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1. EXECUTIVE SUMMARY

This is the final technical report in the AFOSR supported
project entitled, Brittle Ductile Failure Mechanics of
Mortar and Concrete. The report summarizes theory, analy-
sis, and experimental results obtained in model studies on
cement matrix (mortar) and aggregate (stone).

This report describes the theory, implementation, and
predictive capabilities of a new and relatively straight-
forward constitutive theory for interfaces, that describes
fracture, slip and post-peak and residual behavior for
mortar-aggregate composites (concrete). Adhesion, debonding
and mobilized friction are accounted for in the character-
ization of interface behavior, and the debonding is control-
led through a work-softening rule, that incorporates tensile
crack opening as well as tangential slip. The material
parameters have clear physical meaning and can be calibrated
from conventional and special interface experiments. The
predictive performance of the model is tested on both large
and small composite structures, and the results compare well
to those obtained in laboratory experiments.

The last part of the report contains data from mortar-

aggregate interface experiments, where small specimens were
subjected to combinations of tensile and shear or comp-
ression and shear loading. Experimental technique and
apparatus are also described.

The report comprises three parts, which are organized as
follows: Part 1; Modeling of fracture and slip of interfaces
in cementitious composites (model characteristics), Part 2;
Model implementation, and Part 3; Interface experiments.

Several publications have been prepared in the project, and
the bibliography is attached on the next page. Additional
journal and conference papers will also be prepared based on
the contents of this report.
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Abstract:

A new and relatively simple constitutive theory that describes fracture and slip of
an interface in cementitious composites such as concrete is presented. Adhesion,
debonding and mobilized friction mechanisms are considered in the characterization

D of the interface behavior. The debonding mechanism in a state of combined normal
and shear stress, i.e. the degradation of tensile and shear strengths, is monitored
via a work-softening rule which entails tensile crack opening as well as tangential
slip. As a result, a fracture energy release based plasticity model is obtained. The
material parameters are physically transparent and are conveniently calibrated from
characteristic response functions that can be observed experimentally in pure tension
and in pure shear. Analytical predictions are compared with experimental results
for the case when constant normal traction is applied while the slip displacement is
monitored.
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1 INTRODUCTION

Degradation of macroscopic strength and stiffness properties during progressive fail-

ure of cementitious materials such as concrete, are closely tied to degradation mech-

anisms in the internal structure of the highly heterogeneous material. In order to

quantitatively describe these mechanisms, the cementitious material is considered

as a two-phase composite consisting of aggregates and mortar, and the interaction

between these two constituents is modelled with an interface.

The constitutive behavior of this interface is considered as a most significant fea-

ture of the internal structure that often determines the overall response. Only few

experimental investigations confirming this principal belief have been carried out by

Chandra (1969). Numerical studies have been undertaken previously on highly ideal-

ized as well as on fairly realistic layouts of the internal structure involving aggregate

and mortar interaction, Stankowski (1990), Willam et al. (1988), Roelfstra et al.

(1985). Related studies on frictional interface behavior have been carried out by van

Mier et al. (1988), Shah et al. (1987) and Atkinson et al. (1989) and on geomaterials

by Goodmann (1980), Plesha et al. (1988,1989) and Gilette et al. (1983).

In this paper a relatively simple constitutive model, which reproduces the princi-

pal features of the interface behavior, will be developed and formulated in analogy to

incremental plasticity for a continuum. This model is able to describe fracture and

slip of the interface for an arbitrary combination of the normal and tangential trac-

tions. A fracture criterion that defines the onset of tensile and/or shear debonding

is suggested. This fracture criterion is of curvilinear extension of the Mohr-Coulomb

with smooth transition between failure in tension and shear. Cohesive softening of the

bond due to fracturing occurs for an arbitrary mode of loading whenever the fracture

criterion is satisfied. In particular, a stress state comprising shear and compression

will also induce degradation of the bond similar to bedonding ;n excessive tension. In

the residual state only frictional resistance will be available in the presence of com-

pressive stresses. Cases of particular interest are clearly direct tension, pure shear and

4
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direct compression. The constitutive relations are regularized by the introduction of

a recoverable adhesion component in the tangential as well as the normal directions.

A non-associated slip rule is used in order to account for dilatancy effect in a realistic

* manner.

In Part II of this paper we discuss the numerical technique that is used to integrate

the constitutive relations in a step-by-step fashion. A robust incremental solution

technique is essential for the successful application of the constitutive model to solve

boundary value problems.

2 CONCEPTS OF FRACTURING AND SLIP

In the proposed constitutive theory it is assumed that the relative displacement u

between the aggregates and the matrix can be decomposed into reversible and irre

versible (elastic and plastic) parts that are denoted Ue and uP respectively. In analogy

* to the static and dynamic components of dry friction, the elastic component uC will

be referred to as adherence, v nereas the normal and tangential components of uP will

be called slip irrespective of the direction of relative motion. In the following deriva-

tions we will attempt to provide a formal structure to the two interfacial processes of

tensile debonding and tangential slip. The relative displacement is thus decomposed

in

u = unen + utet (1)

and

, = f + 6 (2)

The unit base vectors en and et in the normal and tangential directions of the interface
0

are attached to the matrix surface as indicated in Fig. 1. We shall now introduce the

contact traction t, which is further defined in terms of normal (4a) and tangential (it)

components

t = te, + ttet (3)

5
0



The adhesion between the binder and the substrate may be expressed by means of a

simple analogy to elasticity

or

K;" 0(4)

where C1 is the elastic compliance matrix that is defined by the incremental (tangent)

normal and tangential stiffness moduli K, and Kt. Typically, K is significantly larger

in compression than in tension. A simple assumption that will be adopted here is

that the stiffness property in the normal direction as expressed in Eq. 4 is bilinear,

as shown in Fig. 2,

Kn K+,if t,,>O0 or4.=O0, .>O0
K K= K ,if t,,< 0 or t,,=0, i< 0(5

where K + and K; are material parameters with K; > K + and compression being

negative. These elastic stiffness parameters differ from the traditional concept of

elastic moduli, as they denote the tangential stiffness in terms of force per length

to the third power. In Eq. 5 it was assumed that there is no coupling between the

normal and the tangential components, which can be viewed as zero dilatancy in the

elastic range.

The interface properties can be attributed partly to the presence of asperities,

voids, incomplete contacts, etc. within a thin layer. However, the width of this layer

is negligible in comparison to the characteristic size of the 'microstructural elements'.

The roughness, or 'wavyness', of the contacting surfaces will also influence the plastic

properties. Although the introduction of reversible deformations in the interface is

physically justified, the elastic moduli may be considered merely as numerical artifacts

in order to regularize the resulting boundary value problem. In other words, the

conventional unilateral contact condition u,, > 0 is abandoned in favor of the more

versatile concept of a finite elastic stiffness in compression.

6



3 FRACTURE/SLIP CRITERION

In pure tension the strength is characterized by the tensile peak (or ultimate) strength

f,.,. In combined normal and shear loading, however, the strength comprises the ad-

hesion f t,. between the different materials and the mobilized friction due to the pres-

ence of a normal traction t, 5 0. This friction is considered to be a consequence of the

mineral to mineral surface friction and geometric roughness between the contacting

surfaces. The adhesion, which is the equivalent of the cohesion within a continuous

material, is sometimes called the slip limit.

Clearly, the two mechanisms of tensile debonding in the normal direction e, and

slip in the tangential direction et are physically connected in the sense that slip may

be be viewed as a consequence of a crack that develops along the interface, whereby

the bond strength is degrades further. In the event that one or both mechanisms are

activated it seems appropriate to introduce the notation Fracture Criterion for the

surface in (tn, tt)-space that represents the onset of inelastic displacements. A simple

Fracture Criterion can be expressed as

F =1 ti (f'tu)"(f, - t,) = 0 (6)

fn,u

where f,, denotes the current value of the normal strength. The current value of the

shear strength is denoted by ft (and is used later). The peak, or initial, strength

values are denoted fn,. and ft,. respectively, and it follows that

tn < fn , 0<5A f< ,u (7)

Itt I< fA (8)

The shape of the slip surface is such that the normal is horizontal at the tensile apex

(t,, tt) = (f,, 0). Furthermore, a constant exponent a > 1, that determines the shape

of the surface, is defined in terms of the coefficient of friction p when tn = 0 according

to the expression

a fn,u 9
7ft,

7



as shown in Fig. 3. The current slip surface is obtained from the initial slip surface

,defined by f, = , simply by translating the initial surface along the t. -axis to

the left, as illustrated in Fig. 4.

In order to obtain realistic dilatancy characteristics it is necessary to employ a

non-associated slip rule. This is accomplished in the most straightforward way by

assuming that the flow direction corresponds to the gradient of a plastic potential

defined by the coefficient of dilatancy v < p rather than the coefficient of friction p.

This can be expressed via a transformation matrix A in the flow rule

uP = Am, m = An, n = OFot (10)

where A > 0 is a plastic multiplier and

A = 0 [ , n = a r (f'*a-' gU ,

For large compressive stresses, the dilatancy should be small and may eventually

vanish for large amounts of slip due to frictional wear of the surface asperities. Al-

though an associated slip rule would display vanishing dilatancy when t,, = -oo, the

nonassociated rule offers the possibility to modulate normality and further suppress

undesired dilatancy.

4 POSTFAILURE BEHAVIOR

In the present model we adopt the hypothesis that continued deformation after the

onset of fracture/slip is accompanied by softening for any loading path. The debond-

ing process will be therefore described via a work-softening hypothesis in the form of a

suitable weighted fracture energy release measure K, which is chosen (as the softening

variable) according to the rate law

iC=< tn > i pn + t,,ff'Ot (12)

where t t,eff is the effective shear traction contributing to the debonding process during

shearing and < > is the McAuley bracket defined as < t,, >= (,+ I t )

8



extracting the tensile normal traction contributing to the softening. Assuming that

t" = it,(uP) and tt = tt(uP) for any load path, we may define the fracture energies GI

and GII as

G= - f (u )duP = tn(P)duP when tt = 0 (13)

G I  00 ft(t4)duP = j0 t,fei(uP)duP when t, = 0 (14)

It should be noted at this point that the constants GI and GII are pertinent to the

interface behavior and do not necessarily relate to those of the constituents of the

cementitious composite. In fact, they are quite different. The hypothesis represented

by Eq. 12 determines the behavior of the interface in the various modes of loading

via the fracture energy release GI and G11 in pure tension as well as in pure shear.

Following the assumption stated by Nilsson et al. (1984), Glemberg (1984) and

Willam et al. (1984), we shall assume that the tensile strength is degrading exponen-

tially from the peak value fn,u as

f,(u") = fn,ue - ' , a = fn,,, / GI (15)

The current amount of released energy x in pure tension is defined as

UPf.(up.) 16

Pc(u") = j fn(vi) dvi = G1 1 - (16)

where the last expression is obtained upon invoking Eq. 15. Alternatively, the relation

in Eq. 16 can be inverted to yield

fnI)= f,u (1 (17)

The relations (15) and (17) are depicted in Fig. 5. It is noted that Eq. 16 gives

f,(GI) = 0 as expected, although f,, vanishes asymptotically when it is expressed as

a function of normal deformation u .

9



Defining the effective shear traction as

tt,,.f = k(tt - ft,,) (18)

where k is the ratio of the fracture energy release in tension and shear, typically in

the range k - 0.01 - 0.1

f f G1ll (19)

and ft,, is the residual shear strength that remains after maximum degradation has

occured

= , A {0 (20)ft,.= f, (-t./.,u ,t. 0

we now can integrate Eq. 12 in pure shear, where t,, = 0 and tt = ft(ut)

Pe (oo) = k0 ft(uP) duP = k G = G' (21)

where Eqs. 14 and 19 were used. In other words, when the interface has fractured

completely in pure tension, then the shear resistance is also exhausted corresponding

to the fact that the amount Gil of (shear) energy has dissipated and vice versa.

From these assumptions it is apparent that the characteristics of the relation between

f,, and uP will strongly determine the behavior in combined fracture and slip, since

f,(uP) is taken as the universal relationship to describe the material response.

By invoking the yield criterion in order to express ft in terms of f" when t, = 0

and by using Eq. 17, it is possible to integrate Eq. 12. This leads to a simple explicit

expression of the relation ft(4):

A,- ft, ( I Z- - -  (22)

where it is the finite value of ui

a Glt f (23)

a1- ft ,

10



that is obtained when r = G1'. From Eq. 22 it is concluded that this value corre-

sponds to the vanishing of the shear strength ft, which means that ut - fit when

ft = 0 since ut = 0 at this stage. By augmenting the relation (22) with the elastic

component of ut, we may derive the relation between ut and ft as

Utft((f
Ut +ftu Kt it ft ) 24

-This relation is shown in Fig. 7 as the special case of tt(ut) when t, = 0. Since it

is not possible to find a simple explicit expression for tt(ut) when t, > 0, all curves

in Fig. 7 are obtained by numerical integration as will be discussed in a subsequent

section of this paper. All response curves were obtained using the following material

data:

f.,U=l ft,,= 2 and k=0.1

while the values of the exponent a and the normal traction t4 were varied.

It can be readily checked in Fig. 7 that the theoretical values of iit, as given by

Eq. 23, is also obtained numerically. Furthermore, Fig. 7 also shows the interesting

phenomenon that totally brittle behavior is obtained before the shear strength has

completely degraded. From the results it seems that the value of a as well as tn

play a significant role for the brittleness. This behavior is of considerable concern for

the numerical treatment, since it may cause premature breakdown of the integration

algorithm due to the use of finite increments. An analysis of the spectral properties

of the appropriate tangent matrix that aims at finding the stress level tt when this

'snap-back' behavior occurs is carried out in the next subsection.

Fig. 8 shows the corresponding dilatancy in pure shear as well as for t4 > 0.

For pure shear it is straightforward to find explicitly the relationship between ut and

Un = uPn when t,, = 0. Using the flow rule expressed by Eq. 10 and the expression for

t4 in Eq.( 22), we obtain

U fn ln (1- f it (25)unu

11



It is seen that u. = 00 when ut = uP = at as shown also in Fig. 8.

Figs. 9 and 10 show the behavior for compressive contact stress, t. :_ 0. While

tt approaches ft,, asymptotically for large amounts of slip (except in the special case

when t, = 0), the dilatancy displacement uP. is finite at the residual load level (except

when t, = 0) as shown in Fig. 10.

A final comment on the (in-) validity of the assumption that p is constant may

be appropriate. There seems to be experimental evidence that the behavior in shear

depends on the two competing processes that may be described as adhesional soften-

ing and frictional hardening. The former process is treated in the theory described

previously, while it would be possible to simulate frictional hardening by assuming

that the internal friction p is an increasing function of K, i.e. Ji.(tc)/d > 0. The

explicit choice of this functional relationship depends on the roughness of the contact

surfaces. For successively increasing t, the released energy is expected to decrease

until a transition point is reached after which the response will be entirely hardening.

5 UNIQUENESS OF RESPONSE - BRITTLE

BEHAVIOR

It is shown in Fig. 7 that totally brittle behavior was obtained before the shear

strength was completely exhausted for constant t, > 0, while this phenomenon seems

not to occur in pure shear (when t,, = 0). It is possible to obtain completely brittle

response also in pure tension depending on the assumed shape of the relation be-

tween f, and uP and provided that either K or Gf is sufficiently small. However,

such brittleness would occur immediately post peak. Subsequently, we shall inves-

tigate the possibility that the response becomes non-unique under mixed control of

displacements and tractions within the framework of elastic-plastic behavior.

It will be assumed that tl and u2 are the control variables, where tj may be either

t, or tt, whereas u2 plays the role of either ut or U. The relationship in Eq. 5 may

12



then be rearranged as

ei ] = [ K 0 (26)

The consistency condition < 0 can be written explicitely as

OnFi + n2i2 + -F-_c < 0 (27)

where

ni = OF i= 1,2 (28)

From the work-softening hypothesis 12 and the flow rule 11 we obtain

i= sTm (29)

where

s = [< tn >, k(tt - ft,.)]T (30)

and where the flow direction m is given by Eq. 11. Inserting the expression (29) into

the condition (26), we can rewrite the condition (27) in terms of the control variables

tl and u 2

F = n1f, + n 2K2 ti2 - (H + n 2K 2M2 ) < 0 (31)

where H is the generalized hardening modulus

H = OFT

ax

(ft,,)*
__ <.tn.> (fg,,) o + k (I tt - I ft,,r ) a 1 1-i] (32)

GI A'g. V

It is noted that the expression (32) is independent of the particular choice of control

variables.

Introducing the 'plastic modulus' K under mixed control

K = H + n 2K 2m 2  (33)

13



and the 'loading function' q

=n ii + n2 K2 i2  (34)

we may rewrite the condition 31 as

P = 4- A K < 0 (35)

The general loading criterion for elastic-plastic behavior is conveniently given in terms

of the Kuhn - Tucker conditions

A> O, P < O, A)P = 0 (36)

and, consequently, from these criteria and 34 we obtain

=/K > O (P) , 4y< 0 (N,E) (37)

where P stands for plastic loading, while N and E denote neutral loading and elastic

unloading respectively. The requirement for a non-ambiguous loading criterion, i.e.

that the loading cases (P) and (E) are mutually exclusive in terms of the value of

0, is that K > 0. This requirement is necessary and sufficient to assure a unique

response for the chosen mixed mode of control.

From Eqs. 26 and (37) the tangent relationship in plastic loading can now be

established in the form

1i K1I mn miK, n2 il 38i] 0 =[-2K 2nj -2K 2])[ ] (38)

or, in compact form,

k=E*, E= E + -k m* n"T  (39)

where

X=[] Y=[] n= (40)U2 M21 t2 M -K~m K2n2

In order to investigate the characteristics of the constitutive relation (39), espe-

cially with regard to the possibility of completely brittle behavior, it is illuminating
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to first establish the spectral properties of E. In fact, brittle behavior corresponds to

(at least) one eigenvalue of E being infinitely large. It is then convenient to consider

the special eigenvalue problem

E x(0 =) ( Ee x (')  (41)

It can be shown easily, c.f. Runesson et al. (1989), that one eigenvalue is

AM = 1 + nET n* H+nKjmj (42)T H +n 2K 2M2

corresponding to the eigenmode

x( ) = a (E)-[ m* = a Ki ], a = scalar (43)

The second eigenmode X() is orthogona to n" corresponding to the unit eigenvalue

A(2) = 1. In fact, x(2) defines neutral loading since we have

n*Tx( 2) = n1 i(2) + n 2 K 2 ji(2 ) ' = 0 (44)

In order to avoid brittle behavior, i.e. AM) 0 -0o, for arbitray mixed control, it

follows from Eq. 42 that we must require K > 0. This condition was established

previously as the condition for non-ambiguous plastic loading.

Consider first the case of pure tension, i.e. t,(= U2) changes while tt(= t) = 0.

Since t, _ 0, we obtain ft,, = 0 from Eq. 20, and H becomes

H= (ft,,)2 a tn(

and, so, the condition K > 0 becomes

Kn-t.f9 > 0 (46)

The most critical situation occurs when t. = f,,,u, i.e. at the onset of tensile debond-

ing, which implies that the criterion for unconditional uniqueness of the entire re-
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sponse function in pure tension is

K, > Uf. )2 (47)

This condition can also be obtained in a more direct fashion by differentiating the

basic relation (15), invoking the elastic portion and imposing the condition that the

total compliance relating ii,, and i, does not vanish. Clearly, the condition (47)

corresponds entirely to the one asssociated with the "smeared fictitious crack" model

for an equivalent continuum; see Ottosen (1986) and Willam et al. (1985).

Consider next the case that t,(= ti) > 0 is fixed while ut(= U2 ) is assumed to

vary in a prescribed fashion. In this case, since t _> 0, it follows that

H=- (f, t ) (it, kap ,6) (8
GU 1 (ft,u)a + -a I qt(4

and, so, the condition K > 0 becomes

I t, 12 a-2  (f') q " - Vt (ftu) 2a

agtGf I qt pa2f, G > 0 (49)

In the special case of pure shear, t,, = 0, we obtain the condition

Itt Ia-2  a > 0 (50)a Kt i

If 1 < a < 2 the most critical situation appears for I tt J= ft,u, which gives the

condition for a unique response curve

Kt > (f,,)_2 (51)
a GII

If a > 2 the condition 51 can never be satisfied for the entire response curve whatever

parameter values are chosen. Completely brittle behavior is obtained when

0 lit I ( (fti)
ftU = a Kt Gi'f (52)

16



It is interesting to note that the condition (52) can also be obtained from the relation

in Eq.24, when it is required that the compliance vanishes. Furthermore, it follows

from Eq.24 that the corresponding value of ut is

it =1+(a-2) (ft'u)2 (53)
a Kt G11

It is noted that ut/fit > 1 when a > 2. Consequently, a 'snap-back' behavior would

be observed at further reduction of the shear strength ft.

The anticipated behavior is confirmed in the Figs. 7 and 11 for the values a = 1.5

and a = 2.5. In the latter case, brittle behavior is obtained for tt/ft., = 0.102

and ut/iti = 1.076 when the value G I = 0.005??? was chosen corresponding to

t = 0.0041667.

6 CALIBRATION

Except for the elastic moduli K and Kt, the suggested model involves the parameters

G1, G11 (or k), f.,u, ft.u, p, v. The parameters Gf1 and f,, are determined from a

uniaxial tension test, while G 11 and f t , are obtained in pure shear. At least one more

shear test is needed, say for t,, < 0, where values tt = it at the onset of fracturing/slip

are recorded. At this stage we have f, = f, ,, and Eq. 6 gives

* ln(l - f (54)
ln(I it I//,,)

and y is obtained with Eq. 9. A least squares fit for several experiments ( for different

t" ) will provide a rational calibration.

The only remaining task is to determine the dilatation parameter v. Rewriting

Eq. 25 in terms of ui/t versus uf/'it, we may solve for v when all other parameter

values have been determined.
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7 APPLICATION

The predictive capabilities of the proposed constitutive theory are compared to two

kinds of experiments. In the first category, the interface is physically represented

by a mortar joint between two masonry bricks, which are displaced relative to one

another. Details of the experiment are described by Attkinson (1989) and the setup

is schematically illustrated in Fig. 11. In this form of experimental arrangement it

*1 is reasonable to assume that the observed deformations are confined to the mortar

layer since the bricks are superior in strength and stiffness by at least one order of

magnitude compared to the masonry mortar. Fig. 12 shows the analytical load-

displacement predictions of the constitutive model and the experimental results for

three levels of constant normal compressive load. In these particular experiments

the normal stress was maintained at a constant level while the shear was applied by

controlled tangential displacement.

The second set of experimental results were obtained from pilot studies currently

performed at the University of Colorado, in which mortar-aggregate interface charac-

teristics are investigated. In these experiments, the mortar is represented by a con-

crete mix in which particles with a diameter larger than 2.8 mm have been omitted.

The aggregate is represented by a 6.0 mm thick granite plate or disk whose surfaces

have been carefully treated by sandblasting to ensure uniform and competent bonds

with the adjacent mortar. A mortar disk having 50 mm diameter and a uniform thick-

ness of 25 mm is cast directly on this granite plate, which have been glued to a base

aluminum plate with structural epoxy. Several granite disk - aluminum base assem-

blies have been manufactured to test various series of mortar-granite interfaces. After

curing, the specimen is placed into a direct simple shear apparatus, and a aluminum

top plate that is mounted in a loading frame, is glued in situ to the top surface of the

mortar disk. The vertical loading frame allows the application of normal compressive

or tensile loads. Shearing is applied by controlled displacement of the base assembly

sledge system on which the base aluminum plate has been mounted. A previously
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mentioned the vertical load was kept constant during the experiments. However, due

to inadequate stiffness of the test apparatus, a stable post-peak response was not

obtained, and clearly, the degree of instability increases as the normal compression

* increased.

Fig. 13 shows the obtained results along with the analytical predictions of the

proposed model at the constitutive level. The displayed horizontal displacements are

relative displacements between the top and base aluminum plates. Since the granite

plates are far stiffer than the mortar, the measured displacements reflect essentially

the deformation of the interface and the mortar, except at the residual strength after

the interface has failed. From these considerations, it has to be concluded, that the

interface properties during loading and softening have to be determined from a in-

verse identification procedure, in which the entire specimen is modeled as a miniature

structure and realistic boundary condition are applied, as illustrated in Fig. 14.
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9 APPENDIX II: NOTATION

A = trrsformation matrix

a = exponent of fracture/slip function

C = compliance matrix

F = fracture/slip function

f = tensile/shear strength

G1, GI I = energy release in tension and shear (material constants)

H = hardening modulus

k = material constant

K,, Kt = elastic normal and tangential stiffness moduli

K= plastic modulus

en, et = normal and tangential base vectors

m = gradient of plastic potential

n = gradient of fracture function

t = vector of contact traction
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a -vector of effective traction

u = vector of relative displacements

x = eigenmode

I

f = coefficient

= measure of released fracture energy

A= plastic multiplier; eigenvalue (with superscript)

= loading function

= coefficient of friction

v = coefficient of dilatancy

Subscripts

n = normal direction

r = residual strength

t = tangential direction

n, U = initial (ultimate) tensile strength

t, u = initial (ultimate) shear strength

Superscripts

() = rate, differentiation with respectto (pseudo)time

e = elastic

p = plastic
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9 "PNDIX III

The Construction of Voronoi Polyhedra in Three Dimensions

In this section, we describe the construction of Voronoi polyhedra in three dimensions.

The procedure is an extension of the algorithm that we employed in two dimensions,

and which we used to generate the topology of the complete composite body comprising

aggregate and matrix.

We recall that a Voronoi polyhedron with a given center (or pole) in as assembly of

n centers is defined as the volume of the space that contains all points closer to this

center than to any other center in the assembly. The vertices of these polyhedra are those

points which are equidistant to four adjacent centers. The bounding surfaces or limiting

boundaries of a polyhedron around a center i are established by vectors pointing from this

center to adjacent centers j, and the origin of planes are the midpoints of these vectors.

Clearly, due to the definition, the Voronoi polyhedra are convex.

The algorithm that we use to construct polyhedra employs these properties. In order

to compute the (Cartesian) coordinates of each vertex, we have to solve the following set

of four simultaneous quadratic equations

(xP - x) 2 + (Yp _ y) 2 + (zp -z) 2 = r2 , p= i,j,k,l (1)

Again, we emphasize that the vertex is the location which is equidistant to the subset of

four centers i, j, k, I of the assembly of n centers. Clearly, the set of quadratic equations

can be reduced to three linear equations, which can readily be solved. In order to be a

valid vertex, the definition of the polyhedra requires that this particular vertex is closer

to the centers of the subset i, j, k, I that we are considering than any other center, and

this test is used to accept or reject a vertex.

Once the vertex is accepted, it has to be labeled such that it is easily retrieved for
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the construction of the bounding surfaces of the polyhedra. This is done efficiently by

defining a three-dimensional array of the size n, x nx x np, where n, is the total number

of centers, nf is the maximum number of faces in the polyhedron, and np is the maximum

number of vertices defining the polygonal circumference of a polyhedron face. The last

two numbers have to be estimated and depend on the distribution pattern of the centers.

For the most regular and simple pattern which generates cubical or prismatic Voronoi

polyhedra, nf is equal to six (6) and np is equal to four (4). Highly irregular patterns

require significantly larger nf and nrp, e. g. nf > 15 and np = 10. Each valid vertex

is now consecutively numbered and stored in the array according to the indices i, j ,vp

where vp = 1, ..., nP and i, j are the two centers on opposite sides of the polyhedron face.

Since the vertex is related or connected to at least three faces, it will be recorded at least

three times in the array. Cases involving more than three planes intersecting in one point

are rare for irregular patterns of centers. For example consider the following case: Vertex

no. 10 has been computed as being equidistant to centers 1, 2, 3, 4 and has been found to

be valid. The vertex is part of the planes intersecting the line between the centers (1,2),

(1,3) and (1,4). Thus, information pertaining to this vertex will be stored three times

with these particular entries in the three-dimensional array.

D This procedure has to be repeated for all possible subsets of centers i, j, k, 1 and

the number of loops will be ( nc ). The number of loops can be reduced by defining

a neighborhood for each center. For this purpose, the distances R between all centers

are computed. A sphere with radius of approximately R,, + Ri,, = R, defines a

neighborhood for each center i, which contains all adjacent centers j, k, 1, which are of

interest for constructing a polyhedron around center i. The size of the radius R, of the

sphere depends on the distribution pattern of centers, however, in the two dimensional

24



case it has been found to be sufficiently large.

When all vertices are computed, the bounding surfaces or limiting boundaries of the

polyhedra are readily established. The polygon drawn in the surface plane between centers

i and j are the vertices stored in the array i, j, n, n = 1, ..., nP.

The remaining consists of constructing the exterior surfaces of the domain subdivided

into Voronoi polyhedra. This is achieved by first identifying all centers in the vicinity

of the exterior surfaces, e. g. in a distance less than approximately 2 x R,,,.. In this

second step we consider these centers i and only two other sets of centers j and k in

their neighborhoods. The center(s) i is reflected on the exterior surface defining a point

i' outside of the material. Three centers i, j, k form now together with point i' a subset

from which a vertex can be computed as described above. Since this vertex is on the plane

intersecting i and i', it will be on the exterior surface. This vertex is stored only once in

the three-dimensional array with the entry i, i'. Again, this loop has to be repeated for

all centers in the vicinity of the material surfaces.

* The algorithm can be summarized as follows:

1. Compute the distances between all centers, n, of the assembly and define the size

of the neighborhood.

*0 2. Identify for each center, i, those centers that are in the neighborhood, and which

are relevant for the construction of the polyhedron around the center i.

3. Compute the vertices around each center, and check the validity of using the centers

in the neighborhood and store them in a three-dimensional array.

4. Identify those centers which are close to the bounding surface of the domain con-

sidered.
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5. Compute the vertices on the bounding surface, test them for their validity, and store

the relevant information.

After completing the computations of the vertices, the topology of the polyhedra is

completely defined within a three-dimensional array. The index i defines the polyhedron

and together with index j the bounding surfaces of the polyhedron are labeled. The points

with indices i, j, k, 1 = 1,...np define a polygon enclosing in the bounding surface i, j.

In the event these polygons do not close, the size of the neighborhood has to be increased.

Reference

Finney, J. L. "A Procedure for the Construction of Voronoi Polyhedra", J. Cornp. Physics,

1979, Vol. 32, pp. 137-143.
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1 INTRODUCTION

In Part I of this paper we developed a constitutive theory for fracture and slip of inter-

faces in cementitious composites. The characteristic behavior that can be predicted

with this constitutive theory was analyzed, and limited comparisons with experimen-

tal results obtained from shear tests under constant normal load were presented. In

the present Part II we discuss the numerical techniques that are employed for integrat-

-0 ing the constitutive relations of the interface. The fully implicit method, or Closest

Point Projection Method (CPPM) is chosen as the 'core-alogorithm' that employs a

displacement-driven scheme. A robust iterative technique is devised for solving the

nonlinear incremental problem of calculating the contact stresses or tractions in the

interface, which is essential for the successful implementation in a fin;fe element anal-

ysis code. We also use a scaled gradient iteration technique for the solution of the

incremental finite element problem, which requires the development of the appropri-

ate Algorithmic Tangent Stiffness matrix. This matrix can, in fact, be used to assess

the stability of the actual incremental solution. Finally, finite element results are

presented for pertinent boundary value problems.

0

2 INCREMENTAL RELATIONS

2.1 Implicit Integration

By combining Eqs. 2, 4 and 10 of Part I, Stankowski et al., we obtain the constitutive

relationship between the interface tractions and relative displacements. These rela-

tions define together with the hardening rule in Eq. 29 and the fracture/slip criterion

in Eq. 6, Part I, the complete set of constitutive relations for the behavior of the

interface:

6=Cet + m(t) (1)

ic = sT(t) m(t) (2)

F(t,ic) = 0 (3)

3
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A number of different techniques for integrating these relations are available. The

Generalized Trapezoidal Rule (GTR) has been evaluated by Stankowski (1990), and it

was concluded that the most robust scheme should be based on a fully implicit inte-

* gration scheme, which is a special case of the GTR-method. In this paper we employ

a slightly modified version of the implicit method (CPPM), which has been developed

by Runesson et al.(1988), whereby the modification concerns the integration of the

softening variable in Eq. 2. Since the current yield surface F = 0 is always convex

for'a given value of oc, integration according to the CPPM guarantees the existence

of a stress solution in terms of a projection property.

Using the modified CPPM we may integrate Eqs. 1 and 2 to obtain, for 0 _ 5 _5 1,

+lft - n+lte- ADe n+lm (4)

n+lK = 'C + A n+I-sT n+lm (5)

n+IF = 0 (6)

where n(.) denotes the current state at time t = nt, whereas "+'(.) denotes the

updated or unknown state. The trial (elastic) traction n+1 qe is defined as

n+lte = nt + D e Au, De = (Ce)- 1  (7)

Furthermore, we have used the notation

n+lm = m (+lt) , n+IF F (n+lt, n+1K) (8)

n+s = s(n+vt) , "+ t=(I nt+-n+lt (9)

A variety of different techniques is available for the solution of Eqs. 9 for a given trial

stress n+lte, either by a pure iteration scheme or a combined iteration/interpolation

technique.
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2.2 Newton Iteration

The most 'direct' approach is to use a Newton Iteration Scheme in order to calculate

n+lq and n+1,C simultanously from Eqs. 9, whereby the current fracture/slip surface

is updated at each iteration. It was shown by Stankowski (1990) that for this scheme

to converge requires that the initial values are carefully chosen. Moreover, it is in-

creasingly difficult to choose the initial values as the size of the load increments Au

increase, i.e. when n+lte is far away from the initial fracture/slip surface 'F. The

performance of the iteration scheme is significantly improved, if the stress projection

inferred by Eq. 4 is performed for a fixed surface, whereby n+lt and A are simultane-

ously calculated from the following equations:
0

g(n+'t, A) = de (n+It _ ,+lte) +An (-+'q) = 0 (10)

* ~ F~f+lt F ,) = 0 (1

where ce = A-' Ce and A is the transformation matrix in Eq.(11) of Part I account-

ing for non-associated flow due to dilatancy properties of the interfcae. The structure

of Eq. 11 is simple since, in fact, tC is diagonal.

Newton iterations to solve for n+lt and \ from Eqs. 11 and (11) give for the

iteration step (.)i+':

n+lt(i+l) = n+lt(i) + dt, 0(+1) = 0) + dA (12)

where the improved values dt and dA are calculated from the set of equations

&+AN n]W dt ] - [0) f ] (13)

The matrix N is the Hessian of f, i.e. N 0 02f/Ot Ot.

As indicated earlier, it seems to be essential to use good initial solutions n+lt(°)

and AM(0) in order to ascertain that the scheme has efficient and reliable iteration
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properties. For relatively small steps, it has proved efficient to calculate the predictor

from forward extrapolations in Eq. 9 with 8 = 0. The solution is conveniently found

by calculating A() from

f (A(° )) = F (n+it(o), u+iK(O)) (14)

where

n+lt(-) = +lte - A() D e nm (15)

n+1r(0) - nK + A(O) isT n m (16)

Since only an initial solution is sought, it is sufficient to find only an approximate

solution of Eq. 14 with a limited number of iterations.

2.3 Interpolation/Iteration Scheme

For increasingly larger increments the quality of the predictor becomes a crucial issue

for the success in efficiently solving the set of constitutive equations given in Eqs. 10

0 and (11). This is in particular the case, when the stress is projected onto a region

of the fracture surface F = 0 with strong curvature, and when a significant change

in the softening variable K is encountered. In fact, the predictor obtained from a

forward extrapolation outlined in the previous section, proved to be sufficient only
40

when the magnitude of the elastic traction n+lte, which reflects the increment size,

was of the same order as the elastic limit fu. However, since it can be anticipated

that slip and debonding occur in a rather brittle fashion close to structural failure

* with significant relative motion in the interface, it is essential to deal with elastic trial

stresses n+lte whose magnitudes are several orders larger than fn,u. In order to find a

solution of Eqs. 10 and (11) for these cases, an alternative technique was developed

that employs a quadratic interpolation scheme for the calculation of n+lt when F = 0

is maintained constant.
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The projection of the elastic trial stress n+Ite onto the current slip surface F(U) = 0

is carried out by solving the orthogonality condition

dT tF = 0 (17)

where
d = Ce (te - 0~))  (18)

* and tF is the tangent to the plastic potential in t(). This condition is equivalent to

finding the minimum distance d in strain space for the case of associated flow. For

non-associated flow C' in Eq. 18 has to be transformed. The orthogonality condition

in Eq. 17 has been chosen, since it is more suitable for the interpolation scheme

employed. Alternatively, the stress projection could be carried out by minimizing

II d II. An initial interpolation interval is readily established for example by the

projections of n+lte parallel to the tangential and normal directions on F(U) and

t0 _< fn. If qn > q,,f, then the initial interpolation interval is established by the

projection of n+ltt in the normal direction on F(U) and by fn. The intermediate

pivot is taken at the midstep. Subsequent surface updates have to be monitored very

carefully, since initial updates may result in

n+lr('+') > G1 (19)

In this case, the motion of the surface has to be restricted by assuming

= a (G1 - n.) (20)

where a* is a factor, e.g. 0.5. As the iterations proceed, AKc decreases and will

eventually become

n+lr(i+i) < n,+iK(i) (21)

i.e. n+lt(i+l) is inside F such that F(n+lt(i+l), "+11a(i+ 1)) < 0. At this stage, the

values n+10+1) and +1t (i+i) are used in an interpolation scheme to obtain new

values for n+i K. During the surface updates the new interpolation intervals have to
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be established carefully depending on the motion of the surface. The non-monotonic

behavior arises from the worksoftening assumption and explains the limitation of a

Newton iteration scheme to small step sizes, when the surface is updated at each

* iteration level.

2.4 Iterative Procedure for Mixed Control

Mixed control of one traction and one relative displacement component is readily

dealt with within the framework of the outlined integration-iteration procedures. If

for example, i+lt_ =n+l in is prescribed, then because of the elastic decoupling of

n+t, and +t, the first row in Eq. 4 can simply be deleted, and '+'tn in+ I_

* is inserted in the other equations. When "+1 tt and \ have been calculated (after

convergence of the chosen iteration algorithm), it is a relatively simple matter to

calculate the remaining unknown displacement component Au, (and n+lun) from the

first row in Eq. 6.

3 FINITE ELEMENT MODELLING WITH IN-
TERFACES

3.1 Basic Equations

In order to describe the interaction of two constituents across the interface we con-

sider the common boundary r, (interface) that separates the regions 0?P) and Q(2) as

shown in Fig.(1). Apart from the common portion F, the boundary of each region is

composed of a part with prescribed displacements and another part with prescribed

applied tractions. For simplicity, we assume henceforth that the boundary tractions

as well as the body forces are absent.

Vector components are normally referred to global Cartesian coordinates. How-

ever, along the interface it is convenient to resort to normal and tangential compo-

inents. The relative displacement v = U(2) - 0) and the contact traction q = q(1) -

-q(2) at each point along the interface I'c may then be decomposed as in Eqs. 1 and
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(3) of Part I, where the base vectors e. and eg are attached to the region 00().

At each instant the stresses must satisfy the equilibrium equations in the regions

fl(l) and f0(2). The appropriate virtual work equation at time t = 4,+1 may be written

as

J ((w )T n+lor() dR - jr (00) )T n+lt(i) dl' = , i = 1, 2 (22)

for all (virtual) kinematically admissible displacements ii(i). By adding, formally, the

two equations in (22) we obtain

LE (Y()) T n~a')d + Jr [, +Itd = 0 (23)
=1,2

where ii = ii(2) - i(I).

The term of interest for interface modelling is the boundary term in in Eq.(23)

I =I i1T +lt d1 = fr.jO ( +It + iti n+1 t) dl (24)

Since a constitutive relation is available for "+lt n and n+ltt in terms of Aun and Aug,

i.e.

=+t = t(Au) (25)

or, explicitly

+1= t (AU,AU,), ' +ltt = t,(AU, Au )

the boundary integral in Eq.(24) contributes to the global stiffness of the jointed

regions 0(0) and f(2).

Discrete (= finite element) equations corresponding to the virtual work expression

in Eq.(23) are obtained in the usual way via appropriate shape functions, where we

expand the displacement field 0'), i = 1, 2, and the relative displacements u as

u = ()p(-) + ips) u = 4, (p 2) _ (26)

Here, we have introduced 4k as the restriction of 4(, i = 1,2 to the interface re.

9
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Inserting Eq.(26) into Eq.(23) gives rise to the set of equations

1) (p(),p1)) (p),p2)) 0
(27)

9(2) (2), ($2))-r (1), (2)) = 0

S(2) (p(2) P(2) = 0

where we have introduced the nodal forces

S J (B(')j T o (pW,pW))

Li (P 8Cdf

whith the common definition given to the strain-displacement matrices B(') and B~'),

SW= 1,2.

3.2 Iterative Scheme - Numerical Performance

For each time step the incrementally non-linear finite element problem in the set of

equations Eq.(27) involving the interface model is solved by scaled gradient (or modi-

fied Newton) iterations. In the special case of true Newton iterations the Algorithmic

Tangent Stiffness matrix for the composite is used. The contribution relating to the

contact force rC is given as

= C Dc (v) tc dr (29)

where the appropriate formulation of the constitutive matrix of the algorithmic tan-

gent moduli Dc is given in the appendix. In the case there exists a unique solution to

the incremental finite element problem defined by the equations Eq.(27) that corre-

sponds to ther minimum of an incremental potential as discussed by Runesson et al.
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(1990), Newton iterations will converge to this solution (except in some pathological

cases). However, for softening materials one may encounter unstable solutions that

correspond to insufficiently localized deformation modes, and the solution turns out

to be non-unique. In such a case, the Newton technique fails in general (depending

on the choice of the start solution). A modified stiffness matrix, which is positive

definite, must be adopted in order to ensure convergence to a local minimum, so that

at the very least, an unstable solution can be avoided. (We note that there is still

the inherent difficulty of finding the most stable solution.)

The crudest choice of an iteration matrix in this case, when the Hessian seizes to

be positive definite, is the elastic stiffness matrix corresponding to the initial stress

iteration method. In order to establish a modified stiffness that is closer to the

Hessian, the negative eigenvalues are modified on the constitutive level as explained

in the following.

Consider the eigenvalue problem for the Algorithmic Tangent Operator that is

pertaining to the interface behavior

Dcxi = -fDxi, i = 1,2 (30)

where xi are the De-normalized eigenvectors. It follows that D, can be represented

in terms of its spectral properties as (for the 2D-case)

DC = E Aixix T  (31)
i=1,2

Whenever A1 < 0, we replace Dc by D* defined as

Dc = 1 Aixixir  (32)
i=1,2

This choice representing zero stiffness associated with a (local) failure mode resembles

the fully fractured behavior.

The situation that A1 < 0 was indeed encountered in the calculated examples.

With the suggested modified stiffness, the resulting iteration procedure turned out to

be quite efficient.
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4 NUMERICAL RESULTS

In order to examine the ability of the interface model to mimic the separation of a

single inclusion embedded in a matrix, a panel with a circular inclusion is subjected

to uniaxial tension. Fig. 1 shows the deformed mesh (for a quarter panel, since

symmetry can be exploited) and the load-displacement relation for this structure.

The tensile strength of the mortar matrix was taken to be 20% higher than the

one of the interface (q,,jg). In order to assure that the post-peak load-displacement

relation represents stable behavior under displacement control, i.e. to avoid snap-

back behavior, we must choose the energy release Gf large enough. This may, in fact,

correspond to a rather ductile post-peak response (on the constitutive level). It was

concluded that the interface model can be utilized to capture the progressive failure

from initial debonding to complete separation.

The previous (and original) application of the interface model was to mimic in-

teraction and debonding of dissimilar materials of a composite. However, it is clearly

possible to use this model in order to describe crack developement in an initially

homogeneous material. This application seems particularly attractive since problems

deriving from smeared crack analysis, such as the proper definition of internal length,

see e.g. Willam et al. (1986), is effectively avoided. The interface thus serves as

a generalization of the Fictitious Crack Model by Hillerborg (1976), who took only

tensile debonding into account.

In order to illustrate this application of the interface, the previous model problem

will be reanalyzed. However, in contrast to the previous analysis, linear elastic ma-

terial properties are assigned to the mortar matrix without any strength limitation.

All mortar elements are surrounded by interface elements having the same tensile

strength as the mortar matrix in the previous example. Fig. 2 shows the nominal

stress-strain response for the panel with a single inclusion together with the deformed

mesh shortly before the crack penetrates the cross section. The stages of progressive

failure are easily identified as brittle aggregate-mortar interface failure, followed by

12



stress redistribution and stable crack propagation through the mortar-mortar inter-

face until a crack develops. Subsequent crack opening results in an exponentially

softening stress-strain response.

-- In this particular example, the mesh is fairly well aligned with the tensile failure

mode, however, in a more general case, the failure mode had to be determined from a

bifurcation analysis of the elastoplastic constitutive relation, cf. Sobh (1987), Ottosen

et al. (1989), and the mesh had to be aligned subsequently with the crack direction.

5 SUMMARY AND CONCLUSIONS

In Part 1, [1] a realistic interface model that comprises normal-shear stress coupling,

dilatancy as well as elastic pre-peak adhesion was suggested. The constitutive re-

lations were developed in analogy to plasticity theory. A thorough analysis of the

constitutive relations was performed in terms of spectral properties of the tangent

constitutive relations for displacement as well as for mixed mode of control. The pre-

dictive performance was assessed and compared favorably with experimental results.

This paper focusses on the numerical treatment of the interface model. In order

to integrate the stresses, the generalized trapezoidal rule was used, whereas a hybrid

integration scheme was employed for the integration of the single softening variable.

Newton iterations were adopted for simultaneous calculation of updated stress and the

current fracture/slip surface. However, This technique turned out to be reliable and

stable only for small load steps. Modification of the iteration procedure by decoupling

stress projection and surface update, i.e invoking the Newton iteration only for the

stress projection on a fixed surface, which was updated subsequently employing an

interpolation technique, improved the convergence behavior only partly. It was found

that the most reliable technique in conjunction with the Backward Euler Method has

to employ interpolation of the projected stresses in the iterative process.

The implementation of the interface model into a Finite Element Program includes

the formulation of an Algorithmic Tangent Stiffness for the interface, which is used in a

13



true Newton iteration procedure to solve the incrementally non-linear problem in each

load step. In order to ensure convergence to the physically feasible solution, it was

found necessary to enforce positive definiteness of the tangent stiffness by suppressing

possible 'unstable' eigenmodes corresponding to negative eigenvalues in the spectrally

decomposed constitutive stiffness matrix. The resulting 'adjusted' Newton technique

was found to perform well in terms of reliability and efficiency compared to the

Modified Newton and the Initial Load Method. Especially for large load steps, the

Newton technique was very competitive.

The analysis of a simple composite model configuration demonstrates the ability of

the model to predict interface failure. The participation of the interface in the failure

process results in a decreased composite strength and in a more localized failure with

stages of brittle interface failure and stages of ductile crack propagation across the

composite matrix.

0 The paper concludes with the application of the interface model as a Generalized

Fictitious Crack Model (GFCM). This application appears to be a natural extension

of the interface concept to overcome problems deriving from smeared crack analysis,

in particular in its ability to account for displacement discontinuities and stress-free
0

crack boundaries. It is anticipated, that such a GFCM will be useful in conjunction

with a suitable criterion to detect failure and the related crack direction, which may

be determined via a bifurcation analysis of the elastic-plastic constitutive relations

* for the uncracked material. After the onset of cracking, the crack is modeled as

an internal discontinuity with using the proposed interface model. The analyzed

numerical example shows that the crack pattern extends from the mortar itself due

to the introduction of the GFCM along predefined inter-element boundaries in the

mortar.

0
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6 APPENDIX I: ALGORITHMIC TANGENT
STIFFNESS

The tangential behavior of "+ 1q(Av) for a change of Av is defined by the matrix of

Algorithmic Tangent Stiffness moduli b defined by

b e (Au) - 8(At) (33)
0(Au)

This matrix has been derived elsewhere in conjunction with elastic-plastic continua.

Firstly, let us define the matrix of the Algorithmic Elastic Stiffness moduli 1ie

De(Au) = (Ce + AM)' (34)

where N = AN and N is the Hessian matrix of F, i.e. with the expresseions for n in

Eq.(11) of Part 1 [1] we obtain

N 2F OnT [ 0 0]t a2(5
N = O- = t 0 a(a- 1) It " 2 (5

AN 0 0 -

* N = AN= [0 (pv) a(a - 1)ItI - ] (36)

and, consequently,

[ K-' + A (p/v)a(a- 1) it I-] (37)

which is, of course, a symmetrical matrix since it is diagonal. It is noted, that the

trivial situation b e = D e is obtained when (a) tt = 0 (pure tension), (b) a - 1

(classical Coulomb Friction Model, however, here a > 1 was assumed), and (c) A = 0

(continuum tangent stiffness).

We may now define

I) (Au)= f. - f(38)
K
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where fi is an algorithmic gradient defined as

n+A ( m + fqt) (39)

Moreover,

+ j)M j OF _T M (40)OFCIk= II+ fTIbm, H:I=- -sm40

The explicit expressions for n and m are given in Eqs.(10) and (11) of Part 1 [1].

With s according to Eq.(29) in Part I, we obtain

-- m (f,.)* < sign(t.) > (41)WM ~(p/v) ka I t, Ia-' sign (t,)

Moreover, we obtain simply

OF = (f,) (42)

[q 0i (43)

p = (pi~a (a- 1) I1f, sign (t,)

by which fi can be calculated. Finally, A was expressed explicitely in Eq.(31) of Part

I il].

0

0
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7 APPENDIX II: EXTENSION OF THE MODEL
TO THREE DIMENSIONS

This section describes briefly the extension of the constitutive model discussed in Part0
1 [1] for the planar case to a 3D interface model. This model may be called isotropic

in the sense that the tangential response is independent of the choice of the tangential

cartesian coordinates e, and ep. The relative displacements may be defined by

u = u~e, + ut.e. + ute, (44)

and the tractions are

t = te, + tte, + tte, (45)

where et. and et, are two mutually orthogonal base vectors in the tangential plane.

The decomposition of the relative displacement rates into an elatsic part and an

plastic part, Eq.(2), Part [1], is also assumed to be valid with the same asumptions

as indicated in Section 2, Part [1]. The elastic compliance matrix becomes therefore

f, =Cei

or

10 i
i 0 K;' 0 it. (46)

J 1 0 0 K-' ity

and, in view of the assumed isotropy in shear, we have K;-' K;'.

The Fracture Criterion is formally identical to the one adopted previously, i.e.

F = t I a (ft")(fn - fA) = 0 (47)

however, tj is now the norm of the shear tractions such that

t2 = t2 + t2 (48)

and the corresponding inelastic deformation rates are

uP= m, m=An, n=OF/0t (49)
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and

1 0 0]

A= 0 /V Oj , n= a (t, + t 2)(f 1) t I sign(tt=) (50)
0 0 aply 2 (I 't+ t t - ) ta I sign(t,,)

The generalization of the work-softening hypothesis to three dimensions is incorpo-

rated in the new definition of the tangential shear tractions and the tangential inelastic

deformation. The rate law for the fracture energy release ic is again formally identical

with Eq.(18),

k =< t,, > tiP + k(tt - ft,,,)f (51)

however, tfi is now defined by

(fp)2 = (lp)2 + (52)

and tt and ft,, have been defined in Eq.(48) and Eq.(19), Part I,[1] respectively.
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9 APPENDIX IV: NOTATION

C = compliance

D = stiffness

f = strength values

F = fracture function

m = gradient of plastic potential

n = gradient of fracture function

r = contact nodal forces

t = vector of contact traction

u = vector of relative displacements

p = vector of nodal displacements

x = eigenvectors

a = coefficient

# = coefficient

A = plastic multiplier

* = measure of released fracture energy

U = finite element shape functions

o = stresses

= strains

Superscripts

() = rate, differentiation with respect to (pseudo) time

e = elastic

p = plastic

Subscripts

n = normal direction
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r = residual values

t = tangential direction

u = ultimate (peak) values
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PART 3 INTERFACE EXPERIMENTS

1. INTRODUCTION

Interface experiments were conducted to investigate the mode
of debonding, de-cohesion, fracture and slip of the mortar-
aggregate composite, and an experimental apparatus was manu-
factured to achieve these objectives. The apparatus is cap-
able of loading the interface specimens in combined tension-
shear or compression shear modes, and it is sufficiently
stiff to maintain overall specimen-loading apparatus stab-
ility throughout the debonding, fracture, and slip process.

This section describes experimental technique, apparatus,
and results. A total of 52 experiments were conducted of
which 32 were successful.

2. APPARATUS

The combined tension-shear and compression-shear interface
experimental apparatus consists of two components, in that a
general purpose MTS (Minnesota Testing Systems) 490 kN (110
kips) universal servo-controlled loading frame, that was
operated in displacement control, is used as the external
loading agency and provides the normal load to the inter-
faces in the smaller tangential interface loading apparatus,
which is also operated in displacement control by means of a
stiff constant speed screw-actuator. The apparatus is
furnished with several linear variable differential trans-
formers (LVDTs), which records absolute and relative tang-
ential and vertical (normal) displacements in the matrix
(mortar)-aggregate (granite) interface specimens. Load
cells in the MTS and interface apparatus were used to record
global loads or reactions. The interface apparatus is rela-
tively compact and structurally stiff, and fits between the
reaction frame of the MTS testing machine as seen in Figs. 1
and 2. Figures 3 and 4 show the LVDT placements, which
show the measurement gage-points close to the interface
itself.

The apparatus has a normal load capacity of nearly 50 kN in
compression or tension (normal load over the interface), and
a shear load capacity of also 50 kN. the resolution and
accuracy of the system is relatively high, and loads as
small as 0.05 N can be recorded. The precision gageheads
(LVDTs) can measure displacements as small as 0.01 mm, with
an accuracy of 0.005 mm. Since the stiffness of the appa-
ratus is finite the relative displacements of the interface
in both the tangential and normal directions are recorded as
well as the total displacement measurement. This ensures
accurate control and recording of the various motions. In
most of the experiments described in the following the max.
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compressive load was 5,590 N (400 psi; 2,760 kPa over the
specimen), and tensile load 1,400 N (100 psi; 690 kPa over
the specimen).

During the course of experimentation it was discovered that
the tangential stiffness of the apparatus-specimen system
was too flexible, since it was difficult to maintain control
near peak and in the post-peak strength regimes. Additional
stiffening was achieved by attaching structurally stiff bra-
ckets and tie-bars between the base assembly and the top
support plate. The last portion of the experimental program
benefited from this enhancement, and it was possible to
maintain adequate stability in most tension-combined shear
experiments.

3. EXPERIMENTS

A total of 32 successful experiments were conducted in the
range -400 psi (compression) to 100 psi (tension). The
initial stages of specimen preparation were conducted out-
side the apparatus, and preparation consisted of cleaning
and sand-blasting an oversize and plane piece of granite, so
that it had a rough but yet nominally smooth surface, that
was representative of aggregate used in construction. A
small (2.5 cm tall and 5.0 cm diameter) piece of aggregate-
cement paste (mortar) composite with aggregate size smaller
than 3 mm, was cast directly on top of the granite piece,
and was let cure. Small pieces of stiff aluminum plate with
bolt holes in the perifery, were subsequently glued to the
top and bottom ends of the mortar-aggregate interface ele-
ment, by means of Sika/Sikadur structural epoxy. Great care
was exercised to make sure the two plates were aligned in
parallel fashion.

While the epoxy was curing (24 hrs.) the specimen was in-
serted into the interface test apparatus, and the final
stages of curing took place under a small normal load in the
range of 5 to 10 psi (34.5 to 69 kPa), which ensured excel-
lent bond. No failures were observed in the two epoxy-
aluminum granite or mortar interfaces. Most experiments
were conducted with granite aggregate, while some initial
tests were also carried out with limestone. The cement used
in all tests was Type III. Several specimen fixtures were
made so that a series of tests could be performed after one
another. Curing of the specimens typically took 10 to 14
days.

Although the experiments were designed and carried out with
great care, it was difficult to align the plane of the spec-
imens' interfaces within +/- 0.002 m of the level of the
tangential loading actuator, which resulted in nonuniform
stress distributions over the interface due to reactive
moments. Also, in some tests it was decided to reduce the
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area of the interface by reducing the diameter of the mortar
phase's contact diameter by 0.75 cm. This helped stabilize
the low normal (confin-ing) stress experiments.

Nonlinear finite element analyses of the specimen-apparatus
system were also conducted to help analyze and characterize
the interface properties. These analyses have been desc-
ribed earlier by Stankowski (1990 a and b) and Stankowski et
al. (1990 and 1991). It was established that the nominal or
average properties for the interfaces were quite close to
what was developed during the course of the numerical ana-
lysis-and-experiment inverse identification studies. The
last figure in this report (Fig. 21) clearly shows that the
interface properties (curved ultimate strength envelope,
residual strength envelope, and various constants) match the
data closely.

4. EXPERIMENTAL DATA

Figures 6 (a) - (e) through 20 (d) - (f) show load-displace-
ment response diagrams for typical successful experiments
conducted in the range -400 psi (-2,760 kPa) compressive
normal stress to 100 psi (690 kPa) tensile normal stress.
The diagrams (a) through (e) in each case show: (a) shear
stress vs. normal displacement; (b) shear stress vs. shear
(horizontal) displacement (total); (c) shear stress vs.
shear (horizontal) displace-ment (bottom relative gage point
location); (d) shear stress vs. shear (horizontal) dis-
placement (top relative gage point location); and, (e)
normal displacement vs. shear (horizontal) displacement,
which is an indication of dilatancy of the interface during
shearing. The "noise" seen in many of the response diagrams
are due to characteristics of the signal processing and data
acquisition units, and it is not connected to the nature of
the experiments themselves. Further smoothing of the data
will be conducted in subsequent paper preparation efforts.

It is noted that the experiments conducted at higher stress
levels remained stable for longer periods than the low nor-
mal stress tests, which at times became quite unstable. The
rate of dilatancy of the interfaces increases with lower
normal stress ranges, and tends to diminish with higher
stresses that suppress dilatancy. In the tensile loading
cases where global instabilities often followed peak stren-
gth, it seems that the post-peak slopes for stable paths
were an order of magnitude steeper that the ones observed.
When comparing the experimental data with model performance,
it seems that the model simulates behavior at all normal
stress levels quite well. Also the normal displacement
(dilatancy) response appears quite realistic. Peak and
residual strength data for all tests are presented in Fig.
21. The open "squares" represent peak strength information,
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and the "crosses" represent residual strength data. The
model parameters that were obtained from this information
are also shown in the figure.

(Please not that the following pages with figures and
diagrams have not been paginated)
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Htop Displacement - Shear Stress
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Shear Displacemnent-Normal Diplacemnent
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Normal Displacement - Shear Stress
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Fig. 20 (a) -(f) Load-displacement response diagrams
for test series 31
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Hbottom Displacement - Shear Stress
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Htop Displacement - Shear Stress
Normal Stress + +100 psi, Htest3l d
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Shear Displacement-Normal Displacement
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Fig. 21 Ultimate (Peak) and residual strength envelopes for
mortar-aggregate (granite) interfaces and cali-
brated model parameters
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