - crcgaus(sigma,d,N)
% CRCGAUS.M: Y - crcgaus(sigma,d,N)
% Program for generating circular Gaussian excitation functions.
% December 1992 William H. Reid
% Based on CRCGAUS.M by JG Upton

% sigma is the STANDARD DEVIATION of the gaussian function.
% d is the DIAMETER of circle. (ODD integer)
% N is the WIDTH of the square base. (EVEN integer)
% Example: z - crcgaus(12,33,64);

mu-O; %mu is the mean of the gaussian function.

% Check that d is an odd integer.
if rem(d,2) < 0.1;
error('The diameter of the circle function must be an ODD

integer.');
else;
end;

% Check that N is an even integer.
if rem(N,2) -- 0.0;
error('The width of the square base must be an EVEN integer.');
else;
end;

NO - (N/2)+l; % NO is center of the array.
r - d/2; % r is the radius of the truncating circle.

71



% Initialize the matrices to reduce processing time.
Y = zeros(N);
temp - zeros(NO-1);

% Compute the amplitude for the Gaussian distributed circle.
for m - l:(d+l)/2;

for n - 1:(d+l)/2;
x - sqrt((m-l)^2+(n-l)^2);
if x <- r;
temp(m,n) - (l/(sqrt(2*pi)*sigma))*exp(-((x-mu)^2)/!...

(2*(sigma^2)));
end;

end;
end;

% Generate the entire N x N input array.
Y(NO:N,NO:N) - temp;

Y(2:NO,NO:N) - flipud(temp);
Y(2:NO,2:NO) - rot90(temp,2);
Y(NO:N,2:NO) - fliplr(temp);

Y - Y ./ (max(max(Y))); % Normalize the Gaussian distribution to one.

% To test and view the input function: mesh(Y)

CRCBESS.M SOURCE CODE

function Y - crcbess(a,d,N)
% CRCBESS.M: Y - crcbess(a,d,N)
% Program for generating circular Bessel excitation functions.
% December 1992 William H. Reid
% Based on CRCBESS.M by JG Upton

% a is the WIDTH SCALING FACTOR.
% d is the DIAMETER of the circle. (ODD integer)
% N is the WIDTH of the square base. (EVEN integer)
% Example: z - crcbess(i,33,64);

% Check thac i is an odd integer.
if rem(d,2) < 0.1;
error('The diameter of the circle must be an ODD integer');
else;
end;

% Check that N is an even integer.
if rem(N,2) -- 0.0;
error('The width of the square base must be an EVEN integer');
else;
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end;

=~~~~ (M2+: Os rme center £ mrie array.

r - d/2; % r is the radius of the circle.

= zeros(N); % Initialize the arrays to reduce

temp - zeros(NO-l); -processing time.

% Compute the Bessel distributed amplitude within the circle.
for m - 1:r+l;

for n - l;r+l;
x - sqrt((m-l)^2 + (n-l)^2);
if x <- r;
temp(m,n)-besseln(O,a*x);
end;

end;
end;

% Generate the entire J x N input array.
Y(NO:N,NO:N) - temp;

Y(2:NO,NO:N) - flipua(temp);
Y(2:NO,2:NO) - rot90(temp,2);
Y(NO:N,2:NO) - fliplr(temp);

% To test and view the input function: mesh(Y)
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APPENDIX G. EXAMPLES OF OUTPUT FROM A GAUSSIAN INPUT

This appendix contains examples of the outputs that result from Gaussian

inputs. The Gaussian inputs in all cases have been normalized. The outputs give the

magnitude as a function of time and radial distance. Each output represents only I/N

of the data computed; this is done so that a four dimensional field (the four

dimensions are x, y, z, and time) can be represented in three dimensions (the

magnitude for all x values, radial distance values, at y = 0 and z = 10 cm as a

function of time). Each output for a given diameter d differs in the standard deviation

a of the input. Two diameters, 51 and 25 samples, are provided with respective

metric diameters of 3.88 cm and 1.86 cm. In each diameter case, the first

input/output combination is the Circle function of the same diameter.

The base array size for all figures of this appendix is 128x128. Titling of the

images is of the form G{input/output indicator}axd where the input and output

indicators are underscore and 0, respectively. The images are in order of

decreasing a.
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Figure 15. Circle with d = 51 and Gaussian with a = 100 inputs and outputs,
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Figure 16. Example Gaussian inputs and outputs for a = 51 and a = 45.
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Figure 17. Example Gauss~an inputs and outputs for a = 40 and a =35.
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Figure 18. Example Gaussian inputs and outputs for a = 30 and a =25.
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Figure 19. Example Gaussian inputs and outputs for a =20 and a =15.
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Figure 20. Example Gaussian inputs and outputs for a 10 and a 5.
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Figure 21. Circle with d = 25 and Gaussian with a = 25 inputs and outputs,

81



A/

o Y z

--. , -- _

Figure 22. Example Gaussian inputs and outputs for a =15 and a 10.
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APPENDIX H. EXAMPLES OF OUTPUT FROM A BESSEL INPUT

This appendix contains examples of the Bessel input excitations and the

resulting outputs. The inputs are 128x128 time domain array representations. The

resulting outputs are 1/ 12 8th of the data computed; this is done so that a four

dimensional field (the four dimensions are x, y, z, and time) could be represented

on a three dimensional plot (the magnitude for all x values, radial distance values,

at y = 0 and z = 10 cm as a function of time). Two cases of diameter are shown, 51

and 25, having metric equivalents of 3.88 cm and 1.86 cm. Titling of the images is as

discussed in the thesis body; however, a summary of the titling is given in Table IV

for convenience.
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Figure 23. Bessel inputs and outputs for a 1/64 (top) and a =1/32 (bottom).
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Figure 24. Bessel inputs and outputs for a =1/16 (top) and a = 3/32 (bottom).
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Figure 25. Bessel input and outputs for a =7/64 (top) and a =15/128 (bottom).
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Figure 26. Bessel input and output for a 18
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Figure 27. Bessel input for a =1/4 and two output formats.
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Figure 28. Bessel inputs and outputs for a = 3/8 (top) and a = 1/2 (bottom).
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Table VI. KEY TO LABELING OF BESSEL EXAMPLE GRAPHICS.

BESSEL EXCITATION EXAMPLES

VALUE OF FIGURE
NAME a SUMMARY NUMBER

B_156. B0136 1/64 INPUT, OUTPUT 23

B 313, B0313 1/32 INPUT, OUTPUT 23

B 625, B0625 1/16 INPUT, OUTPUT 24

B 938, B0938 3/32 INPUT, OUTPUT 24

B 1094, B01094 7/64 INPUT, OUTPUT 25

B 1172, B01172 15/128 INPUT, OUTPUT 25

B 1250, B01250 1/8 INPUT, OUTPUT 26

B 2500, B02500 1/4 INPUT, OUTPUT 27

B 3750, B03750 3/8 INPUT, OUTPUT 28
B_5000, B05000 1/2 INPUT, OUTPUT 28

B 313A, B0313A 1/32, d = 25 INPUT, OUTPUT 29

B 625A, B0625A 1/16, d = 25 INPUT, OUTPUT 29
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