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ABSTRACT

A computational method for lateral-directional aerodynamics of fighter

configurations is developed. The leading-edge vortices are presented by free

vortex filaments which are adjusted iteratively to satisfy the force-free

condition. The forebody vortex separation, both symmetrical and asymmetrical,

is calculated with a slender body theory. Effect of boundary layer separation

on lifting surfaces is accounted for by using the effective sectional angles

of attack. The latter are obtained iteratively by matching the nonlinear

sectional lift with the computed results based on a lifting-surface theory.

Results for several fighter configurations are employed for comparison with

available data. It is shown that the present method produces reasonable

results in predicting sideslip derivatives, while roll- and yaw-rate

derivatives do not compare very well with forced-oscillation test data at high

angles of attack.
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I LIST OF SYMBOLS

b span

I local chord

c mean aerodynamic chord

I C, C- sectional leading-edge singularity parameter

cA sectional axial force coefficient

c d sectional drag coefficient

CD drag coefficient

CDi induced drag coefficient

Ic sectional lift coefficient

CL total lift coefficient

C k rolling moment coefficient

3C ac~ /a8F
p

m cA acA/a

cm sectional pitching moment coefficient

Cm total pitching moment coefficient

cn sectional normal force coefficient

Cn yawing moment coefficient

n 3 na /98
CN body normal force coefficient based on maximum cross-sectional area

Cp pressure coefficient

AC lifting pressure coefficient

c a sectional leading-edge suction coefficient

- 2
i Scc /c sin a

ct  sectional leading-edge thrust coefficient

I



e r,e unit vectors in cylindrical coordinate system (see fig. 4)

f ratio of sectional lift coefficients from 2-D to 3-D calculations

i,j,k unit vectors in the x,y,z directions, respectively

Ileading-edge length

k residual vortex lift factor

M mach number

n unit normal vector

N number of chordwise vortex elements in a strip

p roll rate

p pb/2V

q pitch rate

r radial coordinate or yaw rate

r rb/2V

r. leading-edge radius

R body radius

S reference area

uvw induced velocity components along x,y,z coordinates, respectively

V total velocity vector

Vn induced normal velocity

V freestream velocity

x,y,z cartesian coordinates with x being positive pointing downstream, a
positive y pointing to the right, and a positive z pointing upwards

Ax nondimensional x-distance from the trailing edge to the vortex
breakdown point

YBD spanwise location of vortex breakdown point nondimensionalized with

respect to half span

nondimensional centroid location of the c -distribution from inboardto n of c s m x



I

I distance from apex to centroid of c -distribution from inboard to n
of c s(max) measured along the leading edge and referred to half span

m z complex variable

zc  camber surface ordinate

zt  thickness ordinate

I
Greek

a angle of attack

i 0 sectional angle of attack

aBD a for vortex breakdown at the trailing edge in symmetrical loading

a e effective angle of attack

aangle of attack of initial vortex separation

atw difference in angles of attack at tip and root sections, negative for
washout

8 sideslip angle, or Mi -
2

6 N nose angle of a wedge section

In y/b/2

r sectional circulation or vortex strength

Yx nondimensional streamwise vortex density

Y y or y nondimensional spanwise vortex density

A sweep angle

I geometric dihedral

velocity potential

P density

* a source strength

sweep angle of a vortex element

e angular coordinate of a body cross section

C complex variable



Subscript

due to a in symmetrical loading

sideslip

BR vortex breakdown on the right wing

BL vortex breakdown on the left wing

f fuselage

9leading edge

max maximum

n normal direction

p roll rate

r yaw rate

t tip or trailing edge

tw twist

w wing

z normal to a planform

0freestream

VlI



I. INTRODUCTION

Maneuvering flight at high angles of attack may induce boundary-layer

separation and vortex-separated flow over aerodynamic surfaces. In addition,

the usually well-organized vortex flow may also break down at a high enough

angle of attack. These flow phenomena affect not only the individual

aerodynamic surfaces on which these phenomena occur but also those in their

close proximity. These flow patterns are now well known qualitatively for

fighter configurations from extensive wind and water tunnel tests. However,

development of quantitative prediction methods has not kept pace with tunnel

testing.

Ultimately, a theoretical method for predicting aerodynamics at high

angles of attack would be ideally based on Navier-Stokes solutions with

appropriate turbulence modeling. However, for applications to preliminary

design, this is not feasible at the present time due to inadequate computer

resources. Therefore, a practical approach would be one involving panel or

panel-like methods with corrections for high angle-of-attack flow features.

For example, one currently available computer code for complete aircraft

configurations is the PAN AIR (refs. 1 and 2). This code is based on the

solution of the Prandtl-Glauert equation and may include boundary-layer

corrections. However, its applications to configurations with extensive

boundary-layer separation or vortex flow have not been demonstrated. It

should be noted that symmetrical vortex flow without breakdown on simple

configurations has been dealt with successfully in reference 3 based on a

panel method. Similarly, the VSAERO code (refs. 4 and 5) was developed mainly

for symmetrical flight conditions with vortex flow and boundary-layer

correction at moderate angles of attack. A comprehensive method for lateral-



directional aerodynamics with aeroelastic effect is that of the FLEXSTAB (ref.

6). However, it was valid only in the region of linear aerodynamics, and

hence at low angles of attack. Recently, the VSAERO code has been extended to

enable calculation of stability and control characteristics of airplanes (ref.

7). Again, applications to high angle-of-attack aerodynamics have not been

reported.

To remedy the inadequacy of existing methods, particularly in the area of

nonlinear lateral-directional aerodynamics, the VORSTAB code was developed for

vortex-dominated configurations (refs. 8 and 9). In this code, the effect of

vortex lift is included through the method of suction analogy while the effect

of vortex breakdown has been accounted for using a theoretical correlation

parameter obtained from experimental data. The code can treat conventional

fighter configurations by using nonlinear section data for the effect of

boundary-layer separation (ref. 10). Either could be used in the code

experimental or theoretical nonlinear section data in order to avoid extreme

difficulty in the theoretical prediction of three-dimensional viscous

separated flows.

In the present investigation, the method of suction analogy used in

reference 8 is replaced with the method of free vortex filaments (ref. 11) to

allow a more accurate calculation of interference effects among different

lifting surfaces. In addition, forebody vortex separation on noncircular

cross sections is also modeled. The results obtained demonstrate the promise

of the present code on a design tool.

In this report both the theoretical and empirical methods used in the code

will be described. Numerical results to demonstrate the applicability of the

present code to modern fighter aircraft geometries will be presented.

-2-



2. THEORETICAL APPROACHES

2.1. General Concept

The main flow features accounted for in the present method are

illustrated in Figure 1. The basic flow considered in the code is the

subsonic potential flow, with corrections for boundary-layer separation and

imbedded free vortex filaments for vortex flow effect. The potential flow

calculation is based on the small disturbance approximation of the gas dynamic

equations which result in the Prandtl-Glauert equation. There are two kALIds

of flow singularities used in the program: horseshoe vortices for lifting

surfaces and vortex multiplets for the fuselage. The strength of the

singularities can be obtained by satisfying the boundary conditions on the

fuselage and lifting surfaces. To properly account for the leading-edge

singularity of pressure loading in the linear theory, and hence the leading-

edge thrust, the Quasi-Vortex-Lattice Method (QVLM) is used (ref. 12).

In addition, the vortex flow arising from separation along the leading

and side edges of a low aspect ratio wing which significantly affects the high

angle-of-attack aerodynamics is simulated by using discrete free vortex

filaments emanating from the edges. At a high enough angle of attack, the

vortex flow will breakdown and decrease the vortex lift effect. The latter is

calculated in the present method by using empirical formulas derived from the

analysis of experimental data.

Another phenomenon limiting the high angle-of-attack flight envelopes

for high performance aircraft is the boundary-layer separation. To account

for this viscous effect on the lifting surfaces, sectional nonlinear data are

used iteratively. In the following, the various methodologies used in the

code will be summarized.

-3-
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I 2.2. Potential Flow Theory

As indicated earlier, the present potential flow method is based on the

solution of the Prandtl-Glauert equation:

2 2 2 2
(l -M p-+ L(D +6-(D' 0(1)

ox 2 by 2 6z2

where D is the perturbation velocity potential. The solution is represented

by vortex distributions. The thin wing approximation is used throughout.I
2.2.1. Boundary Conditions

I Lifting Surfaces. The boundary condition for the Prandtl-Glauert

equation on the wing is that the velocity component normal to the wing surface

should be zero. Assuming that the wing surface can be described as

I
z = z C(x,y) (2)

The unit normal vector on the wing surface can be written as

bz 6z

I +x C2ax byc

For an airplane having angular motions with rates p, q, and r being

positive along the positive x', y' and z'-direction, respectively (see fig. 2

for coordinate systems), the onset velocity at (x',y',z') relative to the

airplane due to these angular rates is

I
i -4-

I



I

S-(p+jq+kr) x (ix'+jy'+kz') = -i(qz'-ry') + j(pz'-rx') - k(py'-qx')

I
To express this velocity vector in the aerodynamic coordinate system (x,y,z),

the sign of i and k- components must be reversed and x', y' and z' are to

be replaced by -x, y, and -z, respectively. It follows that

v = i(-qz - ry) + J(-pz + rx) + k(py + qx)

This must be added to the induced velocity (u,v,w) due to a vortex

distribution and the uniform freestream contribution due to angle of attack

I (a) and sideslip (P) to obtain the total velocity vector at (x,y,z):

V = (V cos a-qz- ry+u)i+(-V sin -pz+rx+v)j

U + (V. sin a + py + qx + w) (4)

I
Applying the tangency condition

V n =0 (5)

I the boundary condition becomes

y -= (V cos a - qz - ry) oI~b ox in -p -q 6

+ (-V sin -pz + rx) c Vsina-py-qx (6)

where ubz /x has been ignored as a second-order term. For a wing withc

dihedral (0) and twist (a tw), it can be shown that (ref. 13)

I -5-
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siI dz Coa
z C sin x co atw (7a)~

dz

-z sn ostw + dc Cos wcos ,(cos a + sin

where the (x2,Y2) coordinate system is illustrated in Figure 3. Basically, it

is a coordinate system based on the local wing chord plane in a nonplanar

configuration, For a cambered wing with small spanwise slopes (dzc/dY2), it

can be shown from equation (7b) that

bzc tan €(8)

Therefore, the wing boundary condition becomes

bzc

V wcossin VC cos a twn a cos -

sin sin ¢ _1V ) (z sin 0 + y cos €2V b

-- (x sin - y Cos(o -- si

C2V bJ~L a xdy

w ( ) co(o + i ) cosi (9)

where V nw is the induced normal velocity due to the vortex distribution of

lifting surfaces and Vnf is that due to the fuselage and c in the mean

aerodynamic chord.

-6-
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I Fuselage. The fuselage surface will be described with the following

I expression:

F(r,e,x) - r - R(e,x) (10)I
where the coordinate system is shown in Figure 4. It follows that the normal

vector on the surface in cylindrical coordinate system with r , + s aie r' e e as basis

vectors is given by

- . ) 1 6 R +oR + 1 6 R + 6R
VF = e - -- .-i - e +e - - - (Ii)Re ~x r e~

I The total velocity vector is still given by equation (4). As shown in Figure

3 the unit vectors, j and k, are related to the basis vectors, er and e

in the following way:[+
H 3]= sine 0 Cos 0e][r

* 141 [ ~j+ (12)
ffi cos e sin e

Therefore, the total velocity vector can be rewritten as[
V - (V cos a - qz - ry + u)i + [v sin e + w cos e + rx sin e + qx cos e

+ p(y cos e - z sin e) - v sin 0 sin e + V sin a cos er

+ [v cos 0 - w sin 0 + rx cos e + qx sin e + p(y sin e + z cos 0)

+V. sin P cos + V sina ssin Ole.0 (13)

-7-
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I Applying the boundary condition:

V , VF = 0,

it is obtained that

1aR aR aR
-- -= I - COS - sin a cos sin a sin e

v V R ax R

+ sin 8 sin 8 - sin cos D R

-pb y cos 0 - z sin 6 y sin 6 + z cos 6 1 aR
(2V b/2 + b/2 R ae]I
rb x sin - x cos 0 1 3R y aR

+ (2-)[- b/2 b/2 R 30 b/2 a]

_ Cose + x sin 6 1 aR z (14)

CO c-/2 c/2 R 36 ]

* where
v = v sin 6 + w cos 6

v = v cos 6 - w sin 6

I It should be noted that the term associated with (pb/2V) can be simplified

because with y - R sin O and z = R cos e,

y cos e - z sin e = 0 (15a)

y sin e + z cos e = R (15b)

I
* -8-
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2.2.2. Vortex Distributions on Lifting Surfaces

To satisfy the Prandtl-Glauert equation (1) and the boundary condition

(eq. 9), surface vortex distributions on lifting surfaces and the wake are

used to produce an induced velocity vector at any point (R) in the field

given by

s 22 w',

= R) f ds (16)

She r

R whr . (x-x 2+) ( 2 + 2 (Z-Z12 (17)

I = +

and w is the vorticity vector at R1 = x + Y + z1k. Equation (16) is to

be substituted into equation (9) to obtain an equation for the unknown W. To

simplify the arithmetic, a typical procedure is to reduce the integral in

equation (16) to a finite sum through a panel method or a vortex-lattice

method. In the present code, a method called the quasi-vortex-lattice method

(QVLM) is used to sum the effect of horseshoe vortices (ref. 12). The QVLM

methodology was developed to accurately account for mathematical singularities

of the square-root type at the leading edges and the Cauchy type in the chord-

wise integral. Accurate calculation of the leading-edge thrust is needed in

calculating the vortex-flow effect (see section 2.3.1).

To illustrate the essential idea of the QVLM, consider a thin airfoil in

a two-dimensional flow. The induced velocity at x on the chord line is

i(XO) -- f y (18)

-9-
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I The integrand in equation (18) possesses a Cauchy singularity at = x. In

addition, y( ) has a square-root singularity at & - 0. To eliminate the

square-root singularity, the x-coordinate is transformed to a e-coordinate

* through the following relation:

S (1- cos e) (19)

Cos 
(20)U2

Therefore, equation (18) becomes

w() f ny(')sin e de" (21)
2ne =2 0 Cos e - Cos e"

I Let

g(e) = y(e) sin(e) 
(22)

I
Since y(e) has a square-root singularity at e - 0 and sin e vanishes at

I e = 0 as /xi, the square-root singularity of y(e) is eliminated by the

factor sin e. Equation (21) can be written as

S--I f 7g(') - g(e)de
w(e) 0 cos e - cos e (23)

I Equation (23) can now be reduced to a finite sum through the midpoint

* trapezoidal rule as follows:

N YkXk(l - Xk)I/ 2  NC, i - 0i -i ) + ::1 (24)
w N~(xi) =- x k O, [ 0': 0I wxi)- ~ k-i X-Xk i0(4

where

I
I -10-

I



I

x. is x at ei - in/N

xk is at ek - (2k - 1)n/2N

where C is related to the frequently-used leading-edge singularity parameter
C-

C' - lim u(x) Vx = lim I y(x)vx - C (25)
x+O x+O 2I

and can be computed once yk s are obtained.

In a three-dimensional flow, the wing surface with a leading edge sweep

A, is divided into vortex strips. Over each vortex strip, the vortex

integral is reduced to a finite sum in exactly the same manner as in the thin

airfoil case described above with the leading-edge singularity parameter C

calculated from the following relation (ref. 12):

1
NCtan2 AI + 2 2 (induced upwash at I.e.)

[cos * -xcos a - cos 0 sin a] (26)

I The sectional leading-edge thrust coefficient (ct) is then given by

C /1 _M2cosT A
ct 2 cos AI(27)

Detailed expressions for the induced velocity vector to be used in the

boundary conditions can be found in reference 12.

I
1 -11-
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I 2.2.3. Distribution of Vortex Multiplets for the Fuselage Effect

For the fuselage effect, G. N. Ward's vortex multiplets are

distributed along the fuselage axis (ref. 14). The velocity potential is

I given by

xft 2 22nIV f(x,e,r) = - -- n} X-+ (x-) +p r f )7xf rn ( )2 2 I2 d

I where cos no is for the symmetrical loading and sin nO for the

antisymmetrical loading. In an asymmetrical flow, such as in a lateral or

directional motion, both terms are needed. To use equation (28), the integral

is first integrated by parts and the resulting expression for t f is then

differentiated to obtain V and V as follows:

a 0 aF 3F
r)  1 f 1 cos ne x n(f( nx

V r 47r Isin n}{fn(Xft) b (xf) - fn -(xf
co n

+ xft ~ ( ) f'()d} (29)
xfL

i aof -n sin no8 1}{fn1(xft)F (x f ( )F fn(nxf
V-)f V rae 4 r I n }fn ftF n ft n f n f X

CO OD xf n n cos no

xft

l + f F( )f()d} (30)
x ft

i where

I
I
l -12-

I



F [x + ./(x_&)2+P r 2122n

n n n
r

n x - +/(x-&) 2 + 2,22

or r n > 0 (31)

x-r [(x- &) + ( + nr 2

rn,/(x- )2 + 2r2

When equations (29) and (30) are substituted into the boundary condition (eq.

(14)), the resulting equation becomes an integral equation for the unknown

singularity strength f-(&). The integrals involving f'(&) are reduced to
n n

finite sums as follows:

X ft f; sin Uk (33)

xf r a ft - xf k kr

xft

Fn f ' d& (xft x 2 n f sin 0 F (34)

x I nft fI2F k nk k

- fI + (xf - XfI )(l - cos

ek= (2k - 1)

The transformation used between and e is to transform = (xfl, xft)

into e - (0, n/2).

The boundary condition (eq. 14) is to be satisfied on the surface. For

this purpose, the method of weighted residuals will be used with RM+cos ME

as the weighting function, where Ri(xi,8) is the radius function at a

-13-
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integrated from --n to n, where m=0,1,-.... For example, in a symmetrical

case with m-0:

Sin v i 1 v i 1 R. i 6Ri

S- T R dG c cos o f R. d ,

ii i -Ri i 6

S-sin a x sin 0 Ri - Ri dO - sin a 1x fn cos 0 Ri dO,

I i=l,.,NF.  (35)

I Similarly, for m=l,

I 1 iv 2 1 v 0 1 IRi 2 1 co R2 6R1x fl v Ri cos Ode - x R R O d cos GdO % Ri

-E V i 2n V R e 60 2nit ax-t C O -sin f 2

Io2 cos Oee si cos 0 Ri cos OdO

sin a n i 6 1Ri 2
2 sRn e eRi cos ede, i=l,.o-,NF. (36)

Note that vr and v include both fuselage and wing effects. Equations

(35), (36), etc. are used to solve for the unknowns f'. For a fuselage with

n

Ifinite slope at the nose, f(nf( ) U 0.

It should be noted that when a combination of surface and axial vortex

distributions is used, the wing loading may become too low at the wing-

fuselage juncture due to the horseshoe-vortex discretization of wing vortex

distributions. This problem is solved in the present code, under the

I symmetrical loading condition, by eliminating the inboard trailing vortices

I -14-
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associated with the root vortex strip. If this is not done, the root vortex

strip will exhibit a loading similar to that near the wing tip.

A more detailed derivation of equations for a body of revolution can be

found in reference 15.

2.3. Vortex Flow Theory

When a lifting surface is assumed to exhibit edge-separated vortex flow,

free vortex filaments emanating from these edges are employed to simulate the

induced aerodynamic effect (ref. 11). The strength of these free vortex

filaments is affected by the leading-edge radius, wing thickness, boundary

layer separation, and vortex breakdown. In addition, forebody vortices may

produce significant effect on overall aerodynamic characteristics of a

configuration. Theoretical methods to calculate these effects are discussed

in the following.

2.3.1. Free Vortex Filaments (Reference 11)

The idea of using free vortex filaments for leading edge separated

flow was described in reference 11. A typical vortex filament is shown in

Figure 5. A filament consists of a series of short straight segments. The

initial location of these segments is shown in dashed lines and the final

location in solid lines. Points A through E lie along a wing trailing vortex

element. BC is allowed to move only in the free stream direction, whereas CD

is fixed in the wing plane because the flow is tangential to the trailing

edge. DE is also fixed in the wing plane. Both segments AB and IJ are

allowed to move to align with the local velocity vector.

-15-



In addition to the force-free condition on all free vortex elements,

boundary conditions cre also satisfied along the leading edges. These

conditions are related to the degree of vortex separation. Note that the

amount of residual leading-edge thrust can be used as a measure of the degree

of vortex separation. In other words, if the leading-edge thrust is zero,

then a complete separation has occurred. Otherwise, only partial separation

exists. Now, it is known that the leading-edge thrust is related to the net

upwash at the leading edge (ref. 12) so that the leading-edge boundary

condition can be written as

V = a + V (37)
n 2. n

where V is given by the right-hand side of equation (9) and a is givenn.

by (refs. 11 and 12)

a = total induced normalwash - VX ,n

2 2 c t cos A 1/2
= N /tan 2  + 2 ) (38)

-/ M2  2

M2 cos 2A

For a case with complete leading-edge separation, ct = 0 and so is a • Note

that ct  may be zero at a portion of the leading edge and not zero at other

parts, depending on such factors as leading-edge radius and thickness

distributions.

Equation (37), together with the force-free conditions on all free vortex

segments, iz solved iteratively (ref. 11). To reduce the .puting time, the

total number of vortex segments used may be reduced by half during the first

few iterations. In addition, to avoid numerical instability associated with

-16-



crowded vortex filaments, an option is provided to calculate the induced

velocity at midpoints between two adjacent filaments and interpolate the

results for the induced velocity at the filaments for the purpose of

satisfying the force-free condition.

2.3.2. Effect of Leading-Edge Radius on Vortex Separation

As indicated earlier, the strength of vortex filaments is affected by

the leading-edge radius. A simple, yet effective concept is needed to connect

the two. In the present method, this is provided by Kulfan's assumptions

(refs. 16 and 17)).

Kulfan assumed that on a slender wing the ltading-edge vortex

separation starts at an angle of attack (a s) at which the leading-edge drag

equals the leading-edge thrust (refs. 16 and 17). This condition has been

shown to be consistent with the angle of attack at which the leading-edge

laminar separation first occurs (ref. 18). To calculate a s consider a

cambered wing. The sectional leading-edge thrust coefficient can be written

as

ct= K(sin a + ao) 2  (39)

where K is a function of geometry and Mach number, and a is the sectionalo

angle of zero lift. For a wing, the sectional leading-edge thrust coefficient

was given in equation 27. The leading-edge singularity parameter at any a

can be written as

C - K'(sin a + a ) (40)
0

Therefore, the leading-edge singularity parameter C1  at a is obtained as
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I C1  C(sin a + a )/(sin a + a ) (41)

The starting angle of attack (a s) of the leading-edge vortex separation can

be obtained by equating the leading-edge drag to the leading-edge thrust.

Using the expression for the leading-edge drag from reference 19, it is

obtained that

2 .2 2..1/2

cos A 2 (sin a s + ao
) ( - M2cosA 42

(I -- -M 2 cos2 A 1/2 2 (sin a + ao) 2  (42)(1-Mos A) 0cos A2I

where ro  is the leading-edge radius. It follows that

1 sin + o01/2 2  2 1cos2)/2
S=sin-1  (2 2 cosA2 -a 0 ] (43)

With a calculated, the sectional thrust coefficient at a > a is given by

ct  (c/2)C 2(1 - M2cos 2A1/2 /cos A (44)

where

w C2 =C[sin(a -a S) +a ]/(sin a + a) (45)

This sectional thrust coefficient is subtracted from the full-thrust value to

I obtain the residual thrust which is used in equation (38).

-- 2.3.3. Effect of Wing Thickness Distribution

*m Experiments show that the leading-edge vortex cores move upwards and

outwards due to thickness (ref. 20). This may be due to the following

i reasons. Firstly, wing thickness affects the induced velocity in the flow

=* -18-
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I field. Secondly, following Kulfan (ref. 16), the flow from the lower surface

has a smaller angle to turn around the leading edge to the upper surface of a

thick wing. Therefore, the net centrifugal force necessary to turn the

fl attached flow is less than that required for a thin wing. It follows that the

leading-edge thrust is reduced.

To account for the induced flow produced by wing thickness, a source

distribution is used with the velocity potential given by

-4 f a(x,,zds (46)

w /(x-x') 2 + B2(y-y') 2 + 02(z-z')

where a is the source strength:

I D -n+ (47)

I
With the unit normal vector due to thickness given by

az az / azt 2 9z 2
+ tt + + t

nt 1--i + + + (48)

and

3 = -cos t + sinc ,

the outflow velocity, Lt' can be shown to be

az/a,+az t ]/az t 2 az t 2

I ( "nt) = [---cosc + sin a] --( ) + (-t)(49)

This outflow velocity is the one produced by the freestream. The one produced

3 by the source distribution is to cancel this velocity component and is equal

* -19-
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to equation (49) with the sign reversed. It follows that the source strength

can be calculated as

'z C ] i zt 
2  azt 2 (50)

[2 i cs a / + (TX') + ( TY)

The induced velocity produced by equation (46) is calculated through a

source lattice method which is derived in Appendix A.

Experimental measurements show that on wings with asymmetric thickness

distribution, the lower surface has virtually no effect on the vortex

development (ref. 21). Therefore, to account for the flow turning angle at

the leading edge, the angle of attack will be reduced by the upper surface

nose angle 6N  (ref. 22). In other words, in equation (45) as is to be

replaced by (as + 6N ). The nose angle for a symmetric wedge configuration is

equal to half of the included angle. For a conventional airfoil section, the

slope calculated at 5% local chord position near the leading edge was used in

reference 22 as the nose angle and the same value has been used in the present

method as well (Fig. 6).

2.3.4. Effect of Boundary Layer Separation

By boundary layer separation it is meant that after separation there

is a thick wake without a strong "organized" vortex flow, as usually present

on a wing of moderate to high aspect ratio and small leading-edge sweep angles

at high angles of attack. To calculate the associated complex flow field

would require solving the Navier-Stokes equations with appropriate turbulent

modeling. Since this is not feasible at the present time for preliminary

design, a method based on utilizing nonlinear section data was developed (ref.
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10). This method was based on the concept of matching the near field lift (or

vorticity) with the far field value provided by the lifting surface theory.

Based on this concept, it is assumed that the effect of flow

separation is to reduce the local angle of attack by Aa at a spanwise

station (ref. 10). Therefore, the effective angle of attack at any spanwise

section becomes

(ae = an - ai - a 0 a, (51)

where a n is the geometric angle normal to the section which may have

dihedral, ai is the induced angle of attack, a is the angle of zero lift,

and Aa represents a reduction in an  to be calculated due to viscous

effects. It follows that

c£( 3 -D) = ca sin(an - a i - a ° - Aa) (52)

Assuming c£, = 27r/( -M2)1/ , equation (51) can be solved for ai
a

a, = a - sin - 1 c X _ a - Aa (53)

i n c 1I £
a

Let the 2-D sectional lift coefficient evaluated at a - a. be c andn 2. L(2-D)
~let

f= f c(2-D) 
(54)

c£ (3-D)

Since c£(3 -D) is computed with an inviscid theory, its value is usually

larger than c£(2 D) if Aa - 0. Therefore, f is usually less than 1.0. In

this case, a geometric angle of attack (W) which produces the reduced lift
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can be found. That is,

sin a' - f sin an

or,

a- - sin- (f sin an) (55)

If follows that Ac in equation (51) becomes

A = ax - a' (56)n

The solution is obtained iteratively as follows:

I. Assume Ac - 0.

2. Find axi from equation (53).

3. Calculate f from equation (54).

4. Determine a from equations (55) and (56).

5. Use A to reduce a in the 3-D boundary condition to determine

c1(3-D)"

6. Repeat steps 2 through 5 until the successive total lift coefficients

differ by less than 0.5%.

For a wing with weak or moderate vortex flow, such as that in a strake-

wing configuration, iterations for vortex filaments will start only after the

iterations for nonlinear section data are completed.

This method is not applicable to those configurations which are domin-

ated by vortex flow, such as the F-106B configuration.
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2.3.5. Effect of Vortex Breakdown

The effect of vortex breakdown is one of the important factors

affecting the aerodynamics of high performance aircraft. Since there is no

comprehensive theory to predict the breakdown location and the residual vortex

strength after breakdown, a semi-empirical formula derived from a least-square

analysis of available data is used in the program.

Lamar (ref. 23) observed that for delta wings, the angles of attack

for vortex breakdown at the trailing edge (a BD) is related to the leading-

edge suction distribution (cs). Let

S ccc /c sin 2  (57)
s s

where c is the mean aerodynamic chord (MAC). Since cs  is proportional to

2
sin a, it follows that c is a function of planform and Mach numbers. From

a least-square analysis of Wentz' data (ref. 24), it was found that aBD'

expressed in degrees, would fall on a single curve described as follows (Fig.

7a)

9.95-2374y+-2 -3 -4 -5
" B -9.15 2.73y +60.810y -33.533y + 7.391y Z- O.581yV

if y < 2.5.

"BD m 38.0, if y 2.5 (58)

where y is the distance from apex to centroid of the c distribution from

inboard to n of cs(max) measured along the leading edge and referred to

the half span. This is illustrated in Figure 7a.
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The progression of the breakdown point on delta wings at a > aBD was

also analyzed based on Wentz' data. Although there was considerable scatter

in the experimental data (Fig. 7b), a single curve based on a least-square

analysis was obtained to be

Ax - 0.457(Aa) - 0.1615(Aa) 2 + 0.0303(Aa)
3 - 0.00237(Aa)4

+ O.00009(Aa) 5 , if Aa < 8.0 deg. (59)

Ax - 0.5392 + 0.0226(Aa), if Aa > 8.0 deg.

where Aa - a - aBD and Ax is the nondimensional x-distance, referred to

the root chord, from the trailing edge to the breakdown point.

It is known that the vortex strength after breakdown is reduced but not

vanished. In the present method, the vortex strength outboard of a station

where vortex breakdown occurs is multiplied by a factor k to represent the

residual vortex lift. The factor k is determined again by analyzing Wentz'

data and is found to be (ref. 25)

k - 0.131 + 0.384y, if < 1.49

k - 0.951 - 0. 2 08 y, + 0.028y 2  if 1.49 4 y < 3.71

k - 0.5, if y > 3.72 (60)

In addition, camber (including vortex flaps) will affect aBD* In the

present code, it is assumed that the leading-edge vortex will burst only when

it reaches the strength corresponding to a flat planform. The strength can be

represented by the total leading-edge suction integrated to c s(max). If Csc
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and Csf are these integrated values for a cambered wing and the

corresponding flat wing, respectively, then

Csc- sin 2 (-) (61)

Csf sin 2 a

from which a can be found a is to be added to 'BD obtained earlier

for a flat wing when camber is present.

Furthermore, it was found that upper surface slopes in the spanwise

direction due to thickness distribution will affect the movement of the burst

point (ref. 26). To model this effect, it is assumed that the local angle of

attack is changed by an amount equal to the spanwise upper surface angle;

i.e., tan-l (z/6y). The new local angle of attack is used in equation (59) to

determine the vortex burst point iteratively because bz/by is, in general,

not a constant. This effect was found to be quite significant for a highly

cambered wing, such as the F-106B configuration.

For a wing with a sideslip angle P, the angles of attack for vortex

breakdown on the windward side (aBR) and the leeward side (aBL) are

calculated as follows:

I. Calculate yI from the symmetrical suction distribution with the

leading edge sweep angles A- for the right wing and A + 0 for

the left wing.

2. Assume that the maximum vortex strength before breakdown is unchanged

by sideslip. Because of increase in vortex lift on the right wing in

a positive sideslip, the maximum vortex strength would be reached at a

lower a (i.e., aBR) than aBD on the right wing. Since the vortex

strength is represented by cs which is proportional to sin 2 a, BR
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and a BL can be obtained by solving the following equation:

sin2 a BD - sin 2 aBR + (* 2 sin P + tan A 1 sin 2 P)sin 2 'BR (62)

where'"-" is for aBL"

The effect of yawing on vortex breakdown is similar to that due to

sideslip. Since the equivalent sideslip ( r) is variable along the leading

edge, the average of 0r at a given y station and that at the tip is used

to determine breakdown a. In the program, aBL for the yawing motion is

determined by a linear interpolation between aBD and a BR for sideslip.

In a rolling motion, the local angle of attack on the right wing is

increased due to a positive roll. It seems that the vortex breakdown angle

would be decreased. However, rolling tends to move the centroid of the vortex

lift distribution outboard (i.e., to increase y Therefore, the vortex

breakdown angle is increased. In the present code, the vortex breakdown angle

for the rolling motion is assumed to be equal to aBD for the symmetrical

loading.

2.3.6. Forebody Vortex Separation

It is well known that a fighter forebody may generate symmetric or

asymmetric vortex separation at high angles of attack and zero sideslip.

Asymmetric separation will produce side force, and hence, yawing moment (ref.

27). Although the vortex lattice method has been used to model the symmetri-

cal vortex separation on a body of revolution (ref. 28), there is no three-

dimensional modeling of asymmetric separation at zero sideslip available for

applications in preliminary design. However, it was shown in reference 29 by

a slender body theory with two discrete vortices that asymmetric vortex
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separation could be obtained as the additional solution in a boundary value

problem. This additional solution may generate a positive or negative side

force with equal probability. This concept is now included in the present

code as follows.

Calculated results from the slender body theory are valid in the near

field and provide the strengths and initial locations of two forebody

vortices. The locations of these forebody vortices in the wing downwash field

are adjusted at the same time as the wing free vortex filaments are adjusted

in position. The slender body theory will be applied at an effective angle of

attack (ae ) at several stations of the forebody to include the wing upwash

and body camber, if any.

Since a forebody is typically not of the circular cross section, a

numerical conformal mapping is applied at computational stations to map each

forebody cross section into a circular one with radius "a". The mapping

function used is (ref. 30)

k A a+l

Z + n 1 (63)
n=l n in+l

where Z represents a complex variable in the physical plane and C the

circle plane (see Appendix B).

The complex potential on the circle plane includes images of vortices and

a source term to represent the effect of expansion of body cross sections (see

Fig. 8):

W~-V2 2 r1a 2a

W(C) -iV sin ae( -- ) - V sin 8( + 1--)n 2

2 Ln 2 +  (Z) (64)
a
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where 1 and C2 are complex conjugates of C and C2' respectively. The

complex velocity is given in equation (B.8) of Appendix B. The boundary

conditions to be satisfied are (ref. 29):

1. At separation points, sI  and s2 (see Fig. 8), tangential velocities

corresponding to the unknown vortex strengths are imposed.

2. The vortices are force-free.

The resulting nonlinear algebraic equations are solved simultaneously for rl,

xl, yl, r'2 ' x 2, Y2 1 where (x,y) are the vortex core coordinates in the

physical plane. Typically, two pairs of realis-.ic solutions--one symmetrical

and one asymmetrical--can be obtained. The asymmetrical solution produces a

side-force and hence, a yawing moment at zero sideslip. In lateral-

directional motion, or with asymmetrical separation points, two branches of

solutions, both asymmetrical can be obtained. Since it is not known when the

second branch (which is more asymmetrical) may appear under a given flight

condition, the second branch of solutions may be used to calculate the maximum

possible side force and yawing moment for design purpose.

Detailed expressions for the boundary value problem in slender body

theory can be found in Appendix B and reference 29.

2.4. Calculation of Aerodynamic Characteristics

The pressure distribution on lifting surfaces is calculated by applying

Kutta-Joukowski's theorem. There are two types of contribution to the lifting

pressure coefficients. One is from the bounded vortex elements and the other

from the chordwise vortex elements. AC from the bounded elements can beP

written as

(ACp ) B = 2(u - v tan *)y (65)
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where u,v are the total x- and y-velocity components and 4 the element

sweep angle. The lifting pressure coefficient from a chordwise vortex element

has the following form:

(AC)T = 2rv (66)

Note that the sidewash (v) is mainly produced by the free vortex filaments.

The calculated AC is interpolated, if necessary, to obtain AC atP P

integration stations and may be printed out at pre-selected locations. For

more details, reference 11 should be consulted.

The calculated pressure force is assumed to be acting normal to the

camber surface. This pressure force is then resolved and integrated to obtain

the following sectional characteristics:

cde z z 2 Dz 2 1/2

c£z = 1 eAC[b sin a + cos a3/[1 + ( b- ) 2+ (bc)2] 12dx (67)

C = f teAC [ zCcos a +sin a]/[[l+ ( z ) 2+ ( bz ) 2] 12dx (68)
i te c sz 2 z 2n/

cd f x le p o xb

Cm = f ACp(Ax + Az - )/[i+( - ) + ( c) ] dx (69)
c Xle

In an attached flow, cd is reduced with the leading-edge thrust. The total

force coefficients are calculated by spanwise integration of sectional force

coefficients as

b/2
CbLS cI cdy (70)

0

Cb/2 cd cdy (71)CD S f0
0
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C 2_ f c c2dy (72)
Sc0 m

To calculate the pressue coefficient on the fuselage, the tangential

velocity component on the body surface is needed. For this purpose, the unit

tangent vector on the surface will be determined first. Note that in a

-1.
crossflow plane, the unit normal vector, n, is (see Fig. 3 and equation (11))

+ + 1 OR
e + ee-r eR 60

With the total velocity given by equation (13), the total tangential velocity

in a crossflow plane is then given by

vt = V * t (74)

For example, in a symmetrical flight condition,

1 R / R 2

vt [(v + V sin a cos e)R L R ve - v sina sin 0]//i + (1 ,) (75)

The pressure coefficient is then (ref. 9)

C 1 - (+u) 2 + M2 u 2 + (Cos & x' + v2 (76)
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The sectional normal and axial force coefficients are obtained by

decomposing the pressure force into the appropriate directions as follows

C • 7F dsn ~p(f) JF

n Rref -n

/C- i0 7 V I + i R 2

C, I= e -X- f Cp f) + (- - -0 RdG (77)

R ref -n p(f) iVFI

1A =I C_ -VF' 1 6R 2 (8Rref -it

Using equation (11) for VF and equation (12b) for k, it is obtained that

1 5R

1 cos e + sin e - R2

C f C RII I + (_I 2 R2 1 - RdO (79)
n R ref - p (f + ( R) + ,R-R6

6R

A  jCp+f. 1 )R 2e (80)
Rref -n it + (I )2 + (R2

The side force coefficient can be calculated in a similar manner:

1 f C I T £ + (_ ' RdO
cY R ref -it

It sin 0 cos -R 1 6R

f C -f)" IR + (-I.I)Rde (81)
Rref -t'( + ( R) 2+ (R 2e

By integrating sectional coefficients along the fuselage, the total force

coefficient can be obtained. For example, the normal force coefficient is
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I
lx 1 ft

CN(f) - S I Rref Cn(f) dx (82)
s f2

The pitching moment coefficient is
I xf

C f1 f R c xdx (83)
Scf 2Cf ref n(f)

I ~) Sc x fg

3. NUMERICAL RESULTS AND DISCUSSION

For the purpose of identification, the present code will be called the

I VORSTAB-II code in the following. In using the code, whenever the airfoil

sectional data are needed, they are generated with a modified Eppler's code

(ref. 33). In the following, calculated results for F/A-18, F-5, F-16XL, and

F-106B configurations will be presented. All calculations are made in eight

iterations to adjust the free vortex and wake positions, except for the F16XL

I where 10 iterations are needed. The vortex-breakdown effect is applied only

at the last iteration. Results for a less than 10 deg. are all obtained with

the method of suction analogy. The main emphasis is on lateral-directional

aerodynamics.

I An F/A-18 Configuration

This is a clean configuration without deflection of the leading-edge flap

as shown in Fig. 9. On the strake, it is assumed that the aerodynamics are

dominated by vortex flow, so that no section data are used. On the other

hand, both vortex flows and viscous separation are assumed to exist on the

wing at high angles of attack.
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Longitudinal characteristics are compared with data in Figure 10. The

results indicate that CL, CD, and Cm can be reasonably predicted. However,

for a greater than 20 deg., there is some discrepancy in the predicted

results. This is due to uncertainty in integrating the fuselage loading.

Since the inviscid fuselage loading is significant, total lift would be over-

predicted if all fuselage loading is included in the calculation. To solve

this problem, the idea used in the USAF Datcom (ref. 35) is to exclude the

region of separated flow from lift calculation. However, it is not known

where the fuselage separation should occur. In the present code, it is

arbitrarily set at a location where the sectional lift coefficient is 1.5.

Lateral-directional coefficients (Cy, C, C) for this configuration

are presented in Figure 11. These characteristics are significantly

influenced by free vortex positions, bursting locations and forebody vortices.

The vortex system is illustrated in Figure 12. In a positive sideslip, the

right leading-edge vortices are closer to the right vertical tail than the

left ones to the left vertical tail. At an angle of attack of 25 deg., the

strake vortices begin to burst at a position near the vertical tail (ref. 36).

At the same time, the forebody vortices, although still weak, tend to push the

right strake vortices towards the right vertical tail. It is a combination of

these factors that generate more downloads on the right tail than on the left

one to produce a negative C.n As the angle of attack is further increased,

the vortices will move upwards to reduce the interference effect. Overall,

the calculated results agree well with data. It should be noted that the

method of suction analogy is not capable of predicing this interference effect

(ref. 9). The empirical prediction of vortex breakdown location at a - 25

deg. has been shown to be in good agreement with water-tunnel results (ref.

36).

-33-



An F-5 Configuration

The F-5 configuration is particularly notable for its long forebody (fig.

13). The whole wing is assumed to be subject to the effects of viscous

separation and vortex flow. The results for lateral-directional coefficients

are presented in Figure 14. The calculated results indicate the loss of

directional stability at a slightly lower angle of attack than the data

shown. The more noteworthy is the effect of forebody vortices. The

asymmetric forebody vortices at a positive sideslip are known to produce a

positive sideforce to contribute to a position directional stability,

i.e., +Cn  (ref. 38). As it is shown in Figure 14, this effect of forebody

vortices becomes significant at 's above 25 deg. to produce a positive Cn

n8Note that typically a vertical tail will not produce a positive C nat

high a's. The increase in dihedral effect (C I) at higher a's is mainly

produced by an assumption in the code that the loading near the left wing tip

is reduced in proportion to the sideslip angle because it behaves more like

the wing trailing edge as the sideslip angle is increased. In the meantime,

the right wing tip will have its loading increased to simulate the leading-

edge effect.

An F-16XL Configuration

Data for this configuration are taken from ref. 39. It does not have

camber and has an inboard sweep angle of 70 deg. and an outboard sweep of 50

deg. (Fig. 15). Because of the expected strong vortex flow, it is assumed

that it is dominated by vortex flow and that no airfoil section data should be

used.
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The lateral-directional 8-derivatives are presented in Figure 16. It is

seen that C is overpredicted at a of 35 deg. The most difficult task inLB

modeling this configuration is again calculating the fuselage loading.

Because the strong vortex flow tends to produce a large loading on the

fuselage, a separated-flow model for the fuselage would be needed for a better

prediction of Cy . Although the predicted C variation is reasonable, the

I calculated C is more erratic. In the present calculation of lateral-

directional characteristics, the fuselage loading is integrated only from the

nose to a station at which the sectional lift coefficient is less than 1.0 or

the rate of change of sectional lift coefficients is less than 1.0.I
An F-106B Configuration

The wing has a conical camber and a leading-edge sweep angle of 60 deg.

(fig. 17). It is assumed to be dominated by vortex flow so that nonlinear

sectional data are not used. The forebody is modeled with a distribution of

I vertical elliptical cross sections. The forebody is transitioned into

circular cross sections in the afterbody.

A typical distribution of vortex filaments for this configuration in a

positive sideslip is illustrated in Figure 18. Again, at high c's,

uncertainty in fuselage modeling in both geometric shape and loading

integration causes C to become too negative at a = 30 deg. (fig. 19). At

a - 35 deg., the predicted Cn8 is not negative enough. Again, this may be

related to difficulty in fuselage modeling. As shown in this figure, C£8

appears to be well predicted.

Steady roll-rate derivatives for this configuration are preoented in

Figures 20 and 21. The present results are quite similar to those given by
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I the method of suction analogy (ref. 9) Good agreement with data can be

obtained before vortex breakdown. However, large discrepancy between data and

theoretical results exist at high a. This is because the experiment data

3 were obtained in forced-oscillation tests. Therefore, unsteady aerodynamic

phenomena, such as vortex lag and unsteady vortex bursting, would become

I important. Specifically, C must be included in the prediction. A steady£8

flwo model, such as the present one, cannot account for such phenomena.

I
4. CONCLUSIONS

I A steady-flow aerodynamic method was developed to calculate lateral-

u directional aerodynamics at high angles of attack. In the method, the edge-

separated vortex flow was represented by free vortex filaments and visous

3 separation effect was accounted for by using nonlinear section data. Forebody

vortex separation was calculated with a slender body theory at an effective

I angle of attack which was given by the lifting surface theory. Calculated

results for four configurations were compared with available wind-tunnel data.

Reasonable agreement could be obtained for sideslip derivatives. Discrepancy

3 in C was attributable to inaccurate fuselage modeling. It was also clear

that dynamic stability coefficients at high angles of attack could not be

3 accurately calculated with a steady flow theory.

I
I
I
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APPENDIX A

A SURFACE SOURCE LATTICE METHOD

Assume that the continuous source distribution is reduced to a finite sum

of discrete source element contributions. These source elements occupy the

same locations as the vortex lattices. A source element is defined by its

inboard endpoint coordinates (xl,yl,zl) and outboard endpoint coordinates

(x2 'y2,z2)" A integration parameter T, representing fraction of the

element, can be defined such that

x' - x = x I - x + T(x 2 - x I )

Y' - y M Y1 - y + T(Y 2 - yl) (A.1)

Z' - z M z - z + T(z 2 - z1)

Therefore, the denominator in the integrand of equation (46) can be written as

(x'-x) 2 + 2(y-y) 2 + 8 2(z'-z) 2 = r 2[(x 2-x1 )
2 + 2(y 2-yl) 2

+ 82 (z2-z) 2 ] + 2T[(Xl-X)(X2-X 1) + 82(yl-y)(y2-Yl )

+ 82 (z-Z)(z2-Z1
)] + (xl-x)2 + 8 2(yl-y)

2 + 82 (z-Z)2

2
T2 A+TB+C

where
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A = (x2-x1 )2 + 2(y2-yl
)2 + 2(z 2 -z 1 ) 2  (A.2a)

B - 2[(xl-x)(x 2 -x I ) + 82 (yl-y)(y2-yl) + 8 2(z1-z)(z 2-z1 )]  (A.2b)
2 82 2 2 2

C = (x1-x) + (y-y)2 + 82 (z1-Z)
2  (A.2c)

It follows that equation (46) can be reduced to a sum of quantities of the

following form:

1

A 0 -CAL fO dT

o7 0 /AT 2 + Bt + C

A I4 {2n[2A + B + 2VA VA + B + C - £n[B + 2VAC]}
47 VA

At /(x2-x1)2 + (Y2-Yl)2 + (z 2 -z 1 )2 (A.3)

By differentiation, the following induced velocity components can be obtained:

T x 2 - x I

x2-x1 + 2/A x2 x 1 + 2/(x -X)
ax . oA I - A + - (X -1 (A.4)

21rVA 2A + B + 2VA VA + B + C B + 2VAC

-Y2 - Yly2-y1 + 2/A - 2  +2V (y (y

MO W aA8 2  VA + B + C Y2 - 1 _1__) (yA-y)

2A 2A + B + 2AA C B+ 2AC } (A.5)

- 2 -z
z AM2 2 + 2A z 2 - z + 2 (z 1z)

A 2A{+2 A + B +C 2 +2/A (A.6)
ax 2,V!A 2A + B + 2VA -A + B + C B + 2-
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APPENDIX B

CALCULATION OF FOREBODY FLOW FIELD IN THE CROSSFLOW PLANE

By slender body theory, aerodynamic characteristics of a forebody with

vortex separation can be calculated in the crossflow plane. The body cross

section is first mapped conformally to a circle of radius "a." The complex

potential on the circle plane can be easily constructed. The total force

coefficients can be obtained by contour integration. These are summarized in

the following.

B.l Conformal Mapping

In reference 30, a formula for mapping an arbitrary polygon symmetrical

about the real axis to a circle of radius "a" is given:

k Aan+l

z- + I n +C (B.1)
nl I

where C is a constant used to adjust the location of the center. Since the

cross section of a forebody is usually symmetrical about the vertical axis, a

rotation by 7r/2 is needed (see Fig. B.1):

1l (B.2)

ZI  iz

It follows that equation (B.1) becomes

k an+l

k Ana C (B.3)
n-i n in+l
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I!

I The derivative dZ/dk is needed in mapping of flow nets:

dZ k an+l1 k nAn

; I- n A n=I n+i -I *n+i n+i1 (B.4)
n= n= 1 n i

where

* = ;/a (B.5)

I
For an elliptic cross section, with a, and a2 as major and minor axes,

an analytical form of the mapping function is

2 2
Z 2+ 1 ! (B.6)

4

Comparing with equation (B.3), it can be shown that

a2 -a2

AI = 2

a1 + a 2

2a =  2

A = , n=2,3,...* n

B.2 Boundary Conditions with Vortex Separation

The complex potential can be written as

a 2 2 r I  C1
W( ) -iV sin a - V sin + a + in 2

r2 2 + Ws(Z) (B.7)

a

;2
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The complex velocity is given by

1 dW + 1 sin 1 , i1[
V sin a sin a ( 2 1 1

dW
+iy 2 1 1] 1 (B.8)

- 2 00
2

where

= (B.9a)
Y I = 2  V a sin a

2 (B.9b)

Y 2,7r V a sinca

In equation (B.8), the source term Ws  is to simulate the flow field due

to change in body cross sections in the x-direction. This source flow must

satisfy the following condition:

s = V cos 
(B.10)

ar

In a crossflow plane, the source flow can be simulated by

ts = C1 (xe)tn r (B.11)

where C1  is regarded as a function of 6 because of R(x,e). Therefore,

C'(X,6) = (V cos a)R dR (B.12)

C1(xe Go dx

The induced velocity due to the source flow is computed from
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__s C (xe) (V cos a)R dx(

ar " r c r (B-13)

Note that on the body surface, r = R. In addition, for a flat surface, such

as a delta wing, the limiting form of equation (B.13) at the leading edge

would be

a.
=V cos a cz = V cos a tan 6 (B.14)

ay dx 0 x

where 6 x is the half apex angle of the delta wing. The velocity given by

equation (B.14) is used in setting up the conditions at the separation points

which are sharp-edged, such as on a delta wing or a chine cross section.

The separation locations are calculated with Stratford's criteria in the

same way as used in reference 31, based on the velocity distribution computed

in the three-dimensional flow model, including wing effect. At the separation

points and the vortex locations, the following conditions must be satisfied.

1. Conditions at Separation Points

On a smooth surface, the mean tangential velocity (Vt ) at the

separation points in the physical plane is equal to the convection velocity of

vortex in the shear layer after boundary layer separation (ref. 29). It is

taken to be (referring to eqns. (3) and (7a) of ref. 29)

V, 2f4K_V cos L 1/2 2fV sin a COSa 7rAr

Vt  2 a-- 2 Ax-
m VK -K 2V sin a

2fV sin a T A(ya) 1/2 (B15)

1K tan a A
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In equation (B.15), K is taken to be 0.6 to account empirically for secondary

separation which reduces the strength of the primary vortex when only the

latter is used in the model. f is taken to be 0.61 to account for the vortex

convection speed in a shear layer (ref. 29). This tangential velocity (Vtm)

should be equated to the total tangential velocity calculated in the flow

model:

Vt= Im{eiek -W}

or Vt iek 1 
(B.16)

V sin a V sin a d daZt Zsep

where 0 k represents a tangent angle and is defined in Figure B.2, and Im

stands for the imaginary part. Using equation (B.8), equation (B.16) can be

I rewritten as

V t iek ie* * * em =_me AL [-e k -+ek) S i ek -"

V sin a dF + ei sina (e -
ie k _ ., ___.,

iy1 1 - 1 C2 C2 -I I~l  iek -e 1 + ' Y 2  iek - -iek

I (ek * 1 k Cek * 1 k

+ e iek dWs (B17)

V Csin a dZ at Zsep

where 6 k is ek in the circle plane.

When Zsep is a sharp edge so that the mapping is singular,

(dW/dC)(d/dZ) must be first reduced by L'Hospital's rule. The resulting

velocity will consist of a tangential and a normal component. The tangential
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component is used in equation (B.16), but the normal component must be set to

zero. This introduces one extra equation. In this case, f//K in Vt must
m

be regarded as unknown to result in a determinate set of equations.

2. Force-Free Conditions

The separated vortex should be force-free, or based on Kutta-Joukowski's

theorem,

F = dW rv 1 dZ v (B.18)
- [lim (dz 27ri Z - Z) ]BWZ+Z v

where r v  and Zv  may be taken to be r, Z1  or r2  and Z2 . Replacing

dt by dx/V cos a and considering F f 0, it is obtained for the right-ou V

side vortex that

W & r Z1
lir dZ 2 i ZZos a x (B.19)
Z+ Z I d Z 2r -Z1 0

Using the complex potential in equation (B.8), equation (B.19) can be reduced

to _.

z [-ii + I sin 1
sin a j-) + iY-1

1 _2 _dZ/ _

+ Y _ * - _ ) + i-Y1 "li -i

1 - 2 1;2 -1 Z+Z1  1

1 dWs cos a 1 0 (B.20)V Msin a dz--Z=Z sin a dx

The same consideration applies to the left-side vortex.

For a body with a smooth surface, there are two equations representing the

separation condition and four equations (one being the real and the other
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imaginary part of equation (B.20)) from the force-free conditions. These six

equations are to be solved for Yl' yI, zl, Y2 ' Y2, and z2 . These equations

are highly nonlinear and they are solved by a modified Newton iterative method

(ref. 29). Typically, a symmetric vortex solution can be obtained from any

initial input data. To search for any additional solutions, a method of

function deflation to remove the symmetric vortex solution is used to avoid

convergence to the same symmetric solution again (ref. 29). The additional

solution show asymmetric vortex locations and strengths.

B.3 Force Coefficients by Momentum Theory

With the vortex locations and strengths determined, the complex potential

may be used to calculate the velocity on the body surface, and hence the

pressure distribution. The latter may be integrated to obtain the force

components. Since the force components are of primary interest in the present

applications, an alternate method to calculate them is to apply the momentum

equation. Based on Ward (ref. 32), the lateral force based on slender body

theory is given by

F W

F i 1 {-21 P V- dZ - 21 SB(sin a - i sin (B.21)

(1/2 )PVSref ref W

where SB is the base area. The contour integral in equation (B.21) can be

enlarged so that both W( ) and dZ/d can be expanded for large t. Using

equations (B.4) and (B.7), it can be shown for large C that
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i
dZ2 2 r 2 2 2

W( ) Ed -iv sin ( - v sin(

1 1 2 r2  a2  1 2 2 2 1 22

r. 2 2

21 1 a2

+ A1 a 2{-iV sin sin ((B+. + ... 1 (B22)
L) 3 O -3-)

The contour integral can therefore be calculated by residue theorem asI
V d d; - 2w i[-i sin a (-a2 ) - sin B(a

2 ) + 2

r 2 i[_i A a 2 V

21r V- 
2 )  +  A a2( 1 sin a -sin B

2

-2rVC 2 ~ - sin + s i)

= -2na 2 sin [1-A + i(l+A 1 ) s + (*- :) y2(C2- W)sin; a i (B.23)

I
Using equation (B.21), the force coefficients can be obtained:

c +ic F i4wa 2 sin a [1A, + i(1+A) sin
y N L/2)PV2 ref Sref SnC

-~ - - 2~sinSB
+y1 ( 1  -2 X] 2(i i sin 8)S

I2 ref

Since * * *I* + in

2 E2 + in2

the force coefficients become
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I
41ra sin a. (1 + sin B *(.

Sref 1 1 sin aL 1 *2 + *2)

*2l - 2 ] - 2 sin B S (B.24)+ 2'2 t2 + n2 ref
2 2

CN=47ra 2sin at [1 1N S ref1

- *2 1*2)] - 2 sin a SB (B.25)I~n 2 + n2re

I
I
I
I
I
I
I
I
I
I
I
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Figure B.1. Sequence of Transformations.

Figure B.2 Velocity Components at a Separation Point S .
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Boundary Layer
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Side-Edge Thrust

Figure 1. Illustration of Flow Features Predicted

in the Present Method
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Figure 2. Difinition of Airplane Coordinate Systems
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Figure 3. Definition of Variables Defining a Nonplanar

Wing Surface (Ref. 13)

-57-

I



z

Figure 4 Fuselage Cylindrical Coordinate System
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Figure 5. A Typical Vortex Element of Leading-Edge

Vortex System.

-59-



F-

Figure 6. Effective Angle of Attack for Thick

Wings
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(a) Typical Leading-Edge Suction Distributions

of Delta Wings with Sharp Leading Edges

I Figure 7. An Empirical Model for Vortex

Breakdown Effect (Ref. 25)
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Figure 9. A Geometric Model for an F/A-18

Configuration
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Figure 11. Sideslip Derivatives for an F/A-18

Configuration. M = 0.2, Y= 0.6xi0 6

Based on Body Axes.
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Figure 12. Vortex System for an F/A-18 Configuration at

an Angle of Attack of 25 deg. and M = 0.2.
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at M = 0.1 and RN 0.56x10 Based on Body Axes.
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Figure 17. Three-View Sketch of an F-106B Model (Ref. 40)
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Figure 18. Vortex System for an F-106B Configuration at

an Angle of Attack of 25 deg. and M = 0.1.
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