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Abstract

This paper describes & hardware test platform designed to
implement adaptive lattice filters in real-time. To achieve real-time
pbrocessing speeds, algorithm complexity was accommodated by
custom designing the computation engines with respect to the
lattice data flow. Execution speeds of the computation engines
were dramatically increased by a memory architecture that supports
efficient addressing and by providing a floating-point ALU with
numerous data paths and efficient implementation of division,
Perforrivance is further enhanced by pipelining muitiple computation
engines. In addition, the architecture is flexible enough to support
other filter structures and to allow observation of filter variables as
they adapt. With this system, various Adaptive Filter algorithms are
being tested in real-time implementations of Adaptive Ling
Enhancers (ALEs) and Adaptive Noise Cancelers (ANCs) in order to
characterize their performance and behavior, especially long term
stability and the ability to track non-stationary signals.

I. Introduction

Adaptive lattice ai_ ..thms have been expected to offer a
number of advantages over conventional LMS transversal algorithms
including: faster rate of convergence, moduiar Sstructure,
insensitivity to variations in the eigenvaiue spread of the input
Correlation matrix, and automatic system order detection [1,2].
However, the use of adaptive lattice filters for real-time signal
processing has been limited. in part this is due to their
computational cost and complexity. This paper describes the design
of a hardware test piatform, calied the Lattice Deveiopment System
(LDS), designed and built by the U.S. Naval Ocean Systems Center
{(NOSC) to implement adaptive lattice filters for real-time
applications. The design, while tailored to impiement adaptive lattice
fiters efficiently, is flexible enough to support other structures such

as adaptive transversal filters for comparative performance
gvaluations.
The recursive nature of adaptive fiters makes their

implementation in reai-time hardware an extremely interesting and
challenging research field. Time-domain adaptive algorithms
generally require that their filtered output be used in updating the
filter's coefficients before the next input sample is processed. Thus,
the total processing latency must be iess than one sample period.
Unfortunately, the coefficient updating can often dominate the total
processing time thereby limiting the adaptive filter's potential
apphications.  Multiprocessing techniques used for performance
enhancement of non-adaptive filters can not be directly applied to
adaptive filters due to adaptive filter's lack of a single computational
farm. For instance, non-adaptive convolution is composed of only
a8 sum-of-products. Adaptive filters usually posses a number of
computational forms as well as requiring several ditferent modes of
operation such as initialization, adaptation, and order expansion &
contraction.

Figure 1 shows the tradeoffs incurred by different methods of
implementing adaptive filters. Usually. performance and design
complexty are traded against flexibility. The measure of
performance in real~time Systems is the maximum Continuous
sampling rate supported by the hardware; the measure of flexibility
s how easly moditications can be accomplished. Examples of
features one may wish to modify are: updaie algornthm, fiter
structure. hiter conhiguration. and hiter parameters such as order
and tme constants.
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Figure 1: Adaptive Filter Implementation Methods and thesr

Tradeoffs.

The LDS was designed as an adaptive filter test platform to
characterize the performance and behavior of both adaptive lattice
algorithms ard adaptive transversal algorithms in real-time
applications. Of particular interest are the long term stabiity and
the ability to track non-stationary signals as a function of filter
parameters. To meet the combined needs of high throughput and
flexibility. the LDS was built as a linear pipelined array of custom
designed, programmable computation engines. Each engine s
optimized for implementing adaptive lattice filters using a single
32-bit fioating-point ALU with provisions for floating-point division.
The LDS system can be configured with up to 10 engines, each
having sufficient memory to store the variables for a 1024 stage
lattice filter. A system with a full complement of ten computation
engines is capable of sustaining the computation of a 1024 stage
recursive least square lattice (RLSL) filter (10,11} at a 1.2KHz
reai-time sample rate.

Other adaptive lattice filter implementations. particularly those in
custom VLS|, have been based on linear pipelined processing arrays
consistent with the lattice structure [3-5]. One implementation
made use of a switched capacitor fiter in an analog/digital hybnd
approach [6]. Recently, a vectorized adaptive latice was proposed
which allows tor even higher degrees of parailelism [7-9). All of
these take advantage of the modularity provided by the local (single
lattice stage) error feedback of the lattice.

Section 1l of this paper is a high level descripton of the LDS. It
includes a brief description of the system’s three main hardware
functional units. plus the Man-Machine Interface software and other
software support tools. in addition, Section !l describes the
implementation of adaptive filters in a muiuple engne LDS
configuration. Section Il provides more detaled information and
insight into the design of the functional unit that is the processing
heart of the LDS: the Computation Engine. A sample of the
capabilities of the LDS is presented in Section V.

Il. Hardware System Overview

The LDOS has three separate functional units: the System Controt,
the Analog-Digital Interface, and an array ot Computanon Engines
Systemn performance is increased by using muitiple computation
engines in a hnear pipelined array. The functional units are
accessed and configured by a single board mini-computer running
a menu driven man-machine interface (MMi). Figure 2 shows the
nterconnection and the user intertace wia the mum-computer ang a
terminal. Once configured by the user, the LDS wil run in reat-time
until stopped by the user. It can easily be recortgurec 1o compute
aitterent adaptive hiter algonthms. modity hiter parameters change
sampie trequency. or change between ALE arz A% Tre gagrans
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Flguro'Z: Block Diagram of the NOSC Adaptive Lattice Development System (LDS).

in Figure 3 shows the ALE and ANC adaptive filter configurations and
the associated nomenclature for the reference, x(n), primary, d(n),
filter output, y(n), and error output, @(n), signals.

Filter
Adaptive Filter Out

y(n)

Error
Qut
e(n)

synchronously but proceed independently, so they can run different
microcode and may terminate operations independently. Once all
engines ‘terminate operations in a given filter update cycle. the
System Control unit assumes control. The computation cycle
repeats with synchronous starts on command from the System
Control unit and asynchronous terminations dependent upon
computation requirements.

Local RAM on the System Control unit is designed to handie
multiple circular buffers so that input data (reference and/or
primary) can be delayed up to a combined maximum of 16K data
samplias before being sent to the engines. This supports many
filter configurations including the ALE, where the reference data is a
delayed version of the primary data. Another feature of the LDS is a

user definable sampling frequency.
Ref ] .
— Filter Filter Implementations with a Muitiple Engine LDS
x(m) Out
y(n) Both adaptive lattice and adaptive transversal filters can benefit
from a muitiple engine LDS configuration. The lattice filter's order
Pri Error recursive variables are passed from stage to stage in sequential
n Out order. This can result in extremely long processing times when long
d(n) ANC e(n) filter lengths are used. The total processing time can be reduced by

Figure 3: Adaptive Line Enhancer (ALE) and Adaptive Noise
Canceler (ANC) Fiiters.

Real-Time Operation

The Systern Control unit runs a concurrent operating system
which initializes all actions in the LDS. Control data is passed by the
MM to the System Control unit to contigure or reconfigure the
system. The control unit first down loads the microcode for each
engine and then initializes each engine's state. Once the system is
completely configured, it will perfarm the following tasks repeatedly
when commanded to run;

1. prompts the A-D interface unit to acquire 16-bit

quantized data,

2. accepts data from the A-D Interface unit and places it

in local RAM,

3. passes input data to the engines for tiltering,
initiates data transfers between Computation Engines.

5. accepts filter output data and other outputs from the
engines,

6. sends engine outputs to the A-D Interface unit for
conversion to analog output,

7. loops to 1.

»

All funcuonat units are synchronous and run from a single 8MHz
clock distnbuted throughout the LDS. Engine operations are started

a factor of O(P) by using P pipelined computation engines. Since
each engine must be pipelined, successive engines wil be
processing data that is one sample period earlier in time than the
engine which supplies its passed variables. An application’s
required sample rate determines both the number of engines used
and the maximum number of stages computed on each engine.
Figure 4 shows an example of a three engine LDS computing a
6-stage adaptive lattice filter. At the compietion of a lattice update
cycle, ail order recursive variables are passed between engines via
an uni-directional jocail bus in a synchronous fashion.

Adaptive transversal filters can be implemented on a muitipte
engine LDS in severa! ways, even though multiprocessing with them
is less straight forward than for adaptive lattice filters due to the
global error feedback for coefficient updating [12]. One of the
more efficient approaches makes use of the multiple engines
configured in a uni-directional data flow ring, as was proposed by
Milter et. al. {13]. As an example of this approach. Figure 5 shows
the computation of an 8-weight adaptive transversal fiiter on a four
engine LDS. Each engine is responsible for only those calculations
involving a section of the complete filter's weights. The process
proceeds by each engine computing the convolution sum of its
section of the filter. A series of synchronous data passing and
summation steps are then performed until each enging has its own
identical copy of the fiitered output. Next each engine generates 11s
own identical error term from a broadcasted deswed signal ang
updates its own set of weights via an adaptive algonthm such as
least mean square (LMS) [t4]. The method effectively solves the
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Figure 4: Calculation of a 6-stage Adaptive Lattice Filter in a Three Engine LDS.

global feedback problem by generating the same error in every
processor. Each engine has sufficient memory to store the
variables for a 4096-weight LMS filter.

Pri d(n) broadcasted to all engines
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Filter Out
Engine #4

Engine #3

Figure 5: Calculation of an 8-stage Adaptive Transversal Filter in
a Four Engine LDS.

Analysis Tools

The LDS software provides the user with many useful features
tor analyzing adaptive filters. Specific filter coefficients can be
selected for observation as they adapt in time, or a snapshot of all
coetficients can be taken at a specific time period. The coefficients
are transferred to data files on the mini-computer's hard disc from
which turther analysis can be done off-line. The system also has
the capability of inputting data directly from a data file or outputting
fitered data directly to a file.

ill. Computation Engine Design

The Computation Engine is the processing heart of the LDS. It
was custom designed to efficiently implement adaptive lattice filters
and s composed of two main parts: the microsequencer and the
microengine. The engine's operation is controlled by up to 2K
microwords down loaded from the System Control unit during the
LDS's initialization. The equations that describe adaptive lattice
algorithms are structured into groups called stages (see Figure 6).
Each stage can have variables which are updated entirely by
ume-recursions, entirely by order-recursions or by a combination
of both time and order-recursions. Adaptive {attice algorithms such
as the RLSL {10.11] and the stochastic gradient lattice [15] use
both time and order recursions to save computations. In addition,
these adaptive lattice algorithms require muitiple divisions per
stage. The following features were incorporated in order to achieve
real-time computation speeds for adaptive lattice filters:

® use of a 32-bit floating-point processing chip with a
latency of only one clock cycle.

® etticient implementation of tloating-point division,

® separate memores  for time-recursion and
order-recursion variables.

® implementation of a fioating-point & integer
comparator,
provision of many data paths to support all of the
above,
extension of data paths across multipie computational
engines,

increased data bandwidth by using uni-directional local
busses to link neighboring engines.

use of a simple microsequencer and a honzontal
microword.

The utility of these features is described in the next two secuon

time-recursions

Adaptive
Lattice
» (c?:trargre\t) tnext)
order-recursions

Figure 6: Data Flow for Single Adaptive Latlice Stage
Computations.

Microengine Arithmetic Structure and Data Paths

Figure 7 shows the data paths in the microengine. The
Advanced Micro Device's AM29325 (16} was the floating-point
processor chosen for two main reasons: it can compute anthmetic
operations in a single clock cycle and it supports fast inversion
instructions. A short pipeline depth is desirablie when implementing
tightly recursive algorithms, such as RLSL. which ofien require the
result of one computation for the very next computation. “inversions
are computed with 8 Newton-Raphson iteration technique using a
tirst approximation seed sufficiently large to require only oOne
iteration (a total of three floating-point operations) to achieve full
32-bit floating~point precision.  This technique has quadratc
convergence properties and the only additional hardware needed 's
an inverse seed PROM. In parallel with the AM29325 s 3
floating-point & integer comparator which supports such thwngs as
variable bounding and lattice filter order controi.

Numerous data paths allow for the efficient moving of date
between the AM29325, registers. and memory. All data paths anc
operations are controlled by individual terms in the microcode. A
96-bit horizontal microword is used which allows complete flexibility
and eliminates decoding time. One additional data path not shown
in Figure 7, but frequently used, is an internal wrap around data paib
inside the AM29325. The microengine is programmed with a user
defined assembler. aided by using a reservation chart 10 keep track
of the multiple data paths and concurrent operations.

Automatic system order detection is a unique capability of
adaptive lattice filters. Control of the length of the lattice filter s
necessary to minimize filter generated noise and insure stabiity of
the final error, e(n), and filter output, y(n). Rapid variation ot fiter
order is possible with non-stationary signails so order control must
function in real-time. The forward and backward predictor
residuals of each successive Sstage must be compared 10 2
threshold as they are computed to determing it another stage s
needed (or allowed) for the current update. The vaiue of tre
threshold 1s defined by the user, based on the engine’s arithmenc
precision and the exponential windowing of the data Control m.s:
span across engine boundaries and accommodale tne e
displtacement at those boundanes. This s dene with a speca © g
set by each engine which 1s checked and cleared oO" the "
iteration by its downstream target engine




to Control Bus
and Monitor DAC

from Controi Bus from Local Bus

—

MUX MUX
Bin Ain
2-Port Scratch Pad
Memory
Bout Aout
to Control
Bus and
Local Bus
MUX
Reglater Register
»Y
' ¥
Compare ALV
Logic AMD29325
\ A
MUX
Permanent
Memory
Register

Figure 7: The Computation Engine's Microengine Data Path.

Microengine Memory Structure

Two separate data memories are available to the AM29325, one
is tailored to support time-recursions, the other order-recursions.
The Permanent Memory (PM) is addressable in blocks
corresponding to lattice stages for ease of storage and retrieval
during time-recursions. Eight variables can be stored in each PM
block as seen in Figure 8. The structure is 1K-stages x 8-words x
32-bits allowing a maximum of a 1024 stage lattice filter per
engine. The PM uses a block addressing scheme where each block
is selected by a stage number counter. The block addressing
greatly simplifies the engine’s microcode during the computation of
a lattice stage without sacrificing the use of simple addressing
schemes for transversal filters.

The Scratch Pad Memary (SPM) in addition to being a temporary
storage area for data transfers and intermediate resuits, can be
structured to operate in a “ping-pong” fashion between the upper
and lower halves to allow the overwriting of order-recursion
variables that are no longer needed. During the computation of a
lattice filter, variables are passed between the two SPM halves with
the current stage overwriting variables passed from a previous
stage. Each SPM haif contains 32-words x 32-bits of dual-ported
memory. With current/next addressing, there is no need t0 keep
track of the absolute physical addresses being used which saves
machine cycies and engine instructions. in addition, it is easier to
conceptualize order recursion variables as current and next (Figure
6). Special address control logic switches the physical location of
tha order recursion variables in a manner that is transparent 10 the
software (and the programmer). The result is a very efficient use of
memory space and a simple, efficient addressing scheme. For the
computation of transversal fiiters, the SPM is configured by software
as a single 64-word x 32-bit dual-port memory (see Figure 9).
Memaory locat:ons i both the SPM and the PM can be accessed in a
singie cfock cycle at the same ume.

trom stage counter ¢10

{3 from microword

staga_parameter

PM Address:l stage_addrass

//13
\
k A2 hit words. STAGE 0
4
Stage
address ﬁ
stage
parameter » STAGE 1
I
2 J
°
1-Port Memory :
N
k } sTAGE 1024
J

$32 bit data

Figure 8: Engine Board Permanent Memory Configuration
(1K x 32-bits x 8).

Current/ from Current/ trom
next microword next microword

Enable Enable Ms8 L 5
AND
Bin Ain
32 32
XOR
o]
64-word x 32-bit
6 or 6

-~ two 32-word x 32-bit —

AND

SPb address

2-Port Memory

32 32
Bout Aout

Figure 9: Engine Board Scrach Pad Memory Conhiguration
(64 x 32-bits or two 32 x 32-bit halves)

IV. LDS Test Data

As of this writing the following adaptive filter algorinms have
been programmed: LMS transversal [14], Block LMS transversal
[17). Stochastic Gradient Lattice (15]. Recursive Leas! Squares
Lattice (10,11} and Direct Coefficient Updating RLSL (18] Tesung
with the LMS algorithm began in March of 1983 while tesung wiah the
RLSL began in June of 1989. The other algorithms have beer
inctuded in 1990. A photograph of the LOS i1s provided «n Figure 1C
Figure 11 s a photograph of the two boards compnsing 2
Computation Engine.

As an example of LDS operation. the ime seres outputs of LN
and RLSL ANCs are shown for comparnison in Figures 12 anc
respectively. In both cases a single sinusowd 1s being canceled tr o
the primary input. Note the characteristic exponentai acapratic~
LMS. and the nearly instantaneous adaptation of the RLSL

Caigr




V. Conclusion

This paper has presented the design of a real-time adaptive filter
development system. The system was custom built for the purpose
of studying the performance of lattice algorithms in real world
environments and comparing them to other adaptive algorithms. To
this end, special hardware and software festures were incorporated
into the design to maximize both performance and flexibility. In
addition, provisions to allow the observation of filter variables during
adaptation were incorporated to 8id analysis. The system is
typically configured as a linear array of programmable engines to
enhance execution speeds. A description of the architecture and
design details were presented along with sample test data.
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