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Abstract lowest most 0 high-level program running on general

This paper describes a hardware test platform designed to Sampling flexible purpose computer
implement adaptive lattice filters in real-time. To achieve real-time Rate * single programmable computation engine
processing speeds, algorithm complexity was accommodated by j 0 multiple programmable computation
custom designing the computation engines with respect to the engines working in parallel
lattice data flow. Execution speeds of the computation engines 0 direct implementation using custom
were dramatically increased by a memory architecture that supports highest least digital VLSI design
efficient addressing and by providing a floating-point ALU with Sampling flexible 0 direct implementation using custom
numerous data paths and efficient implementation of division. Rate analog/digital hybrid design
Performance is further enhanced by pipelining multiple computation
engines. In addition, the architecture Is flexible enough to support Figure 1: Adaptive Filter Implementation Methods and their
other filter structures and to allow observation of filter variables as Tradeoffs.
they adapt. With this system, various Adaptive Filter algorithms are
being tested in real-time implementations of Adaptive Line The LDS was designed as an adaptive filter test platform to
Enhancers (ALEs) and Adaptive Noise Cancelers (ANCs) in order to characterize the performance and behavior of both adaptive lattice
characterize their performance and behavior, especially long term algorithms ard adaptive transversal algorithms in real-time
stability and the ability to track non-stationary signals. applications. Of particular interest are the long term stability and

th, ability to track non-stationary signals as a function of filter
I. Introduction parameters. To meet the combined needs of high throughput and

flexibility, the LDS was built as a linear pipelined array of custom
designed, programmable computation engines. Each engine isAdaptive lattice at, .thnms have been expected to offer a optimized for implementing adaptive lattice filters using a single

number of advantages over conventional LMS transversal algorithms 32-bit floating-point ALU with provisions for floating-point division.
including: faster rate of convergence, modular structure, The LDS system can be configured with up to 10 engines, each
insensitivity to variations in the eigenvalue spread of the input having sufficient memory to store the variables for a 1024 stage
correlation matrix. and automatic system order detection [1,2]. lattice filter. A system with a full complement of ten computation
However, the use of adaptive lattice filters for real-time signal engines is capable of sustaining the computation of a 1024 stage
processing has been limited. In part this is due to their recursive least square lattice (RLSL) filter [10,111 at a 1.2KHz
computational cost and complexity. This paper describes the design real-time sample rate.
of a hardware test platform, called the Lattice Development System
(LDS), designed and built by the U.S. Naval Ocean Systems Center Other adaptive lattice filter implementations, particularly those in
(NOSC) to implement adaptive lattice filters for real-time custom VLSI, have been based on linear pipelined processing arrays
applications. The design, while tailored to implement adaptive lattice consistent with the lattice structure [3-51. One implementation
filters efficiently, is flexible enough to support other structures such made use of a switched capacitor filter in an analog/digital hybrid
as adaptive transversal filters for comparative performance approach (6]. Recently, a vectorized adaptive lattice was proposed
evaluations, which allows for even higher degrees of parallelism [7-91. All of

these take advantage of the modularity provided by the local (singleThe recursive nature of adaptive filters makes their lattice stage) error feedback of the lattice.
implementation in real-time hardware an extremely interesting and Section 11 of this paper is a high level description of the LOS It
challenging research field. Time-domain adaptive algorithms i es a bf description of the e h a
generally require that their filtered output be used in updating the includes a brief description of the system's three main hardware
filter's coefficients before the next input sample is processed. Thus, functional units plus the Man-Machine Interface software and other
the total processing latency must be less than one sample period. software support tools. In addition, Section 11 descrbes the
Unfortunately, the coefficient updating can often dominate the total implementation of adaptive filters in a multiple engine LDS
processing time thereby limiting the adaptive filter's potential configuration. Section III provides more detailed information and
applications. Multiprocessing techniques used for performance insight into the design of the functional unit that is the processing
enhancement of non-adaptive filters can not be directly applied to heart of the LOS: the Computation Engine. A sample of the
adaptive filters due to adaptive filter's lack of a single computational capabilities of the LDS is presented in Section IV.
form. For instance, non-adaptive convolution is composed of only
a sum-of-products. Adaptive filters usually posses a number of 11. Hardware System Overview
computational forms as well as requiring several different modes of
operation such as initialization, adaptation, and order expansion & The LOS has three separate functional units: the System Control
contraction. the Analog-Digital Interface, and an array of Computation Engines

Figure 1 shows the tradeoffs incurred by different methods of System performance is increased by using multiple computation
implementing adaptive filters. Usually. performance and design engines in a linear pipelined array. The functional units are
complexity are traded against flexibility. The measure of accessed and configured by a single board min,-computer running
performance in real-time systems is the maximum continuous a menu driven man-machine interface (MMI). Figure 2 shows the
sampling rate supported by the hardware; the measure of flexibility interconnection and the user interface via the mnt-computer and a
is how easily modifications can be accomplished. Examples of terminal. Once configured by the user. the LDS N,! run in reat-time
features one may wish to modify are: update algorithm, filter until stopped by the user. It can easily be reconfig,.rec lo comnpoe
structure, fiter configuration, and filter oarameters such as order different adaptive filter algorithms, modify filter paiame!ers ciari,
and time constants sample frequency, or change between ALE ar' AV-',e' ; ag'0 '
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Figure 2: Block Diagram of the NOSC Adaptive Lattice Development System (LDS).
in Figure 3 shows the ALE and ANC adaptive filter configurations and synchronously but proceed independently, so they can run different
the associated nomenclature for the reference, x(n), primary, d(n), microcode and may terminate operations independently. Once all
filter output, y(n). and error output, e(n), signals. engines terminate operations in a given filter update cycle, the

System Control unit assumes control. The computation cycle
Ref Filter repeats with synchronous starts on command from the System
x(n) I Adaptive Filter Out Control unit and asynchronous terminations dependent upon

y(n) computation requirements.
I Local RAM on the System Control unit is designed to handle

multiple circular buffers so that input data (reference and/or
Pri Error primary) can be delayed up to a combined maximum of 1 6K data

n -out samples before being sent to the engines. This supports many
ALE + e(n) filter configurations including the ALE, where the reference data is a

delayed version of the primary data. Another feature of the LDS is a
user definable sampling frequency.

x(n) Adaptive Filter Filter Filter Implementations with a Multiple Engine LDS
Out
- n Both adaptive lattice and adaptive transversal filters can benefit

from a multiple engine LOS configuration. The lattice filter's order

Pri Error recursive variables are passed from stage to stage in sequential
Out order. This can result in extremely long processing times when long

d(n) ANC + e(n) filter lengths are used. The total processing time can be reduced by
a factor of O(P) by using P pipelined computation engines. Since

Figure 3: Adaptive Line Enhancer (ALE) and Adaptive Noise each engine must be pipelined. successive engines will be
Canceler (ANC) Filters, processing data that is one sample period earlier in time than the

engine which supplies its passed variables. An application'sReal-Time Operation required sample rate determines both the number of engines used

The System Control unit runs a concurrent operating system and the maximum number of stages computed on each engine.
which initializes all actions in the LOS. Control data is passed by the Figure 4 shows an example of a three engine LOS computing a
MMI to the System Control unit to configure or reconfigure the 6-stage adaptive lattice filter. At the completion of a lattice update
system. The control unit first down loads the microcode for each cycle, all order recursive variables are passed between engines via
engine and then initializes each engine's state. Once the system is an uni-directional local bus in a synchronous fashion.
completely configured, it will perform the following tasks repeatedly Adaptive transversal filters can be implemented on a multiple
when commanded to run; engine LOS in several ways, even though multiprocessing with them

1. prompts the A-D Interface unit to acquire 16-bit is less straight forward than for adaptive lattice filters due to the
quantized data, global error feedback for coefficient updating (12]. One of the

2. accepts data from the A-D Interface unit and places it more efficient approaches makes use of the multiple engines
in local RAM, configured in a uni-directional data flow ring, as was proposed by

3. passesinput data to the engines for filtering, Miller et. al. (13]. As an example of this approach. Figure 5 showspassestinptdata nfthe computation of an 8-weight adaptive transversal filter on a four
4. initrates data transfers between Computation Engines, engine LOS. Each engine is responsible for only those calculations
5. accepts filter output data and other outputs from the involving a section of the complete filter's weights. The process

engines, proceeds by each engine computing the convolution sum of its
6. sends engine outputs to the A-0 Interface unit for section of the filter. A series of synchronous data passing and

conversion to analog output, summation steps are then performed until each engine has its own
7. loops to 1. identical copy of the filtered output. Next each engine generates its

own identical error term from a broadcasted desired signal and
All functional units are synchronous and run from a single 8MHz updates its own set of weights via an adaptive algorithm such as

clock distributed throughout the LOS. Engine operations are started least mean square (LMS) [141, The method effectively solves the
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Figure 4: Calculation of a 6-stage Adaptive Lattice Filter in a Three Engine LDS.

global feedback problem by generating the same error in every 0 implementation of a floating-point & integer

processor. Each engine has sufficient memory to store the comparator.

variables for a 4096-weight LMS filter. 0 provision of many data paths to support all of the

Pri d(n) broadcasted to all engines above,
P extension of data paths across multiple computational

engines,
Ref W3 0 increased data bandwidth by using uni-directional local
xbusses to link neighboring engines.

* use of a simple microsequencer and a horizontal
microword.

EThe utility of these features is described in the next mo ecuon,

SFltime-recursions

F nie# ite yn LAdaptive~.~
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Stage (next)
"W %i (current) I order-recursions

Figure 6: Data Flow for Single Adaptive Lattice Stage
Computations.

yMicroengine Arithmetic Structure and Data Paths
Figure 7 shows the data paths in the microengine. The

Engine #4 Engine #3 Advanced Micro Device's AM29325 [16] was the floating-point

Figure 5: Calculation of an 8-stage Adaptive Transversal Filter in processor chosen for two main reasons: it can compute arithmetic

a Four Engine LDS. operations in a single clock cycle and it supports fast inversion
instructions. A short pipeline depth is desirable when implementing

Analysis Tools tightly recursive algorithms, such as RLSL. which often require the
result of one computation for the very next computation. 1lnversions

The LOS software provides the user with many useful features are computed with a Newton-Raphson iteration technique using a

for analyzing adaptive filters. Specific filter coefficients can be first approximation seed sufficiently large to require only one

selected for observation as they adapt in time, or a snapshot of all iteration (a total of three floating-point operations) to achieve full

coefficients can be taken at a specific time period. The coefficients 32-rbit floating-point precision. This technique has quadratic

are transferred to data files on the mini-computer's hard disc from convergence properties and the only additional hardware needed s

which further analysis can be done off-line. The system also has an inverse seed PROM. In parallel with the AM29325 is a

the capability of inputting data directly from a data file or outputting floating-point & integer comparator which supports Such things as

filtered data directly to a file. variable bounding and lattice filter order control.

Numerous data paths allow for the efficient moving of oata

III. Computation Engine Design between the AM29325. registers. and memory. All data paths an

operations are controlled by individual terms in the microcode A
96-bit horizontal microword is used which allows complete flexibility

The Computation Engine is the processing heart of the LDS. It and eliminates decoding time. One additional data path not shown
was custom designed to efficiently implement adaptive lattice filters in Figure 7. but frequently used, is an internal wrap around data pa:h
and is composed of two main parts: the microsequencer and the inside the AM29325. The microengine is programmed with a user
microengine. The engine's operation is controlled by up to 2K defined assembler. aided by using a reservation chart to keep tracK

microwords down loaded from the System Control unit during the of the multiple data paths and concurrent operations.

LDS's initialization. The equations that describe adaptive lattice Automatic system order detection is a unique capability of

algorithms are structured into groups called stages (see Figure 6). adaptive lattice filters. Control of the length of the lattice filter is

Each stage can have variables which are updated entirely by necessary to minimize filter generated noise and insure stablty of
time-recursions, entirely by order-recursions or by a combination the final error, e(n), and filter output, y(n). Rapid variahon of ,:ter
of both time and order-recursions. Adaptive lattice algorithms such order is possible with non-stationary signals so order c9ntrol must
as the RLSL [10.111 and the stochastic gradient lattice [151 use function in real-time. The forward and backward predict,or
both time and order recursions to save computations. In addition, residuals of each successive stage must be compared to a

these adaptive lattice algorithms require multiple divisions per threshold as they are computed to determine it another stage is

stige. The following features were incorporated in order to achieve needed (or allowed) for the current update. The value of tre

real-time computation speeds for adaptive lattice filters: threshold is defined by the user, based on the engines aritnme: =

* use of a 32-bit floating-point processing chip with a precision and the exponential windowing of the data Control ro>..a

latency of only one clock cycle, span across engine boundaries and accommodate moe , r-

* efficient implementation of floating-point division, displacement at those boundaries This is done with a soec , I;

* separate memories for time-recursion and set by each engine which is checked and ceareu o- !re0

order-recursion variables. iteration by its downstream target engine
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Microengine Memory Structure I I

Two separate data memories are available to the AM29325, one SPb address SPa address
is tailored to support time-recursions, the other order-recursions. 64-word x 32-bit
The Permanent Memory (PM) is addressable in blocks 6 or S
corresponding to lattice stages for ease of storage and retrieval two 32-word x 32-bit
during time-recursions. Eight variables can be stored in each PM
block as seen in Figure 8. The structure is 1K-stages x 8-words x 2-Port Memory
32-bits allowing a maximum of a 1024 stage lattice filter per
engine. The PM uses a block addressing scheme where each block
is selected by a stage number counter. The block addressing
greatly simplifies the engine's microcode during the computation of 32 32

a lattice stage without sacrificing the use of simple addressing
schemes for transversal filters. Bout Aout

The Scratch Pad Memory (SPM) in addition to being a temporary Figure 9: Engine Board Scrach Pad Memory Configuration

storage area for data transfers and intermediate results, can be (64 x 32-bits or two 32 x 32-bit halves)

structured to operate in a "ping-pong" fashion between the upper
and lower halves to allow the overwriting of order-recursion IV. LDS Test Data
variables that are no longer needed. During the computation of a
lattice filter, variables are passed between the two SPM halves with
the current stage overwriting variables passed from a previous As of this writing the following adaptive filter algorvitns nae

stage. Each SPM half contains 32-words x 32-bits of dual-ported been programmed: LMS transversal [14). Block LMS transversal

memory. With currentlnext addressing, there is no need to keep [17], Stochastic Gradient Lattice 1151. Recursive Least SQuares

track of the absolute physical addresses being used which saves Lattice [10,11) and Direct Coefficient Updating RLSL [181 Testng

machine cycles and engine instructions. In addition, it is easier to with the LMS algorithm began in March of 1989 while testing wah ne

conceptualize order recursion variables as current and next (Figure RLSL began in June of 1989. The other algorithms have bee-

6). Special address control logic switches the physical location of included in 1990, A photograph of the LOS is provded ,n F,gure I-

thq order recursion variables in a manner that is transparent to the Figure 11 is a photograph of the two boards comprising a

software (and the programmer). The result is a very efficient use of Computation Engine.

memory space and a simple, efficient addressing scheme. For the As an example of LOS operation, the time seres outputs Of L',
' -

computation of transversal filters, the SPM is configured by software and RLSL ANCs are shown for comparison in Figures 12 anC "

as a single 64-word x 32-bit dual-port memory (see Figure 9). respectively. In both cases a single sinusoia is being cancelec t,

Memory locations in both the SPM and the PM can be accessed in a the primary input. Note the characteristic exponenta; acatat c"
single clock cycle at the same time. LMS. and the nearly instantaneous adaptation of the RLSI.
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