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CHAPTER I

INTRODUCTION

Hydrographic surveying techniques are used to produce

the maps that pilots use when traversing the world's

waterways. The maps show position versus depth for the

channels which serve as watery highways. These depths are

usually measured by acoustic depth sounders which send a

burst of sound wave to the bottom and receive the reflected

return; the transit time is proportional to the depth.

However, this depth may correspond to the hard bottom, or it

may correspond to a layer of suspended sediment that poses

no threat to navigation. The signal burst is modulated by

the media through which it passes and contains information

which may be used to determine the type and density of the

bottom material. This information takes the form of

wavelets which have maximum amplitudes at maximum impedance

media interfaces.

This study involves using transformed waveform

envelopes as inputs into neural network models. These

models are fashioned after the human nervous system and

brain and attempt to simulate the human learning process.

Therefore, neural networks can classify the material causing

the reflection by learning identifying characteristics of

1
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the material's acoustic return. These characteristics

include the shape and relative amplitudes with time of the

wavelets produced by transmission media. The media consists

of a layer of water, a possible layer of suspended sediment,

and a layer of saturated bottom material (e.g., silty sand,

silty clay, or soft clay mud).

The purpose of this research was to advance the field

of hydrographic surveying by applying neural networks in the

analysis of acoustic returns obtained from conventional

depth sounders. Three problems were modeled: (1) fluff

detection, (2) bottom material classification, and (3)

density classification. This dissertation is organized into

ten chapters. The first chapter is the introduction.

Chapter II provides background material on neural

networks. A number of types of networks currently in use

are presented and compared. The back propagation method is

described in detail as this is the method used to obtain the

research models.

Chapter III provides background on depth measuring

devices used in obtaining the acoustic data and the ground

truth (bottom samples). The conventional approach to

acoustic modeling is discussed along with the problems

encountered when modeling a non-Gaussian media.

Chapter IV discusses the neural network software

developed in conjunction with this research. Two programs

for preparing input patterns for modeling are discussed in
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overview: PRENEURA and LETTERBP. A program called BACKPROP

designs and tests the neural network using back propagation

learning. A program called RESULTS generates statistics and

weight maps from the output of BACKPROP.

The procedure for classifying the signal inputs into

categories involves linearly scaling the inputs to between

0.0 and 1.0. The output of a neuron is compressed to an

analog value between 0.0 and 1.0 by a sigmoidal function;

therefore, this analog value must be converted to a digital

value indicating true or false for each possible

classification. Thus the threshold between true and false

is arbitrarily set at the midpoint of the output range

(i.e., 0.5). For example, if the output neuron for fluff

had a n activity level of greater than 0.5 and the hard

bottom output neuron had an activity level less than 0.5,

the network was said to have made the determination that

fluff was present.

Chapter V deals with the fluff presence determination

problem. It presents the time and time-frequency domain

models developed and their performance on the test set.

Time-frequency involves taking a series of Fast Fourier

Transforms at chronologically advanced segments of the

waveform.

Chapter VI deals with the bottom material

classification problem. Models for classifying silty sand,

silty clay, and soft clay are presented.
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Chapter VII deals with the models developed to classify

density into ranges and their relative successes. Four

ranges are classified.

Chapter VIII summarizes the results of the three

modeling problems. The accuracy of the neural network

models is compared to the accuracy of a conventional

mathematical acoustic modeling method.

Chapter IX describes the proposed hardware

implementation of the real-time acoustic analysis depth

sounder neural processor add on equipment. The circuitry

used for preconditioning the signal as well as the neural

network are presented.

Chapter X is a summary of the accomplishments and

results of this research. It provides recommendations for

future research in this field.

Following Chapter X is a series of appendices that

expand the discussion of the software developed in

conjunction with this research. The program listings and

sample runs are included. The reference section follows the

appendices.



CHAPTER II

NEURAL NETWORK BACKGROUND

Man has always sought to understand how nature works so

he might duplicate its mechanics to better his own

lifestyle. One of nature's best kept secrets has been how

the human mind processes sensory inputs (i.e., how we

learn). Fundamental to the learning process is the body's

brain and nervous system, composed of more than 100 billion

neurons.

2.1 Bioloaical Neurons

Biological neurons carry or block transmission of

information to and from the brain. They carry sensory

inputs to the brain and motor responses from the brain in

the form of electrical pulses through a complex network of

interconnected nodes [REF 23]. A biological neuron (Figure

1) is composed of dendrites, a cell body, an axon, and

synapses. The output of a biological neuron's axon

stimulate the dendrites of other neurons through a

biochemical reaction at a connection point called a synapse.

The cell body, called the soma, performs a weighted summing

of its dendrite inputs (REF 25].

5
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DENDRITES

SOMA

SYNAPSE
AXON

Figure 1. Biological Neuron

2.2 Artificial Neurons

Artificial neurons are modeled after biological

neurons. Artificial neurons are similar to operational

amplifier summers with problem specific, learned value

resistor inputs. The output of the amplifier ofttimes

connects to a nonlinear stage, called the activation

function. Thus, neural networks are typically a form of

nonlinear weighted summing [REF 4]. The output of the

summer, called NET, is given by the equation:
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num,

NET= j wix 1  (2.1)

where w i is the weight of the input multiplier and x i is the

corresponding input of the summer [REF 11].

2.3 The HoDfield Neuron

The basic Hopfield neuron (Figure 2) has two cascaded

elements: (1) a summer of both inhibitory and excitatory

xi

X2 OUT

X3 3

Figure 2. Hopfield Neuron

inputs and (2) a nonlinear activation function of the form

F(NET - 1 (2)1 +e-( (r M" I22

where G affects the slope (Figure 3) of the nonlinearity

[REF 8).
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0 NET

0

Figure 3. Sigmoidal Function

The nonlinearity gives neurons a wider dynamic range and a

higher degree of compliancy. Neural nets become an adaptive

mapping table from an input domain to an output domain.

They can derive a original and adaptive solution to a

problem.

2.4 Artificial Intelliaence

The ability to learn in unsupervised mode gives some

types of neural networks true artificial intelligence.

Expert systems, on the other hand, simply traverse a

hierarchical set of fixed rules to arrive at a conclusion.

The set of rules is based on the knowledge of a human expert

who accomplished the learning and transferred human-acquired
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knowledge to the machine by defining the rules. The rules

may work backward as well as forward (In MYCIN for example,

input symptoms cause the program to request that certain

tests be run to provide more inputs).

Neural networks are a form of parallel computing.

Several of these artificial neurons are arranged in networks

that process a layer of information in parallel. This may

be accomplished by software on a general purpose computer

with array processing subsystems or by specialized hardware

(e.g., neural chips). Parallelism can be simulated on a

sequential computer using arrays and loops.

2.5 Hebbian LearninQ

Donald Hebb, in 1949, theorized [REF 3) that if pairs

of adjacent neuron inputs (called synapses) become active

simultaneously, the connections between the neurons are

strengthened (by a chemical reaction]. This biological

phenomena gave way to Hebb's rule for Hebbian learning, the

foundation of most neural net models. Hebb's rule is to

adjust the strength of the connection between two units

proportional to the product of their activation levels [REF

12]. In equation form,

A Wj=B (OUT) (OUTj) , (2.3)

where wi is the weight connecting neurons i and j, OUT is

the respective neuron output, and B is the learning rate.
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2.6 Classifications of Networks

Neural networks may be classified as to their

characteristics, such as, method of learning and structure.

RESONANCE jMADEM4Ej ISED I RVISED

PERC BACK KOHO

Figure 4. Classification Structure Chart

The classification structure chart of Figure 4 illustrates

some of the more classic models (REF 4].

2.7 Bidirectional Associative Memory

The mind remembers things by a series of associations.

Attempts have been successful in mimicking this process

using Bidirectional Associative Memories, BAM. There are at

least two layers of neurons and two groups of weights

connected such that the outputs of one layer of neurons is
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connected to the inputs of the others (Figure 5).

___WT w

Figure 5. Bidirectional Associative Memory

Inputs are applied to the W matrix for the second

layer, whose outputs are applied to the first layer through

the transpose WT of the weight matrix. The output of the

first layer should then approximate the learned inputs; the

output of the second should approximate the learned outputs

[REF 11]. This type network is useful for creating full

patterns from corrupted ones. It is trained with pairs of

inputs; when it sees the first pattern of the pair, it

should recall the second pattern of the pair. Wang has

developed a method of insuring recall by generating dummy

elements when needed, called dummy augmentation, which is

discussed in the noted reference (REF 36].
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2.8 Content Addressable Memory

A Hopfield Content-Addressable-Memory, CAM, network is

a single large layer of Hopfield neurons with total

interconnectivity. The outputs of all neurons are fed back

as inputs to all neurons. These networks are used to form

associative memories, which recall all of some stored

information when given partial data [REF 4). The networks

usually have a binary output (+1 on, -1 off) and the

connection weights are also binary (+1, -1). The network

iterates until it converges. Hopfield has shown convergence

is assured when the weights of two neurons, i and j, are

symmetric (w11=w,,). The learning iterative process is given

by the following equation (REF 15]:

OUTj(t+!)=NONLINEARI{ (w,,) (OUT,(t)) . (2.4)

An interesting application of CAM networks has been in

solving Nonpolynomial Hard problems (i.e., problems whose

solution convergence rates cannot be described by a

polynomial), such as the Traveling Salesman problem [REF 27]

and the Map and Graph Coloring Problem [REF 33].

2.9 Adaptive Resonance

Adaptive Resonant Theory (ART) models feed outputs back

to inputs in a cyclic fashion. Thus, each successive output

better conforms to the input stimulus pattern. ARTs can
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thus generalize to extract the ideal from a set of noisy

examples. This requires bidirectional elements (e.g.,

Bidirectional Associative Memory--BAM--models developed by

Steven Grossberg in 1982). Software uses a transfer

function matrix in the forward direction and the transpose

of the transform matrix to go from output back to input.

This process is repeated until stability is reached [REF

13,28]. Models of this nature include the neocognitron,

which is able to recognize stimulus patterns in the presence

of shifting or other distortions [REF 34].

2.10 ADELINE and MADELINE

ADELINE (Adaptive Linear Element) is an adaptive model

developed by Bernard Widrow and associates. In this model

the basic neuron does not have a nonlinear stage but is

otherwise the same as a Hopfield neuron; Widrow refers to

this linear implementation as an Adaptive Linear Combiner

(ALC). When a threshold element is added as in the

Perceptron, the neuron is called an Adaptive Threshold

Element (thus the ADELINE can be classified as either linear

or nonlinear depending on the absence or presence of the

threshold stage). The inputs are often taken from a single

waveform at different increments of time (via delay

circuits, similar to sampling with an analog to digital

converter) to make an adaptive filter (Figure 6).

It uses the error from comparing the actual output with the

desired output to modify the weights in a direction to
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input
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desired
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output

Figure 6. Adaptive Filter

reduce the error. MADELINE is an extension to include many

ADELINEs. Learning is by the delta rule (or LMS--Least Mean

Squares--rule to use Widrow's terminology) that states

wij=B(dj(t)-ai(t))Xij(t) , (2.5)

where t is time, B is the learning rate, X,, is the j'th

input to neuron i, a1 is neuron i's activation level (i.e.,

the output level of neuron i), and wi, is the j'th input

weight to neuron i, and di is the desired target output of

neuron i. Thus the error from the desired target is used to

modify the weights at some learning rate B. The learning

rate can be used to control how much effect an individual

input pattern has on changes to the network weights.
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Smaller values of B cause smaller changes in the weights

[REF 13, 14, 30, 35].

2.11 Perceptron

The Perceptron attempts to model the biological sensory

model. It was developed by Frank Rosenblatt in 1962. The

learning rule, based on Hebb's rule, is that weight changes

are proportional to the product of sending and receiving

neuron activity levels, but uses a threshold detector

instead of the sigmoid function to modify the sum of

weighted inputs. When the threshold is exceeded, the output

changes in a binary manner from the ambient level to the

active level [REF 24].

2.11.1 Limitations of a Single Layer

The limitations of what could be learned by such

networks were explored by Marvin Minsky and Seymour Papert

in 1969. They mathematically showed that linear neurons

were very limited in their problem solving ability; their

research proved a major setback to further neural network

research for several years (REF 4]. Some functions cannot

be replicated in a single layer model (e. g. the EXCLUSIVE-

OR, XOR). A perceptron's threshold function adds a

nonlinearity which separates the space by a line, plane, or

hyperplane (depending on the number of inputs) into two

regions. For the XOR problem, space is two-dimensional and

is separated into two areas by a line defined by the linear
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portion and the threshold level:

X1W1*X 2W2=C . (2.6)

There is no way to define a line that will separate the one

output area from the zero output area for the EXCLUSIVE-OR

c()O

AW

Figure 7. XOR Problem

function. This is obvious by examining Figure 7, where the

patterns are A=00, B=01, C=10, and D-11. A and D must fall

on one side of the line and B and C on the other.

2.11.2 Hidden Layers

To solve general problems, the idea of hidden layers

was introduced. So there is an input layer and an output

layer and one or more in between layers. Layers offer the

ability to do recurrent simulations, such as shift registers
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(REF 9). Layered networks can be designed to be invariant

to rotation, translation and scaling of patterns [REF 31].

ONE LAYER TWO LAYER THREE LAYER

Figure 8. Multiple Layers

Figure 8 shows how adding additional layers of neurons

allows formation of convex separation regions. A single

layer of neurons can only divide two regions with a line

(REF 24); it can perform any of the sixteen basic 2-input

logic forms except EXCLUSIVE-OR and EXCLUSIVE-NOR [REF 11].

Adding a second layer allows taking the intersection of the

half-planes from the first layer to form a convex open or

closed region of decision. The third layer allows several

hypercubes from the second layer to be combined so that any

arbitrary decision region may be created; it may be thought

of as the OR function (REF 22].
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2.12 Back Propagation

The back propagation model uses hidden layers and

expands the delta rule to propagate the difference between

InputLayer i Hidden j Hidden k Out]I

Figure 9. Back Propagation Model

the actual and desired outputs back through the additional

layers. The generalized back propagation model (REF l] is

shown in Figure 9. The a's represent the activation levels

of a neuron and the ws represent the input weights.

The activation and learning equations for the output

layer 1 are

a1 .*" .j (w.)(o.)+bias. (2.7)

InputLaye i Elddenj l~d( n k out)

Figure~ 9.Bc Poaaio oe
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01 8 =F(aj9 ) , (2.8)

e ,=F'(a2 9 ) (dl-0 8 ) , (2.9)

AWrg= (B) (Oka) (e 1 .) , (2.10)

and

Abiasla= (B) (e.,) , (2.11)

where B is the learning rate, bias is a constant added to

NET (the sum of the weights times the inputs), F is the

nonlinearity function, F' is the derivative of the

nonlinearity function, a is the activation output level

prior to the nonlinearity, r is the neuron index in the k

layer, s is the neuron index in the 1 layer, num is the

number of neurons in the layer, d is the desired target

output, o is the output level after the nonlinearity, x is

the input to the network, and

-B ( d1 ,-O15 ),- (dja-01) (2.12)
aa

The equations for the hidden layers are similar with the

indices changed to correspond to the relative layers except

that equation (2.9) is modified, for hidden layer k, to

=um1,k. -F'(ak ) ( (Wr' ( ) (2.13)
a-i

and similarly (with index changes) for hidden layer j [REF

1].
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2.12.1 Derivation of Back Propagation Equations

In the following paragraphs, the derivation of the back

propagation equations will be presented. Although the error

terms do not actually propagate back through the network, it

is convenient to think of back propagation as a three step

cycle: (1) a forward pass of the inputs through the network,

(2) a backward pass of the error terms through the network,

and (3) an updating of the weight and bias terms.

The forward pass applies a pattern (p) of inputs

(Xjp 's), to the first hidden layer of neurons through

weights (Wip). The equation for output of the summer for

one neuron is

NET T .Xpip • (2.14)

The output of the neuron, F, is a function of NET. For the

sigmoidal activation function the output of one neuron is

OUT7=F(NET 1 (2.15)1+e . 2.5

The outputs from the first hidden layer of neurons become

inputs to the second neuron layer and so on. The outputs of

the final, output layer are compared with the desired

outputs and an error term is developed,

E,,=,I ,p-o , .(2.16)

Then the error from a particular pattern is

effectively propagated backwards, through the neuron, to
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adjust the weights of the neuron in a direction so as to

reduce the error. The error at each input is taken as the

error of the previous stage's output and is then propagated

back through all hidden layers in turn. The method used to

compensate for the error is least-squares, whereby, the sum

of the squares of the error terms is minimized. A multiple

of 1/2 is used to simplify the math and the error term for

pattern p across all outputs (j) of a layer is

numoueE p=_I tj(p-°jp) 2 .(2.17)

The partial of error with respect to weight is used to

determine the amount to modify a weight to better model the

current pattern:

a =E cIE aNE_ = cE (0 aVTjaWij aETjP aWiTp  ap NETP W (2.18)

Since the output is F(NET),

-J-=F(NET) (2.19)
aNETjp

Since error is defined in terms of output,

P , i (2) (tjP-oJp) (-) - (= p-oJP) (2.20)
aoJP 2
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The equation for NET is

numi,NET = EWkj' o0 , (2.21)
k-1

where the summation goes from k equals 1 to the number of

neurons in the k layer. So,

nuffij

a Wk-,pokp (2.22)
aNETp k-1 =0.aIwijP awijp =i

since the only element in the summation with a nonzero

partial is WipOip. Combining the three parts yields

- (tjp-Ojp)F'(NETjP)Op . (2.23)
awjjP

2.12.2 Derivative of Sigmoidal Function

For the sigmoidal activation function F(NET), F'(NET)

is easily calculated, since

P- =-~ c i+e "i (l+e -" T) -2 (e-me) , (2.24)
aNET

F'(NET) = 1e.-
(l+e- nT (l+e " wr) ,(2.25)

or

F1 (NET)7 le1m) -IeST (2.26)
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Thus,

F'(NE) =(F(NET ) (1-F(NE )=OUT(1-OUM (2.27)

2.12.3 Methods of Accelerating Learning

Although a trained back propagation neural network

responds nearly instantaneously to a change in input, the

time required to train the weights for a particular problem

may be quite lengthy consisting of thousands of iterations

of forward passes, backwards passes, and weight adjustments.

The number of iterations required to converge to a solution

exhibiting a predetermined error rate may be reduced by

accelerating techniques.

One technique, called momentum, remembers the previous

weight change and applies a portion of its value to the next

calculated weight change. This tends to force the weights

to follow the narrow gullies in a deep error surface seeking

a global minimum. The formula is

A W,(n+l) =A Wj (n+1) +aA&W(n) . (2.28)

A similar method proposed by Sejnowsky and Rosenberg is

S(n+l) =W,(n) +B(A ,[h ) +a (AW [n+l ) . (2.29)

In both cases a portion of the old delta weight adds to a

portion of the newly calculated delta weight to produce a

new delta weight [REF 11].

Other methods for improving acceleration involve using
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a different activation function, F(NET). One method

proposed by Parker, called second-order back propagation,

uses second-order derivatives to compute a more accurate

estimate of the proper weight change [REF 32]. Stornetta

and Huberman proposed replacing the sigmoidal function with

F(NET) =-- + 1
2 1+e- T (2.30)

and scaling the inputs between -.5 and +.5, i.e., centering

the transitions about zero. This causes greater magnitudes

of weight modifications for zero output patterns, and speeds

convergence by thirty to fifty percent [REF 11].

2.12.4 Abstraction

An important aspect of neural networks is their ability

to form an abstract solution to a problem. That is, the

network should not only perform well on classifying the

patterns used to train the network but also on a new set of

patterns the network has never seen. The two sets are

referred to as a training set and a test set in this paper.

The test set of patterns should have similar identifying

characteristics to the training set; abstraction is measured

by how well the network performs on the test set.

The training set may be classified with a much lower

percent of error than the test set. This loss of

abstraction is referred to as overtraining, as the network

has learned the test set too well. Overtraining can result

from several conditions: (1) too many neurons in the hidden
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layer(s), (2) too many hidden layers, and (3) too many

training iterations [REF 1,2].

2.12.5 Initialization

If all weights are initialized to the same value, e.g.

zero, and the solution requires the development of unequal

weights, the network will never learn. The error propagated

backwards is proportional to the weights and all hidden

layer outputs connected to the output layer will receive the

same error signal and make the same adjustment. If the

weights are initialized too large, the nonlinearities may

saturate and clip the outputs. To avoid this dilemma, it is

best to initialize the weights to small, random values [REF

12]. Since the proper distribution of weights is not known

until the neural network has learned the problem, a uniform

distribution is usually used for initialization. A topic

for further study would be if Gaussian, Rayleigh, or some

other distribution would be a better choice for most

problems.

2.13 Kohonen

Kohonen's feature map combines an input layer with a

competitive layer and is trained by unsupervised learning.

It classifies patterns into a graphical organization of

pattern relationships: the second layer being a n-

dimensional hypercube (where n is the number of entries in

the input pattern). The weights ,ujj, are initialized to a
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uniform distribution of small random numbers (typically

between 0 and 1). Error terms between the inputs, eij, and

weights are computed for each competitive layer neuron by

summing differences squared; that is,

numin
ERRORi = (ei - Uij) 2 (2.31)

j.1

The neuron with the lowest error is declared the winner

(Figure 10).

NEIGHBORHOOD

INPUT LAYER COMPETITIVE LAYER

Figure 10. Kohonen Feature Map

Then the winning neuron and all neurons in its neighborhood

have their weights updated by

Au.=B(e -uij) . (2.32)

The value of B, the learning rate, is initially set to a



27

small value, such as .35, and decreased as training proceeds

by the equation

B[n] =(B[n-l] ) (1-9) (2.33)
T

where n is the current iteration and T is the total number

of iterations to be run. The size of the neighborhood is

initially large and is decreased by the same relationship as

training proceeds [REF 26]. Kohonen learning only works

well when patterns do not overlap; if this is not the case,

the weight vectors tend to get stuck in isolated regions

[REF 29].

2.14 Combined Networks

Some success has been attained in combining networks,

such as, a nonsupervised network followed by a supervised

one. One of the most common combinations is called

counterpropagation, wherein, a Kohonen layer is followed by

a Grossberg Outstar layer (Hopfield neurons). The Kohonen

layer extracts the statistical properties of the problem and

the Grossberg layer maps these properties to the desired

outputs. This combination forms a good statistical model

but is inferior to back propagation (which has greater

accuracy) for most mapping network applications [REF 11,

29].



CHAPTER III

HYDROGRAPHY

Travel by water has provided man with an economical way

to exchange commodities with distant neighbors. It has

allowed man to venture to foreign regions in search of

adventure and knowledge. To sail farther and in more

comfort carrying large cargos, huge ships with deep drafts

were constructed. Ship wrecks pointed to the need to detect

submerged objects and the depth of the bottom.

3.1 Acoustic Signals

Acoustic signals have been used by sailors for years to

determine the relative position of objects with respect to

current location. The equipment used is called sonar, an

acronym for "sound navigation and ranging," which is not

capitalized by convention. Sonar may be passive (whereby

noises, such as, boat propellers are detected) or active.

Active sonars generate a low frequency signal (generally

below 3 kHz) that reflects off objects and provides an echo

signal for analysis (Figure 11).

28
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Figure 11. Active Sonar

The transmitter is sometimes referred to as a projector and

the receiver is sometimes called a hydrophone. Either one

separately or both combined in a single unit are referred to

as a transducer, since electrical energy is converted to a

pressure wave, i.e., a sound wave. Electromagnetic waves

are quickly attenuated when traveling through water, so

pressure waves are the most suitable media for information

transmission. Transmitters are often electromagnetically

driven vibrating pistons which generate about 3 kilowatts of

sound; hydrophones often use magnetostrictive materials

(e.g., ammonium dihydrogen phosphate) to detect pressure

changes [REF 11,37].

3.2 Depth Sounders

Devices similar to sonars, called depth sounders, are

used to measure the distance from the water surface to the

bottom of the water basin. In a conventional depth sounder,

sound is emitted from a point source transmitter, strikes a
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surface and is partially reflected and partially absorbed

(Figure 12).

Figure 12. Depth Sounding

Some of the reflected energy returns to the source and is

analyzed. The receiver transducer uses a magnetostrictive

material, e.g., lead zirconate titanate [REF 38]. The

transmitter element generates about 500 watts of sound using

a gated oscillator (to reduce the tapering effect at the

start and end of the pulse). The transit time of this pulse

is determined by the depth and the velocity of sound.

3.2.1 Velocity of Sound

In hydrographic surveying the transit time is used to

determine depth, i.e.,
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depth= timecransit(vel ocity,,,,d) .(3.1)
2

Sound velocity varies according to density, salinity, and

temperature. Fluids have a shear modulus of zero and thus

no transverse wave is transmitted. The speed of the

longitudinal (compressional) wave is

v=4M , (3.2)

where v is the velocity, M. is the adiabatic bulk modulus,

and rho is the density; it is on the order of 1500 m/s for

sea water or 1461 m/s for fresh water [REF 40]. The

velocity of sound may be measured directly by an instrument

called a velocity profiler or may be calibrated by using a

bar suspended at a known depth from the transducer. The

time from the transmission of the pulse to the first

amplitude peak of the return is the transit time used in

depth calculations [REF 17].

3.3 Naviaable Bottom

Depth sounders are normally used in conjunction with

positioning systems so that maps of the bottom may be made

for navigational purposes. Navigation requires unobstructed

water-filled channels. The definition of what constitutes a

channel is somewhat dependent on the vessel. However, the

majority of the world's vessels can navigate easily through

suspended sediment. The limiting factor is the density
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level of the suspended sediment that causes the pilot to

lose control of the vessel's direction [REF 10). The exact

definition of the density is still under discussion, but

this density will probably be set somewhere between 1.1 and

1.2 grams/cm3 [REF 6].

3.4 Dreging

To aid navigation, channels are established and

maintained on often traveled routes. These channels must be

maintained at project depth along their entire course. When

an area becomes too shallow, material is removed by dredging

to restore proper channel depth.

The type of material--sand, gravel, mud, suspended

material, etc.--is of much interest to the dredger. Most

dredges work on the principle of a cutter head (similar to a

giant eggbeater) followed by a hydraulic vacuum (cleaner).

The cutter does well in sand but has problems in gooey mud

or rock. Surveys are conducted prior to dredging and

afterward so that the amount of material removed from the

channel may be calculated for payment purposes. Payment

rate per volume is based partially on the type and the

density of material removed.

3.5 Material TYMe Determined by Bottom SamDlina

The most common and most reliable method of determining

the material type and density composing the bottom is

physical sampling. Therefore, bottom material samples are
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typically collected in containers and taken to a laboratory

for analysis. One type of sample is a surface sample,

normally collected with a grabber type sampler (Figure 13).

ORANGE CLAMSHELL
PEEL

Figure 13. Grab Samplers

This type sampler disturbs the sample and does not delineate

by depth of material. To get samples at subsurface depths

cores are taken with a pipe. Two common methods are the

Phleger or piston sampler of Figure 14 which is good to

about 4 feet and the driven pipe type sample, which may go

30 or more feet into the bottom [REF 39].
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Figure 14. Phleger Corer

3.6 Density Measured With Nuclear Probes

Currently, the only instruments which are capable of

measuring density directly are nuclear density probes [REF

5]. Since these contain nuclear capsules, they require

special care and numerous permits making them unacceptable

for general use in the United States. A typical design is

shown in Figure 15. A nuclear density probe consists of two

parts: (1) an electronic module housing the battery pack,

processor, and mode switches and (2) a stainless steel shaft

1 meter long and 27 millimeters in diameter, containing 8

milliCurie of Cesium-137 as the radioactive source, a gamma

ray (photon) detector, and an electronic amplifier. The
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CESIUM PHOTON
-137 DETECTOR

LEAD SHIELDING

Figure 15. Nuclear Density Probe

instrument is calibrated for the 800 to 2200 kg/m3 range.

The backscatter geometry's relationship to count rate and

density is given by

RATE ...=Ae-Bm-C (3.3)

where A, B, and C are constants and D is the density [REF

41].

3.7 Acoustic Modelina

Material classification and density determination could

be greatly enhanced by improvements to current depth sounder

design. There is an enormous amount of information in the

returned signal which is not used in conventional depth

sounders due to lack of real-time tools for interpreting the
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information. The shape and frequency content of the signal

are usually ignored. Research has shown that the shape of

the envelope and frequency content of the return are related

to the density and material type of the surface causing the

return [REF 18]. The amount of returned energy from a

particular density of material is related to the frequency

of the incident wave. Low frequencies penetrate better than

high ones and thus less energy is returned [REF 16].

The most commonly used frequency is in the range of

200-220 kHz. This frequency is used because it works well

on hard sand bottoms found in most of the United States and

requires a small transducer (3-4 inches in diameter). The

reason a small transducer is desirable is that it transmits

a narrow (2-8 degree) beam angle. The smaller the beam

angle the smaller the beam's footprint on the bottom (also

the shallower the depth the smaller the footprint). A small

footprint is important because the first return is usually

the one conventional depth sounders use for determining

depth; therefore, the highest peak within the footprint is

chosen as the depth. Thus, a wide footprint reduces

resolution by stretching peaks across a larger area than

they truly occupy. Figure 16 shows the effect of a 40

degree beam angle. The closest point to the transducer that

is covered by the beam is used to determine depth. When the

bottom is rough, the effects of wide beam angle have an

extremely adverse effect on mapping.
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Figure 16. Returns from Wide Beam

Figure 17 shows the bottom as measured by the depth sounder

Figure 17. Depth Sounder's Reading

superimposed over the actual bottom. Also low frequency
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transducers are much larger (about a foot across) and

require a larger vessel and more elaborate mounting. When

possible, dual frequency transponders are used (with a 200

kHz transponder used mostly and a 20 kHz used in suspended

sediment areas). The 20 kHz unit has a much larger

footprint (20-40 degree beam angle) and gives poor

resolution of channel side slopes; however, it has the

desirable effect of penetrating suspended sediment and

measuring the "true" depth [REF 17, 38]. Lower frequencies,

1 to 7 kHz, are used for subbottom profiling, to penetrate

30 feet or so into the bottom itself with echoes at each

interface between material types.

There are 2 distinct approaches to acoustic modeling:

theoretical and statistical. For theoretical modeling

certain assumptions are made and a mathematical model is

devised. For statistical modeling a multivariate model is

devised using coefficients determined by the maximum-

likelihood principle (REF 42].

3.7.1 Theoretical Modeling

The bottom of most waterways consists of a water-

saturated porous media. For small stresses (such as, sound

waves) water-saturated media respond elastically with

attenuation (i.e., they are viscoelastic) [REF 43].

In saturated media, porosity is the volume of voids

(pore space) occupied by water ratioed to the total volume

of the media. The density of a media has two components:
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mineral grains and water. If porosity is rep:esented by eta

and density by rho (subscripted by w for water and s for

solids), the equation is

Pmeadia=?lP+(1- )ps (3.4)

for gas-free media. The characteristic impedance of a media

to the transmission of acoustic waves is density (rho) times

compressional velocity (Vp) or

Impedance=Z=pV, . (3.5)

The characteristic impedance, Z, determines the amount of

sound energy reflected at the interface of two media; thus,

depth sounders trigger on an impedance mismatch. The

Rayleigh reflection coefficient, R, may be expressed as

R= Z2-Z - P2,P (3.6)
Z2 +Z1 P2 V2 +Pll

where subscript 1 refers to the first medium and subscript 2

to the second [REF 44).

A number of elegant acoustic models have been developed

but most have made invalid simplifying assumptions about

saturated media that have negated their usefulness. They

treat mineral particles as spheres (which they are not) and

they ignore shear waves (which are transmitted). It is

beyond the scope of this dissertation to examine the

different models; however, many of the newer ones are based

on the equation (for compressional and shear waves),
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1 aV
Q fa 2  , (3.7)

47cf

where 1/Q is the specific attenuation factor, a is the

attenuation coefficient, V is the wave velocity, and f is

the frequency. Hamilton believes that internal friction

(due to intergrain movements) is the dominant attenuation

factor in water-saturated media [REF 45]. Values which have

been obtained by physical measurements are usually used in

models for particular material types (density, porosity,

velocity, and attenuation). More recent models, proposed by

Turgut and Yamamoto [REF 49], apply Biot theory

(compressional waves are excited and there is mode

conversion at the interfaces). These models use spectral

ratio calculations to model material interfaces (e.g.,

fluid-sediment, sediment-fluid, an.., sediment-sediment).

3.7.2 Statistical Modeling

Statistical models ignore the physical significance of

the parameters and simply determine the numerical values of

the coefficients (betas). An example model for velocity, V,

is

V=0o.Ppp+P3m+PD +P, DP2+PSP , (3.8)

where rho is the bulk density, rho2 is the grain density, D

is the median diameter of grain size, and phi is the grain

size deviation. Regression equations are fitted to

empirical data to determine the beta's [REF 42].
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3.7.3 Noise

How to model noise in water basins is a problem with

all modeling efforts. If noise is characterized by a known

probability density function (e.g., Gaussian), there is a

large body of statistical information available.

Unfortunately, when the noise becomes non-Gaussian (as it is

in this case) the problem is greatly compounded.

Nondeterministic noise sources include the following: ice

break-up, drilling, boats, atmospheric disturbances, and

fish. One approach involves using Bayesian methods

(assigning priors to the unknown parameters of the noise

power distribution function); however, these require

multidimensional integration which is not generally

practical [REF 45, 46, 47].

3.7.4 Signal Abstraction

Most models start with idealized mathematical models

and make heuristic modifications. Another approach is to

view a signal at a higher level of abstraction than just a

function of one or more independent variables. Signal

abstraction views a signal as a group of conceptual

entities, such as, peaks, valleys, wavelets of various

shapes, etc. [REF 50]. Using this approach, features of the

signal can be used for analysis without concern for the

underlying phenomena generating the features. This approach

is explored in this research.



CHAPTER IV

SOFTWARE

Hardware neural networks are parallel processors that

deal with all the inputs simultaneously. However,

simulation software may operate in a sequential manner by

effectively freezing time while each input is stepped

through sequentially. When this software is run on a

computer with parallel processing capabilities (such as, the

Cray Y-MP 8/6128 used for running the BACKPROP program

described below) a high degree of vectorization is possible

and the computer is able to process the inputs concurrently.

The first step in the research was to develop some

software tools for conducting the research. Commercial

programs for neural network implementation were available,

but were "black box" in nature and did not allow control of

many network parameters or monitoring of the values of

weights determined for the network. Thus, programs were

written in FORTRAN to implement the networks used in the

research in software. Software is easier to modify than

hardware and is the most practical initial implementation

methodology of any neural network design.

The dangers of using virgin software to venture into

unchartered regions of acoustic signal processing were not

42



43

treated lightly. The neural network software developed in

conjunction with this research was thoroughly tested. Test

cases were used as inputs after all coding changes and the

outputs of the code-under-test was compared with the outputs

of commercial software with any differences resolved before

proceeding.

4.1 Code Verification

A program, called LETTERBP, was developed to provide

character patterns suitable for the tests. The patterns

were output in two formats: (1) compatible with the research

neural network programs and (2) compatible with a commercial

program. LETTERBP is discussed in detail in Appendix B. A

few of its salient features are (1) it displays a 7x9

checkerboard on the screen, (2) the arrow keys are used to

move around to different nib positions, (3) the current nib

may be toggled on or off, (4) an output neuron is assigned

to the pattern, and (5) patterns may be of either the

learning or test type. Numerous learning and test case

patterns are specified and saved for later input into neural

network programs. In test cases using BACKPROP with one

hidden layer (output layer initialized to small random

numbers) and running enough iterations to get approximately

the same error levels (.001 within one percent) the number

of iterations required for the code-under-test and the

commercial program NEUROSHELL (available from Ward Systems

Group) were within three percent. The differences were
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attributed to the fact that certain features of the

commercial program were not documented (e.g., network

initialization and stopping criteria equations) and may have

been slightly different. Neurons in each level, learning

rate, and momentum were the same in both cases.

4.2 Back PropaQation Model Development

Since there are no significant advantages to using more

than two hidden layers (only that the total number of

neurons for a problem might be less) a program, BACKPROP,

that supports no, one, or two hidden layers was coded. The

listing of BACKPROP is included in Appendix C.

BACKPROP allows external inputs of many of the model

parameters through predefined file contents. If a file for

the parameter of interest exists, its contents are used;

otherwise, the program's default value is used. The

contents of these files define: (1) number of hidden layer

neurons, (2) learning rate, (3) momentum, (4) termination

error level, (5) termination iteration count, and (6) number

of iterations before automatic network parameter save. The

programs may run for several hours on a microcomputer and,

thus, an automatic save to disk function was incorporated in

case of power outage so that the program could be resumed at

the last save point. Not only are the current network

values saved but also all momentum terms so that upon

resumption the exact same results should be obtained. The

program may also be interrupted by depressing the escape key
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(microcomputer version) and resumed later.

The program has three modes of operation. The first is

to start from scratch on a new problem and to develop and

test a network model. The second is to resume learning

after an interruption and develop and test a network model.

The third is to allow a set of new test patterns to be

entered into an existing network model (this mode emulates

the way hardware would function). At the beginning of the

program, the operator is asked to select an option and the

pertinent files are read in from disk. The program may then

be left to operate in unsupervised mode; it displays current

error level and iteration count on the screen periodically

so that program progress may be observed.

4.3 Preneural Signal ProcessinQ

Initial tests showed that proper network design, relied

heavily on the preconditioning techniques that are applied

to the data. Basically, this research uses neural networks

as clustering type pattern classifiers; for best performance

as classifiers, they must have carefully selected training

inputs which allow them to develop classification criteria.

To this end, a program, called PRENEURA, was developed.

PRENEURA allows a number of signal processing

operations to be applied to a single signal and recorded;

then, the sequence may be "played back" and applied to all

signals. This creates a set of input patterns which have

been modified in the same manner. Most operations which are
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available have easily implementable hardware counterparts.

Therefore, once the proper sequence of preprocessing

operations for a particular problem is determined,

operations may be transformed to real time hardware. For

example, jump a certain number of points forward, translates

to a hardware delay circuit.

PRENEURA also has a type of subroutine (or submodule)

feature. It may also record a subset of keystrokes; such

that, a keystroke in the main keystroke sequence will cause

a subsequence of keystrokes to be "played back." This

allows some operations which require more sophisticated

hardware, e.g., time-frequency data, to be emulated. To do

this type of operation, a subsequence of keystrokes that

took the FFT of a group of points after filtering, placed

the output in a queue, and restored the original data might

be defined. Then the main sequence of keystrokes would

advance a fixed number of points, execute the subsequence,

advance again, execute the subsequence again, etc., until

the proper amount of data was stored in the queue. Finally

the original data would be overwritten by that in the queue

and the resulting, processed data would be saved.

To precisely define what operations were applied to the

data to condition it for input to a neural network, the

keystroke sequence applied will be given. The possible

operations and their corresponding keystrokes are defined in

Appendix A.
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4.4 Results Processing

In order to consolidate the outputs of the BACKPROP

program, a program called RESULTS was written. RESULTS

converts the numeric weight and bias values to alphabetic

characters with each successive letter corresponding to a

larger weight range of values. RESULTS also counts the

number of correctly identified, incorrectly identified, and

unidentified learning and test cases and computes

percentages of the total. It computes maximum, minimum, and

average error for correctly identified cases. A listing of

the program RESULTS is given in Appendix D.

The outputs of this program were used to construct

tables of the number of iterations required to reach the

desired error level of 0.1 percent, tables of the average

unbertainty for correctly identified signals, and tables of

the percent of cases correctly identified. These tables are

based on the test case set as the learning sets were always

learned to 100 percent correct classification (i.e.,

combinations of learning rate and momentum that did not

result in complete learning were discarded).



CHAPTER V

FLUFF DETECTION

Suspended sediment, called fluff, causes reflections at

shallower depths than the hard bottom. When suspended

material is present in a channel that must be maintained at

a project depth for navigation purposes, conventional depth

sounders often give incorrect readings. An instrument which

would collaborate the correctness or incorrectness of the

reading by indicating when fluff was present would be a

great asset to hydrographic surveyors, as it would signal

when lead line depth determination was needed. The purpose

of the fluff study was to determine if a neural network

could delineate between a fluff signal and a hard bottom

signal.

5.1 Physical Data

Depth sounder data from Alabama, Georgia, Mississippi,

and California provided input for this study. The data from

Savannah, Georgia, was collected on analog tape and

digitized as part of this study; the remainder of the data

was digitized directly from the depth sounder. In all

cases, two channels of analog data provided input: (1) the

48
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raw analog return and (2) the timing pulse that signals the

transmission of the initial pulse. The envelope of the

return is used by the depth sounder to determine the point

of the return for depth determination. All depth sounders

had circuits to rectify and filter the return to obtain the

envelope. Unfortunately this signal was recorded on a bad

tape channel in many tests and was unusable, and software

preprocessing was used in the PRENEURA program to simulate

the effects of envelope extraction circuits.

The only criteria used for discarding data were (1) no

ground truth (i.e., the bottom corresponding to the signal

was unknown), (2) clipped signals due to gain set too high,

(3) anomalous signals. The first criteria accounted for

most of the discards; the third criteria accounted for only

a few discards. The anomalous signals discarded involved a

reflection at a shallower depth than other signals in the

same area and are believed to have been caused by fish.

There were only two anomalous signals and their exclusion

should not be detrimental to the solution; the occurence of

large schools of fish and submerged objects is rare in ship

channels. The effect on the neural model would be either

misidentification or no identification of anomalies as there

is no output neuron for anomaly classification (reducing the

accuracy by at most two percent).

Hard bottoms are characterized by the first return

being much larger in amplitude and shorter in duration than
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the following returns. A typical hard bottom return

obtained in the area around Savannah, Georgia, is shown in

Figure 18. It shows a complete signal including (1) the

surface reflections, (2) the lack of signal during the water

media propagation, and (3) the bottom reflections. Depth

sounders use a fixed hardware time delay to disable

processing during the surface reflection period.
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Figure 18. Return with Surface Reflection

Figure 19 shows the same signal advanced to the beginning of

the first bottom reflection, thus allowing visual

correlation with the processed signals that follow.
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Figure 19. Hard Bottom Return

The signals that follow will be likewise advanced to the

beginning of the first bottom reflection. Fluff returns are
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Figure 20. Fluff Return

marked by secondary wavelets that are significant in
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amplitude when compared to the first return. A typical

fluff return obtained in the area around Savannah, Georgia,

is shown in Figure 20. The first wavelet is the fluff

return; the wavelets that follow correspond to the bottom.

5.2 Time Domain Model

Data representing a reflected signal is sampled at

evenly spaced increments of time and thus represents the

signal in the time domain. If an instrument could be

constructed that operated in the time domain, the circuitry

would be simpler, more compact, and cheaper than a solution

that existed in the frequency domain.

5.2.1 Input Generation

Absolute signal amplitude is not a suitable method for

making the classification, because amplitude varies due to

angle of incident and bottom roughness more than it does due

to difference in material. It is not uncommon, for

consecutive signals to vary by as much as ten times in

amplitude. Therefore, in all processing the signal segment

of interest was normalized between zero and one,

corresponding to the respective minimum and maximum values.

Thus, producing processed data that reflected relative

wavelet amplitude was the goal of preprocessing.

The keystrokes used in preprocessing the neural data

were

i5.jrtordddank
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A description of the meaning of these strokes accompanies

the discussion of the PRENEURA program in Appendix A. The

raw return signal was first rectified about the mean and

envelope detected to simulate the front end circuitry

commonly used in depth sounders (since this data channel was

corrupted during recording in many cases). The jump

distance file, JUMPDIST, was set to 200 in order to advance

past the surface reflection before beginning the threshold

search for the first return. The threshold level file,

THRESHOLD, was set to .05 to catch the beginning of the

first return. Then the data was clipped and decimated to

provide 64 points for input to the neural network.

The example hard bottom signal is shown after amplitude

(AMPL) processing in Figure 21.
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Figure 21. Amplitude Processed Hard Bottom
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The example fluff signal is shown after amplitude processing

in Figure 22.
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Figure 22. Az Litude Processed Fluff

5.2.2 Model Derived

Models for hundreds of combinations of hidden layer

sizes, learning rates, and momentum were developed and

tested. The results were too numerous to list; however,

charts of some of the more interesting results are included.

The number of hidden layers that worked best was a number

which caused a uniform fanout or fanin between input and

output elements. For example, if there were 64 inputs, 2

outputs, and 1 hidden layer, the hidden layer should have

about 12 elements. The fanin between the input and hidden

layer would then be 64/12 or about 6 and the fanin between
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the hidden layer and output layer would be 12/2 or 6. For 2

hidden layers 20 and 6 might be good choices giving a fanin

of about 3 for each layer. Too many hidden elements (32 in

the test cases) caused the network not to converge to a

small error value. Too few hidden elements negated the

effect of the hidden layer as it tended to simply replace

the output layer (with results from the hidden layer passed

through to the outputs).

One of the aims of the research was to produce abstract

solutions. Abstraction allows networks to be trained on

data acquired at one site and used to classify data from

another site. The most abstract solutions (i.e., the ones

that performed best on data from another site) were obtained

when learning rate and momentum were chosen so as to

minimize the number of learning iterations. This minimum

value is obtained by running numerous combinations and

counting the iterations for each combination.

Tables of results are presented in groups of 3. The

result tables list: (1) the iterations required to learn the

learning cases set, (2) the average percent of uncertainty

on the test cases, and (3) the percent of test cases

correctly identified. The tables show the results of the

models developed having (1) 0 hidden layers (often referred

to as 2 layer models), (2) 1 hidden layer (often referred to

as 3 layer models), and (3) 2 hidden layers (often referred

to as 4 layer models). The tables illustrate the results of
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varying learn.ing rate or momentum. Tables 1 through 6 show

the results for 64 input elements. Tables 7 through 12 list

the results for 32 input elements. Tables 13 through 18

display the 16 input element results.

First momentum was set to 0.0 and learning rate was

varied. Table 1 gives the number of iterations required to

converge to an error rate of less than 0.1 percent on the

learning cases for 64 input elements.

Table l.--Ampl 64 Inputs-Iterations Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers # Layer # Layers #

Passes Passes Passes

0.6 548 173 548

1 336 101 44

2 173 47 24

4 91 28 14

8 31 14 8

16 9 5 166

32 5 335 No Conv

Table 2 gives the average percent uncertainty for the

correctly identified cases.
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Table 2.--Ampl 64 Inputs-Uncertainty Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layers % Layers %

Uncertain Uncertain Uncertain

0.6 7.86 4.93 4.07

1 7.65 4.84 3.95

2 7.33 4.87 3.69

4 6.87 4.21 3.05

8 4.32 2.86 2.46

16 0.87 2.09 1.63

32 0.02 1.58 No Cony

Table 3 gives the percent of the test cases that were

correctly identified for 64 input elements.

Table 3.--Ampl 64 Inputs-Correct Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Correct Correct Correct

0.6 100 100 100

1 100 100 100

2 100 100 100

4 100 100 100

8 100 100 100

16 100 100 100

32 100 100 No Cony

The next group of 3 tables show the results when the

learning rate was held constant at 0.6 while momentum rate

was varied. The number of iterations required for
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convergence to a 0.1 percent error rate for 64 input

elements is given in Table 4.

Table 4.--Ampl 64 Inputs-Iterations Vs. Momentum

Momentum 0 Hidden 1 Hidden 2 Hidden
Rate Layers # Layers # Layers #

Passes Passes Passes

0 548 173 76

0.3 390 119 52

0.6 231 70 32

0.9 489 7 35

Table 5 gives the average uncertainty versus momentum for 64

input elements.

Table 5.--Ampl 64 Inputs-Uncertainty Vs. Momentum

Momentum 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layers % Layers %

Uncertain Uncertain Uncertain

0 7.86 4.93 4.07

0.3 7.68 5.05 4.1

0.6 7.19 4.6 3.54

0.9 0.95 3.28 6.37

Table 6 gives the percent of test cases correctly identified

as a function of momentum for 64 input elements.
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Table 6.--Ampl 64 Inputs-Correct Vs. 

Momentum

Momentum 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layers % Layers %

Correct Correct Correct

0 100 100 100

0.3 100 100 100

0.6 100 100 100

0.9 100 99.58 99.58

To determine the effect of using fewer input elements, every

other data point was deleted, leaving 32 inputs. The first

tests determined the effect of using no momentum and varying

learning rate. Table 7 shows the number of iterations

required to reach an error rate of 0.1 percent.

Table 7.--Ampl 32 Inputs-Iterations Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers # Layer # Layers #

Passes Passes Passes

0.6 1151 428 117

1 702 256 67

2 361 124 35

4 187 64 18

8 100 22 8

16 59 8 5

32 29 14 810

Table 8 gives the average uncertainty percent for the test

cases correctly identified versus learning rate for 32 input
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elements.

Table 8.--Ampl 32 Inputs-Uncertainty Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Uncertain Uncertain Uncertain

0.6 7.8 3.93 3.62

1 7.68 3.84 3.53

2 7.36 3.95 3.48

4 7.1 3.85 3.25

8 6.64 2.48 2.74

16 6.13 1.86 1.23

32 1.64 1.37 0.3

Table 9 gives the percentage of test cases correctly

identified versus learning rate for 32 input elements.

Table 9.--Ampl 32 Inputs-Correct Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Correct Correct Correct

0.6 99.16 100 100

1 99.16 100 100

2 99.16 100 100

4 99.16 100 100

8 99.16 100 100

16 99.16 100 100

32 100 92.89 98.33

Next learning rate was held constant at 0.6 and momentum was
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varied for the 32 input elements as shown in the next group

of 3 tables. Table 10 shows number of iterations required

to reach an error rate of 0.1 percent.

Table 10.--Ampl 32 Inputs-Iterations Vs. Momentum

Momentum 0 Hidden 1 Hidden 2 Hidden
Rate Layers # Layers # Layers #

Passes Passes Passes

0 1151 428 117

0.3 815 300 79

0.6 477 167 41

0.9 127 20 94

Table 11 shows the average uncertainty percentage for

correctly identified test cases versus momentum.

Table 11.--Ampl 32 Inputs-Uncertainty Vs. Momentum

Momentum 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Uncertain Uncertain Uncertain

0 7.8 3.93 3.62

0.3 7.69 3.98 3.64

0.6 7.41 3.9 3.6

0.9 4.05 1.7 1.27

Table 12 shows the percent of test cases correctly

classified versus momentum for 32 input elements.
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Table 12.--Ampl 32 Inputs-Correct Vs. Momentum

Momentum 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Correct Correct Correct

0 99.16 100 100

0.3 99.16 100 100

0.6 99.16 100 100

0.9 100 100 100

Finally every other input element was discarded again

leaving 16 input elements. First the learning rate was

varied with no momentum as shown in the following 3 tables.

Table 13 gives the number of iterations required to reach an

error rate of 0.1 percent with 16 input elements.

Table 13.--Ampl 16 Inputs-Iterations Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers # Layer # Layers #

Passes Passes Passes

0.6 3800 622 163

1 2283 366 98

2 1145 175 49

4 573 81 27

8 284 40 7

16 138 50 7

32 78 14 10

Table 14 gives the average uncertainty percentage versus

learning rate for 16 inputs.



Table 14.--Ampl 16 Inputs-Uncertainty Vs. Learn 63
Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Uncertain Uncertain Uncertain

0.6 7.1 4.03 3.41

1 7 3.96 3.32

2 6.78 3.75 3.09

4 6.47 3.54 2.84

8 6.16 2.71 1.65

16 5.91 2.5 1.8

32 4.12 2.37 0.95

Table 15 gives the percent of the test cases correctly

identified versus learning rate for 16 inputs.

Table 15.--Ampl 16 Inputs-Correct Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Correct Correct Correct

0.6 97.91 99.16 99.58

1 97.91 99.16 99.58

2 97.91 99.16 99.58

4 97.91 99.16 99.58

8 97.91 99.58 99.58

16 98.33 99.16 99.58

32 98.33 99.16 99.16

Next learning rate was held constant at 0.6 and momentum was

varied for the 16 inputs as shown in the next 3 tables.

Table 16 gives the number of iterations required to reach

0.1 percent error rate versus learning rate.
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Table 16.--Ampi 16 Inputs-Iterations Vs. Momentum

Momentum 0 Hidden 1 Hidden 2 Hidden
Rate Layers # Layer # Layers #

Passes Passes Passes

0 3800 622 163

0.3 2663 428 115

0.6 1526 234 70

0.8 772 110 23

0.9 425 27 13

Table 17 gives the average uncertainty percentage for the

test cases versus learning rate for 16 inputs.

Table 17.--Ampl 16 Inputs-Uncertainty Vs. Momentum

Momentum 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Uncertain Uncertain Uncertain

0 7.1 4.03 3.41

0.3 7.04 3.92 3.33

0.6 6.87 3.78 2.97

0.8 6.52 2.97 2.17

0.9 5.8 0.89 1.12

Table 18 gives percent correctly identified versus momentum

for 16 inputs.
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Table 18.--Ampl 16 Inputs-Correct Vs. Momentum

Momentum 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Correct Correct Correct

0 97.91 99.16 99.58

0.3 97.91 99.16 99.58

0.6 97.91 99.16 99.16

0.8 97.91 99.16 99.58

0.9 98.33 99.16 98.33

From the average uncertainty and percent correct tables, the

most abstract model was obtained by setting learning rate to

32 and momentum to 0 with no hidden layers. The weights for

the 64 inputs to the output neuron which is on for hard

bottoms and off for fluff are

(InOl-IN32) FZZZZZRZZZZZQHAtnlprxzzzzzzzzuqq

and

(IN33-IN64) zzzzzzzzzzpxyzzzzzzzvzmrsrottqzz.

The weights for the 64 inputs to the output neuron which is

on for fluff and off for hard bottoms are

(IN01-IN32) fzzzzzrzzzzzqhaTNLPRXZZZZZZZZUQQ

and

(IN33-IN64) ZZZZZZZZZZPXYZZZZZZZVZMRSROTTQZZ.

The notation for weights is that 0 corresponds to a 0.0

weight and the letters of the alphabet increment magnitude

by 0.1 in order, with Z representing any values greater than

Y's maximum 2.5. Upper case letters correspond to exciting
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weights and lower case letters correspond to inhibiting

weights. Thus A corresponds to weights between 0.0 and 0.1,

B corresponds to weights between 0.1 and 0.2, a corresponds

to weights between 0.0 and -0.1, b corresponds to weights

between -0.1 and -0.2, etc. From the weights it can be seen

that the fluff output is strongly inhibited by the first 15

inputs and excited by the remaining inputs, and the hard

bottom output is the opposite. This is as would be expected

as the network has learned an important identifying

characteristic of fluff and hard bottoms. Hard bottoms have

a strong first wavelet; while fluff has multiple weaker

wavelets. Thus, if multiple equal amplitude wavelets are

present the signal is likely to be fluff. The biases are

zZ.

Thus the hard bottom output neuron has a strong negative

bias and the fluff output neuron has a strong positive bias.

These strong biases are necessary to counteract the

magnitude predominance of the first 15 input values.

5.3 Frequencv Domain Model

The first attempt at frequency domain modeling involved

taking the FFT of 128 consecutive data points to obtain 64

data points of magnitude spectrum. Both amplitude and power

spectrums were input to the BACKPROP program with no

success. The problem with frequency processing is that only

the relative value of each frequency component is used
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regardless of where in the sample record the component was

active. Thus a uniform small amplitude frequency across the

entire record might map into the frequency domain as the

same amplitude as a high amplitude pulse of the frequency

occurring over a small segment of the record. This was the

case with the hard bottom and fluff signals and the

frequency domain representation of both appeared visually

identical. To circumvent this problem, the concept of

wavelets of energy is often used in the processing of

acoustic records.

5.3.1 Input Generation

To allow the energy of the wavelets to be applied to

different neural network inputs, time-frequency (T/F)

preprocessing was applied to the signal. A number of

combinations of different segment length and overlap were

tested. The most successful combination was to take sixteen

eight sample segments, overlapped fifty percent, along the

sample record. The four higher frequency components of each

FFT were discarded (thus providing for low pass filtering).

The keystrokes used to produce the 64 neural network inputs

were

i5.jrtpr9;3b))))ecddfb>>>ec,7));===============rank

Refer to Appendix A for the meaning of these keystrokes. In

short, a subset of keystrokes is used to perform the 16

FFT's and advance the pointer. The 4 data points of each of

the 16 passes of subset keystroke processing are placed on a
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data queue and the contents of the queue used as 64 inputs

to the neural network.

The example of hard bottom signal after time-frequency

processing by PRENEURA is shown in Figure 23.
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Figure 23. Time-Frequency of Hard Bottom

The example oi fluff after time-frequency preprocessing is

shown in Figure 24.



69

-1IOI~~l1/ 64 Kenystrohca ZV41 .79

E F
N T
V
E C

00

TIME-FREQUENCY

Figure 24. Time-Frequency Processed Fluff

5.3.2 Model Derived

In an approach similar to the one used for amplitude

processing, a number of time-frequency models were

developed. Tables 19 through 24 list the results for 64

input elements. Tables 25 through 30 list the results for

32 input elements. First momentum was set to 0.0 and

learning rate was varied as shown in the following 3 tables.
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Table 19.--T/F 64 Inputs-Iterations Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers # Layer # Layers #

Passes Passes Passes

0.6 844 285 116

1 506 171 70_

2 251 84 35_

4 124 37 18

8 60 21 10

16 9 6 3

32 7 9 2676j

Table 19 gives the number of iterations required to converge

to an error rate of less than 0.1 percent on the learn cases

for 64 input elements. Table 20 gives the average percent

uncertainty for the correctly identified cases.

Table 20.--T/F 64 Inputs-Uncertainty Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Uncertain Uncertain Uncertain

0.6 14.9 10 7.98

1 14.73 10.04 7.81

2 14.45 9.33 7.18

4 14.33 8.49 6.27

8 13.26 6.77 4.56

16 2.25 1.35 3.36

32 3.57 0.06 0.06
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Table 21 gives the percent of the test cases that were

correctly identified for 64 input elements.

Table 21.--T/F 64 Inputs-Correct Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Correct Correct Correct

0.6 97.07 99.16 99.16

1 97.07 99.16 99.16

2 97.07 98.58 98.58

4 97.91 99.58 99.58

8 97.91 100 100

16 100 10 100

32 100 100 100

Next learning rate was held constant at 0.6 while momentum

rate was varied as shown in the next 3 tables. The number

of iterations required for convergence to a 0.1 percent

error rate for 64 input elements is given in Table 22.

Table 22.--T/F 64 Inputs-Iterations Vs. Momentum

Momentum 0 Hidden 1 Hidden 2 Hidden

Rate Layers # Layer # Layers #
Passes Passes Passes

0 844 285 116

0.3 590 199 81

0.6 336 110 46

0.9 82 9 10
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Table 23 gives the average uncertainty versus momentum for

64 input elements.

Table 23.--T/F 64 Inputs-Uncertainty Vs. Momentum

Momentum 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Uncertain Uncertain Uncertain

0 14.9 10 7.98

0.3 14.75 9.87 7.88

0.6 14.49 10.02 7.79

0.9 5.99 2.49 2.06

Table 24 gives the percent of test cases correctly

identified as a function of momentum for 64 input elements.

Table 24.--T/F 64 Inputs-Correct Vs. Momentum

Momentum 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Correct Correct Correct

0 97.07 99.16 99.16

0.3 97.07 99.58 99.58

0.6 97.49 99.16 99.58

0.9 100 100 100

To determine the effect of using fewer input elements, every

other data point was deleted, leaving 32 inputs.

Two combinations of learning rate and momentum did not

converge: (1) learning rate equals 0.6 and momentum equals 0

and (2) learning rate equals 0.6 and momentum equals 0.3.

The first tests determined the effect of using no momentum
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and varying learning rate. Table 25 shows the number of

iterations required to reach an error rate of 0.1 percent.

Table 25.--T/F 32 Inputs-Iterations Vs. Learn Rate

Learning 0 Hidden . Hidden 2 Hidden
Rate Layers # Layer # Layers #

Passes Passes Passes

1 1051 201 70

2 521 102 34

4 258 53 18

8 130 25 6

16 56 9 4

Table 26 gives the average uncertainty percent for the test

cases correctly identified versus learning rate for 32 input

elements.

Table 26.--T/F 32 Inputs-Uncertainty Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Uncertain Uncertain Uncertain

1 14.04 12.97 11.35

2 14.02 12.26 10.72

4 14.35 11.81 10.08

8 14.79 8.06 8.96

16 14.71 5.88 1.55

Table 27 gives the percentage of test cases correctly

identified versus learning rate for 32 input elements.



74
Table 27.--T/F 32 Inputs-Correct Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Correct Correct Correct

1 72.8 84.52 84.1

2 73.22 84.94 85.77

4 74.48 90.79 88.7

8 77.82 99.16 90.38

16 78.24 84.1 99.58

Next learning rate was held constant at 0.6 and momentum was

varied for the 32 input elements as shown in the next 3

tables. Table 28 shows number of iterations required to

reach an error rate of 0.1 percent.

Table 28.--T/F 32 Inputs-Iterations Vs. Momentum

Momentum 0 Hidden 1 Hidden 2 Hidden
Rate Layers # Layer # Layers #

Passes Passes Passes

0.6 695 133 48

0.9 85 23 34

Table 29 shows the average uncertainty percentage for

correctly identified test cases versus momentum.
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Table 29.--T/F 32 Inputs-Uncertainty Vs. Momentum

Momentum 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Uncertain Uncertain Uncertain

0.6 14.15 12.11 10.45

0.9 11.22 7.56 2.86

Table 30 shows the percent of test cases correctly

classified versus momentum for 32 input elements.

Table 30.--T/F 32 Inputs-Correct Vs. Momentum

Momentum 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Correct Correct Correct

0.6 73.22 86.19 84.52

0.9 85.77 90.79 96.65

From the average uncertainty and percent correct tables, the

most abstract model was obtained by setting learning rate to

32 and momentum to 0 with no hidden layers. The weights for

the 64 inputs to the 16 hidden neurons are

(InOl.01-InOl.32) ZRHJZJLKUFNAAEDbnledumgbszoizztf,

(InOl.33-InOl.64) ztogwzjghgddkdbciecchjhezzdgzqhh,

(In02.01-In02.32) UCCDZDFEMCHabaBbkkedokfbljebmlgd,

(In02.33-In02.64) smebqleeliecoecclfddfdcbgecbwtii,

(InO3.01-In03.32) bbaaAaaaabaaccaaddbbfdbadecaeecb,

(In03.33-In03.64) febaddbbcbaadbaacbaabbaadcaahecc,

(In04.01-In04.32) cbaabbaabbaaccbaddbbedbadecaedca,
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(1r04 .3 3-1n04.64) fdbadcbbbbaacaaacbaabaaadcaagecb,

(In05. O1-IriO5. 32) ZJEGZEJIFfKeniAfqjphfumgbsxnhzzqe,

(1n05. 33-In05.64) zrmfvzjhqoigzjegxnhhmnjfzzdfzqhh,

(1r06. O1-In06. 32) KBBBNCCCGAEabaAbggccjgdbhgcbhgdb,

(1n06. 33-1n06.64) khcaigccgfcbjdbbheccdcbafdbbolff,

(1n07. Ol-ItO7. 32) JBBBMBCCFADabbAbggcbjgdaggdbhgdb,

(1n07 .33-1n07 .64) kgcahgccgecbidbbhdccdcbafdbbijee,

(1n08 .01-InOB.32) AaaaBaAAaaAaccaaeebbgecaefcbeecb,

(mnOB.3 3-1n08.*64) gebaddbbcbbadbaacbaabbaaddabhfcc,

(1n09.O1-1n09. 32) ZDCEZDFFPClacbBcnmfeqlgcnkebonhd,

(1n09 .33-In09.64) vofbsnfeij fdqfcdmgddgecbhecczyll,

(mbl. 01-mbl. 32) ecabebbbedbaeebbccbaaaaabbaaedba,

(IrilO. 33-mbl. 64) ecbaccaaccbaebaadcbbcbbaddaafcba,

(Inll.O1-I. 11. 32) PCBCTCDDKBFabaAbiidcliebihdbjiec,

(mul. 33-Inhl.64) njdblidcigdcldbcjeccedbbfdbbtqhh,

(1n12 . 1-1n12.32) zddezgigriAkCECbDIHEDJFDBJHDBSQJE,

(1n12 .33-Iril2 .64) ZSHDXRGFSOIEYIDFTKGFJHFCMLCDYNGF,

(1n13 . 1-Inl3 .32) eeabccAakcjadniedefdcbbaadcaaffcb,

(Inl3. 33-1n13 .64) ecaadcbbihecpfcdriheefedbdcaadbaa,

(1n14. O1-1n14 .32) cdabbcAaihadlkddfgdcdcbaeebaffcb,

(1n14 .33-1nl4 .64) fdbadcbbhgdcoebclgddeecbddaaebaa,

(1n15. 01-lniS. 32) bbaaaaaabcaaddbbddbbccbaccbaedca,

(Iril5. 33-Iril5. 64) fdkbadcbadcbaebaadbbbcbbaddaahecb,

(Irii6. 1-1n16. 32) fcabebbbgecbffcbbbbaAAAabaaaedba,

and

(ln16. 33-1n16. 64) ebbaccaaddbbqcabfcbbccbaeeaafbaa.
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The weights for the output layer are

(hard bottom) YZAaZMMCZhSzpjci

and

(fluff) twlj zuskvkyZzznk.

The biases for the hidden layer are

prilmzj jlprilNtsmo.

The biases for the output layer are

Zz.



CHAPTER VI

MATERIAL CLASSIFICATION

The type of material of which the bottom is composed is

of interest to dredgers as it affects the time it takes to

remove the material and the amount of maintenance and repair

of the cutter head needed. To advance the state of the art

of hydrographic surveying, the second problem considered is

determination of bottom material by neural network

classification.

6.1 Physical Data

Data from California was used for the bottom material

classification problem; this was the only area that had

material ground truth obtained by use of piston samplers.

Three types of bottom material were classified: (1) hard

silty sand, (2) soft clay, and (3) hard silty clay. Some

hard silty clay and hard silty sand returns were almost

identical in appearance and provided a test of neural

networks ability to classify signals that had no visually

discriminable classifying characteristics.

To help align the raw and processed signals the raw

signals are advanced to the beginning of the first wavelet

beyond the surface reflection. Figure 25 shows a raw silty

sand signal.

78
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Figure 26. Return from Softy Clayd Bottom

Figure 27 shows a typical haro sl clay reflected signal.
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6.2 Time Domain Model

As with the fluff problem a time domain solution would

be desirable because of ease of hardware implementation. As

before, relative rather than absolute amplitude was used for

the neural network input signal preprocessing.

6.2.1 Input Generation

The same keystrokes that were used for fluff amplitude

processing were used for general classification processing.

The amplitude processed hard silty sand signal is shown in

Figure 28.
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Figure 28. Amplitude Processed Silty Sand

The amplitude processed soft clay signal is shown in Figure

29.
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Figure 29. Amplitude Processed Soft Clay
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The amplitude processed silty clay signal is shown in Figure

30.
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Figure 30. Amplitude Processed Silty Clay

6.2.2 Model Derived

The general classification problem proved to be much

harder to model than the fluff problem. When momentum was

set to zero, solutions could only be found for 0 hidden

layers, no matter what learning rate was used. Too many

hidden layer elements also prevented convergence. Using one

hidden layer of 16 elements or two hidden layers of 20 and 6

elements, respectively, resulted in no convergence. When

momentum was set to 0.3 and learning rate was set to 1.0,

1.2, or 1.5 then convergence was obtained for a single

hidden layer of 10 elements or two hidden layers of 12 and
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5, respectively. However, reducing the number of elements

of the single hidden layer model to 8 and the two hidden

layer model to 9 and 5, respectively, resulted in more

abstract solutions. Therefore, tables for the 8 element

single layer and the 9 and 5 neuron two layer models are

presented. Tables 31 through 36 show the results of using

64 input elements.

First momentum was set to 0.3 and learning rate was

varied as shown in the next 3 tables. Table 31 gives the

number of iterations required to converge to an error rate

of less than 0.1 percent on the learning cases for 64 input

elements. The maximum number of iterations was limited to

50000 and in some cases the 0 hidden layer model terminated

at error rates between 0.1 percent and 0.25 percent.

Table 31.--Ampl Material-Iterations Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers # Layer # Layers #

Passes Passes Passes

0.4 50000 1568 831

0.7 50000 948 5802

1 47049 5255 791

1.5 31282 525 362

Table 32 gives the average percent uncertainty for the

correctly identified cases.
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Table 32.--Ampl Material-Uncertainty Vs. Learn Rate

Learning 0 Hidden 1 Hidden 12 Hidden
Rate Layers % Layer % Layers %

Uncertain Uncertain Uncertain

0.4 1.6 1.06 0.5

0.7 1.38 0.81 0.54

1 1.33 0.62 0.56

1.5 1.32 0.55 0.74

Table 33 gives the percent of the test cases that were

correctly identified for 64 input elements.

Table 33.--Ampl Material-Correct Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Correct Correct Correct

0.4 77.85 87.25 91.28

0.7 77.18 91.95 91.95

1 77.18 92.62 93.29

1.5 77.18 91.28 93.29

Next learning rate was held constant at 0.4 while momentum

rate was varied as shown in the next 3 tables. The number

of iterations required for convergence to a 0.1 percent

error rate for 64 input elements is given in Table 34.
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Table 34.--Ampl Material-Iterations Vs. Momentum

Momentum 0 Hidden 1 Hidden 2 Hidden
Rate Layers # Layer # Layers #

Passes Passes Passes

0.4 50000 1568 831

0.5 50000 1198 607

0.6 50000 950 781

0.7 50000 821 1027

0.9 16826 411 No Conv

Table 35 gives the average uncertainty versus momentum for

64 input elements.

Table 35.--Ampl Material-Uncertainty Vs. Momentum

Momentum 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Uncertain Uncertain Uncertain

0.4 1.6 1.05 0.5

0.5 1.42 1.25 0.79

0.6 1.39 0.71 0.82

0.7 1.35 0.58 0.67

0.9 1.27 0.36 No Cony

Table 36 gives the percent of test cases correctly

identified as a function of momentum for 64 input elements.
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Table 36.--Ampl Material-Correct Vs. Momentum

Momentum 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Correct Correct Correct

0.4 77.85 87.25 91.28

0.5 77.18 85.91 93.29

0.6 77.18 91.28 93.29

0.7 77.18 90.6 92.62

0.9 76.51 91.95 No Cony

To determine the effect of using fewer input elements, every

other data point was deleted, leaving 32 inputs.

Convergence could only be obtained for 0 hidden layers and

the error rate was greater than 30 percent.

The most abstract model had 2 hidden layers with a

learning rate of 1 and a momentum of 0.3. The first hidden

layer had 9 elements and the second hidden layer had 5. The

model was taught on one set of 39 signals and tested on a

separate set of 149 signals. 93.29 percent of the signals

(139) were correctly classified. No signals were

incorrectly classified. Ten signals were unclassified

(i.e., 2 output neurons were active or no output neurons

were active).

The weights for the first hidden layer were

(IN1.01-IN1.32) BErxdIhGPDFAPZVPNXQIIVGAAGDJHfaE,

(INI.33-INI.64) KBKhibkneijaahbbeghffebAbbIDAAAA,

(IN2.01-IN2.32) ATOzAZtNBhgjAkverngHgoFLhmofgnrg,
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(1N2 .33-1N2 .64) fecyogtxwxuj ishdaikjrkecfiFcaaaa,

(1N3 . 1-1N3 .32) BONaADfEfopmeoqlmkgabgdbdecbddfc,

(1N3 .3 3-1N3.64) caaebbcdeeecbecbabbadcbbbcacaAAA,

(1N4 . 1-IN4 .32) GzkZgzZzzjpczzAwKfgpFfrtRSYaCZZC,

(1N4 .33-1N4.64) hDoZZTZZZZZUUZTIHZZZZZODLRubaaaa,

(1N5. 0 l-N5. 32) GixAhoBj CcCGPSZKQVPLSXciFMJCDHKD,

(1N5. 33-1N5. 64) IGINDEJIMKGFGIDAdBBDJGEBBFBDBAAA,

(1N6. O1-IN6.*32) Acgieafdcbcgheacecdedbeeededcbcc,

(1N6. 33-1N6. 64) baaccbccddcbaccbbbbabbaabbAaaaaa,

(1N7. O1-1N7.32) RBMZpzcnyejizzkxezzqzznbakdvnZTA,

(1N7. 33-1N7.64) qdtZZPZZZZZRNZNOPSRNXSLEIJugcbbb,

(INS *01-INS .32) bicGBbCihaacjkggfhfedddcbccfdCBb,

(1N8. 33-1N8.64) dbdEEBDEBDEAADAAABCBCBAAAAdbaaaa,

(1N9 . 1-1N9.32) abddcbaaaabbabbbbbbaaaaaaaaaaaaa,

and

(1N9.*3 3-1N9. 64) aaaaaaaaaaaaaaaaaaaaaaaaaaaaaAAA.

The weights for the second hidden layer were

(INi. l-INl.9) hziZdaZCd,

(1N2. 1-1N2.9) MabnMayca,

(1N3. 1-1N3 .9) qSNmsAOBC,

and

(1N4. 1-1N4 .9) WtpEWatdc.

The weights for the output layer were

(hard silty sand) zZZZZ,

(soft clay) iZzZ,

and
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(hard silty clay) ZzZy.

The biases for the first hidden layer were

gHGmpndjd.

The biases for the second hidden layer were

ubNj.

The biases for the output layer were

ZZZ.

There is no clearly discernable pattern to the weights or

biases in this case. It is interesting to note that the

weights for each of the 3 output neurons are balanced with 2

inhibiting and 2 exciting weights each.

6.3 Freauencv Domain Model

The next set of inputs were generated in the time-

frequency (T/F) domain. That is, FFT's were taken at

multiple points along the time history of the reflected

signal.

6.3.1 Input Generation

The same keystrokes that were used for fluff time-

frequency (T/F) processing were used for general material

classification processing. The time-frequency processed

hard silty sand signal is shown in Figure 31.
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Figure 31. T/F Processed Silty Sand

The time-frequency processed soft clay signal is shown in

Figure 32.
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Figure 32. T/F Processed Soft Clay

The time-frequency processed silty clay signal is shown in

Figure 33.
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Figure 33. T/F Processed Silty Clay

6.3.2 Model Derived

In an approach similar to the one used for amplitude

processing, a number of time-frequency models were

developed. Tables 37 through 42 show the results of using

64 input elements. First momentum was set to 0.3 and

learning rate was varied as shown in the following 3 tables.

Table 37.--T/F Material-Iterations Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden

Rate Layers # Layer # Layers #
Passes Passes Passes

0.4 50000 6526 No Cony

0.7 50000 4489 No Cony

1 50000 4988 No Cony

1.5 50000 No Cony No Cony
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Table 37 gives the number of iterations required to converge

to an error rate of less than 0.1 percent on the learn cases

for 64 input elements. Table 38 gives the average percent

uncertainty for the correctly identified cases.

Table 38.--T/F Material-Uncertainty Vs. Learn Rate

Momentum 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layer %

Uncertain Uncertain Uncertain

0.4 1.56 1.44 No Conv

0.7 1.48 0.83 No Conv

1 1.44 0.85 No Conv

1.5 1.26 No Conv No Conv

Table 39 gives the percent of the test cases that were

correctly identified for 64 input elements.

Table 39.--T/F Material-Correct Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Correct Correct Correct

0.4 84.56 95.3 No Cony

0.7 84.56 95.97 No Cony

1 84.56 95.97 No Cony

1.5 83.89 No Conv No Cony

Next learning rate was held constant at 0.4 while

momentum rate was varied as shown in the next group of 3

tables. Table 40 gives the number of iterations required

for convergence to an error rate of 0.1 percent for 64 input
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elements.

Table 40.--T/F Material-Iterations Vs. Momentum

Momentum 0 Hidden 1 Hidden 2 Hidden
Rate Layers # Layer # Layers #

Passes Passes Passes

0.3 50000 6526 No Cony
0.6 50000 4715 No Cony

Table 41 gives the average uncertainty versus momentum for

64 input elements.

Table 41.--T/F Material-Uncertainty Vs. Momentum

Momentum 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Uncertain Uncertain Uncertain

0.3 1.56 1.44 No Cony

0.6 1.48 1.04 No Cony

Table 42 gives the percent of test cases correctly

identified as a function of momentum for 64 input elements.

Table 42.--T/F Material-Correct Vs. Momentum

Momentum 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Correct Correct Correct

0.3 84.56 95.3 No Cony

0.6 84.56 96.64 No Cony
I11
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The most abstract solution for the time-frequency inputs was

an 8 element single hidden layer model with learning rate

set to 0.4 and momentum set to 0.6. This model had

correctly classified 96.64 percent (144) of the 149 input

cases. None were incorrectly classified. 5 signals were

not classified.

The weights for the hidden layer were

(INl. 0l-INl. 32) ojjkhcigeeEffhibmikbgebcBABacDac,

(INl. 33-INl. 64) JIbEPFbEKEDCLBFBMDCbGICCbACbaaaa,

(1N2 .0l-1N2 .32) qCAmdGGbMMKfMPgBDFcaaDGaDD~aDIDc,

(1N2 .33-1N2 .64) QMaIYIaISKDDOAHCSFEaMKHDBCEaAAAA,

(1N3 . O-1N3.32) CQczgVhlfCWuhlzczuzerlAiJlQbdTBj,

(1N3 .33-1N3 .64) ZZaTZZaWZWLIZCUFZOLeZZOKbDKdbaaa,

(1N4. 0l-1N4 .32) omhfgfgddbAbaacadacabaAaAAAacAab,

(1N4. 33-1N4 .64) bbbAAabABAAABaBACAAaBBAAAAAaAAAA,

(INS. 01-INS. 32) JBalFObfAAIfBciaiglaabAcJFGABIBc,

(IN5.3 3-INS. 64) ROAGZLAIQHEDQBHBSEEoJLEDaBDbaaaa,

(1N6. 0l-1N6. 32) IMBphKdgrbLnrjvexmuemhBfCEKbaLCf,

(1N6. 33-1N6.64) ZXAKZTaOZPGEYBLDZIHcQTLGaCHbaaaa,

(1N7 . 0-1N7.32) xzdKDJKETNJOZZUEZZZDPMEGccdBFjAE,

(1N7.33-1N7.64) zzalzubxuzkifzdmczigCovhfCbfCCBAB,

(INS. 01-IN8. 32) oDeogLacNLQiSPkCbEjABDHbNIOaFOEe,

and

(INS. 33 -INS. 64) ZSaLZNaNZOFGXALDZHGbSQJGBDGbAAAA.

The weights for the output layer were

(hard silty sand) ZzzZZzzz,



94

(soft clay) zzzZrzZZ,

and

(hard silty clay) ZBZUZZzZ.

The biases for the hidden layer were

zmzsbqFq.

The biases for the output layer were

Zzz.

There is no obvious pattern to the weights or biases. The

output weight for hard silty clay are mostly all exciting,

while the other two materials are mostly inhibiting. The

significance of this is that the neural network has

developed a solution to the problem that probably could not

have been obtained by any conventional approaches.



CHAPTER VII

DENSITY CLASSIFICATION

The third problem considered in advancing the state-of-

the-art of Hydrographic Surveying was density

classification. Neural networks were used to determine the

density of the top layer of bottom material.

Various density ranges were tested, with an output

neuron trained to turn on if the input density fell within

its specified range. Attempts were made to delineate

densities at 0.1 gm/cm3 intervals. This technique proved

successful for the lower density ranges, but resulted in

nonconvergence of models when higher densities were modeled

at this small interval. Since delineation of the lower

densities is the major concern to surveyors, the ranges used

in modeling were (1) 1.1 to 1.2 g/cm , (2) 1.2 to 1.3 g/cm
3,

(3) 1.3 to 1.4 g/cm3, and (4) 1.4 or more g/cm3. The range

from 1.0 to 1.1 corresponds to water and is indicated by

failure of the threshold detector to trigger.

Two architectural approaches to the problem were tried:

(1) developing 1 overall model with 4 output neurons and 1

set of hidden neurons, and (2) developing 4 independent

models each with 1 output neuron and its own independent

weight set. The first approach had a much higher success

95
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rate and is the approach documented in this chapter. The

best solution using 4 separate models had an 85.7 percent

success rate and misclassified 6.5 percent of the cases.

The best single model solution had 89.5 percent success rate

and did not misclassify any of the cases. The back

propagation learning developed a better solution when

presented the whole problem rathev than 4 separate problems.

7.1 Physical Data

Depth sounder data from Alabama, Georgia, Mississippi,

and California provided input for this study. There was a

large amount of data available, but very little of it had

density ground truth. Ground truth was obtained by nuclear

density probes (densities between 1.1 and 1.4) and piston

samplers (densities above 1.3). The criteria used for

discarding data were (1) no ground truth, (2) clipped

signals due to improper amplifier gain, (3) anomalous

signals. The anomalous signals discarded involved a

reflection at a shallower depth than other signals in the

same area and are believed to have been caused by fish.

Since there are no typical shapes of the envelope associated

with a particular density as there are with materials,

typical waveform plots are not included.

7.2 Time Domain Model

As with the fluff and material problems, a time domain

solution would be desirable because of ease of hardware
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implementation. Relative rather than absolute amplitude was

used for the neural network input signal preprocessing due

to the variation in amplitude of returns from the same area.

7.2.1 Input Generation

The same keystrokes that were used for fluff and

material amplitude processing were used for density

classification processing. The processing included using a

threshold detector to identify the start of the first return

as before.

7.2.2 Model Derived

The density classification problem proved similar to

the material classification in many ways. Specific

materials exhibit ranges of density which overlap those of

other materials; so this density determination is a separate

but similar problem. When momentum was set to zero,

solutions could only be found for 0 hidden layers, no matter

what learning rate was used. Tables for the 16 element

single layer and the 17 and 9 neuron two layer models are

presented. Tables 43 through 45 list the 64 input element

results. Tables 46 through 48 show the 32 input element

results.

First momentum was set to 0.3 and learning rate was

varied as shown in the next 3 tables. Table 43 gives the

number of iterations required to converge to an error rate

of less than 0.1 percent on the learning cases for 64 input
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elements. The maximum number of iterations was limited to

50000 and in some cases the 0 hidden layer model terminated

at error rates between 0.15 percent and 0.35 percent.

Table 43.--Ampl Dens 64-Iterations Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers # Layer # Layers #

Passes Passes Passes

0.1 26889 3879 2589

0.2 13435 1953 1293

0.4 6708 1008 662

0.6 4466 698 453

0.8 3345 539 347

1 2673 445 278

Table 44 gives the average percent uncertainty for the

correctly identified cases.

Table 44.--Ampl Dens 64-Uncertainty Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Uncertain Uncertain Uncertain

0.1 3.38 3.43 2.68

0.2 3.44 3.4 2.66

0.4 3.34 3.41 2.6

0.6 3.34 3.34 2.57

0.8 3.33 3.29 2.49

1 3.32 3.14 2.48
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Table 45 gives the percent of the test cases that were

correctly identified for 64 input elements.

Table 45.--Ampl Dens 64-Correct Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Correct Correct Correct

0.1 84.14 87.63 86.02

0.2 84.41 87.63 86.02

0.4 83.87 88.17 86.02

0.6 83.87 88.17 86.02

0.8 83.87 88.17 85.75

1 83.87 87.9 85.75

The weight maps showed that the last 30 weights of the first

layer were very small in magnitude. This implied that the

last 30 points of the input were not aiding the

classification effort. Therefore, the last 32 (the nearest

power of two) were truncated and the momentum held at 0.3 as

shown in the next 3 tables. Table 46 gives the number of

iterations required for convergence to 0.1 percent error for

32 input neurons.
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Table 46.--Ampl Dens 32-Iterations Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers # Layer # Layers #

Passes Passes Passes

0.4 7131 1059 No Cony

0.8 3558 543 40295

1 2844 449 7470

1.3 2184 408 1800

1.4 2027 380 2598

1.5 1891 377 13623

1.6 1771 300 No Cony

1.7 1666 282 No Cony

Table 47 gives the average uncertainty versus learning rate

for 32 input elements.

Table 47.--Ampl Dens 32-Uncertainty Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layers % Layers %

Uncertain Uncertain Uncertain

0.4 3.26 4.18 No Cony

0.8 3.24 4.32 3.02

1 3.23 4.22 3

1.3 3.22 4.08 2.66

1.4 4.81 4.22 2.82

1.5 4.81 3.96 3.12

1.6 4.78 4.57 No Cony

1.7 4.78 3.42 No Cony

Table 48 gives the percent of test cases correctly

identified as learning rate is varied for 32 input elements.
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Table 48.--Ampl Dens 32-Correct Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Correct Correct Correct

0.4 77.7 87.1 No Cony

0.8 77.7 87.9 89

1 77.7 87.9 89

1.3 77.7 89 89

1.4 86.6 89 89.3

1.5 86.6 89.5 88.2

1.6 86.3 88.2 No Cony

1.7 86.3 79.6 No Conv

The most abstract model had 1 hidden layer at a learning

rate of 1.5; varying momentum from 0.3 did not improve the

solution (however, fine tuning the momentum did enable the 2

hidden layer network to perform as well as the 1 hidden

layer network). The hidden layer had 12 elements. The

model was taught on one set of 20 signals and tested on a

separate set of 372 signals. 89.5 percent of the signals

(333) were correctly classified. No signals were

incorrectly classified. 39 signals were unclassified (i.e.,

two output neurons were active or no output neurons were

active).

The weights for the hidden layer were

(IN01.01-IN01.32) FaplgcHLJIAhCaFAaCCHHCCGEceecccA,

(IN02.01-IN02.32) gfGCAdowEkeJDHCGLHMIHIIFDDECCBBA,

(IN03.01-IN03.32) deceedgjbebbecdADBbgfcdfaFGFDBAc,
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(1N04 .01-1N04 .32) dfdfgceiECJMBHEGIGIEDFFCBCDAaaaa,

(1N05. O1-1N05.32) CHOPKDbdiptochhgfefddddcbaaCCCCB,

(1N06. 01-IN06. 32) cbCBabeiBdaDACABDCEDCDDCAABAAaAA,

(1N07 . l-1N07. 32) gfHECcmqIgAJBFABCaCacCCacBDCBBCA,

(INO . 01-INOB .32) cfcddfijcgfccbdaBAdgfcdeaFGGECeb,

(IN09. O1-IN09.32) deacdejlcfdceceADBdjhdegAHJlFDBc,

(INlO. 01-INlO. 32) hFZZQEpu~wJKDBjdcgcgiabggCGHFFGB,

(IN1l.01-IN11. 32) cgiieACIMRTldabbfekllhiifABabaac,

and

(1N12 .O1-1N12.32) hiAdcdljQKQPAFbBacgmmegjfEGECBBb.

The weights for the output layer were

(INi. Ol-INi. 12) ZXqNvHBpzvzz,

(IN2 .01-1N2 .12) ZZQMzCXZYZNZ,

(1N3 . 1-IN3. 12) PzpqqnmCzzZS,

and

(1N4.01-1N4.12) LczzZzQZzXhI.

The biases for the hidden layer are

Cikdcej lkcCe.

The biases for the output layer are

jzdl.

7.3 Frequency Domain Model

The next set of inputs were generated in the time-

frequency (T/F) domain. This approach is good in that it

combines the best of the time and frequency domains.

Frequency gives energy content without concern as to where

in the sample ensemble the energy was concentrated. Time
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separates the samples into bins according to depth.

7.3.1 Input Generation

The same keystrokes used for fluff time-frequency (T/F)

processing were used for the density classification

processing.

7.3.2 Model Derived

Tables for the 16 element single layer and the 17 and 9

neuron 2 layer models are presented. Tables 49 through 51

are the group of tables for the 64 input element neural

network model results. First momentum was set to 0.3 and

learning rate was varied. Table 49 gives the number of

iterations required to converge to a learning case error

rate of less than 0.1 percent for 64 input elements. The

maximum number of iterations was limited to 50000 as before.

Table 49.--T/F Dens 64-Iterations Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers # Layer # Layers #

Passes Passes Passes

0.2 27803 2653 1408

0.4 13897 1342 723

0.6 9263 893 503

0.8 6948 664 374

1 5560 525 311

2 2791 282 484

Table 50 gives the average percent uncertainty for the
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correctly identified cases.

Table 50.--T/F Dens 64-Uncertainty Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Uncertain Uncertain Uncertain

0.2 2.64 3.34 2.84

0.4 2.63 3.36 2.89

0.6 2.62 3.3 2.82

0.8 2.62 3.19 2.72

1 2.61 3.09 2.8

2 2.51 2.52 2.75

Table 51 gives the percent of the test cases that were

correctly identified for 64 input elements.

Table 51.--T/F Dens 64-Correct Vs. Learn Rate

Learning 0 Hidden 1 Hidden 2 Hidden
Rate Layers % Layer % Layers %

Correct Correct Correct

0.2 83.6 79.3 83.87

0.4 83.6 79.3 84.14

0.6 83.6 78.76 83.87

0.8 83.6 77.69 83.6

1 83.6 77.15 84.68

2 83.06 69.62 80.65

The number of inputs was truncated to 32 as with the

amplitude model, but the results were not as good as with

the 64 input model. The best 32 input solution was 83.87
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percent, less than the 64 input solution.

Next a set of 64 inputs composed of combinations of the

32 truncated amplitude and the 32 truncated frequency inputs

were modeled. The best solution for the combined set was

84.14 percent correct.

The best frequency solution exhibited an 84.7 percent

correct classification, as contrasted with an 89.5 percent

for the amplitude model. This case occurred with the 2

hidden layer model developed with learning rate set to 1.0

and momentum set to 0.3. Since this model was vastly

inferior to the amplitude model, its weights are not listed.

The superiority of the amplitude model may possibly be

attributed to the ability of neural networks to develop

their own transforms, which may provide a form of mapping

that is superior to time-frequency for this class of

problems.



CHAPTER VIII

RESULTS

To demonstrate that this research has, in fact,

advanced the state-of-the-art of hydrographic surveying the

accuracy of the neural network approach is compared to the

accuracy of the conventional approach, when the problem has

been addressed with success by conventional methods.

Numerous attempts by conventional methods have been made at

developing a system that would interpret whether a layer of

fluff overlays the bottom, but all have resorted to human

interpretation to make the decision. A number of

conventional, and some rather unconventional, material and

density classification systems have been demonstrated to the

author of this dissertation but only 1 mathematical solution

has proven successful.

8.1 Fluff Detection

Fluff, also called suspended sediment, poses no

obstacle to navigation, but reflects the depth sounder

signal causing the depth sounder to indicate the bottom as

the top of the fluff layer. This material does not need to

be dredged; thus, determination of areas which need to be

sounded by nonacoustic means is of economic concern.

106
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8.1.1 Previous Attempts

Research has been conducted for more than 20 years in

the field of acoustic signal analysis by the U.S. Army

Engineer Waterways Experiment Station. During this period a

number of hardware devices were constructed and tested.

Density hardware tested was considered too complicated and

too inaccurate for use. Currently a fluff detection system

is being tested that basically displays the envelope of the

return signal and leaves the determination of whether the

signal was fluff or a hard bottom to a human observer. This

device is a step in the right direction, but does not meet

the desired goal of indicating presence or absence of fluff.

There are no plans to develop the device beyond its current

display of relative envelope display. The only fluff

detection units currently under investigation thus rely on

the judgement of a human being based on less than conclusive

graphical presentations.

8.1.2 Neural Network Model

A neural network model with 2 output neurons which

indicate presence or absence of fluff was developed. Since

the outputs were complimentary, one neuron would have

sufficed, but using 2 gave redundancy (if both were on or

both were off the results would be inconclusive). The best

model had 64 inputs, a hidden layer of 16 neurons, and an

output layer of 2 neurons. All of the test cases (obtained

from a different state than the training cases) were
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correctly classified. The weights and biases obtained are

given at the end of Chapter 5. A fluff or hard bottom

breakdown and the overall results are shown in Table 52.

Table 52.--Fluff Detection Results

Material % Correct

Fluff 100

Bottom 100

Overall 100

8.2 Material Classification

The majority of material which must be dredged is in

the form of clays and sands. Hard clays and sands wear on

the cutting edge; soft clays tend to coat the cutter blades

and clog them. The type of material is of interest to

dredgers in planning the method of dredging.

8.2.1 Conventional Method

The only conventional bottom classification system

which has been sucessfully demonstrated to the author relies

on the fact that the most commonly encountered bottom

materials in this country fall into certain density ranges;

thus if the density of the bottom is determined

mathematically then a table lookup would yield the most

likely material type. The tables used for relating density

to material were primarily developed by the research of
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Hamilton (REF 43-45). This method relies on proper density

determination using mathematical modeling. The density

determination method relies on taking a group of samples to

gain more degrees of freedom; therefore, the results of this

method cannot be given on an individual sample basis for

comparison purposes. The same test set that was used in

testing the neural network model was used to test the

mathematical model. The soft clay samples were classified

as silty clay, the silty clay samples were classified as

silty clay, and the silty sand samples were classified as

sandy silt. The first group of samples should have been

classified as clay by the notation used by the program. The

parameters for the mathematical method for these cases were

determined by the mathematical model's developers. Thus,

the mathematical method was 66.67 percent correct on the

test set. It was 100 percent correct on the harder bottom

types.

8.2.2 Neural Networks

The neural model was developed using one test set from

California and tested on a separate set from California.

The best model tested used 64 time/frequency inputs and

correctly classified 96.64 percent of the cases. The model

had 1 hidden layer of 9 neurons and 3 output neurons

corresponding to (1) soft clay, (2) silty clay, and (3)

silty sand.
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8.2.3 Comparison with Conventional

For the test set the neural network approach had a

96.64 percent success rate as opposed to 66.67 percent for

the mathematical approach. This may be due to the fact that

particular materials exhibit particular shapes of return

envelopes (REF 18). Also, material classification is a

recent addition to the mathematical method and may be

improved upon in future releases of the mathematical

software. Table 53 shows a breakdown by material type and

the overall results. The fact that the mathematical model

averages a number of signals to get its classification

resulted in an all correct or all incorrect material

determination on the test case set.

Table 53.--Material Classification Results

Material Neural Math
Network % Model %
Correct Correct

Silty 90.5 100
Clay

Silty 96.3 100
Sand

Clay 99 0

Overall 96.64 66.67

8.3 Density Classification

The determination of density of material composing the

bottom is of interest both to dredgers and to the oil
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industry. The density of the material is related to rate at

which material may be pumped by the dredge and may indicate

the possible presence of oil.

8.3.1 Conventional Method

Numerous attempts have been made to determine the

density of the bottom from acoustic returns. One major

modeling problem is that there are 2 unknowns: density and

the velocity of the acoustic propagation. The exact

equations used for modeling the underwater saturated media

are not known to the author since the software used is a

commercial product. However, the steps used in processing

the acoustic return are (1) computation of relative total

energy, (2) estimating signal to noise ratio, (3)

calculating reflectivity, (4) calculating acoustic

impedance, (5) estimating the acoustic velocity, and (6)

calculating density. The program starts with the velocity

of sound in water and adjusts this velocity based on the

density it calculates for the material at each interface

(REF 20]. The program averages a number of signals in the

frequency domain to gain degrees of freedom; therefore,

results cannot be compared on a signal by signal basis.

The same set of data used for testing the neural

network models was used for testing the conventional method

software. For the 1.1 to 1.2 gm/cm, the program classified

11.1 percent correctly, classified none incorrectly, and did

not classify 88.9 percent because of poor signal to noise
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ratio. The 1.2-1.3 gm/cm3 set was identified as 1.39

gm/cm3. None of the 1.3-1.4 gm/cm3 set were classified due

to signal to noise ratio. 80 percent of the 1.4 and up

gm/cm3 signals were classified correctly; the other 20

percent were not classified due to signal to noise ratio.

Overall 41 percent of the signals were correctly classified,

9 percent were incorrectly classified, and 50 percent were

not classified due to signal to noise ratio. The 9 percent

that were incorrectly classified were within the 0.15 gm/cm
3

error band of the software. Thus, all signals that were

classified were classified within the typical error band of

the software. Every effort was made to see that the

mathematical model was given the proper parameters; however,

since the parameters were not selected by the mathematical

model's developer (in some cases), it is possible that the

results could be improved by better refinement of the

parameters.

8.3.2 Neural Networks

The best neural network model classified 89.5 percent

of the test cases correctly and failed to classify 10.5

percent of the test cases. This network used 32 amplitude

inputs with 1 hidden layer of 12 neurons and a 4 neuron

output layer.

8.3.3 comparison with Conventional

Both methods correctly classified all test cases that
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a small error band. 

The neural 113

network classified more of the cases correctly than the

conventional method. Therefore, for the test set used, the

neural method outperformed the conventional method. A

breakdown of the percent correctly identified by density

range and overall for the neural network model and the math

model (conventional method) is shown in Table 54. There

were more test cases in the range above 1.4 gm/cm 3; so, the

overall success of the math model is higher than it would

have been if equal percentages were included for each range.

The upper range had more cases because it is an unbounded

band and is thus wider than the others. The conventional

method involved more calculations than the neural method and

took at least an order of magnitude more time to complete

the calculations (i.e., between 20 and 100 seconds).

Table 54.--Density Classification Results

Density Neural Math
3) Network % Model

m 3  Correct Correct

1.1-1.2 98.7 11.1

1.2-1.3 82.4 0

1.3-1.4 90.5 0

>1.4 83.8 80

Overall 89.5 41



CHAPTER IX

PROPOSED HARDWARE IMPLEMENTATION

One goal of this research was to devise a method which

could be implemented in hardware real-time. Rather than

treat each problem's hardware independently, since the only

difference between the models is the set of weight and bias

parameters used, hardware suitable for all three problems

will be presented. The hardware presented will address the

time domain solution, since it was the best solution for 2

of the 3 problems and was only slightly inferior to the

time-frequency solution for the third. To implement the

time-frequency solution would involve adding digital signal

processing chips prior to the neural network inputs.

The hardware would attach to a conventional depth

sounder at 2 points: (1) the returned envelope signal

output and (2) the synchronization pulse output. The

returned envelope corresponds to the rectified and filtered

returned signal, which has the shape of the envelope of the

reflected energy. The synchronization pulse is a TTL level

pulse which corresponds in time to the start of the emitted

burst of acoustic energy.
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9.1 Returned Envelope Circuitry

The returned envelope circuitry is basically analog and

is shown in overview in Figure 34. The circuit is basically

a sampled data system, but is analog rather than digital.

E
N HOLDi TW

0
p HOLM ____

E HOLD5 -W

HOLDS ______

HOLD8 4 ___ .5-
HOLD9 ___

HOLDlI_____

HOLD11_____

.5
HOLD13 ___

HOLD14 COMP

HOLD15 LAM

Figure 34. Envelope Circuitry

There is a sample and hold amplifier for each of the neural

network inputs. A 16 input system is presented in Figure

34; for a 32 or 64 input system the circuits are replicated
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for the additional elements. The holds are driven

sequentially at fixed intervals controlled by the synch

pulse circuitry. Thus, the first stage of the circuitry

captures the analog values of the waveform at 16 points in

time. The second stage detects the peak value of these

points. Since all points are positive, the peak detection

circuit is a simple diode circuit that allows the largest

held value to pass through to the resistor, while the

remaining values are blocked by reverse bias. The output of

the resistor is buffered by a unity gain amplifier that is

biased to remove the effect of the active diode's forward

drop potential. This output voltage is used to scale all

the inputs, such that, their values fall between 0.0 and 1.0

volts. This is accomplished by using a multiplying,

programmable gain amplifier (PGA) for each input to scale

the input by ratioing it to the output of the peak detector.

COMWl LAMP I
OUT

COTP2 L-mp 2

OUT

Figure 35. Uncertainty Detect Circuitry
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If it is desired to have the indicator lamps not illuminate

when the results are indeterminate, the logic of Figure 35

may be added. This circuit allows the indicator lamp

associated with the output of a particular neuron to

illuminate only if no other output neuron is simultaneously

active.

9.2 Sync Circuitry

The sync pulse circuitry is basically digital. It is

shown in Figure 36. The circuit consists mainly of a

sophisticated gated counter. The counter begins counting at

the first instant that the envelope signal exceeds a

predetermined threshold voltage, after a delay to allow the

surface return to dissipate. The counter counts for 16

counts at a rate set by the oscillator (OSC). Then the

circuit is disabled until the next cycle begins.

A cycle begins when the depth sounder pulses the sync

line indicating the sending of a pulse of energy. A 74221

one-shot provides a fixed delay of duration set by a

potentiometer/capacitor combination to correspond to the

time recommended by the depth sounder vendor to allow the

surface reflections to pass.

The output of this one-shot indicates cycle start. At

this time the output of the center most D flip flop (FF) is

low disabling the gated clock AND gate (it was set low by

the sync pulse). A small delay provided by the second one-

shot in the 74221 is provided to prevent this flip flop from
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Figure 36. Sync Pulse Logic

re-enabling while the other 2 flip flops are being set by

the cycle start command. The cycle start command also

resets the output flip flops enabling them for the next

cycle. At the end of the small delay the outputs of the

lower 2 flip flops are high; so only the upper flip flop

blocks the clock. Whenever the envelope signal exceeds the

predetermined threshold, the output of the upper flip flop

goes high enabling the clock to pass through the AND gate.

The counter counts 16 times before the count of 15 disables

the gate circuit by resetting the lover flip flop, so that,

it blocks the gate. The output of the counter is

demultiplexed, so that, each output goes low ucomentarily

clocking the 16 output flip flops on 1 at a time,

•~~~~~~~ L . , m ,,,-mmmmml-mlolmmmmm m mcml m mmmml
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sequentially. Thus, the upper most flip flop tzrns the

count on and the lower most flip flop turns the count off.

9.3 Hardware Artifical Neurons

The proposed artificial neural network implementation

device is the 80170NW made by Intel Corporation [REF 51].

The device layout is shown in Figure 37. The 80170NW has

been preprogrammed to the desired weights and biases and is

operated in the forward pass mode. The only pins of concern

in this mode are the 64 analog inputs and the 64 analog

outputs. The reason all 64 of these pins are shown is that

this diagram was produced by Tango Schematic (trademark of

Accel Corporation) and is functionally complete for the

purpose of producing the wire list which Tango Route

(trademark of Accel Corporation) uses to autoroute the

printed circuit card. The outputs are fed back as inputs so

that one chip may provide two layers of neurons. Use of a

single chip to serve as two layers requires time-multiplexed

operation. That is, the chip first serves as the hidden

layer with inputs to the neurons tied to the chip inputs;

then the outputs are latched to provide inputs to the next

pass, where the neurons serve as the output layer. During

the second pass, the inputs of the neurons are connected to

the latched outputs from the first pass and disconnected

from the chip inputs. In order that the outputs not be

time-multiplexed for networks with two layers, two chips are

used; therefore, the outputs are always dedicated (i.e., the
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outputs of the first chip are the outputs of the hidden

layer and the outputs of the second chip are the outputs of

the output layer). Thus, the input and output buffers are

always enabled and the feedback buffers are always disabled.

Used in this manner, 64 analog inputs are connected through

4096 synapses to 64 neurons providing 64 dedicated outputs.

The input synapses are set to the weights designed by the

computer modeling. The input biases are combined to yield

the biases designed by the computer modeling. The feedback

synapses and biases are set to zero. The sigmoids closely

Mode Program Address
Inputs Voltaes Inputs

u 
Address

miiatu si.. oi...bu to accun forftersiprecin

Analog 
tciBufr

Inputs Hold Resel1

Buffer BiasDecode

ResetF
S/Heedbocl

Synapsel

Clock L, Weight aOutL

Surn 1:20000 Mul

VRefO Enbl \=~u.

Analog Out ut /im i sSi m u
1:64 Mux -

VRefl Output Buffers VGain 1:6 Mu

Figure 37. 80170NW

mimic a true sicrmid, but to account for their imperfection,
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Intel recommends that its software be used to determine

weight and bias values (as it takes the sigmoid

imperfections into consideration). The chip currently sells

for $2000 with $100 per chip charged for programming the

weights and biases. A complete development system is

available at a cost of approximately $18000.

Although, the Intel 8017ONW chip is the device proposed

for the prototype implementation, there are other neural

chips which are currently available or will be available

shortly. One such chip will be the N1000 designed by Nestor

Incorporated (Providence, Rhode Island) under a $1.2 million

contract from Defense Advanced Research Projects Agency [REF

32]. Another chip, the Angle-Modulated Exponential Operator

Neural Network (AXON), is a 40 neuron chip being developed

by General Dynamics [REF 53]. Neural network chips

basically come in 2 types: analog and digital. Analog chips

can potentially pack more neurons per chip, since the

interconnection problem is lesser with analog

implementations. An analog signal requires 1 wire, while a

digital signal requires a separate wire for each bit of the

digital word representing the value. Digital circuits can

be more accurate as they are not subject to drift and other

problems that shift analog values. Japan is very active in

neural network research and is marketing or developing chips

of both types. Digital chips range from a 7-bit, 1 neuron

chip from Ricoh to an 18-bit, 576 neuron chip from Hitachi.
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Analog chips range from a 1 neuron chip from Fujitso to a

125 neuron chip from Mitsubishi. There is even a 90 neuron,

optical chip under development by Mitsubishi (REF 54).

Neural networks can also be constructed from commonly

available components. They have been constructed using

digital signal processing chips or transputers. A simple

implementation of a perceptron neuron is shown in Figure 38.

This approach involves using analog operational amplifiers

(OP AMPs) followed by comparators.

+ 
-5-P 4OUT

Figure 38. Op Amp/Comparator Neuron

The plus summing junction accepts exiting inputs and the

minus summing junction accepts inhibiting inputs. The

comparator converts the output to digital. Since comparator

outputs usely range from 0 to 5 volts, a resistor divider on

the output is used to change the digital values to 0 and 1.



CHAPTER X

SUMMARY AND CONCLUSIONS

To advance the state-of-the-art of hydrographic

surveying, 3 problems that have accompanied the use of

acoustic depth sounders for hydrographic surveying were

addressed with neural network modeling. The problems

considered were (1) fluff detection, (2) material

classification, and (3) density classification. For use as

classifiers the input signals were scaled to between 0.0 and

1.0, and the output neuron associated with each

classification was considered active if its value exceeded

0.5. For example, if the output neuron for silty sand had

an activity level of greater than 0.5 and all other output

neurons had activity levels less than 0.5, the network was

said to have classified the material as silty sand.

In investigating the use of neural networks to solve

these problems, models for hundreds of combinations of

hidden layer sizes, learning rates, and momentum were

developed and tested. The number of hidden layers that

worked best was a number which caused a uniform fanout or

fanin between input and output elements; difficult problems

required reducing the number of elements in the hidden

layers to obtain convergence. A single model with multiple

123
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output neurons gave better results than multiple models with

single output neurons on the same test sets. The error of

each multiple model was less than the overall error of the

single model; however, when the test cases for all models

were considered as a whole (as they should be), the single

model correctly classified more cases.

One of the aims of the research was to produce abstract

solutions. Abstraction allows networks to be trained on

data acquired at one site and used to classify data from

another site. For the problems considered, the most

abstract solutions (i.e., the ones that performed best on a

test set composed of data from another site) were obtained

when learning rate and momentum were chosen so as to form a

nearly critically damped solution. If the minimum number of

iterations required to reach a certain level of error on the

learning set is considered the critically damped point, then

slightly increasing either learning rate or momentum caused

the number of iterations to increase due to the

overcorrecting for the error (underdamped). Conversely,

slightly decreasing the learning rate or momentum caused the

number of iterations to increase due to undercorrecting for

error (overdamped). The implication of this observation is

that there is no need to examine combinations of learning

rate and momentum that have extremely long learning times.

Further, when identifying a test set with unknown

characteristics, choosing the critically damped case of the
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learning set would be a reasonable selection criteria for

expecting good results on the test case set.

The first problem considered was fluff (suspended

sediment) layer detection. Both amplitude and time-

frequency models proved 100 percent successful on

identifying the test case set. The learning set of 85 cases

was constructed of data collected in Georgia of both hard

bottom and fluff signals with a 20 kHz transducer. The test

set of 239 samples was constructed of data collected in

Mississippi and Alabama and consisted of data collected with

both 7 and 20 kHz transducers. The model was abstract

enough to not only identify data from other sites, but also

other transducers. Since both time (amplitude) and time-

frequency models exhibited 100 percent success, the time

model with no hidden layers was chosen as having the best

hardware potential because of the reduced complexity. There

is no similar conventional method to use for comparison; so

the development of a fluff detection method which can be

implemented real-time in hardware areatlv advances the

state-of-the art of hvdrographic survevina in reaions where

fluff may be a present in shiR channels.

The second problem considered was classification of

bottom materials: (1) hard silty sand, (2) soft clay, or (3)

hard silty clay. Models in both the time (amplitude) and

time-frequency domains were developed. The most abstract

model developed had 1 hidden layer with a learning rate of
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0.4 and a momentum of 0.6. The 64 inputs were from the

time-frequency domain and consisted of 16 sets of

overlapped, lower frequency 4 amplitudes (from an 8

amplitude FFT). The hidden layer had 8 neurons. The only

data with known bottom material was from California from a 7

kHz transducer. The model was taught on one set of 39

signals and tested on a separate set of 149 signals.

total of 96.64 percent of the signals (144) were correctly

classified. No signals were incorrectly classified. Five

signals were unclassified (i.e.. 2 output neurons were

active or no outout neurons were active). The neural

network method outperformed the conventional method which

correctly classified 66.7 percent and incorrectly classified

33.3 Rercent of the cases.

The third problem considered was classification of

bottom material by density range: (1) 1.1 to 1.2 g/cm3, (2)

1.2 to 1.3 g/cm 3, (3) 1.3 to 1.4 g/cm3, and (4) 1.4 and up

3g/cm3. Data from California and Georgia were used to train

the network and data from California, Georgia, Alabama, and

Mississippi were used to test the network. Signals for a

particular density range of the training set were taken from

a single site; signals for a particular density range of the

test set were taken from several sites. The most abstract

model had 1 hidden layer at a learning rate of 1.5. The

hidden layer had 12 elements. The model was taught on one

set of 20 signals and tested on a separate set of 372
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signals. A total of 89.5 percent of the signals (333) were

correctly classified. No sionals were incorrectly

classified; however. 39 signals were unclassified. This was

significantly better than the conventional method that

classified 41 percent correctly, classified 9 percent

incorrectly, and did not classify 50 percent.

Neither the neural network approach nor the

conventional mathematical modeling approach (for the

particular set of test set data and neural network models

developed in this research) classified all signals. The

neural natwork did not classify signals of which it was

uncertain (i.e., no single output neuron was excited above

the 0.5 threshold); the mathematical model either classified

the material as water or did not attempt a classification

when signal to noise level was poor. The neural network

method did not exhibit an error band, whereas the

mathematical model typically exhibited an error band of 0.15

gm/cm3. The mathematical approach gave continuous density

predictions even in the higher density ranges. A combined

approach would improve the predictions over either method

alone. The neural network method could be used for

classifying densities below 1.4 gm/cm3 and the conventional

mathematical model used for classifying densities above 1.4

3gm/cm.

Although it was not the sole aim of this research to

advance the state-of-the-art of neural network research, an
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interesting behavior was uncovered which deserves further

investigation in a future study. It was found that if the 1

hidden layer network learning cycle was initialized with the

weights and biases for the output layer of the no hidden

layer solution (and the hidden layer initialized to small

random numbers), convergence could be obtained more than 20

times as rapidly (in most cases) than if the output layer

weights were initially set to small random numbers. The

quality of the solution obtained was as good or better (90

percent correct on the test case set instead of 50 percent

correct for some learning rates and momentum combinations),

and convergence could be obtained in many cases where

initialization with small random numbers resulted in the

learning stagnating in a local minima. This approach works

well when extended to additional hidden layers; a 7 neuron

single hidden layer model could provide an excellent

starting point for a 16 first and 7 second neuron 2 hidden

layer model. The delta learning rule is more exact than the

back propagation learning rule and apparently pretrains the

weights to superior starting values. This behavior is

peculiar in that the weight arrangement matrix for differing

layers of hidden layers is quite different. In fact, reuse

would not have been possible had not the weights been

treated as a 1 dimensional rather than a 2 dimensional array

in the BACKPROP program. Therefore, this phenomena is

presented solely as a topic for future investigation.
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Additional neural network observations for this class of

problem include: (1) adding additional layers beyond 1 may

not improve the solution, (2) the small random numbers used

for initialization of weights and biases should be very

small (0.0000001 was the maximum for this research) for

convergence, (3) the number of neurons in the hidden layers

should be kept small and provide a hierarchical topology for

convergence.

Recommendations for further research in the neural

network field include investigation of the critical damping

criteria for selecting learning rate and momentum in other

classes of problems. Also pretraining the output layer

using no hidden layers as a starting point for developing

single hidden layer models needs further investigation.

Recommendations for further research in the hydrographic

surveying field include implementing and testing the

hardware designs. Further research might also include a

network to identify the type and quantity of fish below a

boat based on acoustic returns. Also, this research used a

conventional depth sounder; wide band signal sources should

also be investigated as they have a potential of providing

better accuracy.
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The PRENEURA program is a program used to condition

waveforms prior to input to the neural network program,

BACKPROP. It displays the current waveform at all times.

The initial waveform may be modified and reduced in number

of points by the following commands (a key which is

depressed to initiate a command is italicized:

A auto save in file named 'INFILE'.A??

If a file named 'OUTDIGIT' exists, the letter A

above in the output file name is replaced by the

first character in the file 'OUTDIGIT'. This

allows creating different sets of inputs for

the BACKPROP program without renaming output files.

The file 'OUTDIGIT' is built using a test editor, an

example contents would be

Z

to set the filename to 'INFILEI.Z??

B mark the beginning limit

R, E, and C work together. You first mark the

limits with B and E and then clip to them with C

131
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C clip to the marked limits

D decimate by 2

E mark the ending limit

F take the Fourier amplitude transform

If you want the Power Spectral Density follow F with W

G get a new file

Generally using file lists is more convenient, but

G allows doing one file independently

H for help on key functions

I initiate keystroke save or terminate save

The first time you strike I the program goes into

record keystroke mode and records all keystrokes

until either I is struck again or K is struck.

If the sequence is terminated with K a recursive

pattern is created.

Embedded H and terminating I are not recorded.

J jumps relative to the current point by predetermined

amount. Jump distance in points is input from a

file called "JUMPDIST"; the distance may be either

positive or negative and clips to the screen limits.

It is often used following the threshold command to

back up a set number of points. An example file

contents might be

-20

K do predetermined Keystrokes or terminate keystroke

save with K.
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This is a powerful means of applying the same key

sequence to a number of files automatically. If a

list of files is input by the L command, a keystroke

sequence may be ended by the strokes A, N, K.

When executed with the 1st file on the screen, the K

command will cause all files in list to be

sequentially processed by the keystroke string

and saved automatically by the A command. N

advances file to next one and K causes the recursive

processing. When the last file has been processed the

sequence ends. Everything is visible on the screen,

so you can sit back and visually observe the effects

on your data as the screens fly by.

L get a list of files for sequential processing

This is used to read a file containing a list of

files, e.g. a test set. Then the M and N keys can

be used to advance and backup through the list.

M Previous sequential file

N Next sequential file

O Clip to number of points specified in file "CLIPPNTS"

Note this works from the current cursor position

The file "CLIPPNTS" is built using a test editor,

an example contents would be

50

to set the clip value to 50 points i.e. present to

present+49



134

P clip to power of two points from current point

Note this works from the current cursor position

and is often used to follow the T command

Q quit

R rectify and scale to between 0. and 1.

Values below 0 are set to 0 (half wave rectify) and

then data is scaled to range from 0. to 1.

S save current data in a file

Used in conjunction with the G command. Normally A

is used to save files loaded with the L command.

T jump to the next point above the threshold

The threshold is set in a data statement (currently

.05) and is normally used after the R command to

jump to the first scaled point => the threshold.

If a file named "THRESHOL" exists, the ASCII

floating point value in this file is used for the

threshold thus the threshold can be changed without

recompiling. The file "THRESHOL" is built using a

text editor, an example contents would be

0.5

to set the threshold to .5

U unzoom

V square root of data

W square of data

X rectify to mean full-wave

Y scale between 0 & 1 with original mean = .5
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Z zoom in on marked limits

. Form envelope of signal via peak detection

0 filter data with coefficients from file "FILTER"

The filter may be either recursive or nonrecursive

The first character of the file "R" or "N" determines

type. The next lines of the file are the

coefficients starting at the present point.

Nonrecursive are assumed balanced and only the center

and one side are entered. For example, the contents

of "FILTER" for a .25 .5 .25 nonrecursive filter

would be

N

0.5

0.25

1 interpolate data spaced at delt to deltnew

If a file named "DELTAS" exists, the ASCII floating

point values in this file is used for delta

and deltanew; deltas can be changed without

recompiling. The file "DELTAS" is built using a text

editor, an example contents would be

0.5

0.2

3 save buffer

5 half wave rectify about the mean

7 restore saved buffer

9 Clear queue
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append to queue

/ get queue

- invert data about zero

; start/stop recording of subkeys

The first time you strike ; the program goes

into record subkeystroke mode and records all

keystrokes until either ; is struck again or =

is struck. Embedded "H" and terminating ";" are

not recorded. The keystrokes are saved in a file

called "SUBSTROK."

= playback sub keys

This is a powerful means of applying the same key

sequence to a number of files automatically. This

is used "ke a subroutine to playback a set of

keystrokes that will be applied repeatedly to the

same waveform. When used with the queue feature

then time/frequency neural net inputs

may be created by doing FFT's along the time axis.

Everything is visible on the screen, so you can

sit back and visually observe the effects on your

data as the screens fly by.

RIGHT ARROW moves cursor right along data.

UP ARROW moves cursor left along data.

SPACE BAR redraws the screen.

UP ARROW increments the jump size Sin powers of 2) that

is used by the left and right arrow commands.



137

DOWN ARROW increments the jump size (in powers of 2)

that is used by the left and right arrow commands.

A.1 PRENEURA Example Run 1

The use of kcystroke sequences to condition data for

the neural networks program might best be illustrated by an

example. The following is raw data which is clipped on one

side and unrectified. Suppose we wished to transform it

into the square root of the unity FFT of the envelope of the

unclipped side. In this example the unclipped side is the

positive side; if it were the negative side the waveform

would be inverted by the - keystroke as the first processing

step. The program is started by typing "PRENEURA." At this

point the user is asked to enter either a single data file

name or the name of a file containing a list of data files.

In this case the list option was used (Figure 39).

EMM: g for get a fIle
I for gat a list of film

tnter g or 1.
I

File containing list of file nmse:
C-16SU. I Is

Figure 39. Initial File Entry

Once the file list is input, the program displays the
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contents of the first data file in the list (Figure 40).

:-IMI .0I I lowst;ka ZLZI as

Figure 40. Raw Data

Striking any key will return to the data screen. Entering 5

will half wave rectify the wave about its mean (Figure 41).

1S-6S1.1 Z1 N a 21..

Figure 41. Half-wave Rectified
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Striking . will form the envelope, Figure 42.

:-10001.91 V140 9;;rl 21729

Figure 42. Form Envelope

Striking 0 will filter the envelope, Figure 43.

Figure 43. Filtered Data

The cursor may be advanced past the surface reflection
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data simulating a delay circuit, by either combinations of

arrow keys or by the jump key J. The resulting cursor

position is shown in Figure 44.

:-LQOWe1.80 257/14 x atraJes zV" 9.76

Figure 44. Cursor Advanced

The rectify and set to unity maximum value key R causes the

peak value to be one, Figure 45.

L-18M .9ni W14" NBJptrm Zt .11

Figure 45. Maximum Value 1.0
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The threshold command T is used to jump to the first point

higher than the set threshold (in this case .1), Figure 46.

IOSOIU 33.1N MKmtr h h Zvzq .117

Figure 46. Jump to Threshold

The 0 keystroke causes the waveform to be clipped to a

predetermined number of points beyond the cursor (e.g., 256

points--input from the file "CLIPPNTS"), Figure 47.

M-19 I.gure 4I C iptlalw Zo4 .117

Figure 47. Clip to 256 Points
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The D key causes decimation by a factor of 2 to 128 points,

Figure 48.

16 1 .61 In U iNmtw.ck ZVF/ .

Figure 48. Decimate by 2

The F key causes a magnitude FFT to be performed,

Figure 49.

Figure 49. FFT of Data

One way to increase the effect of the higher frequency
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components on the neural model would be to scale the FFT to

unity and then take the square root of the values. R is

used for the scaling, Figure 50.

-AGI es01i le 64 strok Z1,Z9 1.8

Figure 50. Scale to Unity

V is used to take the square root, Figure 51.

:-166661.61 1,, 64 E U~ti~hES Z1,,4 1.66

Figure 51. Square Root of Data

The data could be saved by entering A. The next file
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in the list could be brought up by entering N. If this

entire series of keystrokes was to be applied to every file

in the list, the keystrokes could be saved and replayed

recursively. To do this, after the first data file was

displayed, the following keystrokes would be entered:

i5.Ojrtodfrvank

At this point the keystrokes are saved in a file called

"KEYSTROK" and the second data file in the list is

displayed. Entering K will cause all remaining files in the

list to be processed and saved automatically. When the

final file is processed, "PRENEURA" will terminate.

Before running "PRENEURA" the contents of the

following files should be defined using a text editor, if

keys associated with the files are to be used in processing:

(1) OUTDIGIT, (2) JUMPDIST, (3) CLIPPNTS, (4) THRESHOL, (5)

FILTER, and (6) DELTAS. The use of these files and sample

contents are given at the beginning of this document.

The value of the current point under the cursor, the

current data file name, the current cursor position, and the

current number of keystrokes saved is displayed at the top

of the screen. Note that the arrow keys on a 101 key

keyboard will cause two characters to be generated and the

keystroke count will increment by 2 rather than one (the

keypad arrow keys in numlock give 1 character).
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A.2 PRENEURA Example Run 2

Another example will illustrate the power of subroutine

style keystrokes and the queue for building a time-frequency

set of inputs. Each record will have four FFT's performed

at different, overlapping increments of time along the

signal. The first thing that must be entered is the file

list (Figure 52).

ETER: g for get a file
Sfor get a list of files

Enter g ar I.
I

File containing list of file inies:
oakZOM. Ilis

Figure 52. Entering File List

The program then retrieves and displays the first data

file's signal (Figure 53).

Figure 53. Initial Data Plot
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When H is input, two screens listing the possible keystrokes

are displayed. The first is shown in Figure 54.

Aautosave in tile nmed INILZ.ATI
3mark the beuinming limit

C clip to the marked limits
I decimate by 2
11 mak the ending limit
r take the famwlew amplitude transform
6 get a am file
H at 7 tor help em key functios
I Initiate boelmtroht save ar terminate save
J relative to cusrrent point
X do Predetemned Keystrokes ar end keystroke saws
L got a list at tiles tar sequintial processing
" 14revious sequential tile
N Iext sequential file
0 clip to paints trom CLIPHS trom current point
P clip to pane, af tw points trom current paint
Q1 quit
I rectify and swale to between 0. and 1.
S save cuarent data in a file
I jump to the next paint above the threshald
U usam
U square roat of data
W square of data
X fuli-ijave rectify araund ma value of data
I scale between 0 a I ith original ma value .5
Z zoom in am marked limits

Figure 54. First Help Screen

Depressing any key will cause the next screen to be

displayed (Figure 55).

> move forard paint
< move baciaord I point
) Rmorw aard 16 points
C(man backwared 16 points
) move farward 256 paints
( mowe backward 25 paints
* filter data
1 interpolate data
3 temporar smet
S halt-wa.. rectift around mean value of data
7 teumparaft restore

A, aen to um

left arrow movelfw logdt
up se double - Pa
down apse. halve moa ate

spmbar redrew s display
-Invet data
* Fimi posh at date
Stawteto een tug of Gmbh"~

*playback smb hey. o and sb hsaytroke save

Figure 55. Second Help Screen

Inputting 19)))))))) will cause the screen of Figure 56 to
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be displayed. I will initiate the saving of major

keystrokes, 9 will clear the queue, and each ) will advance

the pointer 16 points, for 128 points total, to point 129.

Figure 56. Advance 128 Points

Figure 57 is the result of depressing Y; which causes the

data to be scaled between 0 and 1 and the ; causes

initialization of subkeystroke saving.

Figure 57. Scale Between 0 and 1
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The next set of keystrokes 300 cause the display to change

to that of Figure 58. 3 causes the current contents of the

buffer to be saved in a temporary buffer, 0 causes the data

to be filtered according to the filter specified in the file

"FILTER", and 0 causes the data to be clipped timewise from

the current po:it to the number of points specified in the

file "CLIPPNTS."

uk2WM.01 I/ 1in W"UKmjtu 11,1 3 .8

Figure 58. Filtered and Clipped

Then F is entered to take the Fourier transform of the data

on the screen (Figure 59).
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wkZo084.0l 1 64 KMptrok. 1/ 3 .4w

Figure 59. Fourier Transform

Next eight right arrow depressions are followed by

depressing B which causes the pointer to advance eight data

points and mark the point as the beginning (Figure 60).

Figure 60. Mark Beginning
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The next keys entered are )e which cause the pointer to

advance 16 points and the point to be marked as the end

(Figure 61).

• 2S. Mp VZ3 ."I

Figure 61. Mark End

Then CP are entered to clip the data to 17 points and then

clip it to the largest power of two less than 17 (i.e., 16

points). Figure 62 shows the results.

IIZSOS4 .661 1 16 Kqpjitra n t

Figure 62. Clip to Power of Two
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Next comma is entered to append the points to the queue

(Figure 63).

MV1 I:.Pi J/25 tMr

Figure 63. Append to Queue

Then 7),,; causes the data stored in the temporary buffer to

be recalled and the pointer to be advances 32 points (Figure

64). The semicolon causes the saving of subkeys to end.

Figure 64. Recall Temporary Buffer
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Then inputting three equals causes the subkeys to be played

back three times and / causes the contents of the queue to

replace the data (Figure 65).

MMOMGe. V' 64 Nopityobin WLZ7 M4

Figure 65. Queue Replaces Data

Finally ANK causes the data to be saved in a file, the next

data file to be read in and displayed, and the recording of

major kf.strokes to end (Figure 66).

Figure 66. Save Data
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Then pressing K will cause all remaining data files in the

list to be processed by the played back keystrokes. The

strokes will be recursively played back; so that all

remaining files are processed and saved. Therefore, the

keystrokes entered were

i9))))))Y;66666666b)ecp, 7)) ;===/ank

where 6 may be used for right arrow. This results in the

saving of a major keystroke file containing

i9))))))))Y====/ank

and a subkeystroke file containing

30of66666666)ecp, 7))

where the subkeystroke sequence was replaced by an equals

sign in the major keystroke sequence, insuring that

processing of subsequent file lists will yield the same

results.

A.3 Listina of PRENEURA

C KEY FUNCTIONS:

C A autosave in file named 'INFILE'.A??

C If a file named 'OUTDIGIT' exists, the letter A

C above in the output file name is replaced by the

C first character in the file 'OUTDIGIT'. This

C allows creating different sets of inputs for

C the BACKPROP program without renaming output

C files. The file "OUTDIGIT" is built using a

C text editor, an example contents would be
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C Z

C to set the filename to INFILE'.Z??

C B mark the beginning limit

C "B", "E", and "C" work together. You first mark

C the limits with "B" and "E" and then clip to them

C with "C"

C clip to the marked limits

C D decimate by 2

C E mark the ending limit

C F take the Fourier amplitude transform

C If you want the Power Spectral Density follow "F"

C with "W"

C G get a new file

C Generally using file lists is more convenient, but

C G allows doing one file independently

C H or ? for help on key functions

C Displays part of the above help

C I initiate keystroke save or terminate save

C The first time you strike "i" the program goes into

C record keystroke mode and records all keystrokes

C until either "i" is struck again or "k" is struck.

C If the sequence is terminated with "k" a recursive

C pattern is created (see k). Embedded "H" and

C terminating "I" are not recorded. The keystrokes

C are saved in a file called "KEYSTROK."

C J jumps relative to the current point by predetermined
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C amount. Jump distance in points is input from a file

C called "JUMPDIST"; the distance may be either pos.

C or negative and clips to the screen limits. It is

C often used following the threshold command to backup

C a set number of points. An example file contents

C might be

C -20

C K do predetermined Keystrokes or terminate keystroke

C save with k. This is a powerful means of applying

C the same key sequence to a number of files

C automatically.

C If a list of files is input by the L command, a

C keystroke sequence may be terminated by the strokes

C "A","N","K". When executed with the first file on

C screen, the K command will cause files in the list

C to be sequentially processed by the keystroke

C string and saved automatically by the "A" command.

C "N" advances the file to the next one and "K"

C causes the recursive processing. When the last

C file has been processed the sequence terminates.

C Everything is visible on the screen, so you can

C sit back and visually observe

C the effects on your data as the screens fly by.

C L get a list of files for sequential processing

C This is used to read a file containing a list of

C files, generally a test set. Then the "M" and "N"
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C keys can be used to advance and backup through the

C list.

C M Previous sequential file

C N Next sequential file

C 0 Clip to number of points specified in file CLIPPNTS

C Note this works from the current cursor position

C The file "CLIPPNTS" is built using a test editor,

C an example contents would be

C 50

C to set the clip value to 50 points i.e. present to

C present+49

C P clip to power of two points from current point

C Note this works from the current cursor position

C and is often used to follow the "T" command

C Q quit

C R rectify and scale to between 0. and 1.

C Values below 0 are set to 0 (half wave rectify)

C and then the data is scaled to range from 0. to 1.

C S save current data in a file

C Used in conjunction with the "G" command. Normally

C "A" is used to save files loaded with the "L"

C command.

C T jump to the next point above the threshold

C The threshold is set in a data statement

C (currently .05) and is normally used after the "R"

C command to jump to the first scaled point -> the
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C threshold. If a file named

C "THRESHOL" exists, the ASCII floating point value

C in this file is used for the threshold thus the

C threshold can be changed without recompiling. The

C file "THRESHOL" is built using a test editor, an

C example contents would be

C 0.5

C to set the threshold to .5

C U unzoom

C V square root of data

C W square of data

C X rectify to mean full-wave

C Y scale between 0 & 1 with original data's mean = .5

C Z zoom in on marked limits

C . Form envelope of signal via peak detection

C 0 filter data with coefficients from file "FILTER"

C The filter may be either recursive or nonrecursive

C The first character of the file "R" or "N"

C determines type. The next lines of the file are

C the coefficients starting at the present point.

C Nonrecursive are assumed balanced and only the

C center and one side are entered. For example, the

C contents of "FILTER" for a .25 .5 .25 nonrecursive

C filter would be

C N

C 0.5
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C 0.25

C 1 interpolate data spaced at delt to deltnew

C If a file named "DELTAS" exists, the

C ASCII floating point values in this file is used for

C delta and deltanew thus deltas can be changed without

C recompiling. The file "DELTAS" is built using a test

C editor, an example contents would be

C 0.5

C 0.2

C 3 save buffer

C 5 half wave rectify about the mean

C 7 restore saved buffer

C 9 Clear queue

C , append to queue

C / get queue

C - invert data about zero

C start/stop recording of subkeys

C The first time you strike ";" the program goes into

C record subkeystroke mode and records all keystrokes

C until either ";" is struck again or "-" is struck.

C Embedded "H" and terminating ";" are not recorded.

C The keystrokes are saved in a file called SUBSTROK

C - playback sub keys

C This is a powerful means of applying the same key

C sequence to a number of files automatically. This

C is used like a subroutine to playback a set of
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C keystrokes that will be applied repeatedly to the

C same waveform. When used with the queue feature then

C time/frequency neural net inputs may be created by

C doing FFT's along the time axis. Everything is

C visible on the screen, so you can sit back and

C visually observe

C the effects on your data as the screens fly by.

C

C -> move right along data

C <- move left along data

C

C The following movement rate commands increment the jump

C size that is used by the left and right arrow commands

C above. On initialization the jump rate is one. Every

C time one of the above keys is pressed the cursor advances

C (backs up) one data point. Pressing up arrow increases

C the rate in powers of 2, down arrow decreases in

C powers of 2. Thus, if up arrow is pressed four times

C the cursor jumps 16 data points each time one of the

C above (2) keys is pressed.

C

C A

C : double movement rate

C

C halve movement rate

C v
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C

C space bar redraw screen

C

CC PRENEURA.FOR - PreNeural Network program.

INCLUDE 'FGRAPH.FI'

INCLUDE 'FGRAPH.FD'

LOGICAL gographics

EXTERNAL gographics

LOGICAL mode of screen

IF( gographics(mode of screen) ) THEN

CALL preneural(modeof screen)

ELSE

WRITE (*,*) ' This program requires a CGA, EGA,'

+ , or',

+ ' VGA graphics card.'

END IF

END

C Additional functions defined below

CC Function to enter graphics mode

LOGICAL FUNCTION gographics(modeofscreen)

INCLUDE 'FGRAPH.FD'

INTEGER*2 dummy

LOGICAL mode of screen

RECORD /videoconfig/ screen

COMMON screen



161

C

C Set to maximum number of available colors.

C

CALL getvideoconfig( screen )

mode-of-screen=.FALSE.

SELECT CASE( screen.adapter )

CASE( $CGA, $OCGA)

dummy = setvideomode( $MRES4COLOR)

mode-of screen=.TRUE.

CASE( SEGA, SOEGA)

dummy = setvideomode( $ERESCOLOR)

CASE( $VGA, $OVGA)

dummy = setvideomode( $VRES16COLOR)

CASE DEFAULT

dummy = 0

END SELECT

CALL getvideoconfig( screen)

go graphics = .TRUE.

IF( dummy .EQ. 0 ) go graphics = .FALSE.

END

CC Pr._neural allows editing and transforming data files

SUBROUTINE pre-neural(mode_of-screen)

INCLUDE 'FGRAPH.FD'

LO0GICAL mode-of-screen

INTEGER*2 dummy
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INTEGER*2 xwidth, yheight, cols, rows,x,y

COMMON screen

RECORD /videoconfig/ screen

RECORD /rccoord/ curpos

CHARACTER*9 text

CHARACTER*16 text2

CHARACTER* 10 keymsg

CHARACTER*80 a

CHARACTER*36 hi

CHARACTER*27 h2

CHARACTER*28 h3

CHARACTER*16 h4

CHARACTER*24 h5

CHARACTER*39 h6

CHARACTER*17 hV

CHARACTER*33 h8

CHARACTER*44 h9

CHARACTER*28 hio

CHARACTER*52 til

CHARACTER*48 h12

CHARACTER*27 h13

CHARACTER*23 h14

CHARACTER*50 hl4a

CHARACTER*49 h15

CHARACTER*7 h16

CHARACTER*41 h17
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CHARACTER*23 hl7a

CHARACTER*24 hl7b

CHARACTER*25 hl7c

CHARACTER*26 hl7d

CHARACTER*26 hl7e

CHARACTER*27 hl7f

CHARACTER*30 h21

CHARACTER*45 h22

CHARACTER*9 h23

CHARACTER*22 h24

CHARACTER*17 h25

CHARACTER*47 h25a

CHARACTER*50 h25b

CHARACTER*27 h126

CI{ARACTER*17 h26a

CHARACTER*20 h26b

CHARACTER*20 h26c

CHARACTER*47 h26d

CHARACTER*21 1126e

CHARACTER*15 h26f

CHARACTER*19 h26g

CHARACTER*13 h26h

CHARACTER*22 h1261

CHARACTER*35 h27

CHARACTER*34 h28

CHARACTER*32 h129
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CHARACTER*33 h30

CHARACTER*33 h31

CHARACTER*16 h32

CHARACTER*20 h33

CHARACTER*34 h34

CH-ARACTER*46 h35

CHARACTER*12 filenames(500) ,INFILE,OUTFILE,FILE

INTEGER*1 keydep,sqq, lqq,space, four, five,six,plus

INTEGER*1 keydep2 ,eight,two, lrr,srr, lpp,spp,minus

INTEGER* 1 icaret ,rcaret, iparei, rparen, ibrace, rbrace

INTEGER*1 lss,sss,la,da,ra,ua,lvv,svv,lww,sww

INTEGER*1 I'cc,scc, lee,see, lbb,sbb,ldd,sdd,one

INTEGER*1 laa,saa,lkk,skk, if ile(12) ,type filter

INTEGER*1 lii,sii,ljj,sjj,outchar,outch,zero,dot

INTEGER*l lhh, shh, question-mark, loo, soo, lxx, sxx

INTEGER*1 ltt,stt,lff,sff,lgg,sgg,lastkey,riull

INTEGER*1 luu,suu,lzz,szz,lmm,smm,lnn,snn,111,sll

INTEGER* 1 three, seven, nine, comma, slash,

1 semicolon,equals

INTEGER*1 lyy,syy

INTEGER powr2(13)

LOGICAL keysave, subkeysave

real ybuf (4000) ,ybufl(4000) ,coef filter(100) ,xbuf (201)

real ybuf2(4000) ,ybuf3(4000)

EQUIVALENCE (FILEIFILE(l))

integer*1 keystrokes(499) ,substrokes (99)
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COMMON /yb/ybuf1, ybuf2, ybuf 3

DATA numstrokes/0/, outchar/ A'/ ,rumsubstrokes/O/

DATA keymsg/' Keystrokes' /,threshold/O. 05/

DATA powr2/2,4,8,16,32,64, 128,256,512,1024,

1 2048,4096,8192/

DATA lqq/'Q'/,sqq/'q'/,space/' '/,dot/'.'/

DATA 111/'L'/,sll/'1'/,null/O/, zero/'O'/

DATA lrr/'R'/,srr/'r'/,lpp/'P'/,spp/'p'/

DATA laa/ 'A'/,saa/ 'a'/, lkk/'K'/,skk/'k'/

DATA 1vv/'V'/,svv/'v'/,lww/'W'/,sww/'w'/

DATA lmm/ 'M'/,smm/ 'm'/,lnri/'N'/,srin/ 'fly

DATA lbb/ 'B'/,sbb/ 'b'/, lee/ 'E'/,see/ 'e'/

DATA ldd/'D'/,sdd/'d'/, lcc/'C'/,scc/ 'c'/

DATA luu/ 'U'/,suu/'u'/,lzz/ 'Z '/,szz/ 'z I

DATA lii/'I'/,sii/'i'/,ljj/'J'/,sjj/'j'/

DATA lss/'S'/,sss/'s'/,left_textl/41/,left-text2/61/

DATA left-textO/21/,lyy/'Y'/,syy/'y'/

DATA ltt/'T'/,stt/'t'/,loo/'O'/,soo/'o'/

DATA lff/'F'/,sff/'f'/,lgg/'G'/,sgg/'g'/

DATA lhh/'H'/,shh/'h'/,question-mark/!'?'!

DATA lxx/'X'/,sxx/'x'/,coef_filter/.5,.25,98*0./

DATA type filter/ 'N'/,num-coef/2/,one/' 1'!

DATA la/75/,da/80/,ra/77/,ua/72/,num-to-clip/5O!

DATA four/'4 '/,five/'5'/,six/'6'/,eight/'8'/,

1 equals/'-'/

DATA nine/19'/,comma/','/,slash/'/'/,semicolon/';'/
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DATA minus/'-'/,plus/'+'/,three/'3'/,seven/'7'/

DATA lcaret/'<'/,rcaret/'>'/,lparen/'('/

DATA rparen/') '/,lbrace/'('/,rbrace/')'/

DATA two/'2'/,filenames/500*' '/

DATA hl/' A autosave in file named INFILE.A??'/

DATA h2/' B mark the beginning limit'/

DATA h3/' C clip to the marked limits'/

DATA h4/' D decimate by 2'/

DATA h5/' E mark the ending limit'/

DATA h6/' F take the Fourier amplitude transform'/

DATA h7/' G get a new file'/

DATA h8/' H or ? for help on key functions'/

DATA h9/' I initiate keystroke save or terminate',

1' save'/

DATA hl0/' J relative to current point'/

DATA h11/' K do predetermined Keystrokes or end',

1 ' keystroke save'/

DATA h12/' L get a list of files for sequential',

1' processing'/

DATA h13/' M Previous sequential file'/

DATA h14/' N Next sequential file'/

DATA h14a/' 0 clip to points from CLIPPNTS from',

1 ' current point'/

DATA h15/' P clip to power of two points from current'

1' point'/

DATA h16/' Q quit'/
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DATA h17/' R rectify and scale to between 0. and 1.'/

DATA hl7a/' > move forward 1 point'/

DATA hl7b/' < move backward 1 point'/

DATA hl7c/' ) move forward 16 points'/

DATA hl7d/' ( move backward 16 points'/

DATA h17e/' } move forward 256 points'/

DATA h17f/' ( move backward 256 points'/

DATA h21/' S save current data in a file'/

DATA h22/' T jump to the next point above the',

1' threshold'/

DATA h23/' U unzoom'/

DATA h24/' V square root of data'/

DATA h25/' W square of data'/

DATA h25a/' X full-wave rectify around mean value of',

1' data'/

DATA h25b/' Y scale between 0 & 1 with original mean',

1' value .5'/

DATA h26/' Z zoom in on marked limits'/

DATA h26a/' 0 filter data '/

DATA h26b/' 1 interpolate data'/

DATA h26c/' 3 temporary save '/

DATA h26d/' 5 half-wave rectify around mean value of',

1' data'/

DATA h26e/' 7 temporary restore'/

DATA h26f/' 9 clear queue'/

DATA h26g/' , append to queue'/
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DATA h26h/' / get queue'/

DATA h26i/' . form data envelope'/

DATA h27/' right arrow move right along data'/

DATA h28/' left arrow move left along data'/

DATA h29/' up arrow double movement rate'/

DATA h30/' down arrow halve movement rate'/

DATA h31/' space bar redraw screen display'/

DATA h32/' - invert data'/

DATA h33/' + Find peak of data'/

DATA h34/' ; Start/stop recording of subkeys'/

DATA h35/' = playback sub keys or end sub keystroke',

' save'/

DATA delt/20./,deltnew/20./,jumprelative/O/

iupdate=O

ifileptr=O

nqueue=0

numstrokes=1

OPEN(3,file='KEYSTROK',status='OLD',

1 form-'BINARY',err=114)

115 read(3,err-113,end-113) keystrokes(numstrokes)

numstrokes-numstrokes+l

go to 115

113 CLOSE(3)

114 numstrokes-numstrokes-1

istrokes=numstrokes+1

numsubstrokes-1
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OPEN(3,file='SUBSTROK' ,status='OLD',

1 form='BINARY' ,err=174)

175 read (3, err=173, end=173) substrokes (numsubstrokes)

numsubstrokes=numsubstrokes+ 1

go to 175

173 CLOSE(3)

174 numsubstrolces=numsubstrokes-1

isubstrokes=numsubstrokes+ 1

C Get new autosave first extension character if

C available

OPEN(3, file='OUTDIGIT' ,status='OLD' ,err=-764)

read (3,765, err=-763, end=763) outch

765 format(A1)

outchar=outch

763 CLOSE(3)

C Get number of points for clip if available

764 OPEN(3, file='JUMPDIST' ,status='OLD' ,err-364)

read(3,965,err-363,end=363) nclip

jump_relative=nclip

363 CLOSE(3)

C Get new interpolation deltas

364 OPEN(3,file='DELTAS',status-'OW'I,err-264)

read(3,865,erruI263,endm263) thresh

del t=thresh

read(3,865,err=263,end-263) thresh

del tnew-thresh



170

263 CLOSE(3)

C Get new trigger threshold if available

264 OPEN(3,file='THRESHOL' ,status-'OLD' ,err=864)

read(3,865,err=863,end-863) thresh

865 format(F20.0)

threshold=thresh

863 CLOSE(3)

C Get number of points for clip if available

864 OPEN(3,file='CLIPPNTS' ,status='OLD' ,err=-964)

read(3,965,err-963,eld-963) nclip

965 format(16)

num-to-clip=ncl ip

963 CLOSE(3)

C Get filter coefficients

964 OPEN(3, file='FILTER' ,status='OLD' ,err=1067)

read (3,765, err=1063, end=1063) type_filter

num-coe f=1

1066 read(3,865,erruhlO63,end-1063) coef-filter(iium-coef)

num coo f-num-co f+ 1

go to 1066

1063 CLOSE(3)

1064 num-coef-nu..coef-1

1067 maxfiles-0

)eysave=.FALSE.

subleysave-.FALSE.

ian-i
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CALL clearscreen( SGCLEARSCREEN

xwidth = screen.numxpixels

yheight = screen.numypixels

cols = screen.numtextcols

rows = screen.numtextrows

ipat=l

ij ump=0

C If screen is CGA move letter start position to left

C since we can only fit 40 characters across the screen

IF(mode of screen) then

lefttexto=9

lefttext1=19

lefttext2=30

ENDIF

C Input first file name or name of file list file

196 write(6,191)

191 format(' ENTER: g for get a file'/

1 1 for get a list of files'/

2 ' Enter g or 1.')

read(5,199,err-196,end=999) keydep

199 format(al)

C The following shows what happens when you patch a

C program. It skips dowr, to execute the code which

C would be executed if "L" or "G" were entered while

C processing, purists may

C want to make L and G subroutines to avoid this go to
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if (keydep.eq.sll.or.keydep.eq.lll.or.keydep.eq.sgg

1 .or.keydep.eq.lgg) go to 344

C The following go to is necessary to implement the

C While command not available in FORTRAN; in PASCAL

C statement 196 would be a "WHILE" and the following

C would be the "END" for the while block. This

C construct is used at various points in the program to

C implement the "WHILE" statement

Go to 196

C Beginning of the While input key not "Q" construct

C This is the point of return for commands that require

C that the screen be totally redrawn after execution

1 CALL setviewport( 0, 0, xwidth - 1, yheight - 1 )

CALL settextwindow( 1, 1, rows ,cols )

yminn=ymin-(ymax-ymin)/20.

dummy = setwindow( .FALSE., xmin, yminn, xmax, ymax )

CALL clearscreen( $GCLEARSCREEN )

call displayone(ybuf,ymin,ymax,npointl,npoint2)

C This is the point of return for commands that require

C only the cursor and current screen display values be

C updated

4 call cursor(ybuf,ymin,ymax,ipoint,

1 npointl,npoint2)

C To write to the screen in graphics mode requires

C setting the

C start of text position (with (1,1) being the upper
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C left hand corner of the screen] and then calling

C outtext to write to the screen. Since outtext can

C only handle ASCII strings, formatted

C writes must be done to a memory buffer "a" and then

C ascii reads done from the buffer to accomplish the

C conversion to ASCII

C The following displays the info in the upper right

C hand corner of the screen

x=1

y=1

call settextposition(y,x,curpos)

call outtext(infile)

x=left textO

y=1

call settextposition(y,x,curpos)

dummy=setcolor(2)

write(a,19) ipoint,maxpoints

19 format(i4,'/',i4)

read (a,20) text

call outtext(text)

x=left textl

y=l

call settextposition(y,x,curpos)

write(a,771) keymsg,numstrokes,slash,nuAsubstrokes

771 format(alO,i3,al,i2)

read (a,772) text2
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772 format(al6)

call outtext (text2)

x=left-text2

y=l

call settextpositioi(y, x,curpos)

write(a,21) ybuf(ipoint)

21 format(f9.3)

read (a,20) text

call outtext (text)

20 format(a9)

141 lastkcey=keydep

14 call geticey(keydep,ierr)

if (ierr.eq. 0.and. (keysave.or. istrokes.gt.nuistrokes)

1 .and. (subkeysave. or. isubstrokes .gt. numsubstrokes))

2 go to 14

if( (.rot.subkeysave) .and. (isubstrokes.le.

1 numsubstrokes)) then

keydep-substrokes (isubstrokes)

isubstrokes-isubstrokes+ 1

else

if( (.not.keysave) .and. (istrokes.le.nuinstrokes))

1 then

keydep-keystrokes (istrokes)

istrokes-istrokes+ 1

eridif

endif
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if (subkeysave) then

if( .not. (keydep.eq.lhh.or.keydep.eq.shh

1 .or.keydep.eq.question-mark)) then

numsubstrokes=numsubstrokes+ 1

substrokes (numsubstrokes) =keydep

endif

else

if (keysave .and. (isubstrokes .gt. numsubstrokes)) then

if(.nit. (keydep.eq.lhh.or.keydep.eq.shh

1 .or.keydep.eq.question-mark)) then

numstrokes=numstrokes+ 1

keystrokes (numstrokes) =keydep

end if

endif

endif

C

C space bar redraw screen

C

344 if(keydep.eq.space) then

go to 1

C

C left arrow move left along data

C

else if(keydep.eq.four.or. (lastkey.eq.null

1 .and.keydep.eq.1a),) then

ipoint-ipoint-2** iup
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if (iPOint. lt.npointl) then

ipoint=npointl

endif

C

C down arrow halve movement rate

C

else if(Jceydep.eq-two.or. (lastkey.eq.null.and.

1 keydep.eq.da)) then

ijump=-ijump-1

lf(1)ump.lt.O) 1)ump-O

go to 14

C

c up arrow double movement rate

C

else if(keydep.eq.eight.or. (lastkey.eq.null.and.

1 keydep.eq.ua)) then

ijump='ijump+l

if(ijump.gt.lO) ijump=1O

go to 14

C

C right arrow move right along data

C

else if(keydep.eq.six.or. (lastkey.eq.null.and.

1 keydep.eq.ra)) then

ipoint-ipoint+2 * *iJmp

if (ipoint.gt.npoint2) then
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ipoint=ripoint2

endif

C

C left caret < move left 1 point along data

C

else if(keydep.eq.lcaret) then

ipoint=ipoint-l

if (ipoint. It. npointl) then

ipoint=npointl

end if

C

C left parenthesis (move left 16 points along data

C

else if(keydep.eq.lparen) then

ipoint=ipoint-16

if(ipoint. lt.npointl) then

ipoint=npointl

endif

C

C left brace ( move left 256 points along data

C

else if(keydep.eq.lbrace) then

ipoint=ipoint-2 56

if(ipoint. lt.npointl) then

ipoint-npointi

endif
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C

C right caret > move right 1 point along data

C

else if(keydep.eq.rcaret) then

ipoint=ipoint+l

if (ipoint .gt. npoint2) then

ipo int=npo int2

endif

C

C right parenthesis )move right 16 points along data

C

else if(keydep.eq.rparen) then

ipoint~ipoint+16

if(ipoint.gt.npoint2) then

ipoint=npoint2

end if

C

C right brace ) move right 256 points along data

C

else if(keydepeq.rbrace) then

ipoint-ipoint+2 56

if(ipoint.qt.npoint2) then

ipoint-npoint2

endif

C

C H or ? for help on key functions
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C

else if(keydep.eq.lhh.or.keydep.eq.shh

1 .or.keydep.eq.question-mark) then

CALL clearscreen( $GCLEARSCREEN)

x= 1

Y=1

call settextposition(y,x,curpos)

call outtext(hl)

y=2

call settextpositioni(y, x, curpos)

call outtext(h2)

y=3

call settextpositioi(y, x, curpos)

call outtext(h3)

y=4

call settextpositioni(y, x, curpos)

call outtext(h4)

y=5

call settextposition (y, x, curpos)

call outtext(h5)

y=6

call settextposition Cy, x,curpos)

call outtext(h6)

y=7

call settextposition (y, x, curpos)

call outtext(h7)
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y=8

call settextpositionCy ,x, curpos)

call outtext(h8)

Y=9

call settextposition (y, x, curpos)

call outtext(h9)

Y=l10

call settextposition(y, x, curpos)

call outtext(hlO)

Y=1 1

call settextposition (y, x, curpos)

call outtext(hll)

y=12

call settextposition (y, x, curpos)

call outtext(h12)

y=1 3

call settextposition (y, x, curpos)

call outtext(h13)

y= 14

call settextposition (y, x, curpos)

call outtext(h14)

Y= 15

call settextposition (y, x, curpos)

call outtext(hl4a)

y-1 6

call settextpositioni(y, x, curpos)
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call outtext(h15)

y= 17

call settextposition (y, x, curpos)

call outtext(h16)

y=1 8

call settextpositionl(y, x, curpos)

call outtext(h17)

Y=19

call settextpositiofl(y ,x, curpos)

call outtext(h21)

y=20

call settextpositiori(y,x,curpos)

call outtext(h22)

y=2 1

call settextposition(y,x, curpos)

call outtext(h23)

y=2 2

call settextpositiofl(y, x, curpos)

call outtext(h24)

y=23

call settextposition(y, x, curpos)

call outtext(h25)

y=2 4

call settextpositionl(y, x, curpos)

call outtext(h25a)

y-2 5
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call settextposition (y, x, curpos)

call outtext(h25b)

y=2 6

call settextposition (y, x, curpos)

call outtext(h26)

C Wait for the user to depress any key before displaying

C second screen of help info

94 call getkey(keydep2,ierr)

if (ierr.eq.O) go to 94

CALL clearscreen( $GCLEARSCREEN)

x=l

y= 1

call settextposition (y,x, curpos)

call outtext(hl7a)

y=2

call settextposition (y ,x, curpos)

call outtext(hl7b)

y=3

call settextposition (y, x, curpos)

call outtext (hl7c)

y=4

call settextposition (y, x, curpos)

call outtext (hl7d)

y=5

call settextposition (y, x, curpos)

call outtext(hl7e)
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call settextposition (y, x, curpos)

call outtext(hl7f)

y=7

call settextposition (y ,x, curpos)

call outtext(h26a)

y=8

call settextposition (y, x, curpos)

call outtext(h26b)

Y=9

call settextpositiofl(y, x, curpos)

call outtext(h26c)

Y=10

call settextposition (y, x, curpos)

call outtext(h26d)

y=l11

call settextpositiol(y, x, curpos)

call outtext(h26e)

y=1 2

call settextpositioi(y, x, curpos)

call outtext(h26f)

y-13

call settextpositioni(y, x, curpos)

call outtext(h26g)

y-1 4

call settextpositiofl(y, x, curpos)



184

call outtext(h26h)

y=15

call settextposition (y, x, curpos)

call outtext(h26i)

y= 16

call settextposition (y, x, curpos)

call outtext(h27)

y=17

call settextposition(y,x,curpos)

call outtext(h28)

y=1 8

call settextposition (y, x, curpos)

call outtext(h29)

y=l 9

call settextposition (y, x, curpos)

call outtext(h30)

y=2 0

call settextposition(y,x, curpos)

call outtext(h31)

y=2 1

call settextposition (y, x, curpos)

call outtext(h32)

y=2 2

call settextpositioi(y, x, curpos)

call outtext(h33)

y-2 3
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call settextposition(y,xcurpos)

call outtext(h34)

y=24

call settextposition(y, x, curpos)

call outtext(h35)

C Wait for the user to depress any key before displaying

data screen

95 call getkey(keydep2,ierr)

if (ierr.eq.O) go to 95

GO TO 1

C

C ;initiate keystroke save or terminate save

C

else if(keydep.eq.semicolon) then

if (subkeysave) then

numsubstrokes=numsubstrokes- 1

subkeysave=. FALSE.

IF (numsubstrokes.GT.O) THEN

OPEN(3, file='SUBSTROK' ,form='IBINARY')

DO 499 j-1,numsubstrokes

WRITE (3) substrokes (j)

499 CONTINUE

CLOSE (3)

ENDIF

isubstrokes-numsubst'okes+ 1

if(keysave) then
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keystrokes (numstrokes) =eqtials

endif

else

numsubstrokes=O

subkeysave= .TRUE.

endif

C

C I initiate keystroke save or terminate save

C

else if(keydep.eq.lii.or.keydep.eq.sii) then

if(keysave) then

numstrokes=numstrokes -1

keysave=. FALSE.

IF (numstrokes.GT.O) THEN

OPEN(3, file='KEYSTROK' ,form='BINARY')

DO 399 j=l,numstrokes

WRITE (3) keystrokes (j)

399 CONTINUE

CLOSE (3 )

ENDIF

istrokes-numstrokes+ 3

else

numstrokes=O

keys ave= .TRUE.

endif

C
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C J jump relative to current point predetermined amount

C

else if(keydep.eq.ljj.or.keydep.eq.sjj) then

ipoint=ipoint+j ump relative

if (ipoint. lt.npointl) ipoint=npointl

if (ipoint. gt. npoint2) ipoint=npoint2

C

C =do predetermined Substrokes or terminate substroke

C save

C

else if(keydep.eq.equals) then

if (subkeysave) then

subkeysave=. FALSE.

IF (numsubstrokes.GT.O) THEN

OPEN (3, file=' SUBSTROK' ,form= 'BINARY')

DO 1389 j=l,numsubstrokes

WRITE (3) substrokes (j)

1389 CONTINUE

CLOSE (3)

ENDIF

isubstrokes=numsubstrokes+ 1

if(keysave) then

keystrokes (numstrokes) -equals

endif

else

isubstrokes-1
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end if

C

C K do predetermined Keystrokes or terminate keystroke

C save with k

C

else if(keydep.eq.lkk.or.keydep.eq.skk) then

if(keysave) then

keysave=. FALSE.

IF (numstrokes.GT.O) THEN

OPEN(3, file='KEYSTROK' ,form='IBINARY')

Do 389 j=1,numstrokes

WRITE (3) keystrokes (j)

389 CONTINUE

CLOSE (3 )

ENDIF

istrokes=numstrokes+ 1

else

istrokes=1

end if

C

C F take the Fourier amplitude transform

C

else if(keydep.eq.lff.or.keydep.eq.sff) then

do 171 j=13,1,-1

if (maxpoints.le.powr2(j)) ipwr=j

171 continue
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call ISDFFT(ybuf, ipwr)

i=l

do 172 j=l,maxpoints,2

jj=j+l

ybuf(i)=sqrt(ybuf(j)*ybuf(j)+ybuf(jj)*ybuf(jj))

i=i+l

172 continue

maxpoints=maxpoints/2

npointl=l

npoint2=maxpoints

call scale(ybuf,xmin,xmax,ymii,ymax,

1 npointl,npoint2,ierr)

goto 1

C

C V square root of data

C

else if(Jeydep.eq.lvv.or.keydep.eq.svv) then

do 185 j=1,maxpoints

ybuf(j)=sqrt(ybuf(j))

185 continue

go to 1

C

C 3 temporary save

C

else if(keydep.eq.three) then

lo, 742 J=1,maxpoints
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ybuf2(j)=ybuf(j)

742 continue

maxpoints-old=maxpoints

npointl_old=npointl

npoint2_old=npoint2

ipointold=ipoint

C

C 7 temporary restore

C

else if(keydep..eq.seven) then

maxpoints=maxpoints-old

do 743 j=l,maxpoints

ybu f(j )=ybu f2 (j)

743 continue

npointl=npointl-old

npoint2-npoint2_old

ipoint=ipoint..91d

call scale(ybuf,xmin,xmax,ymin,ymax,

1 npointl, npoint2, ierr)

go to 1

C

C 9 clear queue

C

else if(keydep.eq.nine) then

nqueue=0

C
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C ,append to queue

C

else if(keydep-eq.comma) then

do 745 j=1,maxpoints

nqueue=nqueue+ 1

ybuf 3(nqueue) =ybuf (j)

745 continue

C

C /get queue

C

else if(lceydep.eq.slash) then

do 746 j=1,nqueue

ybuf(j)=ybuf 3(j)

746 continue

maxpo ints=nqueue

npointl=1

npoint2=-maxpoints

ipoint=1

call scale(ybuf~xmin,xmax,ymin,ymax,

1 npointl,npit,ierr)

go to 1

C

C H Previous sequential file

C

else if(keydep.eq.lmm.or.keydep.eq.smm) then

if(maxfiles.gt.O) then
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ifileptr=ifileptr-1

if(ifileptr.lt.1) go to 999

INFILE=filenames (if ileptr)

call readone (infile, ybuf, maxpoints, xmin,

1 xmax,ymin,ymax,

1 ipoint,npoiri,npoint2, ierr)

go to 1

endif

C

C N Next sequential file

C

else if(keydep.eq.lnn.or.lceydep.eq.snn) then

if(maxfiles.gt.O) then

ifileptr=ifileptr+l

if(ifileptr.gt.maxfiles) go to 999

INFILE=filenames (if ileptr)

call readone(infile,ybuf,maxpoints,xmin,

1 xmax, ymin, ymax,

1 ipoint, npointl, npoint2, ierr)

go to 1

endif

C

C W square of data

C

else if(keydep.eq.lww.or.lceydep.eq.sww) then

do 186 J=1,maxpoints
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ybuf(j)=ybuf(j) *ybuf(j)

186 continue

go to 1

C

C envelope of points

C

else if(keydep.eq.dot.and.maxpoints.gt.4) then

do 681 j=l,maxpoints-4

if(ybuf(j).lt.ybuf(j+l)) ybuf(j)=ybuf(j+l)

if(ybuf(j).lt.ybuf(j+2)) ybuf(j)=ybuf(j+2)

if(ybuf(j).lt.ybuf(j+3)) ybuf(j)=ybuf(j+3)

if(ybuf(j).lt.ybuf(j+4)) ybuf(j)=ybuf(j+4)

681 continue

go to 1

C

C + find peak of data & jump to there

C

else if(keydep.eq.plus) then

ypeak=-1. OE+14

do 911 J-npointl,npoint2

If(ybuf(j) .gt.ypeak) then

ipoint=J

ypeak-ybuf (j)

endif

911 continue

C



194

C - invert data

C

else if(keydep.eq.minus) then

do 912 j=l,maxpoints

ybuf(j)=-ybuf(j)

912 continue

call scale (ybuf, xmin, xmax, ymin,max,

1 npointl, npoint2, ierr)

goto 1

C

C U unzoom

C

else if(keydep.eq.luu.or.keydep.eq.suu) then

npointl=1

npoint2=maxpoints

call scale(ybuf,xmin,xmax,ymin,ymax,

1 ripointl, npoint2, ierr)

goto 1

C

C Z zoom in on marked limits

C

else if(keydep.eq.lzz.or.keydep.eq.szz) then

npointl-ibeg

npoint2=iend

ipoint-npointl

call scale(ybuf,xmin,xmax~ymin,ymax,
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1 fpoiftl,npoint2, ierr)

go to 1

C

C clip to the marked limits

C

else if(keydep.eq.lcc..or.keydep.eq.scc) then

i=l

do 8 j=ibeg,iend

ybuf(i)=ybuf(j)

ii+l

8 continue

maxpo ints=iend- ibeg+ 1

ipoint=1

npointl=1

npo int2 =maxpoints

call scale(ybuf,xmin,xmax,ymin,ymax,

1 npointl, npoint2, ierr)

goto 1

C

C 0 to filter

C

else if(Jceydep.eq.zero) then

C NONRECURSIVE

If((typefilter.eq.lnn.or.type_filter.eq.snn) .and.

1 maxpoints.gt.2*nuiucoef-1) then

do 306 J=1,num-coef
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xbuf(j)=ybuf(j)

306 continue

do 307 j=num-coef,maxpoints-num-coef+1

r=0.

rtemp=ybuf(j)

do 304 jj=2,num-coef

r-xbuf(num-coef-jj+2) *coef-filter(jj)+r

r-ybuf(j+jj-1)*coef_filter(jj)+r

304 continue

ybuf(j)=rteinp*coef-filter(1)+r

do 305 jj=1,num-coef-1

jjj =jj+ 1

xbuf(jj)-xbuf(jjj)

305 continue

xbuf (num-coef) =rtemp

307 continue

endif

C RECURSIVE

If((type_filter.eq.lrr.or.type filter.eq.srr) .and.

1 maxoints.gt.num-Coef) then

do 301 J-nuiu-coef,maxpoints

r-0.

do 302 jj=1,num-coef

r-ybuf(j.-jj+1)*coef_filter(jj)+r

302 continue

ybuf(j)-r
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301 continue

endif

npoirat1=1

npo int2=maxpo ints

call scale(ybuf,xmin,xmax,ymin,ymax,

1 npointl,npoint2, ierr)

goto 1

C

C D decimate by 2

C

else if(keydep.eq.ldd.or.keydep.eq.sdd) then

mpo irts=maxpoints/2

do 7 j=I,mpoints

jj=j*2

ybuf(j)=ybuf(jj)

7 continue

maxpo ints=mpo ints

ipoirit=1

npoiritl=1

npoint2=-maxpoints

call scale (ybuf, xmin, xmax, ymin, ymax,

1 npointl, npoint2, ierr)

goto 1

C

C 1 third order interpolate to new sample rate

C
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else if(keydep.eq.oie) then

mpo ints=maxpoints*delt/deltnew

do 752 )=2,mpoiflts-2

time=(j-l) *deltnew

ybufl (j )=terpol (ybuf, time, delt)

752 continue

do 753 )=2,mpoirlts-2

ybuf(j)=ybuf 1(j)

753 continue

maxpoints=mpo ints

ipoint=l

npointl=1

npo int2=maxpo ints

call scale(ybuf,xmin,xmax,ymin,ynax,

1 npointl, npoirit2, ierr)

goto 1

C

C 0 clip num-to-clip of points from current point

C

else if(keydep.eq.loo.or.keydep.eq.soo) then

npointl-ipoint

maxpoints-num to ci ip

npoint2-maxpoints

jj-npointl

do 1191 J=1,maxpoints

ybuf(j)-ybuf(jj)
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jj=jj+1

1191 continue

ipoint=1

npointl=1

call scale(ybuf,xmin,xmax,ymin,ymax,

1 npointl, npoint2, ierr)

go to 1

C

C P clip to power of two points from current point

C

else if(keydep.eq.lpp.or.keydep.eq.spp) then

npointl=ipoint

maxpoints=npoint2 -npointl+1

do 71 j=13,1,-1

if (maxpoints. lt.powr2 (j)) ipwr=j

71 continue

maxpoints=powr2 (ipwr-1)

npoint2=maxpoints

jj=npointl

do 90 J=1,maxpoints

ybuf(j)=ybuf(jj)

jj-jj+1

90 continue

ipoint=1

npointl=1

call scale(ybuf,xmin,xmax,ymin,ymax,
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1 npointl,npoint2, ierr)

go to 1

C

C T jump to the next point above the threshold

C

else if(keydep.eq.ltt.or.keydep.eq.stt) then

j =ipoint-1

73 j=j+1

if(j.le.npoint2.and.ybuf(j) .lt.threshold) go to 73

ipoint=j

C

C E mark the ending limit

C

else if(keydep.eq.lee.or.keydep.eq.see) then

iend=ipoint

C

C B mark the beginning limit

C

else if(keydep.eq.lbb.or.keydep.eq.sbb) then

ibeg=ipoint

C

C Q quit

C

else if(keydep.eq.lqq.or.keydep.eq.sqq) then

go to 999

C
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C A autosave in file named 'INFILE'.A??

C

else if(keydep.eq.laa.or.keydep.eq.saa) then

file=infile

icount=0

my dot_at=0

do 677 j=1,12

if(ifile(j) .ne.space) icount=icount+1

if(ifile(j) .eq.dot) my dot at=j

677 continue

if(my dot at.ne.0) then

if ile (my dot at+l) =outchar

else

if ile (icount+l) =dot

if ile (icount+2) =outchar

endif

icount=o

do 678 j=1,12

if(ifile(j) .ne.space) then

icount=icount+l

ifile (icount) =ifile (j)

endif

678 continue

if(icount.ne.12) then

do 679 J=icount+1,12

if ile (j )=space
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679 continue

endif

outf ile=file

call writeone(outfile,ybuf,maxpoints, ierr )

C

C S save current data in a file

C

else if(keydep.eq.lss.or.keydep.eq.sss) then

96 write(6,61)

read (5,99, err=9 , end=4) OUTFILE

61 format(' Output File Name:')

call writeone(outfile,ybuf,maxpoints, ierr)

goto 1

C

C X rectify to mean value full wave

C

else if(keydep.eq.lxx.or.keydep.eq.sxx) then

rmean=0.

do 270 J=1,maxpoints

rmean-ybuf (j )+rmean

270 continue

rineanmrmean/maxpoints

do 271 j=1,maxpoints

ybuf (j )=ybuf (j) -rmean

if(ybuf(j) .lt.O) ybuf(j)--ybuf(j)

271 continue
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call scale(ybuf,xmin,xmax,ymin,ymax,

1npointl, npoint2, ierr)

go to 1

C

C Y scale between 0 and 1 about mean value

C

else if(keydep-eq.lyy.or.keydep.eq.syy) then

rmean=0.

rmin=l E15

rmax=-l.El5

do 2270 j=1,maxpoints

if(rmin.gt.ybuf(j)) rmin=ybuf(j)

if(rinax.1t.ybuf(j)) rmax=ybuf(j)

rmean=ybuf (j )+rmean

2270 continue

rmean=rmean/maxpoints

scaletemp=rmax-rmean

scalet=rinean-rmin

if (scalet.gt. scaletemp) scaletemp=scalet

scaletemp=scaletemp*2.

do 2271 j=l,maxpoints

ybuf (j )= (ybuf (j) -imean) /scaletemp+.5

2271 continue

call scale (ybuf,xmin,xmax,ymin,ymax,

1 npointl, npoint2, ierr)

go to 1
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C

C 5 rectify to mean value half wave

C

else if(keydep.eq.five) then

rmean=0.

do 277 j=lmaxpoints

rmean=ybuf (j )+rmean

277 continue

rmean=rmean/maxpo ints

do 278 j=l,maxpoints

ybuf (j )=ybuf i) -rmean

if(ybuf(j).lt.O) ybuf(j)=0.

278 continue

call scale(ybuf,xmin,xmax,ymin,ymax,

1 npointl,npoint2, ierr)

go to 1

C

C R rectify and scale to between 0. and 1.

C

else if(keydep.eq.lrr.or.keydep.eq.srr) then

do 70 j=1,maxpoints

ybuf(j)-ybuf(j)/ymax

if(ybuf(j).lt.0) ybuf(j)=0.

70 continue

call scale (ybuf, xmin,xmax,ymin,ymax,

1 npointl,npoint2, ierr)
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go to 1

C

C L get a list of files for sequential processing

C

else if(keydep.eq.lll.or.keydepeq.sll) then

46 write(6,41)

read(5,99,err=46,end=4) INFILE

41 format(/' File containing list of file names:')

maxfiles=0

ifileptr=l

open(4, file=infile,status='OLD' ,err=4)

42 maxfiles=maxfilesel

read(4,99,err=43,end=43) filenames(maxfiles)

go to 42

43 maxfiles--maxfiles-1

if (maxfiles.lt.l) go to 1

INFILE=filenames (1)

call readone(infile,ybuf,maxpoints,xmin,

1 xmax,ymin,ymax,

1 ipoint, npointl, npoint2, ierr)

go to 1

C

C G get a new file

C

else if(keydep.eq.lgg.or.keydep.eq.sgg) then

outf ile=infile
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296 write(6,91)

read(5,99,err=296,end=4) INFILE

99 format(a12)

91 format(/' File containing one data record:')

call readone (infile, ybuf,maxpoints,

1 xmin, xmax, ymin, ymax,

1 ipoint, npointl ,npoint2, ierr)

if (ierr. ne. 0) INFILE=OUTFILE

maxfiles=O

go to 1

else

goto 141

end if

goto 4

999 dummy = setvideomode( $DEFAULTMODE)

END

SUBROUTINE displayone(ybuf,ymin,ymaxnpoiktl,lpoit2)

INCLUDE 'FGRAPH. FD I

INTEGER*2 dummy

real ybuf (1)

DOUBLE PRECISION x,y

RECORD /videoconfig/ screen

RECORD /wxycoord/ wxy

COMMON screen

C
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x=npointl

y=ymax-ybuf (npointl) +ymin

dummy=setcolor (14)

call moveto-w(x,y,wxy)

do 2 j=npointl+l,npoint2

x=j

y=yinax-ybuf (j )+ylnin

dummy=lineto-w(x,y)

2 continue

RETURN

END

SUBROUTINE scale (ybuf,xmin, xmax, ymin,ymax,

1 npointl, npoint2, ierr)

real ybuf(l)

ierr= 0

ymin=l. OE+15

ymax=-1. OE+15

do 6 j=npointl,npoint2

if(ybuf(j) .lt.ymii) ymin=ybuf(j)

if(ybuf(j) .gt.ymax) ymax=ybuf(j)

6 continue

xlnin=npointi

xmax-npoint2

RETURN

END
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FUNCTION terpol (ybuf, time, delt)

real ybuf(1)

I=TIME/DELT

IF(I.LT.1) TERPOL--ybuf(1)

IF(I.LT.l) RETURN

DIFl=(YBUF(I+2) -YBUF(I) ) *5

DIF2=(YBUF(I+3) -YBUF(I+l) )*. 5

E=YBUF(I+2) -(YBUF(I+1)+DIFl)

D=DIF2- (DIF1+2.**E)

DT=TIME-FLOAT (I) *DELT

TAU=DT/ DELT

TERPOL-( (D*TAU+(E-D) )*TAU+DIF1) *TAU+YBUF(I+1)

RETURN

END

SUBROUTINE readone (infile, ybuf,maxpoints,

1 xmin, xmax,ymin,

1 yinax, ipoint,npointl,npoint2, ierr)

real ybuf (1)

character*12 infile

ipoint-1

npoiritl=1

ierr=1

open(4, file=INFILE, form='BINARY' ,status='OLD' ,err-6)

ierr=o

maxpoints-1
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ymii=1. OE+15

ymax=-1. OE+15

2 read (4 ,end=5, err=5) ybuf (maxpoints)

if(ybuf(maxpoints) .lt.ymin) ymin=ybuf(maxpoiits)

if (ybuf(maxpoints) .gt.ymax) ymax=ybuf (maxpoints)

maxpoints=maxpoints+ 1

goto 2

5 close (4)

maxpoints=maxpo ints- 1

npoirit2=maxpoints

xmin=l.

xmax=maxpo ints

7 format(f20.O)

6 RETURN

END

SUBROUTINE cursor(ybuf,ymin,ymax, ipoint,

1 npointl,npoint2)

real ybuf(1)

INCLUDE 'FGRAPH. FD'

INTEGER*2 dummy

DOUBLE PRECISION x,y

RECORD /videoconfig/ screen

RECORD /wxycoord/ wxy

COMMON screen
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data ipointO/0/

C

dununy=setcolor (0)

if(ipointO.ne.0) then

x=ipointo

y=ymin

call moveto-w(x,ywxy)

y=ymax

dumxny=lineto-w(y,y)

end if

ires= (npoint2-npoiltl) /600+1

ipo=ipointo-ires

ip8=ipointo+ires

if (ipO. it. npointi) ipo=npointl

if (ip8 .gt. npoint2) ip8=npoint2

duxnmy=setcolor (14)

call displayone(ybuf,ymil,ymax, ipo, ip8)

dummy=setcolor (3)

x=ipoint

y-ymin

call moveto.w(x,y,wxy)

y-Ymax

duinmy-lineto-w(x,y)

dummy-setcolor (14)

ipointo=ipoint

RETURN
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END

SUBROUTINE writeone (outfile,ybuf,maxpoints, ierr)

real ybuf(1)

character*12 outfile

i err= 1

open(4, file=OUTFILE, forin='BINAR'V ,err=6)

ierr=O

do 8 j=1,maxpoints

write(4,err=5) ybuf(j)

8 continue

5 close (4)

7 format(f20.8)

6 RETURN

END

SUBROUTINE ISDFFT(VR,N)

REAL VR(1)

'5=-i

CALL RFFT(VR,N,IS)

NUM-2 **N

XNUM-NUM

DO 10 I=1,NUM

VR(I)=VR(I)/XNUM

10 CONTINUE

RETURN
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END

SUBROUTINE INVFFT(VR,N)

REAL VR(1)

I5=1

CALL RFFT(VR,N, IS)

NUM= 2* *N

DO 10 I=1,NUM

VR (I) =VR (I) /2.

10 CONTINUE

RETURN

END

SUBROUTINE RFFT (VR,M, ISIGN)

DIMENSION VR(1)

N=2**H

NTW=N+4

NN=N/12

CALL TRIG(N,1,XK,SM1,5M2,CMl,CM2)

S-XK*SM1 -SM2

C=XK*CM1-CM2

SM2-SM1

CM2 -CM1

sm1=s

CM liC

IF(ISIGN.LT.O) GO TO 5
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4 DO 11 K2=4,NN,2

S=XK*SM1-SM2

C=XK*CM1-CM2

SM2 =SM1

CM2=CM1

SM1=S

CM1=C

IF(ISIGN.GT.O) C=-C

N2=NTW-K2

BK1=VR(K2-1) +VR(N2-1)

BK2-VR(K2) -VR(N2)

BN1=VR(K2) +VR(N2)

BN2=VR(K2-1) -VR(N2-1)

XBN1=C*BN1-S*BN2

XBN2 =-C *BN2-S *EN 1

VR(K2-1) =BK1+XBN1

VR(K2) =BK2+XBN2

VR(N2-1) -BK1-XBN1

yR (N2) --BK2+XEN2

11 CONTINUE

VR(NN+2) --VR(NN+2)

IF(ISIGN.GT.O) GO TO 3

JR (N+ 1)-'JR( 1)-'JR (2)

VR(N+2)=O.

'JR (1)=VR (1) +'R (2)

VR(2)=O.



214

RETURN

3 VR(2)=VR(l)-VR(N+1)

yR (1) =VR (1) +VR (N+ 1)

5 K2=M-1

CALL CPXFFT (VR1 K2, ISIGN)

IF(ISIGN.LT.O) GO TO 4

RETURN

END

SUBROUTINE CPXFFT (VR,MI ISIGN)

DIMENSION VR(1)

N=2**M

K=N

N2=N+N

IA= 1

1 IB=O

K2=K

K=K/2

CALL TRIG(N,IA,XK,SM1,SM2,CM1,CM2)

DO 65 J=1,K

S-XK*SM1-SM2

C-XK*CMl-CM2

SM2=SM1

CM2 =CM1

SiMlS

CM1=C
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IF(ISIGN.LT.O) S=-S

DO 66 I=J,N,K2

11=1+1

I1M=I1-1

12=Il1+KA2

1 2M=I12-1

VI1=VR(I1)

VI1M=VR (IlM)

V12=VR(I2)

V12M=VR (I2M)

X=VI1M-VI2M

Y=VI 1-VI2

VR(12) =S*X+C*Y

VR(12M) =C*X-S*Y

VR(I1M) =VI1M+VI2M

VR(I1) =VI1+V12

66 CONTINUE

65 CONTINUE

IA=IA+IA

IF(K.GT.1) GO TO 1

NV2=N/ 2

J=1

DO 30 I-1,N-1

IF(I.GE.J) GO TO 25

NI- (1-1) *2+1

NJ-(J-1) *2+1
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T=VR (NJ)

VR(NJ) =VR(NI)

VR(NI)=T

T=VR (NJI-)

VR(NJ+1) =VR(NI+l)

VR(NI+1) =T

25 K=NV2

26 IF(K.GE.J) GO TO 31

J=J-K

K=K/2

GO TO 26

31 J=J+K

30 CONTINUE

RETURN

END

SUBROUTINE TRIG(MIA,XK,SM1,SM2,CM1,CM2)

DATA P12/6.283185307/

ANG=P12*FLOAT (IA) /FLOAT (M)

X=COS (ANG)

XK=X*2.

CM1-x

CM2-XK*X-1.

SM1--SIN (ANG)

SM2=XK*SM1

RETURN

END
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LETTERBP requires an IBM compatible computer with CGA,

EGA, or VGA graphics adapter, a hard disk, and a floating

point coprocessor. It was written primarily to verify the

correct operation of BACKPROP by allowing creation of neural

network test cases that could be input to both BACKPROP and

to a commercial back propagation based program called

NEUROSHELL (available from Ward Systems Group). This

allowed checking the number of conversions the two programs

took to converge to the same level of error given the dame

learning cases and checking the error percentages on the-

same test cases. The program allows user friendly

definition of 7X9 nib character patterns and corresponding

active output. Then distorted versions of the patterns may

be input as test cases. The back propagation programs

accept these patterns as inputs and classify them as to what

percentage of certainty there is that it is each of the

possible outputs. Thus the effects of distortion may be

studied.

The LETTERBP program creates a series of data files

(one for each learning ease and one for each test case). A
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file containing a list of the learning data files called

PATTERNL.LIS and a file containing a list of the test data

files called PATTERNT.LIS is automatically created by

LETTERBP. When BACKPROP is run it will ask for the file

containing the list of learning cases, enter

PATTERNL.LIS

Then the name of the file containing a list of test cases

will be asked for, enter

PATTERNT.LIS.

The programs will then learn the learn cases and process the

test cases; see the documentation about the BACKPROP

programs.

An example is presented below using LETTERBP to define a

problem and NEUROSHELL's Binary to solve it.

B.1 LETTERBP Example Run

Start LETTERBP running by typing Letterbp. A screen

similar to Figure 67 should be displayed.
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smxpI. Cam
fatten I

- - - - atpot I
tmmabi 14h mmt 2 marke digit,);
Vr caICA PMlinu PUAtatw

- -- - ~dman ceetpttmr Isics
amisum et iiatters mtpt to d
q man quit sai mm pettares

a ansvitcb to us cam
a waum switch 1A saqe OEM
ban ar m -a select sib
i1we bar tangs ib M, W off

Figure 67. Initial LETTERBP Screen

Then enter the following commands with no carriage

return. Entering r will produce the screen of Figure 68.

C ass(di mus 2 movie digits);

piE man cbsa t ii atter. Iid d

ai mass a iete met to d

Figure 68. Restored Problem

Entering p02 will bring up the second sample case pattern.

It is shown in Figure 69.
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,atifir 2
atiat 'I

C~ dim 2 mic digits):
r won mail wsswns piawnset
-i -smi cbnaq ieptter li Ud
ai m mit pattfrn ntpt to Ad
q miami quit and nao pttm

bpad am bap select sib
$pug bar tlrn sib - W Off

Figure 69. Sample Case

Entering p03 will bring up a blank pattern. Use the arrow

keys and space bar to create the pattern of Figure 70 and

enter o03 to change the output characteristic to number 3.

Ilampi Cae
rattwer 3

Cin~ CM iami 2 ic digits);
r ansa rMl) ParnutM ittarn mit
PH nmm Ols to pttmr Ie d
aim t Patt~ mitoI di
q eves pit ad ms PtWlm

esmm mitch is M cm
asmi mtEh in mpk amm

101181 INII VWMil sib
s1a w -v~ si a W of

Figure 70. Sample Pattern

Entering n will bring up the first new case as shown in

Figure 71. Note that output is defined for error analysis
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in BACKPROP.

ratters I
Cmods (Ad ME 2 annelc ilgits):
,man recall Previes #attr W&

- - - - - - digcsvpto ptur loin A
aim Man t Pattern ntpt to IM
q wass liit aod sav Pt"m
* oft Nitab to noca

------------------------- mm iNOW to Imle ON"
IMAII aPVM Win =Mct sib

Figure 71. First New Case

Entering p02 will bring up the second new case. Use the

arrow keys and space bar to modify the pattern to that of

Figure 72.

INS Chn

cemeoda (ad gem 2 larc digits):
r max; mll P"Jw~m ptter m
gi" Nu lai to latters law ad
m mas set Ptho mtpt to Ud
q "Me qmit ad an Pattern

wan ::S In~ anto
as ain mla awo can"m

ho~ed arm Up set sib
WA= bar Sun nib n ar dt

Figure 72. Second New Case

Then enter q to quit.



223

B.2 Listing of LETTERBP

CC LETTERBP.FOR - Pre neural network program.

INCLUDE 'FGRAPH.FI'

INCLUDE 'FGRAPH.FD'

LOGICAL fourcolors

EXTERNAL fourcolors

IF( fourcolors() ) THEN

CALL shownibs()

ELSE

WRITE (*,*) ' This program requires a CGA,',

+ ' EGA, or',

+ ' VGA graphics card.'

END IF

END

C Additional functions defined below

CC FOURCOLORS - Function to enter graphics mode for REALG.

LOGICAL FUNCTION fourcolors()

INCLUDE 'FGRAPH.FD'

INTEGER*2 dummy

RECORD /videoconfig/ screen

COMMON screen

C Set to maximum number of available colors.

CALL getvideoconfig( screen )

SELECT CASE( screen.adapter )

CASE( $CGA, $OCGA
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dummy = setvideomode( SMRES4COLOR)

CASE( $EGA, $OEGA)

dummy = setvideomode( SERESCOLOR)

CASE( SVGA, $OVGA)

dummy = setvideomode( $VRESl6COLOR)

CASE DEFAULT

dummy = 0

END SELECT

CALL getvideoconfig( screen)

fourcolors = .TRUE.

IF( dummy EQ. 0 ) fourcolors = .FALSE.

END

CC SHOWNIBS - This subroutine outlines the nibs.

SUBROUTINE show-nibs()

INCLUDE 'FGRAPH. FD'

INTEGER*2 dummy, halfx, halfy

INTEGER*2 xwidth, yheight, cols, rows,x,y

COMMON screen

RECORD /videoconfig/ screen

RECORD /rccoord/ curpos

CHARACTER* 3 text

CHARACTER*80 a

INTEGER*1 nibon(7,9,50,2),out(50,2)

INTEGER*1 keydep, sqq, lqq, space, four, five, six

INTEGER*l eight,two,zero,lrr,srr, lpp,spp
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INTEGER*1 loo,soo,lss,sss,lnn,snn,la,da,ra,ua

DOUBLE PRECISION xl,x2,yl,y2

c LOGICAL keydown

lnteger*2 ierr

integer*1 jout (50)

INTEGER*1 LEARNNAME (12) ,TESTNAME (12)

CHARACTER* 12 LEARNN, TESTN

EQUIVALENCE (LEARNN, LEARNNAME (1)), (TESTN, TESTNAME (1))

DATA lqcij'Q'/,sqq/'q'/,space/' I/

DATA lrr/ 'R'/,srr/ 'r'/,lpp/ 'P'/,spp/'p'/

DATA 100/ 'O'/,soo/ 'o'/, lss/ 'S'/,sss/ 's'/

DATA lnn/'N'/,snn/ri'/,la/75/,da/80/,ra/77/,ua/72/

DATA nibon/6300*0/,four/'4'/,five/'5'/,six/'6'/,

1 eight/'8'/

DATA two/'2'/,zero/bO'/,out/100*1/

DATA LEARNN/'PATTERNL.O0O'/,TESTN/'PATTERNT.000'/

iupdate=0

isn=1

CALL clearscreen( $GCLEARSCREEN)

xwidth - screen.numxpixels

yheight - screen.numypixels

cols - screen.numtextcols

rows - screen.numtextrows

halfx = xwidth / 2

halfy - (yheight / rows) * (rows /2)

C Second window
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ipat= 1

1 CALL setviewport( halfx, 0, xwidth - 1, yheight - 1)

CALL settextwindow( 1, (cols / 2) + 1, rows , cols)

dummy = setwindow( .FALSE., 0.0, 0.0, 10.0, 10.0 )

dummy = rectangle-w( SGBORDER, 0.0, 0.0, 10.0, 10.0)

C First window

CALL setviewport( 0, 0, halfx - 1, yheight - 1 )

CALL settextwiridow( 1, 1, rows, cols /2 )

dummy = setwindow( .FALSE., 0.0, 0.0, 7.0, 9.0 )

CALL grid()

dummy = rectarigle(SGBORDER,0,0,halfx -1,yheight -1)

irow=1

icol=1

x2=icol

y2=irow

xl=x2-l.

yl=y2-1.

20 dummy - setcolor(2)

dummy = rectangleuw( $GBORDER, xl, yl, x2, y2)

dummy - uetcolor(4)

CALL setviewport( halfx, 0, xwidth - 1, yheight -1)

CALL settextwindow( 1, (cols / 2) + 1, rows , cols)

dummy = setwindow( .FALSE., 0.0, 0.0, 10.0, 10.0)

X-2

y=2

call settextposition (y, x, curpom)
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IF(isn.eq.1) THEN

call outtext('Sample Cases')

ELSE

call outtext('New Cases ')

ENDIF

x=2

y=3

call settextposition (y, x, curpos)

call outtext( 'Pattern')

X= 10

call settextposition (y, x, curpos)

write(a,18) ipat

18 format(i3)

read(a,19) text

19 format(a3)

call outtext (text)

x=2

y=4

call settextposition (y ,x, curpos)

call outtext( 'Output')

x= 10

call settextposition (y ,x, curpos)

write(a,18) out(ipat,isn)

read(a,19) text

call outtext (text)

x-2
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y=5

call settextposition(y, x, curpos)

call outtext('Commands (dd means 2 numeric digits):')

x=2

y=6

call settextposition(y,x, curpos)

call outtext('r means recall previous pattern set')

x= 2

y=7

call settextposition (y, x, curpos)

call outtext('pdd means change to pattern index dd')

x= 2

y=8

call settextposition(y,x, curpos)

call outtext ('odd means set pattern output to dd')

x=2

y=9

call settextposition (y, x, curpos)

call outtext('q means quit and save patterns')

x-2

y- 10

call settextposition (y, x, curpos)

call outtext('n means switch to new cases')

x-2

y-l11

call settextposition (y, x, curpos)
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call outtext('s means switch to sample cases')

x= 2

y=l12

call settextposition (y, x, curpos)

call outtext('keypad arrow keys select nib')

x=2

y=1 3

call settextposition (y, x, curpos)

call outtext('space bar turns nib on or off')

CALL setviewport( 0, 0, halfx - 1, yheight - 1 )

CALL settextwindow( 1, 1, rows, cols / 2 )

dummy = setwindow( .FALSE., 0.0, 0.0, 7.0, 9.0 )

x2=icol

y2=irow

xl=x2 -1.

yl=y2-1.

dummy = rectangle-w( $GBORDER, x1, yl, x2, y2)

dummy = setcolor( 2)

if(iupdate.eq.1) then

do 8 J=1,7

do 8 k=1,9

if(nibon(j,k,ipat,isn) .eq.1) then

call on(j,k)

else

call off(j,Jc)

endif
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8 continue

iupdate=o

CALL grid()

d-ry= setcolor(4)

--= rectangle_w( SGBORDER, x1, yl, x2, y2)

dummy = setcolor(2)

endif

4 call getkey(keydep,ierr) ! Wait for key to be pressed

IF (IERR.EQ.0) GO TO 4

CALL setviewport( 0, 0, halfx - 1, yheight - 1 )

CALL settextwindow( 1, 1, rows, cols / 2 )

dummy = setwindow( .FALSE., 0.0, 0.0, 7.0, 9.0 )

if(keydep.eg.space.or.keydep.eq.five) then

if(nibon(icol,irow,ipat,isn) .eq.0) then

call on(icol, irow)

nibon(icol, irow, ipat, isn)=1

else

call of f (icol, irow)

nibon (icol, irow, ipat, isn) =0

endif

else if(keydep.eq.four.or.keydep.eq.la) then

icol-icol-1

if(icol.lt.l) then

icol=7

irow-irow- 1

if(irow.lt.l) irow=9
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endif

else if (keydep. eq.two. or. keydep. eq.da) then

irow=irow+l

if(irow.gt.9) then

i row= 1

endif

else if(keydep.eq.eight.or.keydep.eq.ua) then

irow=irow-l

if(irow.lt.l) then

irow=9

endif

else if(keydep.eq.six.or.keydep.eq.ra) then

icol=icol+1

if(icol.gt.7) then

icol=l

irow=irow+l

if(irow.gt.9) irow=1

endif

else if(keydep.eq.lqq.or.keydep.eq.sqq) then

go to 999

else if(keydep.eq.lss.or.keydep.eq.sss) then

isn=l

iupdate= 1

ipat=l

goto 1

else if(keydep.eq.lnn.or.keydep.eq.snn) then
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isn=2

iupdate=1

ipat=l

goto 1

else if(keydep.eq.lrr.or.keydep.eq.srr) then

go to 998

else if(keydep.eq.lpp.or.keydep.eq.spp) then

3 call getkey(keydep,ierr) ! Wait for ENTER key

IF (IERR.EQ.O) GO TO 3

il=keydep-zero

2 call getkey(keydep,ierr) ! Wait for ENTER key

IF (IERR.EQ.O) GO TO 2

i2=keydep-zero

ipat=1O*il+i2

if(ipat.gt.50) ipat=50

if(ipat.lt.l) ipat=l

iupdate=1

go to 1

else if(keydep.eq.loo.or.keydep.eq.soo) then

7 call getkey(keydep,ierr) ! Wait for ENTER key

IF (IERR.EQ.O) Go To 7

i l=keydep-zero

88 call getkey(keydepierr) ! Wait for ENTER key

IF (IERR.EQ.O) Go TO 88

12=keydep-zero

out(ipat, isn)=lO*il+i2
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if(out(ipat,isn).gt.50) out(ipat,isn)=50

if(out(ipat,isn).lt.1) out(ipat,isn)=1

iupdate= 1

go to 1

eradif

go to 20

998 open(4,file='outfile',status='OLD')

isn=1

do 15 k=1,50

read(4,11) ((nibon(i,j,k,isn),i=1,7),j=1,9)

read(4,11) out(k,isn)

15 continue

isn=2

do 25 k=1,50

read(4,11) ((nibon(i,j,k,isn),i=1,7),j=1,9)

read(4,11) out(k,isn)

25 continue

close (4)

iupdate=1

isn=1

ipat-1

go to 1

11 format(63i2)

999 open(4, file='outfile')

isri=l

ndef-0
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nclass=0

nnew=0

do 16 k=1, 50

write(4,11) ((nibori(i,j,k,isn),i=1,7),j=1,9)

do 500 i=1,7

do 500 j=1,9

if(nibon(i,j,k,isn) .ne.0) ndef=k

500 continue

write(4,11) out(k,isn)

if(out(k,isn) .gt.nclass) nclass=out(k,isn)

16 continue

isn=2

do 26 k=1,50

write(4,11) ((nibon(i,j,k,isn),i=1,7),j=1,9)

do 505 i=1,7

do 505 j=1,9

if(nibon(i,j,k,isn) .ne.0) rinew--k

505 continue

write(4,11) out(k,isn)

26 continue

close (4)

nhidden=0

open (4, file='PATTERNS.FIG')

write (4 ,100)

100 forinat( 'binary')

write (4,101) 63,nhiddert,nclass
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101 format(313)

write (4,102)

102 format('100 .5 .6 .9 .0001 1')

do 103 j=1,63

if(j.le.9) then

write(4,104) j

else

write(4,204) j

endif

103 continue

104 forinat( 'nib_',I1)

204 format('nib_',I2)

304 format( output_',I1)

404 format(loutput_',12)

write (4 ,105)

105 format(' -------------

do 106 j=1,nclass

if(J.le.9) then

write(4,304) j

else

write(4,404) j

endif

106 continue

close (4)

open(4, file='PATTERNS.CHR')

write(4,700) ndef
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700 format(12)

isn=1

do 512 J=1,ndef

write(4,511) ((nibon(i,j,k,isf),i1,7),j=1,9)

511. format(631l)

do 513 1=1,nclass

if (out(k,isn).eq.1) then

iout(1)=1

else

iout(1)-0

endif

513 continue

write(4,514) (iout(1) ,1=1,nclass)

514 format(501l)

512 continue

close (4 )

open(4, file='PATTERNS.CLS')

write(4,700) nnew

isn=2

do 712 J=l,nnew

write(4,511) ((nibon(i,j,kisn),i'1,7),JWL,9)

do 713 1=1,nclass

if (out(k,isn).eq.1) then

iout(1)=1

else

iout(1)=0
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end if

713 continue

write(4,514) (iout(1) ,l=l,nclass)

712 continue

close (4)

OPEN(4,FILE='PATTERNL.LIS')

WRITE(4,641) NCLASS

ISN=l

DO 640 K=1,NDEF

WRITE(A,641) K

641 FORMAT(I3)

READ(A,644) (LEARNNAME(J) ,J=1O,12)

644 FORMAT(3Al)

IF(LEARNNAME(11) .EQ.SPACE) LEARNNAME(11)=ZERO

IF(LEARNNAME(10) .EQ.SPACE) LEARNNAME(1O)=ZERO

WRITE(4,642) LEARNN,OUT(K,ISN)

642 FORMAT(A12,I2)

OPEN (3 ,FILE=LEARNN, form=' BINARY')

DO 652 J=1,9

DO 651 I=1,7

R=NIBON(I,J,K, ISN)

WRITE(3) R

651 CONTINUE

652 CONTINUE

CLOSE (3)

640 CONTINUE
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CLOSE (4 )

OPEN(4, FILE=' PATTERNT. LIS')

ISN=2

WRITE(4,641) NCLASS

DO 645 K=1,NNEW

WRITE(A,641) K

READ(A,644) (TESTNAME(J) ,J=1O,12)

IF(TESTNAME(11) .EQ.SPACE) TESTNAME(11)=ZERO

IF(TESTNAME(10) .EQ.SPACE) TESTNAME(1O)=ZERO

WRITE(4,642) TESTN,OUT(K,ISN)

OPEN(3,FILE=TESTN, form- BINARY')

DO 654 J=1,9

DO 653 1=1,7

R=NIBON(I,J,K, ISN)

WRITE(3) R

653 CONTINUE

654 CONTINUE

CLOSE (3 )

645 CONTINUE

CLOSE (4)

dummy - setvideomode( SDEFAULTMODE)

END

SUBROUTINE on (icol, irow)

INCLUDE lFGRAPH.FD'

INTEGER*2 dummy
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DOUBLE PRECISION xl,yl,X2,y2

RECORD /videoconfig/ screen

COMMON screen

dummy = setcolor( 14)

x2=icol

y2=irow

xl=x2 -1.

yl=y2-1.

dummy = rectangle-w($GFILLINTERIOR,xlyl, x2 ,y2)

dummy = setcolor( 2)

RETURN

END

SUBROUTINE of f (icol, irow)

INCLUDE 'EGRAPH. FD'

INTEGER*2 dummy

DOUBLE PRECISION xl,yl,x2,y2

RECORD /videoconfig/ screen

COMMON screen

x2=icol

y2=irow

xl-x2-1.

yl-y2-1.

dummy - setcolor( 0)

dummy = rectangle-w( SGFILLINTERIOR,xl,yl,x2,y2)

dummy - setcolor( 2)

dummy - rectangle-w( SGBORDER, xl, yl, x2, y2)
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dummy = setcolor( 2 )

RETURN

END

CC GRID - This subroutine plots nib grid.

SUBROUTINE grid()

INCLUDE 'FGRAPH. FD'

INTEGER*2 dummy, i

DOUBLE PRECISION x,y

RECORD /videoconfig/ screen

RECORD /wxycoord/ wxy

COMMON screen

C Plot the grid

DO i = 1, 6

dummy = setcolor( 2 )

x=i

CALL moveto w( x, 0.0, wxy

dummy = lineto-w( x, 9.0 )

END DO

DO i = 1, 8

dummy - setcolor( 2 )

y-i

CALL moveto-w(0.0, y, wxy )

dummy = lineto_w(7.0, y )

END DO

RETURN

END



APPENDIX C

BACKPROP

241



BACKPROP is used to develop no, one, and two hidden

layer models. Before running the program several files

should be created using a text editor: (1) STOPERR, (2)

AUTOSAVE, (3) RATES, (4) HIDDEN1 (for one layer), (5)

HIDDEN2 (for two layers), (6) PASSES, (7) a file containing

a list of learn case files, and (8) a file containing a list

of test case files.

The contents of all the above files are ASCII and can be

built with a text editor. STOP ERR contains a value, such

as, 0.0001 meaning to stop after the error reaches this

limit. AUTOSAVE contains a value, such as, 500 meaning to

automatically save the model every 500 iterations. RATES

contains two values, one per line, such as 0.6 and 0.9. The

first value is the learning rate and the second is the

momentum factor. HIDDEN1 contains a value, such as, 16 to

declare 16 neurons for the hidden layer (0 means calculate

based on input and output neuron count). HIDDEN2 has two

entries, one per line, such as, 16 and 8, to indicate the

number of neurons in each hidden layer. PASSES contains the

maximum allowed number of iterations on a model before

termination. If STOPERR contains 0.001 and PASSES
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contains 50000, the program terminates at an error level of

0.001 (0.1 percent) if this error level is reached before

50000 iterations or at 50000 iterations, otherwise.

The learn case file and test case file are identical in

format. The first line has the number of output

classifications (neurons) in fields 1-6, free field, such

as, 4. The next lines each have two entries: (1) a file

name in columns 1-12 and (2) the output neuron to be active

(have a one rather than 0 output) in columns 11-12.

The weights and biases are initialized to small random

numbers. However if option 4 (do 0, 1, and 2 hidden layers)

is selected then each network builds on the previous one's

weights and biases, this can speed convergence dramatically.

For example, if HIDDEN1 contains 7 and HIDDEN2 contains 16

and 7, then the output weights from the no hidden layer

model will be the starting point for the one layer model and

the output and hidden layer weights from the one layer model

will be the starting point for the two layer model.

C.1 BACKPROP Example Run

If the learning cases are in INLEARN and the test cases

are in INTEST, the one hidden level model would be run by

typing

BACKPROP,

followed by one for the one hidden layer model

1,

followed by a one for initial running (new model)
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followed by a learning case file name of

INLEARN,

followed by s or r for sequential or random learning case

order

r ,

and activated by a test case file name of

INTEST.

An example run is shown in Figure 73.

C :%NtUI*L0 backprop
tutor membr of hidden levers 6. 1. or 2
toter 4 to do all 3 models)
4
Option 2 Is met Welid Whes doling all MedelS

opt ion:I ter ne leers 1mg
z to rosue loormimp after isterraptomt

3 1-r test casesoni3v
Coter 1. Z. or 2.
1
rite cetaises list or learmiug case file*
14ousmmah. re
53013 Of CASED DURING MIMRING

3 FOE SQIIIMIAL

rile COutaiMIig list Of test Case file*
Wall'yort~tt

Figure 73. Example of BACKPROP

The program may be stopped at any time by typing escape

and restarted later by entering 2 rather than 1 in answer to

the first question. When new test cases are be applied to

an old model the 3 option is entered. The models are saved

in NET.OH and MOMENTUM.OH, in NET.1H and MOMENTUM.1H, and in

NET.2H and MOMENTUM.2H, respectively. If a new set of learn

cases is to be input, these files should be renamed or saved

to floppy as they will be overwritten.
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C.2 Listinct of BACKPROP

c BACKPROP WITH 2 HIDDEN LAYERS (4 LAYER NETWORK INCL IN)

C

:NI ________

iP Hiddenj HIDDENI out

lull Layerl, _ Layer2 J Layer I--- OUT

-'All I iIiII

'EI/ I OT I ---_ OU

:E: \ IHIDDEN11 IHIDDEN21 U) -- U

__R__ : - I__ l(NUMOUT)

WEIGHT_ WEIGHT_ WEIGHT_

HIDDEN1 HIDDEN2 OUTLAYER

(INLAYER, (NHIDDEN1, (NHIDDEN2,

NHIDDEN1) NHIDDEN2) NOUTLAYER)

C

C INLAYER=(1..NUMIN)

C NHIDDEN1=(1. .NUMHIDDEN1)

C NHIDDEN2=(1. .NUMHIDDEN2)

C NOUTLAYER= 1. .NUMOUT)

C
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C Additionally there is a bias input to each neuron

C BIASHIDDENl(NHIDDEN) for hidden layer 1

C BIASHIDDEN2(NHIDDEN2) for hidden layer 2

C BIASOUTLAYER(NOUTLAYER) for out layer

C

C BACKPROP WITH ONE HIDDEN LAYER (3 LAYER NETWORK w/ IN)

C

C

C :__:N ____I

C IN
I II

C 1PI / Hidden: Out

C IN(1) ----- u:< -, Layer : - Layer I---OUT(1)

C IT / N(1) I-- / N(1)
I I s/

'/ __ _ __ /__ _ _

CI L /I /

C

C LEGT EGT

C IN(NMNIN)-Y< '--1 N(NUM-1 11- N(NUM-1

C ITHIDDEN)' OUT)

C I1 R

C WEIGHT- WEIGHT_

C HIDDEN OUTLAYER

C (INLAYER, (NHIDDEN,

C NHIDDEN) NOUTLAYER)

C

C INLAYER=(l..NUMIN)
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C NHIDDEN=(l. .NUMHIDDEN)

C NOUTLAYER=(1. .NUMOUT}

C

C Additionally there is a bias input to each neuron

C BIASHIDDEN(NHIDDEN) for hidden layer

C BIASOUTLAYER(NOUTLAYER) for out layer

C

C NO HIDDEN LAYER (LMS) (2 LAYER NETWORK INCL IN)

C

C

C :1:

C :P: out__

IN(l)-----:< I__I Layer I --- OUT(1)

C 'IT:' / N(1) I

C IA

C IN(NUMIN)-Y< '-IN(NUM-1
C 'Ell .. OUT) I --- OUT(NUMOUT)

C 11R 11
C-I

C WEIGHT_

C OUTLAYER

C (INLAYER,

C NOUTLAYER)



248

C

C INLAYER=(l..NUMIN)

C NOUTLAYER={I..NUMOUT)

C

C Additionally there is a bias input to each neuron

C BIASOUTLAYER(NOUTLAYER) for out layer

C

C

C LEARNINGRATE is multiplied by the newly calculated

C DeltaWeight

C MOMENTUM is multiplied by the previous instigated

DeltaWeight

C both range from {0..1)

C

C Delta value means the change from the previous value

C CASEIN is 'he learning set inputs

C CASEOUT is the desired output

C ERROR is the difference between the desired and obtained

C NET is the sum of the inputs by their respective weights

C SIGMOID is the nonlinear function

C

C Note: The following are maximum values

C The actual may be less than these numbers

C Max number of input neurons

PARAMETER (NUMIN1=64)

C Max number of first hidden layer neurons
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PARAMETER (NUMHIDDENll=lOO)

C Max number of second hidden layer neurons

PARAMETER (NUMHIDDEN2l=lOO)

C Max number of output layer neurons

PARAMETER (NUMOUTl=lO)

C Max number of learning or test cases

PARAMETER (NUMCASES1=500)

C Buffer sizes

PARAMETER (NUMWEIGHTHIDDENl=NUMINl*NUMHIDDENll)

PARAMETER (NUMWEIGHTHIDDEN2=NUMHIDDENll*NUMHIDDEN2l)

PARAMETER (NtMWEIGHTOUT=NtJMHIDDEN2 1*NUMOUTl)

PARAMETER (NUMCASIN1=NTJMIN1*NUMCASESl)

PARAMETER (NUMCASOUT1-NUMOUT1*NUMCASES1)

C The network is saved in case of power outage every

C auto-savel iterations; may be restarted when resumed

PARAMETER (auto_savel=50)

C

common/ i7/ weight hiddeni, delta-weight hiddeni

common/i8/ weight hidden2, delta-weight hidden2

common/i9/ weight outlayer, delta weight-outlayer

CHARACTER*12 INLEARN, INTEST, INFILE

C The MSDOS version allows an escape and save option

C This is necessary since PC's are slower than Cray's

C The following line is needed for the MSDOS version

C Remove the c for comment for MSDOS
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c Integer*1 dummy_read,keydep,escape

character*1 iis,rins, iir,rrnr,case-order

REAL OUTHIDDEN1(NTJMMIDDEN11),

1 OUTHIDDEN2(NJMHIDDEN21),

1 OUT(NUMOUT1) ,WEIGHTHIDDENi (NUMWEIGHTHIDDEN1),

1 WEIGHTHIDDEN2(NUMWEIGHTHIDDEN2),

1 WEIGHTOUTLAYER (NUMWEIGHTOUT),

2 BIASHIDDENi (NUMHIDDENil)IASOUTLAYER(NUMOUT1),

2 BIASHIDDEN2(NUMHIDDEN21),

3 ERROR(NUMOUT1),DELTAOUT(NUMOUT1),

4 DELTABIASOUTLAYER(NUMOUT1),

4 DELTAWEIGHTOUTLAYER (NUMWEIGHTOUT),

5 DELTAWEIGHTHIDDEN1(NUMWEIGHTHIDDEN1),

5 DELTAWEIGHTHIDDEN2(NUMWEIGHTHIDDEN2),

6 DELTABIAS HIDDENi (NUMMIDDENli),

6 DELTAHIDDEN1(NUMHIDDEN11),

7 DELTABIASHIDDEN2 (NUMHIDDEN2 1),

7 DELTAHIDDEN2(NUMHIDDEN21),

8 CASE IN(NUMCASIN1) ,CASEOUT(NUMCASOUT1)

REAL LEARNINGRATE ,MOMENTUM

integer iin(numcasesl),auto-save

INTEGER*2 ORDER (NUMCASES1)

data iis/ S'/, iir/'R'/,rins/'s'/,nnr/'r'/

DATA NUMIN/NUMIN1/, NUMHIDDEN1/numhiddenll/,

1 NUMOUT/NUMOUT1/,
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1 ERRORMAX/. 001/,NUMCASES/NUMCASES1/,

1 NUMHIDDEN2/numhidden2l/

********* ** ****** ***** ** ** ********** **************

C The following line is needed for the MSDOS version

C Remove c for comment for MSDOS

c data escape/27/

**** *** * *** ***** * ******* *** ***************************

data autosave/autosavel/,maxiterations/1000000/

DATA LEARNINGRATE/.6/,MOMENTUM/.9/

C Number of hidden layers is entered from keyboard

721 write(6,724)

724 format(' Enter number of hidden layers 0, 1, or 2'/

1 '(Enter 4 to do all 3 models)')

read(5,102,err=721,end=999) numlayers

numlay=numlayers

if(numlayers.gt.4.or.numlayers.lt.0) go to 721

if(numlayers.eq.4) then

numlayers=O

c write(6,725)

c725 format(' Option 2 is not valid when doing all'

c 1 ' models')

endif

C New, Resume, or Test is entered from keyboard

100 write(6,101)

101 format(' Option:'/

1 ' 1 for new learning'/
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2 '2 to resume learning after interruption'/

3 '3 for test cases only'/

4 'Enter 1, 2, or 3.')

read(5,102) iopt

102 format(i6)

if(iopt.lt.l.or.iopt.gt.3) go to 100

if(iopt.eq.1.or.iopt.eq.2) then

C file name for learning cases -> INLEARN

write(6,200)

200 format(' File containing list of learning case'

1 ' files')

read(5,201) INLEARN

C Use order of signals in INLEARN for learning passes or

C randomly determine a new order for each pass

292 WRITE(6,290)

290 FORM4AT(# ORDER OF CASES DURING LEARNING$/

1 'ENTER R FOR RANDOM OR@/

2 'S FOR SEQUENTIAL')

READ(5,291) CASEORDER

291 format(Al)

IF (CASE ORDER. EQ. NS) CASEORDER-I IS

IF(CASEORDER.EQ.NNR) CASEORDER-IIR

IF(CASEORDER.NE.IIS.AND.CASEORDER.NE.IIR) GO TO

292

endif

C file name for test cases -> INTEST
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write(6,205)

205 format(' File containing list of test case files')

read(5,201) INTEST

201 format(A12)

C Initialize weights and biases to small random numbers

C If option 4 is taken each network builds on the

C previous one's weights and biases, this can speed

C convergence dramatically.

C For example, if HIDDEN1 contains 7 and HIDDEN2 16 & 7

C then the output weights from the no hidden layer model

C will be the starting point for the one layer model and

C the output and hidden layer weights from the one layer

C model will be the starting point for the two layer

C model.

111 numhiddenl=O

numhidden2=0

C PASSES contains the maximum number of iterations

1 OPEN(3,FILE='PASSES',STATUS='OLD',ERR=564)

READ(3,965,ERR=563,END=563) NUMH

maxiterations=NUMH

563 CLOSE(3)

C STOPERR contains the target error level

564 OPEN(3,FILE-'STOPERR',STATUS-'OLD',ERR-664)

READ(3,865,ERR-663,END-663) RATE

ERRORMAXfRATE

663 CLOSE(3)
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C AUTOSAVE contains the number of iterations betw saves

664 OPEN(3,FILE=IAUTOSAVE' ,STATUS='OLD' ,ERR=764)

READ(3,965,ERR=763,END=763) NUMH

auto-save=NUMH

763 CLOSE(3)

C RATES contains the learning rate and momentum

764 OPEN(3,FILE='RTESI,STATUS=IOLD,ERR=864)

READ(3,865,ERR=863,END=863) RATE

865 FORMAT(F20.O)

LEARNINGRATE=RATE

READ(3,865,ERR=863,END=863) RATE

MOMENTUM=RATE

863 CLOSE(3)

C HIDDEN2 contains the number of neurons in the 1st&

C 2nd hidden layers

864 if(numlayers.eq.2) then

OPEN(3,FILE='HIDDEN2' ,STATUS='OLD' ,ERR=964)

READ(3,965,ERR-963,END-963) NUNH

965 FORMAT(I6)

NUMHI DDEN1-NUMH

READ(3,965,ERRin963,END-963) NUMH

NUJ4HIDDEN2-NUMH

963 CLOSE(3)

C HIDDENi contains the number of neurons in hidden layer

else if(numlayers.eq.1) then

OPEN(3,FILE-HIDDEN1' ,STATUS='OLD' ,ERR-964)
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READ(3,965,ERR=962,END=-962) NUH

NUNHI DDENl=NUMH

962 CLOSE(3)

end if

964 isave=O

if(iopt.eq.3) isave=l

ITERATIONS=O

INDEX=O

C Initialize number of hidden layers

if (nuxhiddenl.eq.O) then

rn=numin+numout

numhiddenl=sqrt (in)

numhiddenl-numhiddenl *2

numhidden2=numhiddenl

endif

c Initialize biases and weights to small random num~bers

if(numlay.eq.4) then

if (numlayers.eq. 0)

1 CALL INITIALIZENETWORK_2(WEIGHTHIDDENi,

1 WEIGHTOUTLAYER,

1 DELTAWEIGHTHIDDEN1,DELTAWEIGHTOUTLAYER,

2 NUMIN, NUMHIDDEN1, NUMOUT ,BIAS-HIDDEN1,

2 BIASOUTLAYER,

3 DELTA BIASHIDDEN1,DELTABIASOUTLAYER,

4 WEIGHTHIDDEN2,DELTAWEIGHTHIDDEN2,NUNHIDDEN2,

5 BIASHIDDEN2,DELTABIASHIDDEN2)
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else

if(numlayers.eq.l) then

CALL INITIALIZENETWORK 1(WEIGHTHIDDENi,p

1 WEIGHTOUTLAYER,

1 DELTAWEIGHTHIDDEN1,DELTAWEIGHTOUTLAYER,

2 NUMIN,NUMHIDDEN1,NUMOUT,BIASHIDDENi,

2 BIASOUTLAYER,

3 DELTABIASHIDDEN1,DELTABIASOUTLAYER)

else if(numlayers.eq.2) then

CALL INITIALIZENETWORK_2(WEIGHTHIDDENi,

1 WEIGHTOUTLAYER,

1 DELTAWEIGHTHIDDEN1,DELTA WEIGHTOUTLAYER,

2 NUMIN,NUMHIDDENI,NUMOUT,BIASHIDDEN1,

2 BIASOUTLAYER,

3 DELTABIASHIDDEN1,DELTABIASOUTLAYER,

4 WEIGHTHIDDEN2,DELTA WEIGHTHIDDEN2,NU4HIDDEN2,

5 BIASHIDDEN2,DELTABIASHIDDEN2)

else

call INITIALIZENETWORKO(WEIGHT-OUTLAYER,

1 DELTA WEIGHTOUTLAYER, NUMINNUMOUT,

2 BIASOUTLAYER, DELTABIASOUTLAYER)

end if

endif

if(numlayers.eq.2) write(6,254) numhiddenl,numhidden2

if(numlayers.eq.1) write(6,9254) numhiddenl

254 format(' numhiddenl-' ,i3,' nuuhidden2=' ,i3)
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9254 format(' numhiddenl=',i3)

if(iopt.ne.3) then

inumcases=l

numin=0

c Get list of learning files

open(3, file=INLEARN)

C number of output neurons -> numout

read(3,216) numout

write(6,266) numout

266 format(' numout=',i3)

216 format(i4)

C Read in name of signal file and its output neuron

250 read(3,217,end=257) infile,iin(inumcases)

217 format(al2,i2)

numcases= inumcases

inumcases=inumcases+1

inumin=l

open(4, file=INFILE)

C Read in signal

251 jjcase-(numcases-l) *numin+inumin

C count number of cases while reading to EOF

read(4,252,end=253) case in(jjcase)

252 f ormat (f 20. 0)

if(numcases.eq. 1) then

numin=inumin

endif
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if(numcases-eq.2.and.inumin.eq.l) then

write(6,256) numin

256 format(' numin=',i3)

end if

inumin=inumin+l

go to 251

253 close(4)

go to 250

257 close(3)

write(6, 259) numcases

259 format(' numcases=O,i3)

C Set output neuron desired outputs to 1. if desired

C active; 0. if not

do 104 j=1,numcases

ORDER (J) =J

do 103 jj=1,numout

jjj=(jl) *numout+jj

if(iin(j).eq.jj) then

case out(jjj)=1.

else

case out (j j) -0.

endif

103 continue

104 continue

endif

C
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C Two Hidden Layers

C

if(numlayers.eq.2) then

if(iopt.eq.2.or.iopt.eq.3) then

C Read in iterations, weights, biases if continuing

OPEN (4 ,FILE= 'NET. 2H' )

READ(4,211) ITERATIONS

211 FORMAT(11X,I7)

READ(4,218) NUMIN

218 format(i4)

219 FORMAT(A1)

READ(4,218) NTJMHIDDEN1

DO 2231 NHIDDEN1=1,NUMHIDDEN1

NUMROW=(NHIDDEN1-1) *NUMIN

DO 2231 INLAYER=1,NUHIN

INDEXWEIGHT=NUMROW+INLAYER

READ(4,20) WEIGHTHIDDEN1(INDEXWEIGHT)

2231 CONTINUE

READ(4,218) NUMHIDDEN2

DO 2232 NHIDDEN2=1,NUMHIDDEN2

NUZ4ROW= (NHIDDEN2-1) *NUMHJIDDEN1

DO 2232 NHIDDEN1=1,NUMHIDDEN1

INDEXWEIGHT-NUMROW+NHIDDEN1

READ(4, 20) WEIGHTHIDDEN2 (INDEXWEIGHT)

2232 CONTINUE

READ(4,218) NUWnUT
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DO 2241 NOUTLAYER=1,NUMOUT

NUMROW= (NOUTLAYER-1) *NUJMHJIDDEN2

DO 2241 NHIDDEN2=1,NUMHIDDEN2

INDEXWEIGHT=NUMROW4NHIDDEN2

READ(4, 20) WEIGHTOUTLAYER(INDEXWEIGHT)

2241 CONTINUE

READ(4 ,219) dummy read

READ(4,20) (ERROR(I) ,I=1,NUMOUT)

READ(4, 219) dummy-read

READ(4,20) (BIASHIDDEN1(J) ,J=1,NUMHIDDEN1)

READ(4, 219) dummy read

READ(4,20) (BIASHIDDEN2(J) ,J=1,NUMHIDDEN2)

READ(4, 219) dummy read

READ(4,20) (BIAS OUTLAYER(J) ,J=1,NUMOUT)

CLOSE (4 )

C Read in delta-weights, delta-biases if continuing

OPEN(4 ,FILE= 'MOMENTUM. 2H')

READ(4,219) dummy read

DO 2431 NHIDDEN1=1,NUHHIDDEN1

NUMROW=(NHIDDEN1-1) *NTJMIN

DO 2431 INLAYER=1,NUMIN

INDEXWEIGHT=NUMROW+ INLAYER

READ(4,20) DELTA WEIGHTHIDDEN1(INDEXWEIGHT)

2431 CONTINUE

READ(4, 219) dummy read

DO 2433 NHIDDEN2=1,NUMHIDDEN2
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NUMROW= (NHIDDEN2-l) *NUJNJIDDEN1

DO 2433 NHIDDEN1-1,NUMHIDDEN1

INDEXWEIGHT=NUMROW+NHIDDEN1

READ(4,20) DELTAWEIGHTHIDDEN2(INDEXWEIGHT)

2433 CONTINUE

READ(4,219) dummy_read

DO 2441 NOUTLAYER=1,NUMOUT

NUMROW= (NOUTLAYER-1) *NUN1HIDDEN2

DO 2441 NHIDDEN2-l,NUMHIDDEN2

INDEXWEIGHT=NUI.ROW+NHIDDEN2

READ (4, 20) DELTA WEIGHTOUTLAYER (INDEXWE-IGHT)

2441 CONTINUE

READ(4,219) dummy_read

READ(4,20) (DELTABIASHIDDEN1(J) ,J=1,NUMHIDDEN1)

READ(4,219) dummy_read

READ(4,20) (DELTABIASHIDDEN2(J) ,J=1,NUMHIDDEN2)

READ(4,219) dummy_read

READ(4,20) (DELTABIASOUTLAYER(J) ,J=1,NUMOUT)

CLOSE (4)

endif

2071 if(iopt.ne.3) then

2001 ERR MAX-0.0

C Scramble order of input of learning cases

IF(CASEORDER.EQ.IIR) CALL

1 RANDOMIZE (ORDER, NUMCASES)

C Do one major pass through network of all learn cases
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DO 2004 i=1,numcases

INCASE=(ORDER(I) -1)*numin+1

ioutcase=(ORDER(i) -1)*numout+1

CALL FORWARDPASS_2 (CASE IN (INCASE),

1 OUTHIDDEN1,OUT,

1 WEIGHTHIDDEN1,WEIGHTOUTLAYER,OUTHIDDEN2,

2 NUMIN,NtJMHIDDEN1,NUMOUT,BIASHIDDENi,

2 BIASOUTLAYER,

3 NUMHIDDEN2,BIASHIDDEN2,WEIGHTHIDDEN2)

CALL BACKWARDPASS_2

1 (CASE_IN(INCASE) ,OUT-HIDDEN1,OUT,

1 WEIGHTHIDDEN1,WEIGHTOUTLAYER,OUTHIDDEN2,

2 NUMIN,NUMHIDDEN1,NUMOUT,BIASHIDDENi,

2 BIASOUTLAYER,

3 CASE OUT (IOUTCASE) ,ERROR, DELTA OUT,-

3 DELTABIASOUTLAYER,

4 DELTAWEIGHTOUTLAYER.,DELTAHIDDENi,

4 DELTABIAS HIDDEN1,

5 DELTAWEIGHTHIDDEN1,LEARNINGRATE,MOENTUh,

6 WEIGHTHIDDEN2,NUMHIDDEN2,

6 BIAS HIDDEN2,DELTAHIDDEN2,

7 DELTABIASHIDDEN2,DELTAWEIGHT HIDDEN2)

ERR=0.

C Test for error limit reached termination

DO 2010 J=1,NUMOUT

ERR-ERR+ERROR (J) *EROR (J)
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2010 CONTINUE

IF(ERR.GT.ERRMAX) ERR-MAX=ERR

2004 CONTINUE

ITERATIONS=ITERATIONS+ 1

INDEX=INDEX+ 1

C Display iterations and error level every 100'th pass

IF(INDEX.EQ.l0O) THEN

INDEX=O

WRITE(6,l1) ITERATIONS,ERRMAX

ENDIF

11 FORMAT(' ITERATION:1,17,' ERROR:',F1O.5)

isave=isave +1

C Is it time to auto-save?

if(isave.eq.auto-save) then

isave=O

end if

if(isave.eq.0) goto 2014

C Has number of iterations exceeded limit?

if(iterations.gt.max-iterations) go to 2014

C The following 3 lines are necessary for MSDOS

c call getley(keydepiierr)

c if(iierr.eq.0) go to 2012

c if(keydep.eq.escape) go to 2014

2012 IF(ERRMAX.GT.ERRORMAX) GO TO 2001
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C Write current network iterations,weights, biases, etc.

2014 OPEN(4,FILE=INET.2H')

WRITE(4,11) ITERATIONS,ERRMAX

WRITE(4,621) NTJMIN

621 FORMAT(I4,1 INPUTS')

WRITE(4, 19) NUMHIDDEN1

19 FORMAT(14,1 HIDDEN WEIGHTS FIRST LAYER')

DO 2031 NHIDDEN1=1,NUMHIDDEN1

NUMROW= (NHIDDEN1-1) *NTJMIN

DO 2031 INLAYER=1,NUMIN

INDEXWEIGHT=NUMROW+INLAYER

WRITE(4,20) WEIGHTHIDDEN1(INDEXWEIGHT)

2031 CONTINUE

WRITE(4,719) NUMHIDDEN2

719 FORMAT(14,1 HIDDEN WEIGHTS SECOND LAYER')

DO 2032 NHIDDEN2=1,NUMHIDDEN2

NUMROW= (NHIDDEN2-1) *NUMH4JIDDEN1

DO 2032 NHIDDEN1-1,NUMHIDDEN1

INDEXWEIGHT=NUI4ROW+NHIDDEN1

WRITE(4, 20) WEIGHTHIDDEN2 (INDEXWEIGHT)

2032 CONTINUE

20 FORMAT(F16.10)

WRITE(4,21) NUMOUT

21 FORMAT(I4,0 OUTPUT WEIGHTS#)

DO 2041 NOUTLAYER-1,NUMOUT

NUNROW- (NOUTLAYER-1) *NUMHJIDDEN2
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DO 2041 NHIDDEN2=1,NUMHIDDEN2

INDEXWEIGHT=NUMROW+NHIDDEN2

WRITE (4,20) WEIGHTOUTLAYER (INDEXWEIGHT)

2041 CONTINUE

WRITE(4,22)

22 FORMAT(' ERROR')

WRITE(4,20) (ERROR(I),I=1,NUMOUT)

WRITE (4 ,23)

23 FORMAT(' HIDDEN BIAS FIRST LAYER')

WRITE(4,20) (BIASHIDDEN1(J) ,J=1,NUHHIDDEN1)

WRITE(4,723)

723 FORMAT(' HIDDEN BIAS SECOND LAYER')

WRITE(4,20) (BIASHIDDEN2(J) ,J=1,NTJHHIDDEN2)

WRITE (4,24)

24 FORMAT(' OUT BIAS')

WRITE(4,20) (BIASOUTLAYER(J) ,J=1,NUMOUT)

CLOSE (4)

C Write out success rate on learning cases

OPEN(4,FILE-'LEARNCAS.2H')

WRITE (4 ,25)

25 FORMAT (' LEARN CASE ERRORS')

DO 2040 I-1,NUMCASES

WRITE(4,26) I

26 FORMAT($ CASE 1,12)

incase- (i-i) *nuin+l

ioutcase- (i-i) *nuout
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CALL FORWARDPASS_2 (CASEIN (INCASE),

1 OUTHIDDEN1,OUT,

1 WEIGHTHIDDEN1,WEIGHTOUTLAYER,OUTHIDDEN2,

2 NUMIN,NUMHIDDEN1,NUMOUT,

2 BIASHIDDEN1,BIASOUTLAYER,

3 NUMHIDDEN2,BIASHIDDEN2,WEIGHTHIDDEN2)

WRITE(4,27) (case_out(ioutcase+j) ,OUT(J),

1 (case-out(ioutcase+j) -OUT(J)) ,J=l,NUHMOUT)

27 FORMAT(3F10.6)

2040 CONTINUE

CLOSE (4)

C Write out delta-Weights & delta-biases

OPEN(4, FILE='MOMENTUM. 2H')

WRITE(4,459)

459 FORMAT(' Delta-WeightHidden Values First Layer:')

DO 2461 NHIDDENl=l,NUHHIDDEN1

NUMROW= (NHIDDEN1-l) *NJMIN

DO 2461 INLAYER=1,NUMIN

INDEXWEIGHT=NUMROW+INLAYER

WRITE (4 ,20)

1 DELTAWEIGHTHIDDEN1(INDEXWEIGHT)

2461 CONTINUE

WRITE (4 ,479)

479 FORMAT (' Delta WeightHidden Values Second Layer:')

DO 2761 NHIDDEN2-1,NUMHIDDEN2

NUMROW- (NHIDDEN2-1) *NTJI4JIDDEN1
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DO 2761 NHIDDENl=l,NUMHIDDEN1

INDEXWEIGHT=NUHROW+NHIDDEN1

WRITE(4,20)

1 DELTAWEIGHTHIDDEN2(INDEXWEIGHT)

2761 CONTINUE

WRITE(4,467)

467 FORMAT(' DeltaWeightOutlayer Values:')

DO 2471 NOUTLAYER=I,NUMOUT

NIJMROW= (NOUTLAYER-l) *NTJMHIDDEN2

DO 2471 NHIDDEN2-1,NUMHIDDEN2

INDEXWEIGHT=NUMROW+NHI DDEN2

WRITE(4,20)

1 DELTAWEIGHTOUTLAYER(INDEXWEIGHT)

2471 CONTINUE

WRITE(4,468)

468 FORMAT(' DeltaBias Hidden Values First Layer:')

WRITE(4,20) (DELTABIASHIDDEN1(J) ,J=1,NUMHIDDENl)

WRITE(4,418)

418 FORMAT(' DeltaBiasHidden Values Second Layer:')

WRITE(4,20) (DELTABIASHIDDEN2 (J) ,J-1,NUMHIDDEN2)

WRITE(4,469)

469 FORMAT(' DeltaBiasOutlayer Values:')

WRITE(4,20) (DELTA BIAS OUTLAYER(J) ,J=1,NUMOUT)

CLOSE (4 )

endif

C If not auto-save then quit
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if(isave.eq.0) go to 2071

C

C 1 Hidden Layer

C

else if (numlayers.eq.1) then

C Read in old network weights & biases on resuming

if(iopt.eq.2.or.iopt.eq.3) then

OPEN(4,FILE='NET. lH')

READ(4,211) ITERATIONS

READ(4,218) NUMIN

READ(4,218) NUMHIDDEN1

DO 1231 NHIDDEN=1,NUMHIDDEN1

NUMROW= (NHIDDEN-1) *mumrN

DO 1231 INLAYER-1,NUMIN

INDEX WEIGHT=NUMflOW4INLAYER

read (4,20) WEIGHTHIDDENi (INDEXWEIGHT)

1231 CONTINUE

READ(4,218) NUMOUT

DO 1241 NOUTLAYER=1,NUMOUT

NUNROW (NOUTLAYER-1) *NIJI4IIDDEN1

Do 1241 NHIDDEN=1,NUMIHIDDEN1

INDEXWEIGHT-NUKROW+NHI DDEN

READ(4, 20) WEIGHTOUTLAYER(INDEX.WEIGHT)

1241 CONTINUE

READ(4,219) dummy read

READ(4,20) (ERROR(I) ,I-1,NUMOUT)



269

READ(4,219) dummy_read

READ(4,20) (BIASHIDDEN1(J) ,J=1,NUMHIDDEN1)

READ(4,219) dummy_read

READ(4,20) (BIASOUTLPLYER(J) ,J=1,NUMOUT)

CLOSE (4)

OPEN(4,FILE=IMOMENTUM.1H')

C Read in old delta-biases & delta-weights on resume

READ(4,219) dummy_read

DO 1431 NHIDDEN=l,NUMHIDDENl

NUI{ROW= (NHIDDEN-l) *NUJIIN

DO 1431 INLAYER=l,NUMIN

INDEXWEIGHT=NUMROW+INLAYER

READ(4,20) DELTAWEIGHTHIDDEN1(INDEXWEIGHT)

1431 CONTINUE

READ(4,219) dummy_read

DO 1441 NOUTLAYER-1,NUMOUT

NUMROW- (NOUTLAYER-1) *NTJ!4JIDDEN1

DO 1441 NHIDDEN-1,NUMHIDDEN1

INDEXWE IGHT=NUMROW+NHI DDEN

READ (4,20)

1 DELTAWEIGHTOUTLAYER(INDEXWEIGHT)

1441 CONTINUE

READ(4,219) dummy-read

READ(4,20) (DELTABIASHIDDEN1(J) ,J-1,NUMHIDDEN1)

READ(4,219) dummy_read

READ(4,20) (DELTABIASOUTLAYER(J),J-1,NUNOUT)
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CLOSE (4)

endif

1071 if(iopt.ne.3) then

1001 ERRMAX=0.0

C Scramble order of inputs for next pass

IF(CASEORDER.EQ.IIR) CALL

1 RANDOMIZE (ORDER, NUMCASES)

C Do one overall pass of all learning cases

DO 1004 i=l,numcases

INCASE=(ORDER(I) -1)*numin+1

ioutcase=(ORDER(i) -1)*numout+l

CALL FORWARDPASS_1 (CASEIN (INCASE),

1 OUTHIDDEN1,OUT,

1 WEIGHTHIDDEN1,WEIGHTOUTLAYER,

2 NUMIN, NUMHIDDEN , NUMOUT,

2 BIASHIDDEN1,BIASOUTLAYER)

CALL BACKWARDPASS_1 (CASEIN (INCASE),

1 OUT HIDDENi, OUT,

1 WEIGHTHIDDEN1,WEIGHTOUTLAYER,

2 NUMIN, NUMHIDDEN , NUMOUT,

2 BIASHIDDEN1,BIASOUTLAYER,

3 CASEOUT(IOUTCASE),ERROR,

3 DELTA OUT,DELTABIAS OUTLAYER,

4 DELTA WEIGHTOUTLAYER,DELTAHIDDENi,

4 DELTA BIAS HIDDEN 1,

5 DELTAWEIGHTHIDDEN1,LEARNINGRATE,MO4ENTUM)
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ERR=0.

C Check for error limit termination?

DO 1010 J=l,NUMOUT

ERR=ERR+ERROR (J) *ERROR (J)

1010 CONTINUE

IF(ERR.GT.ERRMAX) ERR MAX=ERR

1004 CONTINUE

ITERATIONS=ITERATIONS+ 1

INDEX=INDEX+ 1

IF(INDEX.EQ.100) THEN

INDEX=O

WRITE(6,11) ITERATIONS,ERRMAX

ENDIF

isave=isave +1

if(isave.eq.auto_save) then

isave=0

endif

if(isave.eq.0) goto 1014

C Check for maximum allowed iterations termination?

if(iterations.gt.max-iterations) go to 1014

C The following 3 lines are necessary for MSDOS

c call getkey(keydep,iierr)

c if(iierr.eq.0) go to 1012

c if(keydep.eq.escape) go to 1014
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1012 IF(ERR-MAX.GT.ERRORMAX) GO TO 1001

C Save network weights and biases

1014 OPEN(4,FILE='NET.1H')

WRITE(4,11) ITERATIONS,ERRMAX

WRITE(4,621) NUMIN

WRITE (4,19) NUMHIDDENi

DO 1031 NHIDDEN=1,NUMHIDDEN1

NUMROW= (NHIDDEN-1) *NTJMIN

DO 1031 INLAYER=1,NUMIN

INDEXWEIGHT=NUMROW+INLAYER

WRITE(4,20) WEIGHTHIDDEN1(INDEXWEIGHT)

1031 CONTINUE

WRITE(4,21) NTJMOUT

DO 1041 NOUTLAYER=1,NUMOUT

NUMROW= (NOUTLAYER-1) *NTJM4JIDDEN1

DO 1041 NHIDDEN=1,NUMHIDDEN1

INDEXWEIGHT=NUMROW+NHIDDEN

WRITE (4,20) WEIGHTOUTLAYER(INDEX-WEIGHT)

1041 CONTINUE

WRITE (4 ,22)

WRITE(4,20) (ERROR(I) ,I=1,NUMOUT)

WRITE (4 ,23)

WRITE(4,20) (BIASHIDDEN1(J) ,J-1,NUMHIDDEN1)

WRITE (4 ,24)

WRITE(4,20) (BIAS OUTLAYER(J) ,J-1,I4UMOUT)

CLOSE (4)
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OPEN(4,FILE='LEARNCAS.lH')

WRITE (4,25)

DO 1040 I=1,NUMCASES

WRITE(4,26) I

incase= (i-i) *numin+l

ioutcase= (i-i) *numout

CALL FORWARDPASS_1(CASE_IN(incase),

1 OUTHIDDENI,OUT,

1 WEIGHTHIDDEN1,WEIGHTOUTLAYER,

2 NUMIN,NUMHIDDEN1,NUMOUT,

2 BIASHIDDEN1,BIASOUTLAYER)

WRITE(4,27) (case_out(ioutcase+j) ,OUT(J),

1 (case-out(ioutcase+j)-OUT(J)) ,J=1,NUMOUT)

1040 CONTINUE

CLOSE (4)

C Save network delta-weights and delta-biases

OPEN(4,FILE='MOMENTJM. 1H')

WRITE(4,459)

DO 1461 NHIDDEN=1,NUMHIDDENl

NUMROW= (NHIDDEN-l) *NJUIN

DO 1461 INLAYER=1,NUMIN

INDEXWEIGHT=NUMROW+INLAYER

WRITE (4,20)

1 DELTAWEIGHTHIDDEN1(INDEXWEIGHT)

1461 CONTINUE

WRITE(4 ,467)
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DO 1471 NOUTLAYER=1,NUMOUT

NTJMROW= (NOUTLAYER-1) *4NIDDEN1

DO 1471 NHIDDEN=1,NUMHIDDEN1

INDEXWEIGHT=NUMROW+NHIDDEN

WRITE (4,20)

1 DELTAWEIGHTOUTLAYER(INDEXWEIGHT)

1471 CONTINUE

WRITE(4,468)

WRITE(4,20) (DELTABIASHIDDEN1(J) ,J=1,NTJMHIDDEN1)

WRITE(4 ,469)

WRITE(4, 20) (DELTABIASOUTLAYER(J) ,J=1,NUMOUT)

CLOSE (4)

endif

if(isave.eq.0) go to 1071

C

C 0 Hidden Layers

C

else if (numlayers.eq.O) then

C Read in iterations, weights, biases, etc. on resuming

if(iopt.eq.2.or.iopt.eq.3) then

OPEN(4,FILE='NET.OH')

READ(4,211) ITERATIONS

READ(4,218) NUMIN

READ(4,218) NUMOUT

DO 241 NOUTLAYER-1,NUNOUT

NUMROW= (NOUTLAYER-1) *NUMIN
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DO 241 INLAYER=1,NUMIN

INDEXWEIGHT=NUMROW+INLAYER

READ(4,20) WEIGHTOUTLAYER(INDEXWEIGHT)

241 CONTINUE

READ(4,219) dummy_read

READ(4,20) (ERROR(I) ,I=1,NUMOUT)

READ(4,219) dummy read

READ(4,20) (BIAS OUTLAYER(J) ,J=1,NUMOUT)

CLOSE (4)

C Read in delta-Weights, delta-biases on resuming

OPEN(4, FILE='MOMENTUM. OH')

READ(4,219) dummy-read

DO 441 NOUTLAYER=1,NUMOUT

NUMROW= (NOUTLAYER-1) *NTJMIN

DO 441 INLAYER=1,NUMIN

INDEXWEIGHT=NUMROW+INLAYER

READ (4,20)

1 DELTAWEIGHT OUTLAYER(INDEXWEIGHT)

441 CONTINUE

READ(4,219) dummy-read

READ(4,20) (DELTABIASOUTLAYER(J) ,J=1,NUMOUT)

CLOSE (4)

endif

71 if(iopt.ne.3) then

3001 ERRMAX=O.O

C Scramble order of input of learning cases
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IF(CASEORDER.EQ.IIR) CALL

1 RANDOMIZE (ORDER, NUNCASES)

C Do one major pass of the learning cases

DO 4 i=l,numcases

INCASE=(ORDER(I) -1)*numin+1

ioutcase=(ORDER(i) -1)*numout+l

CALL FORWARDPASS_0(CASE_IN(INCASE),OUT,

1 WEIGHTOUTLAYER,

2 NUMIN,NUMOUT,BIASOUTLAYER)

CALL BACKWARDPASS_0 (CASEIN (INCASE) ,OUT,

1 WEIGHTOUTLAYER,

2 NUMIN,NUMOUT,BIASOUTLAYER,

3 CASE OUT (IOUTCASE) ,ERROR,

3 DELTAOUT,DELTABIASOUTLAYER,

4 DELTAWEIGHTOUTLAYER,

5 LEARNINGRATE,MOMENTUM)

ERR=O.

C Test for error limit termination

DO 10 J=1,NUMOUT

ERR-ERR+ERROR (J) *ERROR (J)

10 CONTINUE

IF (ERR. GT. ERR MAX) ERRMAX=ERR

4 CONTINUE

ITERATIONS=ITERATIONS+ 1

INDEX=INDEX-1

IF(INDEX.EQ.100) THEN
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INDEX=O

WRITE(6,11) ITERATIONS,ERRMAX

ENDIF

isave=isave +1

if(isave.eq.auto-save) then

isave=0

endif

if(isave.eq.O) goto 14

C Test for maximum iteration count exceeded termination

if(iterations.gt.max-iterations) go to 14

C The following 3 lines are necessary for MSDOS

c call getkey(keydep,iierr)

c if(iierr.eq.0) go to 12

c if(keydep.eq.escape) go to 14

12 IF(ERRMAX.GT.ERRORMAX) GO TO 3001

C Save the current weights and biases

14 OPEN(4,FILE-INET.OH')

WRITE(4,11) ITERATIONS,ERRMAX

WRITE(4,621) NUMIN

WRITE(4,21) NUNOUT

DO 41 NOUILAYER=1,NUMOUT

NUMROW= (NOUTLAYER-1) *NUNIN

DO 41 INLAYER-1,NUMIN

INDEXWEIGHT-NUMROW+INLAYER
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WRITE(4,20) WEIGHTOUTLAYER(INDEXWEIGHT)

41 CONTINUE

WRITE(4,22)

WRITE(4,20) (ERROR(I) ,I=1,NUMOUT)

WRITE(4, 24)

WRITE(4,20) (BIASOUTLAYER(J) ,J=1,NUMOUT)

CLOSE (4 )

OPEN (4 ,FILE='LEARNCAS .OH' )

WRITE(4, 25)

C Save the success rate of the learning cases

DO 40 I=1,NUMCASES

WRITE(4,26) I

incase=(i-1) *numin+1

ioutcase= (i-i) *numout

CALL FORWARDPASS 0 (CASEIN ( ircase),OUT

1 WEIGHTOUTLAYER,

2 NUMIN,NUMOUT,BIASOUTLAYER)

WRITE(4,27) (case out(ioutcase+j) ,OUT(3),

1 (case out(ioutcase+j) -OUT(J)) ,J-1,NUMOUT)

40 CONTINUE

CLOSE (4)

C Save the current delta-weights and delta-biases

OPEN(4,FILE=IMOMENTUM.OH')

WRITE(4,467)

DO 471 NOUTLAYER 1, NUMOUT

NUMOW= (NOUTLAYER- 1) *NUMIN
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DO 471 INIAYER=1,NUMIN

INDEXWEIGHT=NUMROW+INLAYER

WRITE (4,20)

1 DELTAWEIGHTOUTLAYER(INDEXWEIGHT)

471 CONTINUE

WRITE(4,469)

WRITE(4,20) (DELTABIASOUTLAYER(J) ,J=1,NUMOUT)

CLOSE (4)

end if

if(isave.eq.O) go to 71

endif

C

C Run Test Cases

C

inumcases=1

C Read in the Test cases

open (3, file=INTEST)

C The following read is a dummy for compatibility

C So that INLEARN & INTEST files will be interchangeable

read(3,216) numo

350 read(3,217,end=357) infile,iin(inumcases)

numcases-inumcases

inumcases-inumcases+ 1

inum in-i

C Read in one test signal

open (4, file-INFILE)
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351 jjcase=(numcases-1) *numin+inumin

read(4,252,end=353) case iri(jjcase)

inumin= inumiri+lI

go to 351

353 close(4)

go to 350

357 close(3)

write(6,259) numcases

do 304 j=l,numcases

do 303 jj=1,numout

jjj=(J-1) *numout+jj

if(iin(j).eq.jj) then

case-out(jjj)=1.

else

case out(jjj )=0.

endif

303 continue

304 continue

C

C Two Hidden Layers

C

If (numlayers.eq.2) then

C Save the success rate of the test cases

OPEN(4,FILE='TESTCASE.2H')

WRITE (4 ,325)

325 FORMAT(@ TEST CASE ERRORS')
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DO 2340 I=1,NUMCASES

WRITE(4,26) I

incase=(i-1) *numin+1

ioutcase= (i-i) *numout

CALL FORWARDPASS_2(CASEIN(INCASE),

1 OUTHIDDEN1,OUT,

1 WEIGHTHIDDENi, WEIGHTOUTLAYER, OUT HIDDEN2,

2 NUMIN,NUMHIDDEN1,NUMOUT,

2 BIASHIDDEN1,BIAS_OUTLAYER,

3 NUMHIDDEN2,BIASHIDDEN2,WEIGHTHIDDEN2)

WRITE(4,27) (case_out(ioutcase+j),OUT(J),

1 (case out(ioutcase+j) -OUT(J)) ,J=1,NUMOUT)

2340 CONTINUE

CLOSE (4 )

C

C 1 Hidden Layer

C

else if (numlayers.eq.1) then

C Save the success rate of the test cases

OPEN(4,FILE='TESTCASE. 1H')

WRITE(4, 325)

DO 1340 I-1,NUMCASES

WRITE(4,26) I

incase=(i-1) *numin+1

ioutcase- (i-i) *numout

CALL FORWARDPASS_1 (CASE_IN (incase),
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1 OUTHIDDEN1,OUT,

1 WEIGHTHIDDEN1,WEIGHTOUTLAYER,

2 NUMIN,NUMHIDDEN1,NUMOUT,BIASHIDDENi,

2 BIASOUTLAYER)

WRITE(4,27) (case-Out(ioutcase+j) ,OUT(J),

1 (case-out(ioutcase+j) -OUT(J)) ,J=1,NUMOUT)

1340 CONTINUE

CLOSE (4)

C

C 0 Hidden layers

C

else if(numlayers.eq.O) then

C Save the success rate of the test cases

OPEN (4 ,FILE= 'TESTCASE. OH' )

WRITE (4,325)

DO 340 I=l,NUMCASES

WRITE(4,26) I

incase= (i-i) *nwflin+1

ioutcase= (i-i) *numout

CALL FORWARDPASS 0 (CASE_IN (incase) ,OUT,

1 WEIGHTOUTLAYER,

2 NUMIN, NUMOUT, BIASOUTLAYER)

WRITE(4,27) (case-out(ioutcase+j) ,OUT(J),

1 (case out(ioutcase+j)-OUT(J)) ,J-1,NUNOUT)

340 CONTINUE

CLOSE (4)
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eridif

If(numlay.ne.4.or.numlayers-eq.2) go to 999

numlayers=numlayers+ 1

go to 111

999 stop

END

C

C Subroutine to initialize 2 hidden layer network

C

SUBROUTINE INITIALIZENETWORK 2(WEIGHTHIDDENi,

1 WEIGHTOUTLAYER,

1 DELTAWEIGHT_HIDDEN1,DELTAWEIGHTOUTLAYER,

2 NUMIN, NUMHIDDEN1,NUMOUT, BIAS_HIDDENi ,BIASOUTLAYER,

3 DELTABIAS_HIDDEN1,DELTA_BIAS_OUTLAYER,

4 WEIGHTHIDDEN2,DELTAWEIGHTHIDDEN2,NUMHIDDEN2,

5 BIASHIDDEN2,DELTABIAS_HIDDEN2)

REAL WEIGHT_HIDDEN1(1),WEIGHTOUTLAYER(1),

1 DELTAWEIGHT_ HIDDENi (1),DETAWEIGHTOUTLAYER (1),

1 DELTAWEIGHT_HIDDEN2(1),WEIGHTHIDDEN2(1),

2 BIAS_HIDDENi (1),IA_OUTLAYER(1),

3 DELTA,_BIAS_HiIDDENi (1),DETABIASOUTLAYER (1),

3 DELTA_BIAS_HIDDEN2(1),BIAS_HIDDEN2(1)

DATA WEIGHT_MAX/O.OOOOOO1/,BIASHMAX/O.OOOOOO1/

INDEXWEIGHT=O

w=weight_max/2.

b=bias_max/2.
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DO 2 NHIDDEN1=1,NUMHIDDEN1

DO 1 INLAYER=1,NUMIN

INDEXWEIGHT=INDEXWEIGHT+1

WEIGHTHIDDEN1(INDEXWEIGHT)=

1 RANDOM (WEIGHT MAX) -w

IF(WEIGHTHIDDEN1(INDEXWEIGHT) .EQ.O.)

1 WEIGHTHIDDEN1(INDEXWEIGHT)=WEIGHTMAX/2.

DELTAWEIGHTHIDDEN1(IMDEXWEIGHT)=O.O

1 CONTINUE

BIASHIDDENi (NHIDDEN1) =RANDOM(BIAS MAX) -b

DELTABIASHIDDEN1(NHIDDEN1)=O.O

2 CONTINUE

INDEXWEIGHT=O

DO 4 NHIDDEN2=1,NUMHIDDEN2

DO 3 NHIDDEN1=1,NUMHIDDEN1

INDEXWEIGHT=INDEXWEIGHT-1

WEIGHTHIDDEN2 (INDEXWEIGHT)=

1 RANDOM (WEIGHT MAX) -W

IF(WEIGHTHIDDEN2(INDEXWEIGHT) .EQ.O.)

1 WEIGHTHIDDEN2 (INDEXWEIGHT)=WEIGHTMAX/2.

DELTAWEIGHTHIDDEN2(INDEXWEIGHT)=O.O

3 CONTINUE

BIASHIDDEN2 (NHIDDEN2)=RANDOM(BIASMAX) -b

DELTABIAS HIDDEN2 (NHIDDEN2)=O.O

4 CONTINUE

INDEXWEIGHT=O
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DO 6 NOUTLAYER=1,NUMOUT

DO 5 NHIDDEN2=1,NUMHIDDEN2

INDEXWEIGHT=INDEXWEIGHT+1

WEIGHTOUTLAYER(INDEXWEIGHT)=

1 RANDOM (WEIGHT MAX) -w

IF(WEIGHTOUTLAYER(INDEXWEIGHT) .EQ.O.)

1 WEIGHTOUTLAYER(INDEXWEIGHT)=WEIGHTMAX/2.

DELTAWEIGHTOUTLAYER(INDEXWEIGHT)=O.O

5 CONTINUE

BIASOUTLAYER(NOUTLAYLR) =RANDOM(BIAS MAX) -b

DELTABIASOUTLAYER(NOUTLAYER)=O.O

6 CONTINUE

RETURN

END

C

C Subroutine to do forward pass through1 2 Hidden Layer

C

SUBROUTINE FORWARDPASS_2 (IN, OUT HIDDENi ,OUT,

1 WEIGHTHIDDEN1,WEIGHTOUTLAYER,OUTHIDDEN2,

2 NUMIN, NUMHIDDEN , NUMOUT, BIAS HIDDEN1, BIASOUTLAYER,

3 NUMHIDDEN2,BIASHIDDEN2,WEIGHTHIDDEN2)

REAL IN(1),OUTHIDDEN1(1),OUT(1),

1 WEIGHTHIDDEN1(1),WEIGHTOUTLAYER(1),

2 BIASHIDDEN1(1),BIASOUTLAYER(1),NET,

3 WEIGHTHIDDEN2(1) ,OUT-HIDDEN2(1),

4 BIASHIDDEN2(1)
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C FIRST HIDDEN LAYER FORWARD PASS

INDEXWEIGHT=O

DO 2 NHIDDEN1=1,NUMHIDDEN1

NET=O.

DO 1 INLAYER=1,NUMIN

INDEXWEIGHT=INDEXWEIGHT+1

NET=NET+IN (INLAYER) *WEIGHTHIDDENi (INDEXWEIGHT)

1 CONTINUE

NET=NET+BIASHIDDENi (NHIDDEN1)

OUTHIDDEN1(NHIDDEN1)=1.O/(1.O+EXP(-NET))

2 CONTINUE

C SECOND HIDDEN LAYER FORWARD PASS

INDEXWEIGHT=O

DO 4 NHIDDEN2=1,NUMHIDDEN2

NET=O.

DO 3 NHIDDEN1=1,NUMHIDDEN1

INDEXWEIGHT=INDEXWEIGHT+1

NET=NET+OUTHIDDENi (NHIDDEN1) *

1 WEIGHTHIDDEN2(INDEXWEIGHT)

3 CONTINUE

NET=NET+BIASHIDDEN2 (NHIDDEN2)

OUTHIDDEN2 (NHIDDEN2)=1.O/(1.O+EXP(-NET))

4 CONTINUE



287

C OUTPUT LAYER FORWARD PASS

INDEXWEIGHT=O

DO 6 NOUTLAYER=1,NUMOUT

NET=O.

DO 5 NHIDDEN2=1,NUMHIDDEN2

INDEXWEIGHT=INDEXWEIGHT+1

NET=NET+OUTHIDDEN2 (NHIDDEN2) *

1 WEIGHTOUTLAYER(INDEXWEIGHT)

5 CONTINUE

NET=NET+BIASOUTLAYER (NOUTLAYER)

OUT(NOUTLAYER)=1.O/(1.O+EXP(-NET))

6 CONTINUE

RETURN

END

C

C Subroutine to do backward pass through 2 Hidden Layer

C

SUBROUTINE BACKWARDPASS_2(IN,OUTHIDDEN1,OUT,

1 WEIGHTHIDDEN1,WEIGHTOUTLAYER,OUTHIDDEN2,

2 NUMIN,NUMHIDDEN1,NUMOUT, BIASHIDDENi, BIASOUTLAYER,

3 TARGET,ERROR,DELTAOUT,DELTABIASOUTLAYER,

4 DELTA WEIGHT OUTLAYER, DELTA HIDDEN1,

4 DELTABIASHIDDENi,

5 DELTA WEIGHT HIDDEN1, LEARNINGRATE,NOHENTUH,

6 WEIGHTHIDDEN2,NUMHIDDEN2,BIASHIDDEN2,DELTAHIDDEN2,
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7 DELTABIASHIDDEN2,DELTAWEIGHTHIDDEN2)

REAL IN(1),OUTHIDDEN1(1) ,OUTHIDDEN2(1),OUT(1),

1 WEIGHTHIDDEN1(1) ,WEIGHTOUTLAYER(1),

1 WEIGHTHIDDEN2(1),BIASHIDDEN1(1),

2 BIASHIDDEN2 (1),BIASOUTLAYER(1),

3 TARGET(1),ERROR(1),DELTA-OUT(1),

3 DELTABIASOUTLAYER (1),

4 DELTAWEIGHTOUTLAYER (1) ,LEARNINGRATE, MOMENTUM,

5 DELTAHIDDEN1(1),DELTA_BIASHIDDEN1(1),

5 DELTAHIDDEN2(1),DELTABIASHIDDEN2(1),

6 DELTAWEIGHTHIDDEN1(1),DELTAWEIGHTHIDDEN2(1)

C OUTPUT LAYER

INDEXWEIGHT=O

DO 2 NOUTLAYER=1,NUMOUT

SIGMOID=OUT (NOUTLAYER)

SIGMOIDPRIME= (SIGMOID) *(1 .0-SIGMOID)

ERROR (NOUTLAYER) =TARGET (NOUTLAYER) -OUT (NOUTLAYER)

DELTAOUT (NOUTLAYER)-SIGMOID PRIME*ERROR (NOUTLAYER)

DELTABIASOUTLAYER (NOUTLAYER) -LEARNINGRATE*

1 DELTAOUT(NOUTLAYER)+MOMENTUM*

1 DELTA BIASOUTLAYER(NOUTLAYER)

DO 1 NHIDDEN2=1,NUMHIDDEN2

INDEXWEIGHT-INDEXWEIGHT+1

DELTAWEIGHTOUTLAYER (INDEXWEIGHT)m

1 LEARNINGRATE*
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1 DELTAOUT(NOUTLAYER)*

1 OUTHIDDEN2(NHIDDEN2)+MOMENTUH*

2 DELTAWEIGHTOUTLAYER(INDEXWEIGHT)

1 CONTINUE

2 CONTINUE

C HIDDEN LAYER 2

INDEXWEIGHT=O

DO 5 NHIDDEN2=1,NUMHIDDEN2

SIGMOID=OUTHIDDEN2 (NHIDDEN2)

SIGMOIDPRIME=(SIGMOID) *(1.O-SIGMOID)

NET=O.O

DO 3 NOUTLAYER=1,NUMOUT

INDEX_2_WEIGHT=(NOUTLAYER-1) *NTMHIDDEN2+NHIDDEN2

NET=NET+WEIGHTOUTLAYER (INDEX_2_WEIGHT) *

1 DELTAOUT(NOUTLAYER)

3 CONTINUE

DELTAHIDDEN2 (NHIDDEN2) =SIGMOIDPRIHE*NET

DELTABIASHIDDEN2(NHIDDEN2)=LEARNINGRATE*

1 DELTAHIDDEN2(NHIDDEN2)+MONENTUM*

1 DELTABIASHIDDEN2(NHIDDEN2)

DO 4 NHIDDEN1=1,NUMHIDDEN1

INDEXWEIGHT=INDEXWEIGHT+1

DELTAWEIGHTHIDDEN2 (INDEX WEIGHT)=

1 LEARNINGRATE*

1 DELTAHIDDEN2(NHIDDEN2)*
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1 OUTHIDDEN1(NHIDDEN1)+MOMENTUH*

2 DELTAWEIGHTHIDDEN2(INDEXWEIGHT)

4 CONTINUE

5 CONTINUE

C HIDDEN LAYER 1

INDEXWEIGHT=0

DO 15 NHIDDEN1=1,NUMHIDDEN1

SIGMOID=OUT H IDDENi (NHIDDEN1)

SIGMOIDPRIME= (SIGMOID) *(1. 0-SIGMOID)

NET=0.0

DO 13 NHIDDEN2=1,NUMHIDDEN2

INDEX_2_WEIGHT= (NHIDDEN2-1)*NMIDNINIDN

NET=NET+WEIGHTHIDDEN2 (INDEX_2_WEIGHT)*

1 DELTAHIDDEN2(NHIDDEN2)

13 CONTINUE

DELTAHIDDENi (NHIDDEN1) =SIGMOIDPRIME*NET

DELTABIASHIDDENi (NHIDDEN1) =LEARNING-RATE*

1 DELTAHIDDEN1(NHIDDEN1)+MOMENTUN*

1 DELTA BIASHIDDEN1(NHIDDEN1)

BIASHIDDENi (NHIDDEN1) =BIASHIDDENi (NHIDDEN1) +

1 DELTABIASHIDDEN1(NHIDDEN1)

DO 14 INLAYER-1,NUMIN

INDEXWEIGHT-INDEXWEIGHT+1

DELTAWEIGHT HIDDEN1(INDEXWEIGHT)in

1 LEARNINGRATE*
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1 DELTAHIDDENi(NHIDDEN1)*IN(INLAYER)+MOMENTUM*

2 DELTAWEIGHTHIDDEN1(INDEXWEIGHT)

WEIGHTHIDDEN1(INDEXWEIGHT)=

1 WEIGHTHIDDEN1(INDEXWEIGHT)+

1 DELTAWEIGHTHIDDEN1(INDEXWEIGHT)

14 CONTINUE

15 CONTINUE

C HIDDEN LAYER 2

C HAD TO WAIT TO UPDATE WEIGHTHIDDEN2

C SINCE IT WAS USED TO CALCULATE DELTAHIDDEN1

INDEXWEIGHT=O

DO 17 NHIDDEN2=1,NUMHIDDEN2

BIASHIDDEN2(NHIDDEN2)=BIASHIDDEN2(NHIDDEN2)+

1 DELTABIASHIDDEN2(NHIDDEN2)

DO 16 NHIDDEN1=1,NUMHIDDEN1

INDEXWEIGHT=INDEXWEIGHT+1

WEIGHTHIDDEN2(INDEXWEIGHT)=

1 WEIGHTHIDDEN2(INDEXWEIGHT)+

1 DELTAWEIGHTHIDDEN2(INDEXWEIGHT)

16 CONTINUE

17 CONTINUE

C OUTPUT LAYER

C HAD TO WAIT TO UPDATE WEIGHTOUTLAYER

C SINCE IT WAS USED TO CALCULATE DELTAHIDDEN2
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INDEXWEIGHT=O

DO 7 NOUTLAYER=-1,NUMOUT

BIASOUTLAYER(NOUTLAYER) =BIASOUTLAYER(NOUTLAYER) +

1 DELTABIAS OUTLAYER(NOUTLAYER)

DO 6 NHIDDEN2=1,NUMHIDDEN2

INDEXWEIGHT=INDEXWEIGHT+1

WEIGHTOUTLAYER(INDEXWEIGHT)=

1 WEIGHTOUTLAYER(INDEXWEIGHT)+

1 DELTAWEIGHTOUTLAYER(INDEXWEIGHT)

6 CONTINUE

7 CONTINUE

RETURN

END

C

C Subroutine to generate random no.s between 0 and RANGE

C

FUNCTION RANDOM (RANGE)

INTEGER*2 I1,I(2)

EQUIVALENCE (WONGI(1))

DATA I1/1001/,I/O,2001/

I(1)-O

LONG-LONG*Ii

R-(I (2)+32768)/65536.

RAN DOM=R *RANGE

RETURN
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END

C

C Subroutine to initialize 1 hidden layer network

C

SUBROUTINE INITIALIZENETWORK-l(WEIGHTHIDDEN,

1 WEIGHTOUTLAYER,

1 DELTAWEIGHTHIDDEN,DELTAWEIGHTOUTLAYER,

2 NUMIN, NUMHIDDEN, NUMOUT, BIASHIDDEN, BIAS OUTLAYER,

3 DELTABIASHIDDEN,DELTABIASOUTLAYER)

REAL WEIGHTHIDDEN(l) ,WEIGHTOUTLAYER(1),

1 DELTAWEIGHTHIDDEN(1),DELTAWEIGHTOUTLAYER(l),

2 BIASHIDDEN(1),BIAS-OUTLAYER(1),

3 DELTABIASHIDDEN(1),DELTABIASOUTLAYER(1)

DATA WEIGHTMAX/O.OOOOO0l/,BIAS-MAX/O.OOOOO0l/

INDEXWEIGHT=O

w=weight-max/2.

b=bias-max/2.

DO 2 NHIDDEN=1,NUMHIDDEN

DO 1 INLAYER=1,NUNIN

INDEXWEIGHT=INDEXWEIGHT+l

WEIGHTHIDDEN (INDEXWEIGHT) -RANDOM (WEIGHT MAX) -w

IF(WEIGHTHIDDEN(INDEXWEIGHT) .EQ.O.)

1. WEIGHT HIDDEN (INDEXWEIGHT) -WEIGHT !AX/ 2.

DELTAWEIGHTHIDDEN(INDEXWEIGHT)0O.O

1 CONTINUE

BIASHIDDEN(NHIDDEN) -RANDOM(BIAS iAX) -b
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DELTABIASHIDDEN(NHIDDEN)=O.O

2 CONTINUE

INDEXWEIGHT=O

DO 4 NOUTLAYER=1,NUMOUT

DO 3 NHIDDEN=1,NUMHIDDEN

INDEXWEIGHT=INDEXWEIGHT+1

WEIGHTOUTLAYER(INDEXWEIGHT)=

1 RANDOM(WEIGHTMAX)-w

IF(WEIGHTOUTLAYER(INDEXWEIGHT) .EQ.O.)

1 WEIGHT OUTLAYER (INDEXWEIGHT) =WEIGHT-MAX/2.

DELTA_WEIGHTOUTLAYER(INDEXWEIGHT)=O.O

3 'CONTINUE

BIASOUTLAYER (NOUTLAYER) =RANDOM (BIAS MAX) -b

DELTABIASOUTLAYER(NOUTLAYER)=O.O

4 CONTINUE

RETURN

END

C

C Subroutine to do forward pass through 1 Hidden Layer

C

SUBROUTINE FORWARDPASS_1(IN,OUT_HIDDEN,OUT,

1 WEIGHTHIDDEN,WEIGHT-OUTLAYER,

2 NUMIN, NUNHIDDEN, NUNOUT, BIASHIDDEN, BIASOUTLAYER)

REAL IN(1),OUTHIDDEN(1),OUT(1),

1 WEIGHTHIDDEN(1),WEIGHTOUTLAYER(1),

2 BIASHIDDEN(1) ,BIASOUTLAYER(1) ,NET
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C HIDDEN LAYER FORWARD PASS

INDEXWEIGHT=O

DO 2 NHIDDEN=1,NUMHIDDEN

NET=0.

DO 1 INLAYER=1,NUMIN

INDEXWEIGHT=INDEXWEIGHT+1

NET=NET+IN(INLAYER) *WEIGHTHIDDEN(INDEXWEIGHT)

1 CONTINUE

NET=NET+BIASHIDDEN (NHIDDEN)

OUTHIDDEN(NHIDDEN)=1.0/(1.O+EXP(-NET))

2 CONTINUE

C OUTPUT LAYER FORWARD PASS

INDEXWEIGHT=O

DO 4 NOUTLAYER=1,NUMOUT

NET=O.

DO 3 NHIDDEN=1,NUMHIDDEN

INDEXWEIGHT-INDEXWEIGHT+1

NET-NET+OUTHIDDEN (NHIDDEN) *

1 WEIGHTOUTLAYER(INDEX WEIGHT)

3 CONTINUE

NET=NET+BIASOUTLAYER (NOUTLAYER)

OUT (NOUTLAYER) -1.0/(1.*0+EXP (-NET))

4 CONTINUE
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RETURN

END

C

C Subroutine to do backward pass through 1 Hidden Layer

C

SUBROUTINE BACKWARDPASS_1 (IN, OUTHIDDEN, OUT,

1 WEIGHTHIDDEN,WEIGHTOUTLAYER,

2 NUNIN, NUMHIDDEN, NUMOUT, BIASHIDDEN, BIASOUTLAYER,

3 TARGET,ERROR,DELTAOUT,DELTABIASOUTLAYER,

4 DELTAWEIGHTOUTLAYER,DELTAHIDDEN,DELTABIASHIDDEN,

5 DELTAWEIGHTHIDDEN,LEARNINGRATE,MOMENTUM)

REAL IN(1),OUTHIDDEN(1),OUT(1),

1 WEIGHTHIDDEN(1) ,WEIGHTOUTLAYER(1),

2 BIASHIDDEN(1),BIASOUTLAYER(1),

3 TARGET(1),ERROR(1),DELTAOUT(1),

3 DELTABIASOUTLAYER (1),

4 DELTAWEIGHT OUTLAYER (1),NET, LEARNINGRATE, MOMENTUM,

5 DELTAHIDDEN(1),DELTABIASHIDDEN(1),

6 DELTAWEIGHTHIDDEN(1)

C OUTPUT LAYER

INDEXWEIGHT-O

DO 2 NOUTLAYER-1,NUMOUT

S IGMOID-OUT (NOUTLAYER)

SIGMOIDPRIME=(SIGMOID) *(1.O-SIGMOID)

ERROR (NOUTLAYER) =TARGET (NOUTLAYER) -OUT (NOUTLAYER)
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DELTA OUT (NOUTLAYER) =SIGMOID_-PRIME*ERROR (NOUTLAYER)

DELTABIASOUTtAYER(NOUTLAYER) =LEARNINGRATE*

1 DELTA OUT (NOUTLAYER) +MOMENTUM*

1 DELTABIASOUTLAYER(NOUTLAYER)

DO 1 NHIDDEN=1,NUMHIDDEN

INDEXWEIGHT=INDEXWEIGHT+1

DELTAWEIGHTOUTLAYER(INDEXWEIGHT)=

1 LEARNINGRATE*

1 DELTAOUT(NOUTLAYER)*

1 OUTHIDDEN(NHIDDEN)+MOMENTUM*

2 DELTAWEIGHTOUTLAYER(INDEXWEIGHT)

1 CONTINUE

2 CONTINUE

C HIDDEN LAYER

INDEXWEIGHT=O

DO 5 NHIDDEN=1,NUMHIDDEN

SIGMOID-OUTHIDDEN (NHIDDEN)

SIGMOIDPRIME= (SIGMOID) *(1. 0-SIGMOID)

NETO0.O

DO 3 NOUTLAYER=1 ,NUMOUT

INDEX_2_WEIGHT=(NOUTLAYER-1) *J!IJIDDEN+NHIDDEN

NET=NET+WEIGHTOUTLAYER(INDEX_2_WEIGHT)

1 *DELTAOUT(NOUTLAYER)

3 CONTINUE

DELTAHIDDEN (NHIDDEN) -SIGMOIDPRIME*NET
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DELTABIASHIDDEN(NHIDDEN)=LEARNINGRATE*

1 DELTAHIDDEN(NHIDDEN)

1 +MOMENTUM*DELTABIASHIDDEN(NHIDDEN)

BIASHIDDEN(NHIDDEN) =BIASHIDDEN(NHIDDEN) +

1 DELTABIASHIDDEN(NHIDDEN)

DO 4 INLAYER=1,NUMIN

INDEXWEIGHT=INDEXWEIGHT+1

DELTAWEIGHTHIDDEN(INDEXWEIGHT)=LEARNINGRATE*

I DELTAHIDDEN (NHIDDEN) *IN (INLAYER) +MOMENTUM*

2 DELTAWEIGHTHIDDEN(INDEXWEIGHT)

WEIGHTHIDDEN(INDEXWEIGHT)=

1 WEIGHTHIDDEN(INDEXWEIGHT)+

1 DELTAWEIGHTHIDDEN(INDEXWEIGHT)

4 CONTINUE

5 CONTINUE

C OUTPUT LAYER

C HAD TO WAIT TO UPDATE WEIGHTOUTLAYER

C SINCE IT WAS USED TO CALCULATE DELTAHIDDEN

INDEXWEIGHT-O

DO 7 NOUTLAYER-1,NUMOUT

BIASOUTLAYER (NOUTIJAYER) =BIASOUTLAYER (NOUTLAYER) +

1 DELTABIASOUTLAYER(NOUTLAYER)

DO 6 NHIDDEN-1,NUMHIDDEN

INDEXWEIGHT-INDEXWEIGHT+1

WEIGHTOUTLAYER(INDEXWEIGHT)-
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1 WEIGHTOUTLAYER(INDEXWEIGHT)+

1 DELTAWEIGHTOUTLAYER(INDEXWEIGHT)

6 CONTINUE

7 CONTINUE

RETURN

END

C

C Subroutine to initialize 0 hidden layer network

C

SUBROUTINE INITIALIZENETWORKO(WEIGHTOUTLAYER,

1 DELTAWEIGHTOUTLAYER,

2 NUMIN,NUMOUT,BIASOUTLAYER,

3 DELTABIASOUTLAYER)

REAL WEIGHTOUTLAYER(1),

1 DELTAWEIGHTOUTLAYER(1),

2 BIASOUTLAYER(1),

3 DELTABIASOUTLAYER(1)

DATA WEIGHTMAX/0.0000001/,BIASMAX/0.0000001/

INDEXWEIGHT=0

w=weightmax/2.

b=bias_max/2.

INDEXWEIGHT=0

DO 4 NOUTLAYER=1,NUMOUT

DO 1 INLAYER=1,NUMIN

INDEXWEIGHT=INDEXWEIGHT+1
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WEIGHTOUTLAYER(INDEXWEIGHT)=

1 RANDOM(WEIGHTMAX)-w

IF(WEIGHTOUTLAYER(INDEXWEIGHT) .EQ.0.)

1 WEIGHTOUTLAYER (INDEX WEIGHT) =WEIGHTHAX/2.

DELTAWEIGHTOUTLAYER(INDEXWEIGHT)=0.0

1 CONTINUE

BIASOUTLAYER(NOUTLAYER)=RANDOM(BIASMAX) -b

DELTABIASOUTLAYER(NOUTLAYER)=0.0

4 CONTINUE

RETURN

END

C

C Subroutine to do forward pass through 0 Hidden Layer

C

SUBROUTINE FORWARDPASS_0(IN,OUT,

1 WEIGHTOUTLAYER,

2 NUMIN,NTJMOUT,BIASOUTLAYER)

REAL IN(1),OUT(l),

1 WEIGHTOUTLAYER(1),

2 BIASOUTLAYER(1),NET

C OUTPUT LAYER FORWARD PASS

INDEXWEIGHT=0

DO 2 NOUTLAYER=1,NUMOUT

NET=O.

DO 1 INLAYER-1,NUMIN
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INDEX WEIGHT=INDEX WEIGHT+1

NET=NET+IN (INLAYER) *

1 WEIGHTOUTLAYER(INDEXWEIGHT)

1 CONTINUE

NET=NET+BIASOUTLAYER (NOUTLAYER)

OUT (NOUTLAYER) =1.0/(1. 0+EXP (-NET))

2 CONTINUE

RETURN

END

C

C Subroutine to do backward pass through 0 Hidden Layer

C

SUBROUTINE BACKWARDPASS_0(IN,OUT,

1 WEIGHTOUTLAYER,

2 NUMIN,NUMOUT,BIASOUTLAYER,

3 TARGET,ERROR,DELTAOUT,DELTABIASOUTLAYER,

4 DELTAWEIGHTOUTLAYER,

5 LEARNINGRATE,MOENTU4)

REAL IN (1) ,OUT (1) ,

1 WEIGHTOUTLAYER~i),

2 BIASOUTLAYER( 1),

3 TARGET(l),ERROR(1),DELTAOUT(l),

3 DELTABIASOUTLAYER (1),

4 DELTAWEIGHTOUTLAYER (1),LEARNINGRATE, MOMENTUM
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C OUTPUT LAYER

INDEXWEIGHT=0

DO 2 NOUTLAYER=1,NUMOUT

SIGMOID=OUT (NOUTLAYER)

SIGMOIDPRIME=(SIGMOID) *(1.O-SIGHOID)

ERROR (NOUTLAYER) =TARGET (NOUTLAYER) -OUT (NOUTLAYER)

DELTAOUT (NOUTLAYER) =SIGMOIDPRIME*ERROR (NOUTIAYER)

DELTABIASOUTLAYER(NOUTLAYER)=LEARNINGRATE*

1 DELTAOUT(NOUTLAYER)+MOMENTUM*

1 DELTABIASOUTLAYER(NOUTLAYER)

BIASOUTLAYER (NOUTLAYER) =BIASOUTLAYER(NOUTLAYER) +

1 DELTABIASOUTLAYER(NOUTLAYER)

DO 1 INLAYER=1,NUMIN

INDEXWEIGHT=INDEXWEIGHT+1

DELTAWEIGHTOUTLAYER(INDEXWEIGHT)=

1 LEARNINGRATE*

1 DELTA OUT (NOUTLAYER) *IN (INLAYER) +MOMENTUH*

2 DELTAWEIGHTOUTLAYER(INDEXWEIGHT)

WEIGHTOUTLAYER(INDEXWEIGHT)-

1 WEIGHTOUTLAYER(INDEXWEIGHT)+

1 DELTAWEIGHTOUTLAYER(INDEXWEIGHT)

1 CONTINUE

2 CONTINUE

RETURN

END
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C

C Subroutine to scramble order of inputs

C

SUBROUTINE RANDOMIZE (ORDER, NUM)

INTEGER*2 ORDER(l) ,NORDER(150)

DO 3 J=1,NUM

NORDER(J) =J

3 CONTINUE

NN=NUM

DO 4 J=l,NUM

RANGE=NN

II=RANDOM (RANGE)

II=I1+1

IF(II.GT.NUM) II=NUM

ORDER(J) =NORDER(II)

DO 2 JJ=II,NN

NORDER (JJ)=NORDER (JJ+l)

2 CONTINUE

NN=NN- 1

4 CONTINUE

RETURN

END
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RESULTS is used to consolidate the results obtained

from an all layer pass of BACKPROP (i.e., option 4 for 0, 1,

and 2 hidden layers). It produces consolidated weight

tables and statistics as to the number of learning and test

cases successfully classified.

D.1 RESULTS Example Run

To run the RESULTS program type

results.

The program needs no keyboard inputs as it has no options.

It creates several output files containing weights and

biases and one file containing the consolidated statistics

(called RESULTS). An example RESULTS file is shown in

Figures 74 and 75.
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2 hidden layers took 831 learning iterations;
1 hidden layer took 1568 learning iterations;
0 hidden layers took 50001 learning iterations.
For 2 Hidden layers and 39 learn cases:

39 were correctly classified
0 were incorrectly classified
0 were not classified

100.00 % were correctly classified
.00 % were incorrectly classified

.0046650 was the average amount of uncertainty

.0293080 was the maximum amount of uncertainty

.0000000 was the minimum amount of uncertainty
For 1 Hidden layers and 39 learn cases:

39 were correctly classified
0 were incorrectly classified
0 were not classified

100.00 % were correctly classified
.00 % were incorrectly classified

.0047615 was the average amount of uncertainty

.0253820 was the maximum amount of uncertainty

.0000000 was the minimum amount of uncertainty
For 0 Hidden layers and 39 learn cases:

39 were correctly classified
0 were incorrectly classified
0 were not classified

100.00 % were correctly classified
.00 % were incorrectly classified

.0065110 was the average amount of uncertainty

.0384260 was the maximum amount of uncertainty

.0000000 was the minimum amount of uncertainty

Figure 74. First Part of RESULTS Sample Output
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For 2 Hidden layers and 149 test cases:
136 were correctly classified
3 were incorrectly classified

10 were not classified
91.28 % were correctly classified
2.01 % were incorrectly classified
.0050103 was the average amount of uncertainty
.2102960 was the maximum amount of uncertainty
.0000000 was the minimum amount of uncertainty

For 1 Hidden layers and 149 test cases:
130 were correctly classified
2 were incorrectly classified
17 were not classified
87.25 % were correctly classified
1.34 % were incorrectly classified
.0105614 was the average amount of uncertainty
.3167200 was the maximum amount of uncertainty
.0000000 was the minimum amount of uncertainty

For 0 Hidden layers and 149 test cases:
116 were correctly classified
3 were incorrectly classified

30 were not classified
77.85 % were correctly classified
2.01 % were incorrectly classified
.0160266 was the average amount of uncertainty
.4818220 was the maximum amount of uncertainty
.0000000 was the minimum amount of uncertainty

Figure 75. Second Part of RESULTS Output File

D.2 Listina of RESULTS

C PROGRAM TO MAKE WEIGHT MAPS

C

C Note: The following are maximum values

C The actual may be less than these numbers

C

PARAMETER (NUMIN1-64)

PARAMETER (NUMHIDDEN11-100)
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PARAMETER (NUMHIDDEN21=100)

PARAMETER (NUMOUT1=1O)

PARAMETER (NUMCASES1=500)

PARAMETER (NUMWEIGHTHIDDEN1=NUMIN1*NJMHIDDEN11)

PARAMETER (NUMWEIGHTHIDDEN2=NUMHIDDEN11*NUHHIDDEN2 1)

PARAMETER (NUMWEIGHTOUT=NUMHIDDEN2 1*NUMOUT1)

PARAMETER (NUMCASIN1=NUMIN1*NUMCASES1)

PARAMETER (NUMCASOUT1=NUMOUT1*NUMCASES1)

C The network is saved in case of power outage every

C auto-savel iterations; may be restarted

PARAMETER (auto savel-50)

C

coinmon/i7/ weight-hiddeni

common/i8/ weight-hidden2

common/i9/ weight_outlayer

INTEGER*1 IIA,NNA, BASE, LETTERS (NUHWEIGHTHIDDEN2)

INTEGER*2 BASECHAR

REAL WEIGHTHIDDEN1(NUMWEIGHTHIDDEN1),

1 WEIGHTHIDDEN2 (NUMWEIGHTHIDDEN2),

1 WEIGHTOUTLAYER (NUMWEIGHTOUT),

2 BIASHIDDEN1(NUMHIDDEN11),

2 BIASOUTLAYER (NUNOUTi) ,UT (NUMOUTi),

2 BIASHIDDEN2(NUMHIDDEN21) ,ERROR(NUMOUT1),

2 CASE OUT (NUMCASOUTi)

EQUI VALENCE (BASE, BASECHAR)

DATA IIA/lHA/ ,NNA/lHa/
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DATA WMAX/2./

WINC=WMAX/20.

C Two Hidden Layers

C

OPEN (4 ,FILE= 'NET. 2H' )

OPEN(3,FILE='WEIGHT1.2H')

C Get number of learning passes required

READ(4, 211) ITERATIONS2

211 FORMAT(11X,17)

C Get Number Of Inputs

READ(4,218) NUMIN

218 format(i4)

219 FORMAT(Al)

C Get Number Of Hidden Neurons Layer 1

READ(4,218) NUMHIDDENi

C covert weight values to alphabetic character map

DO 2231 NHIDDEN1=1,NUMHIDDENl

NUNROW- (NHIDDENl-l) *NTJMIN

DO 2230 INLAYER-lNUMIN

INDEXWEIGHT=NUMROW+INLAYER

READ(4,20) W

C W IS WEIGHTHIDDEN1(INDEXWEIGHT)

BASE-I IA

IF (W. LT. 0) THEN

BASE-NNA

W--W
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ENDIF

IF (W.EQ.0.) THEN

BASE='O'

E LSE

DO J=1,24

IF(W.GE.WINC) THEN

BASE=BASE+ 1

W=W-WINC

ENDIF

ENDDO

F'.,

iF(W.GE.WINC) BASE=BASE+1

LETTERS (INLAYER) =BASECHAR

2230 CONTINUE

WRITE(3,7) (LETTERS(JH) ,JH=1,NUMIN)

7 FORMAT(100A1)

2231 CONTINUE

CLOSE (3)

OPEN(3,FILE=1WEIGHT2.2H')

C Get Number Of Neurons Hidden Layer 2

READ(4,218) NUMHIDDEN2

C Covert weight values to alphabetic character map

DO 2232 NHIDDEN2-1,NUMHIDDEN2

NIJMROW- (NHIDDEN2-l) *NTJ)IJIDDENl

DO 2225 NHIDDEN1-l,NUMHIDDEN1

INDEXWEIGHT-NUHROW+INLAYER
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READ(4,20) W

C W=WEIGHTHIDDEN2(INDEXWEIGHT)

BASE=I IA

IF (W. LT.O0) THEN

BAS E=NNA

W=-W
ENDIF

IF (W.EQ.O.) THEN

BASE='O'

ELSE

DO J=1,24

IF(W.GE.WINC) THEN

BASE=BASE+ 1

W=W-WINC

ENDIF

ENDDO

ENDIF

IF(W.GE.WINC) BASE=BASE+1

LETTERS (NHIDDEN1) =BASECHAR

2225 CONTINUE

WRITE(3,7) (LETTERS(JH) ,JH=1,NUI4HIDDEN1)

2232 CONTINUE

CLOSE (3)

OPEN(3,FILE=IWEIGHT3.2H')

C Get Number Of Outputs

READ(4,218) NUMOUT
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if (numout.lt.1) then

write(6,934)

934 format(' Error in file WEIGHT3.2H,',

' enter number of outputs')

read(5,935) numout

935 format(16)

endif

C Covert weight values to alphabetic character map

DO 2241 NOUTLAYER=1,NUMOUT

NUMROW= (NOUTLAYER-1) *NUMHIIDDEN2

DO 2229 NHIDDEN2=1,NUrMHIDDEN2

INDEXWEIGHT=NUHROW+NHIDDEN2

READ(4,20) W

C W=WEIGHTOUTLAYER(INDEXWEIGHT)

BASE-IIA

IF(W.LT.O) THEN

BASE=NNA

W--W

ENDIF

IF (W.EQ.O.) THEN

BASE-'01

ELSE

DO J-1,24

IF(W.GE.WINC) THEN

BASE=BASE+ 1

W-W-WINC
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ENDIF

ENDDO

ENDIF

IF(W.GE.WINC) BASE=BASE+1

LETTERS (NHIDDEN2) =BASECHAR

2229 CONTINUE

WRITE(3,7) (LETTERS(JH) ,JH=1,NUI4HIDDEN2)

2241 CONTINUE

CLOSE (3 )

READ(4,219) dummy-read

READ(4,20) (ERROR(I) ,I=1,NUMOUT)

OPEN(3 ,FILE='BIAS1.2H')

READ(4,219) dummy-read

C Covert weight values to alphabetic character map

READ(4,20) (BIAS HIDDEN1(J) ,J=1,NUI4HIDDEN1)

DO 1730 IJKL=1l,NTJMHIDDEN1

W=BIAS-HIDDEN1 (IJKL)

BASE=IIA

IF (W. LT.O0) THEN

BASE=NNA

w-w

ENDIF

IF (W.EQ.0.) THEN

BASE'O'0

ELSE

DO J=1,24
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IF(W.GE.WINC) THEN

BASE=BASE+ 1

W=W-WINC

ENDIF

ENDDO

ENDIF

IF(W.GE.WINC) BASE=BASE+1

LETTERS (IJKL) =BASECHAR

1730 CONTINUE

WRITE(3,7) (LETTERS(JH) ,JH=1,NUMHIDDEN1)

CLOSE (3 )

OPEN(3,FILE='BIAS2 .2H')

READ(4,219) dummy read

C Covert weight values to alphabetic character map

READ(4,20) (BIASHIDDEN2(J) ,J=1,NUMHIDDEN2)

DO 1731 IJKL=1l,NUMHIDDEN2

W=BIASHIDDEN2 (IJKL)

BASE=IIA

IF(W.LT.O) THEN

BASE=NNA

W--W

ENDIF

IF (W.EQ.O.) THEN

BASE'O'1

ELSE

DO J-1,24
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IF(W.GE.WINC) THEN

BASE=BASE+1

W=W-WINC

ENDIF

ENDDO

ENDIF

IF(W.GE.WINC) BASE=BASE+l

LETTERS (IJKL) =BASECHAR

1731 CONTINUE

WRITE(3,7) (LETTERS(JH) ,JH=1,NUMHIDDEN2)

CLOSE (3 )

OPEN(3,FILE='BIAS3.29')

READ(4,219) dummy_read

READ(4,20) (BIAS OUTLAYER(J) ,J=l,NUMOUT)

C covert weight values to alphabetic character map

DO 1732 IJKL-1,NUhOUT

W=BIASOUTLAYER (IJKL)

BASE=IIA

IF(W.LT.O) THEN

BASE=NNA

W--W

ENDIF

1F (W.EQ.O.) THEN

BASE-'0'

ELSE

DO J-1,24
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IF(W.GE.WINC) THEN

BASE=BASE+1

W=W-WINC

ENDIF

END DO

ENDIF

IF (W.GE.WINC) BASE=BASE+1

LETTERS (IJKL) =BASECHAR

1732 CONTINUE

WRITE(3,7) (LETTERS(JH) ,JH=1,NUMOUT)

CLOSE (3 )

CLOSE (4)

OPEN(4,FILE='NET.1H')

OPEN(3,FILE'1WEIGHT1. 1H')

C Get number of learning passes required

READ(4,211) ITERATIONSi

C Get Number Of Inputs

READ(4,218) NUHIN

C Get Number Of Neurons in Hidden Layer

READ(4,218) NUNHIDDENi

C Covert weight values to alphabetic character map

DO 1231 NHIDDEN=1,NU4HIDDENI

NUMROW (NHIDDEN-l) *NIJMIN

DO 1228 INLAYER1,NUMIN

INDEXWEIGHT=NUMROW+INLAYER

read(4,20) W
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C W=WEIGHTHIDDEN1(INDEX WEIGHT)

BASE=IIA

IF(W.LT.O) THEN

BASE=NNA

W=-W

ENDIF

IF (W.EQ.O.) THEN

BASE='O'

ELSE

DO J=1,24

IF(W.GE.WINC) THEN

BASE=BASE+ 1

W=W-WINC

ENDIF

ENDDO

ENDIF

IF(W.GE.WINC) BASE=BASE+l

LETTERS (INLAYER) =BASECHAR

1228 CONTINUE

WRITE(3,7) (LETTERS(JH) ,JH=1,NUMIN)

1231 CONTINUE

CLOSE (3)

OPEN(3,FILE-'WEIGHT2.lH@)

READ(4,218) NUMOUT

C Covert weight values to alphabetic character map

DO 1241 NOUTLAYER-1,NUMOUT
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NUMROW= (NOUTLAYER-1) *NTJMHIDDEN1

DO 1227 NHIDDEN=1,NUMHIDDEN1

INDEXWEIGHT=NUMROW+NHIDDEN

READ(4,20) W

C W=WEIGHTOUTLAYER(INDEXWEIGHT)

BASE=IIA

IF(W.LT.O) THEN

BASE=NNA

W=-W

ENDIF

IF (W.EQ.O.) THEN

BASE='O'

ELSE

DO J=1,24

IF(W.GE.WINC) THEN

BASE=BASE+l

W=W-WINC

ENDIF

ENDDO

ENDIF

IF(W.GE.WINC) BASE=BASE+1

LETTERS (NHIDDEN) -BASECHAR

1227 CONTINUE

WRITE(3,7) (LETTERS(JH) ,JH=1,NUMHIDDEN1)

1241 CONTINUE

CLOSE (3)
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20 FORMAT(F16.1O)

READ(4, 219) dummy read

READ(4,20) (ERROR(I),I=l,NUMOUT)

OPEN(3,FILE='BIAS1.1H')

READ(4, 219) dummy-read

C Covert weight values to alphabetic character map

READ(4,20) (BIASHIDDEN1(J) ,J=l,NUMHIDDEN1)

DO 1733 IJKL=1l,NUMHIDDEN1

W=BIASHIDDENi (IJKL)

BASE=I IA

IF(W.LT.O) THEN

BASE=NNA

W=-W

ENDIF

IF (W.EQ.O.) THEN

BASE='0'

ELSE

DO J-1,24

IF(W.GE.WINC) THEN

BASE=BASE+1

W-W-WINC

ENDIF

ENDDO

ENDIF

IF(W.GE.WINC) BASE-BASE+1

LETTERS (IJKL) -BASECHAR
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1733 CONTINUE

WRITE(3,7) (LETTERS(JH) ,JH=l,NUMHIDDENl)

CLOSE (3 )

OPEN(3,FILE='BIAS2.lH')

READ(4, 219) dummy read

READ(4,20) (BIASOUTLAYER(J) ,J=lNUMOUT)

C Covert weight values to alphabetic character map

DO 1734 IJKLl1,NUMOUT

W=BIASOUTLAYER (IJKL)

BASE=IIA

IF(W.LT.0) THEN

BASE=NNA

w-w

ENDIF

IF (W.EQ.O.) THEN

BASE=10'

ELSE

DO J-1,24

IF(W.GE.WINC) THEN

BASE=BASE+ 1

W-W-WINC

ENDI F

ENDDO

ENDIF

IF(W.GE.WINC) BASE-BASE+1

LETTERS (IJKL) -BASECHAR
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1734 CONTINUE

WRITE(3,7) (LETTERS(JH) ,JH=1,NUMOUT)

CLOSE (4 )

CLOSE (3)

OPEN (3 ,FILE= 'WEIGHTi. OH' )

OPEN (4 ,FILE= 'NET. OH ')

C Get number of learning passes required

READ(4,211) ITERATIONSO

C Get Number Of Inputs

READ(4,218) NUHIN

C Get Number Of Outputs

READ(4,218) NUMOUT

C Covert weight values to alphabetic character map

DO 241 NOUTLAYER=1,NUHOUT

NUMROW= (NOUTLAYER-l) *NTJMIN

DO 228 INLAYER= 1 NUMIN

INDEXWEIGHT=NUMtROW+INLAYER

READ(4,20) W

C W=WEIGHTOUTLAYER(INDEXWEIGHT)

BASE-I IA

IF(W.LT.O) THEN

BASE=NNA

W=-W

ENDIF

IF (W.EQ.O.) THEN

BASE='O'
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ELSE

DO J=1, 24

IF(W.GE.WINC) THEN

BASE=BASE+ 1

W=W-WINC

ENDIF

ENDDO

ENDIF

IF(W.GE.WINC) BASE=BASE+1

LETTERS (INLAYER) =BASECHAR

228 CONTINUE

WRITE(3,7) (LETTERS(JH) ,JH=1,NUMIN)

241 CONTINUE

CLOSE (3)

READ(4, 219) dummy read

READ(4,20) (ERROR(I) ,I=1,NUMOUT)

OPEN(3,FILE='BIASl.OH')

READ(4, 219) dummy read

C Covert weight values to alphabetic character map

READ(4,20) (BIASOUTLAYER(3),J-l,NUMOUT)

DO 1735 IJKL-1,NUMOUT

W-BIASOUTLAYER (IJKL)

BASE-IIA

IF (W. LT. 0) THEN

BASE-NNA

W--W
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ENDIF

IF (W.EQ.O.) THEN

BASE='O'

ELSE

DO J=1,24

IF(W.GE.WINC) THEN

BASE=BASE+ 1

W=W-WINC

ENDIF

ENDDO

ENDIF

IF(W.GE.WINC) BASE=BASE+1

LETTERS (IJKL) =BASECHAR

1735 CONTINUE

WRITE(3,7) (LETTERS(JH) ,JH=1,NUMOUT)

CLOSE (3)

CLOSE (4)

C Write our error rates for 0, 1, & 2 hidden layers

OPEN(3,FILE='RESULTS')

WRITE(3,900) 2,'s',ITERATIONS2,';'

WRITE(3,900) 1,' 1,ITERATIONS1,';1

WRITE(3,900) 0,1s10ITERATIONSO,'.1

900 FORMAT(' 0,I1,1 hidden layer',A1.1 took',16,

1 learning iterations',A1)

C Initialize case counts to zero

CALL INIT CALC (ERRMAX, ERRMIN,
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1 ERRTOT,NUMCORRECT, NUMINCORRECT,

2 NUMTOTAL, NUMUNIDENTIFIED)

OPEN(4,FILE='LEARNCAS.2H')

READ(4,25) keydep

25 FORMAT(A1)

1=0

4235 READ(4,26,ERR=1039,END=1039) ii

j=i+1

26 FORMAT(A1)

ioutcase= (i-i) *numout

READ(4, 27,err=1039,end=1039)

1 (case out(ioutcase-j),

1 OUT(J) ,ERROR(J) ,J=l,NUMOUT)

C Calculate and write error percentages

CALL ERROR CALC (ERRMAX, ERRMIN, NUMOUT ,ERROR, ERRX,

1 ERRN, ERRTOT, ERRAVG ,NUNCORRECT ,NUMINCORRE CT, NUNTOTAL,

2 PERCENTCORRECT,PERCENTINCORRECT,NUMUNIDENTIFIED)

27 FORMAT(3F10.6)

go to 4235

1039 NUMCASES-I

CLOSE (4)

WRITE(3,90) 2,NUMTOTAL,' learn' ,NUMCORRECT,

1 NUMINCORRECT,

1 NUMUNIDENTIFIED,PERCENTCORRECT,

2 PERCENTINCORPECT,ERRAVG,

2 ERRMAX, ERRMIN
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90 FORMAT(' For',12,' Hidden layers and',14,A6,' cases:'/

1 17,' were correctly classified'/

1 17,' were incorrectly classified'/

1 17,' were not classified'/

1 f10.2,' % were correctly classified'/

1 f10.2,' % were incorrectly classified'/

1 f13.7,' was the average amount of uncertainty'/

1 f13.7,' was the maximum amount of uncertainty'/

1 f13.7,' was the minimum amount of uncertainty')

C Initialize case counts to zero

CALL INITCALC(ERRMAX,ERRMIN,

1 ERRTOT,NUMCORRECT,NUMINCORRECT,

2 NUMTOTAL,NUMUNIDENTIFIED)

OPEN(4,FILE='LEARNCAS.1H')

READ(4,25,end=1040,err=1040) keydep

I=0

4435 READ(4,26,end=1040,err=1040) II

i=i+1

ioutcase=(i-1)*numout

READ(4,27,end=1040,err-1040)

2 (case out(ioutcase+j),OUT(J),

1 ERROR (J),J-1,NUMOUT)

C Calculate and write error percentages

CALL ERRORCALC (ERRMAX, ERRMIN, NUMOUT, ERROR, ERRX,

1 ERRN, ERRTOT, ERRAVG, NUMCORRECT, NUMINCORRECT, NUNTOTAL,

2 PERCENT CORRECT, PERCENT INCORRECT, NUMUNIDENTIFIED)
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go to 4435

1040 NUMCASES=I

CLOSE (4 )

WRITE(3,90) 1,NUMTOTAL,' learn',NUMCORRECT,

1 NUMINCORRECT,

1 NUMUNIDENTIFIED,PERCENTCORRECT,

1 PERCENTINCORRECT,ERRAVG,

2 ERRMAX,ERRMIN

C initialize case counts to zero

CALL INITCALC(ERRMAX,ERRMIN,

1 ERRTOT, NUMCORRECT,NtUMINCORRECT,

2 NUNTOTAL, NUMUNIDENTIFIED)

OPEN(4,FILE=ILEARNCAS.OH')

READ(4,25) keydep

i=0

4135 READ(4,26,err=40,end=40) II

i=i+1

ioutcase= (i-i) *numout

READ (4 ,27 ,err-40, end=40)

1 (case-out(ioutcase+j),OUT(J),

1 ERROR (J) ,J-,NUMOUT)

C Calculate arnd write error percentages

CALL ERRORCALC (ERPMAX, ERRMIN, NUHOUTIERROR, EREX,

1 ERRN, ERRTOT, ERRAVG, NUMCORRECT, NUHINCORRECT, NUMTOTAL,

2 PERCENTCORRECT, PERCENTINCORRECT,NUHLNIDENTIFIED)

go to 4135
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40 NUMCASES=I

CLOSE (4)

WRITE(3,90) O,NUMTOTAL,' learn' ,NUMCORRECT,

1 NUMINCORRECT,

1 NUMUNIDENTIFIED,PERCENTCORRECT,

1 PERCENTINCORRECT,ERRAVG,

2 ERRMAX,ERLRMIN

C Initialize case counts to zero

CALL INIT CALC (ERRMAX, ERRMIN,

1 ERRTOT ,NUNCORRECT, NUMINCORRECT,

1 NUMTOTAL, NUMUNIDENTIFIED)

OPEN(4, FILE='TESTCASE.2H')

READ(4,25) keydep

I=0

2762 READ(4,26,err=-2340,end=2340) II

i=i+l

ioutcase= (i-i) *numout

READ(4, 27, err=2340,end=2340)

1 (case Out(ioutcase+j) ,OUT(J),

1 ERROR (J) ,J=1,NUHOUT)

C Calculate and write error percentages

CALL ERRORCALC (ERPMAX, ERRMIN ,NUMOUT, ERROR, ERRX,

1 ERRN, ERRTOT, ERRAVG, NUNCORRECT, NUMINCORRE CT, NUNTOTAL,

2 PERCENTCORRECT, PERCENT INCORRECT, NUMUNIDENTIFIED)

goto 2762

2340 CLOSE(4)
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numcases= 1

WRITE(3,90) 2,NUMTOTAL,

1 ' test ',NUMCORRECT, NUMINCORRECT,

1 NUMUNIDENTIFIED,PERCENTCORRECT,

1 PERCENTINCORRECT,ERRAVG,

1 ERRMAX, ERRMIN

C

C 1 Hidden Layer

C

C Initialize case counts to zero

CALL INIT_CALC(ERRMAX,ERRMIN,

1 ERRTOT, NUNCORRECT, NUMINCORRECT,

1 NUMTOTAL, NUMUNIDENTIFIED)

OPEN(4 ,FILE='TESTCASE. 1H')

i=o

READ(4,25) keydep

2835 READ(4,26,err=1340,end=1340) II

i=i4-l

ioutcase= (i-i) *numout

READ(4, 27, err=-1340,end=1340)

1 (case_out(ioutcase+j),OUT(J),

1 ERROR (J) ,J-1,NUMOUT)

C Calculate and write error percentages

CALL ERRORCALC (ERRMAX, ERRMIN, NUMOUTIERROR, ERRX,

1 ERRN, ERRTOT, ERRAVG, NUNCORRECT, NUMINCORRECT ,NUNTOTAL,

2 PERCENTCORRECT, PERCENTINCORRECT, NUMUNIDENTI FIED)
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go to 2835

1340 NUMCASES=I

CLOSE (4 )

WRITE(3,90) 1,NUMTOTAL,

1 I test ',NUMCORR.ECT,NUMINCORRECT,

1 NUMUNIDENTIFIED,PERCENTCORRECT,

1 PERCENTINCORRECT,ERRAVG,

1 ERRMAX,ERRMIN

C

C 0 Hidden layers

C

C Initialize case counts to zero

CALL INITCALC(ERRMAX,ERRMIN,,

1 ERRTOT, NUNCORRECT, NUMINCORRECT,

1 NUMTOTAL, NUMUNIDENTI FIED)

OPEN (4 ,FILE= 'TESTCASE. OH' )

READ(4,25) Iceydep

i=0

2935 READ(4,26,err-340,end=340) II

i=i+1

ioutcase= (i-i) *numout

READ(4, 27 ,end-340,err-340)

1 (case out(ioutcase+j) ,OUT(J),

1 ERROR(J) ,J-1,NUMOUT)

C Calculate and write error percentages

CALL ERRORCALC (EREMAX, ERRMIN, NUMOUT ,ERROR, ERRX,
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1 ERRN, ERRTOT, ERRAVG, NUMCORRE CT, NUMINCORRECT, NUMTOTAL,

2 PERCENTCORRECT,PERCENTINCORRECT,NUMUNIDENTIFIED)

go to 2935

340 NIJMCASES=I

CLOSE (4)

WRITE(3,90) 0,NUMTOTAL,

11 test 1,NUMCORRECT, NUMINCORRECT,

1 NUMUNIDENTIFIED,PERCENTCORRECT,

1 PERCENTINCORRECT,ERRAVG,

1 ERRMAX,ERRMIN

CLOSE (3)

999 stop

END

C

C Subroutine to do error calculations

C

SUBROUTINE ERRORCALC (ERRI(AX, ERRMIN, NUMOUT, ERROR, ERRX,

1 ERRN, ERRTOT, ERRAVG, NUNCORRECT, NUMINCORRECT ,NUNTOTAL,

2 PERCENTCORRECT, PERCENTX[NCORRECT,NUMUNIDENTIFIED)

REAL ERROR(1)

ERRX=-1. OE1O

ERRN-1.OElO

ERRT-0

DO 2 J=1,NUMOUT

C Find minimum & maximum errors this case

ERRNX-ERRX
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ER=ABS(ERROR(J))

IF(ER.LT.ERRN) ERRN=ER

IF(ER.GT.ERRX) ERRX=ER

ERRT=ERRT+ER

2 CONTINUE

NUMTOTAL=-NUMTOTAL+ 1

C Increment case counts

IF(ERRX.LT.O.5) THEN

c ******** CORRECT**********

ERRTOT=ERRTOT+ERRT/NUMOUT

NUMCORRECT=NUMCORRECT+ 1

IF(ERRMAX.LT.ERRX) ERRMAX=ERRX

IF(ERRMIN.GT.ERRN) ERRMIN=ERRN

ERRAVG=ERRTOT/NUMCORRECT

ELSE

C Use following statement if more than 2 outputs

IF(ERRN.LT.O.5.AND.ERRNX.GT.O.5) THEN

C Use following statement if only 2 outputs

C IF(ERRN.LT.O.5) THEN

C ********UNIDENTIFIED ********

NUHUNI DENTIFIEDNUMUNIDENTIFIED$-1

ELSE

C ********INCORRECT

NUMINCORRECT-NUHINCORRECT+ 1

ENDIF

ENDIF
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T=NUMTOTAL

PERCENTCORRECT=100. *NTMCORECT/T

PERCENTINCORRECT=100. *NTJMINCORRECT/T

RETURN

END

SUBROUTINE INITCALC(ERRMAX,ERRMIN,

1 ERRTOT, NUMCORRECT, NUMINCORRECT,

1 NUNTOTAL, NUMUNIDENTIFIED)

ERRMAX=-1. OE1O

ERRMIN=1. OE1O

NUMCORRECT=O

NUMINCORRECT=O

NUMUNIDENTIFIED=O

NUMTOTAL=-O

ERRTOT=O.

RETURN

END
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