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1. Introdluction

M~any of the classic fluidl flows of great practical importance: bottidasry layers,

dhinel flows, jets anid wakes are open systemsa. That is, they sire unbounded inl sonmc

(or till) spatial directions an(I therefore (t0 niot appear to be niatural candidates for

application of finlite dimensional dyniamical systems theory. Onl the Other hiand the

linear theory of such systems is well undecrstoodl particularily whien the iniitial instability

is coIfective rather than absolute. The utseful feature of convectively uanstable flows is

that ehlaiajgs inl the flowvfield take p~lace ins a "boosted" framne of reference x. i-* x - c

c E It. Tit(, idea of convective instability is intimately linked with the now classic theory

Of SPatial sitabuility of shear flows (Gaster (19631). W-Ae introduce ai natural generalization

(to the notnliear regimec) of the theory of spatial stability (spatial bifurcation theory)

anld our climii is that the transition to turbulence in open syjstems with equilibrium

statC is nitially~ Unstable through a convective instability can be analyzed Using dy/namlical

sjstenus theory, in a spatial setting.

lIn tin: linear theory of spatial stability the frequency w of at (listurbance ls- treated

areal anid the (inl general complex) wavenuniber is the eigetivaihi (with Ilin(a) < 0

corresp~ondinlg to at Spaiiaili unstable wave and Iii(a) > 0 corrsponldinig to a Spatiallij

stable wave). In the(, neutral case the( temporal and~ spatial linear theories coincide and

a neutral c~urve can be plotted inl three ways ats shown inl Figure 1.1. F~igure 1.1(c) is the

relevanit ntitlral curve for spatial b~ifurcation theory howcver. Inl particuilar, in spatial

bifu~reationt theory the wavespeed c is trcated as a given real parameter. A sketch of the

thteory is ms follows. Suppose (U(y), 0) is a (parallel) 2D equilibrium state and write

the. Navivr-Stokes equations (inl this case the stream function and vorticity variables)

fpertitrbed about the eqitilibrit state as a spatial evolution eoitation in the boosted

fretnee I- a: - at,

a2 0 0 1
-JU I 2 nonline-ar terins (11)

0 0 0 1

0 -R" - " R( -1



or sicnI1'

4) LcR)- 1,...(1.2)

w~herv v is the vorticity and w = (see Section 2.1 for defitils). I'll( idea

is to pick anly c E R (interesting values arc those that intersect the neuitral curve),

ineae I? and~ dectermine all bounded (inl the strcamwiise direction) solutionls. Ill this

settingf it is straightforward to use thle symmectry of the equations and to apply (13-

nlticial systemls theory to show the existence of a spectacular zoo of sjpatinl stritc-

Lte-s iticlildilig spatially qulasi-pcriodic states with 2,3 and possibly 4 indlependIent

waveinumil'crs! Thle b~ifurcation sequcencc biegins at thle neutral p)oint RI = R. where

L((:, I?,)'Is(y) = ian'i'(y) cva E Ri; that is, the lincarization of (1.1) hats p~urely imaginary

eigenivaluevs, a two-dimensional center subspace and it point of spatial llopf bifurcation.

W'ith nIo restriction (except for lbounledlness) p~lacedl onl the streaniwise spatial strutubre

the spatially periodlic state will inevitably undergo wavelength doublinig (with cascades)

an1o'secoadary bifurcation to sp~atia~lly (juasi-jperiodic stats, nfdacut~losr

vatiou of our wvork is that sp)atially quasi-periodic states tire lprev'al('ii inl shear flows

(generically occur inl the one paramneter family of 2D states along thle upper branch of

the 21) neuttral curv, inl Figure 1.1(c)). Although the theory p~resenIted( inl the sequecl

is generally ap~plicable to any 2D p)arallel equilibrium state with at neuttral curve as

inl Figutre 1.1 wec suppose throughout that the basic equilibrium state is tile (parallel)

lilasi s bc un( ary laver.

Of fundtuital importanice inl transitional shear flows is tile origin and subsequent

lbifurcatimi of 3D states. Hlowever inl Section 2 we begin with spatial bifurcations inl

2D and shzow~ that evcn inl 2D new and interesting spatial structure arises. The 2D

Navier-Slokes equations canl be written as a sp~atial evolution equation inl at 11munber of

way's and two formis are introdlucedl inl Sections 2.1 and 2.3 using thle stream fiunctioni

& vortici ly varialbles aulid the prinitive variables (which leads to anl interesting 1101)-

standard evolution equation) respectively. The b~asic 2D spatial bifurcationi prIoblem~ is

introdlucedc iii Section 2.1 and inl Section 2.2 a spatial secondary "instability" theory

is in rodlticed that complements the toemporal secouudary instability theory of Orszag&

2



Patent [19831 and hlerbert [1983,198S41. It is showvn how the knownt structuic of wave-

lengthi doub1linlg will potentially lend to cascades of wavelength douling (wavelength

"bubblling") and thec secondary bifurcation to 2D spatially quasi-periodic states is ex-

p)ectedl (at duonstation of second~ary 1)furcation to 2D spatially quasi -periodic states

is carried out ill Section 5).

Spatial bfifucationis with the addition of spanwise structure (three dimensionality)

are coutsidlered inl Section 3. The 3D Navier-Stokes equations are written ats anl evolution

equation inl the primitive variables; that is with 41 = (v, vr,t Wx Prp)"W the 3D Navier-

Stokes e(litationS canl be written ats U"Lq L(c, R),1I + N('P, it; 1?) and~ it is obtained

fromn die streauuwise mnomnutum equations (sec Section 3.5 for (details). We have not

attempljtedl to construct otlhcr (spatial) evolution equations for the 31) Navicr-Stokes

equations lmit spatial evolution equafions for tile vorticity & velocity formulation or

it vetlor streamui function formulation should also l)e useful. Any l)OuuidlC spanIwiSe.

struclure (satisfying the equations) is adlulissable l)Iut with the sinmiphe assumpjtion of

spIlise~~5 p~eriodicity already the nuiiimr of interesting bifurcations or the sticaniwise

structr is considleral~lc. The assumption of spanwise periodicity leads to anl 0(2)-

Cquivaiice of thle evolution equation which is central to the analysis of bifurcating

3D states. Inl Sections 3.1 to 3.3 0(2).equivaliant (spatial) Ilopf bifurcation theory

is Is(A to au1idlyze tile prmary and secondary spatial bifurcation or 31) states that

ate~ jeiiodic inl bothi the sjpanwisC and streani'ise dlirections. Section 3.3 contains at

genlerali?,ationl of the spatial secondary "instability" theory of Section 2.2 to 3D. Our

iiost usefull observationl with regard to ap~plications is that all along the upper l)ranch

of the 21) neutral curve there exists anl interaction b~etween a 2D) state with stieatmwise

waveluunhcr cv, and at 3D state with streamwvmse waventuniber a2 bult With both waves

travelling at the SWLC Phase Spee~d. From at theoretical point of view the interaction is

a. codimnsioui 2 p)oinlt of anl 0(2)-equivarianit vectorfield with a 6-dimnensiona~l center

subspace! Ill Section 4 a formal aplhication of centre-manlifold theory aid normnal forum

thmeory is usecl to show that all along thme tipper b~ranlch of thme 2D) zucitral curve there

exists secondary bifurcation to 3D states that are quasi-periodic inl the streamwise

3



dlirect ion (anid p~eriodic in the spanwisc direction). The theory is formial simply because

thle Illasitis boundary layer is not ant exact solution of the Navier-Stokes equations

iud(l ihe w1d(11 onlal nlegkect of non-pa;raIle1 terms. For strictly p~arallel flows with a

similar neutral curve (such ats p~lane Poiscuillc flowv) the theory can be carried through

rigorously (Bridges 11991c]), although particular care is always necessary when dealing

with the bifurcation of tori.

Tile Ilheory for thle (juisi-periodic interaction of a 2D wave with 2 obliquc (3))

wvsis of gleat practical interest because it is a mathematically consistent theory for

thle ap~pearanice of qulasi-periodic waves in the Blasius boundary layer. Experimnts of

I(aclminov & Levceeko (198,l1 lhave shown that a quasi-periodic interaction between a

2D findtental. Tollinii-Schliciliting wave with a pair of oblique waves is observed ats at

iobutst. pait tof thn tranttsition process. Thme normnal formn for the quasi-periodic interaction

is worked olut. inl Section 'I. Sonlic sfraightforward (although lengthy) calculations are

nlecessary to (Icteriniuce thle coelfficts in tihe normal form and this work is in progress

(Bridges 1 1991b)]).

lin Section '1.2 thle interesting idea of spanivise resionancesi is considered briefly. it

(ile. veords two pahirs of oblique waves, one wi.1- -,,,iiwise wavenumnber ,9 alId other

wi~ispamvise wavenuimber n#3 it = 2,3, . .. interact. This is a codlituension 2 interaction

(plot thle /I andl n/3 neutral curves; the point of intersection betweent the two curves is the

interaction point). Such at codlinienision 2 point occurs for each value of fl (p3 sullicicntly

smnall) but thle streanmisc wavenunibers of thle two waves wvill be irrationally related.

Althouigh (.te spanwise resonant interactions occur at Rleynold's nmnbers considerably

higher than thle 2D-3D interaction of Section 4.1, they are nevertheless of great interest.

From a theoretical point of viewv thle interaction corresp~onds to an 8-dimensional etre-

'Subspace and the normal folin indicates the potential for bifurcation to high dimensional

tori. From a practical point. of viewv the spanwise resonances introduce imew spatial

strutcturv that may be important for the transitional boundary layer at higher Recynolds

numbIer.

Finally ill Section 5 thle strictly two-dimensional p~roblemk is reconisidlered and the

4



(9codlittllsiol-2 strategy" is Itsed to show secondary N)furcation to 2D spatially quasi-

peCriodic slates. Tile compliant w~all problem (Carpenter 119901, Carpenter & Morris

119901) piovides anl interesting setting for tile analysis because it already contains imi-

melrous ntew parameters. Rlesearch of Carpenter & Garrad (19851 has shown that the

uapper andl lower lIranchies of the neutral curve coalesce and detach (see Figure 1.2) when

tile elastiv imoduluis of thec C0111liflhit. wail (adjaccnt to the Blasius oImmidary layer) is

redlic(l. III Section 5 the critical poinit E = E. is analyzed anud it is shiowna that at.

the jin(eriction point of thle uppcr/lowcr braniclics thc linear Navier-Stokes equations

have spatijally' qttasi-lperu)(lic solutions with two independent waveniuiilmrs. Applica-

tioti of (lylialllincal systemls theory (in lparticular Section 7.5 of Gucketiheinier & Holmes

119831) show~s that the ittifoliig of the above singularity results in at secondary bifur-

cation of (spatially) quasi-periodic statcs (inl the nonlinear equations). Thle sigularity

inl ojitestioti is not particularly implortant to thle main funlctionl of thle compliant wall

(stabliltiolnd dr1 (ag redluction) ])ut it nevertheless denionstrates that secondary bi-

Jurca lion to spatially qnnaii-periodic states is to be anticipated even in. two- dim mnsional

bomuary layert~s.

Ili spite of thle fact t hat our mtethods are local (centre-mianifold theory, noflhlal

forin theory and local equivarint (dynamnical systems theory) thle existence of quaite

coml )CX spat ial structures inl shear flows is (lenionstrable. Onl tile othler hanid itL is clear

that the lircationls to thle various spatial tori and sequences of wavvlength doubling

will mclvii ably lead (ill Soic regions of parameter sp~ace) to chaotic spatial structure.

I-Vill ti Ii.v related to turiltce? Suppose that it sequence of bifurcatioas takes

lev leading to ionl-tvivial spanise variation and chiaotic strenilwisv structulre. The

flowfield will indeed bec thnee-dinmensional anid although thle governing equations at e

"9steadly" tire streammise coordinate is in fact x - ct. Therefore at prol)c at fixed z

will tegister a chaotic flow inl timec even though tinie (loes not appear independently.

Assumning there is sufflicient three-(linlensionality for true turbulemice (and ant absolute

iIst ,ilt does not occur) it. is catmely possible that thle transition process t.ksllc

ill time convective framle 2: - et. We call this structure convective chtaos or convective



finhulcucei' if indeedC~ it is ttirbitlecii. However, in studying tile scquencv of bifurcations

in tOw contvective frame it is inmportant to check for secondary, tertiarty, (Ac. abso1luc

inst-thilities which will fore time into the problem independent of x - ct.

WVith, the Villmasis throughout oin spatial bifurcations and spatial invariant man-

ifoldS tlLC Stability aLSSignmen~lts obtained fromn the normal forms (writtem s evoluition

equations in ;r) w~ill ntot be applicable. A complete stability nlysis of thle spatial

struct tires is a. very intrestinig problem mi d will require tile reinmtroduction of time und

comsidcraf ion of sideband instability (mnd its generalizations). For spatial states that

aire periodic iii both tlie streainwise and spanwise direction the spatio-teniporil sta-

lbility call be stildicd ulsing tile theory of sideband istability b)ut tile pg-ieridizmatioil of

this Concept. l() study thle stability of lite spatinlly qpuasi-periodic states is by no) means

clear andl will be ant interesting area for further rescarch.
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2. Spatial bifurcations in two dimensions

The 2D Navier-Stoke~z equations arc considered in a steady-frame (x t-4 x - ct)

th v gimen and we look for all p)ossible states mioving itt speedl c biut wi th various spa.

tial structure that bifurcate from the equilibrium statc. For definiteness suppose that

thle baisic equilibrium state is the Blasius boundary layer (U, 11) with U(x, yj) f ()

V(2x,y) = l(xl?)'/j2 (qjf'(;) _ f), q = y(R/x)'/ 2 and f(q) satisfying the Jihisiuis equa-

tion 2f"' + flf 0 on I E 10, oo). Trhc Blasius solution is a troublesome equilib~riunm

state in that it satisfies thc Navicr-Stokes equations only asymptotically and a. proper

existence thevory and stability theory requires careful use of asynipiofiC and multipleC

dIcek tLheoi y (Sinith [19791). W~e ussuine here that a: = 0(R) and invoke lie paIrallel flow

appioxiimnation. Then U = 0(l), V =0(R-') and the two-dintsional Navier-Stokes

eqjuations perturbed about the (parallel) B~lasius boundary layer solution arc

O 
L + Ov 

()
( U -C L +-y A uL+ u -t + v 0 , =0 (2 .1 )1?Ox OX Ty

Ot' Op I Tv T

In thev case where the equtilibrimm state is strictly p~araillel thle set (2.1) is exacl.. In the

set of c(tutions (2.1) time hias bieen eliminated lby tim shift x -c;i atclrw

-ire lookinig for steady bifurcations. Timec call be reintroduced for a sLability analysis

or if Lhere is u. bifurcation to a noi-trivial temporal state. Thme cruicial difference in

(2.1) fromt tile usual theory is that c is treated as a given real uumber. The idea. is to

treat thle set (2.1) as aim evoluttion equation in X; that is, a. p)dC with I/ias tile "Spi~tal"

variab~le auid x is thme "time-like" variable. With p~arakmeters (c,1?.) we look for all tile

usual lbif'reations in evolution eqjuations: llolpi-bifurcation, period-(lotblig and torus

bifurcation, ete, except that in the spatial setting these bifurcations will correspond~ to

a spaliial-floJf bifurcation, wavelength doubling and spatially quasiperiodic 3tates.

'L'he basic bifurcationl fromite Bliasius boundary layer is detriiimmed 1)y studying

9



the spectraun of the linearization of (2.1),

Ox Ogo5; +  0

Ott __+0
1) 22•Ox Ox 1? O(U - C)T + U.,, + T -- jA. = 0 (2.2)

Ov Op 1
(U - )- + A - -Av = 0.

Ox y 1?W

Now let (t,t,,p) = n() then with jy + A2p = -2\U, the set (2.2) can be

reduced to a modified (real) form of the familiar Orr-Sommerfeld equation

L. f = ( + A) 2 +\?Uy _- RA(U -c) (2 A2) h = o (2.3)

We have purposeftlly used eAT rather than the usual ciorz (which we'll revcrt back to

shortly) to make an analogy with the dynamical systems approach.

'I'lme ()rr-Sommerfeld equation is discretized using a finite expansion of 6(y) (with

10, co) mapped to 1-1, +11 using an algebraic transformation) in t Chebyshev series re-

ducing (2.3) to an algebraic nonlinear in the paramneter eigenvaliue problem (see Bridges

& Morris 11987]) for this type of reduction). The differential cigenvahe problem (2.3)

is tli ct reduced to the algebraic cigenvalue problem

D4(,\){,} = [CoA 4 + CIA3 + C 2A2 + C3 A + C41If)} = 0. (2.4)

Note that in the fixed frequency spatial stability problem (Bridges & Morris 11987])

the mitatrices C0, ....C are complex but with fixed wavespecd c E R the matrices

C, . ., C4 are real. The cigenvalue will in general be complex, but with re'l matrices

the nt,tv'rical computation cal be carried out with greater efficiency. The cigervalue

probletl (2.4) is solved using the methods of Bridges & Morris [198,11 for nonlinlear in

the parameter eigenvaue problems.

Given (c, R) the eigenvalue problem (2.4) produces a spectrun of spatial cigemival-

ties. he idet in spatial bifurcation theory is to look for bounded solutions of (2.3); that

is, there are admissible spatial states bifurcating fron the Blasius boundary layer if and

only if there exists an eigenvalue A of (2.4) with Re(A) = 0. Eignmvaltms with IlC(A) .# 0

10



tire not admissible as bifurlcation. points for spatial states because they tire unbounded

ais z -4loo, or z -. -oo. Note that we are not concerned with cigcnivalucs that lic

off the imaginary axis (Whether in the right or left hialf p)lanle). Ultimately stability is

(leterinne by checking the initial valute problem (reintroducing time!). If Rt((A) = 0

and lii(.\) = 0 there is (potenttiay) a bifurcation to a new equihibriutin state (although

this is not. expected to occur for the Blasius boundary layer) whmercas if Itc(A\) = 0 and

Iinl(,\) 0 () thlcrc is at (spatial)-Ilopf bifurcation (assuming thme usutal non-degencracy

conditions onl llopf bifurcation) front time equilib~riuml state to a spatilly p~eriodhic state.

Solving ID4(A\)I = 0 and R1e(,\) = 0 results in the well known neuttral curve for the

lBlasiiis bound~ary layer shown in Figutre 2.1 (although it is usually plIottedl inl (w, R)

or (a-, 11) n:pace). In particular there is at most one(, pair of cigenvaluces onl the Ihn(A\)

axis. Figutre 2.3 shows an example of time spectrum of the eigcnvalue problvim (2.4)

(therv is also a (Stable) continuous spectrumn of (2.3) (Groseb & Sailwen 119781) that

will appear as discrete in thme flnite-dimensiomal approximationi). Accurate callculations

of time (c, R?) curve with the associatedl valute of ve are given inl Table 2.1. Note that

there is a ffitite interval in wavCspCed C E (cm, C2 ) in Which the nicutral curve exists

where el Pe .22 and C2 :z .401. lVe call c admissible if c E (CI, C2 ). It is clh ar from

Figuire 2.2 that if C G (C1 , C2) and fixed and R is increased, a s1)atial-I lopf bifurcation

occurs as R? ctosses thme neuttral curve. There is a continuum of Ilopf bifurcation points

(varying r) an1d, this will have consequences with regard to stability (.te possibility of

sidleland instability Will haIve to be c~onsideredl) but nevertheless, for fixed c E (( , C2) aL

classic llopf b~ifurcation takes place as R crosses the neuttral curve. AVV Call it a .spatial

Ilopf bifurcaf ion because the "frequency" associatedl with thme bifurcationt is ill fact thec

sticamtwise ittavcflltifber.

2.1 P'rinmary spatial Ilopf bifurcation

The set of equations (2.1) canl bie written as anl evolution iii x in the following way.

Initrodulce the stream function V) with it = Oy v 4 ' and~ thme vorficity -AV)



'Then the vorticity and stream function equation set can be written as

a = L(c, R). -, + N(i,; R) (2.5)
FX

wherv

,= (0 , 02 - , , ( ,n = 0(') N() () =R) (2.6a)

and Vq 
+v!

q 1 0 0 )\LcR) 702 0 1 0 (2.6b)
IT 0 1 1L(c,R.)= o o 1 ('~b
0 -RU" _-9 R(U -,c-)j

Taking +. = C, 4, results in ti eigekah:e pIroblem L(c,r), = , which reduces

to tle Orr-Sonnncrfeld problem (2.3) for the stream function perturlbation. Suppose

c E (Ch } a1d 11 = Re is a point on the neutral curve. Tlen llc(A) = 0, h(\) = a,,

and Ilhere exists an eigcnfunction

L(c, R) = iao4,. (2.7)

It is now strnightforward to apply the Ilopf bifurcation theorem using a formal centre-

niatifold reduction (Coullet-Spicgel (1983]). Scale z i-- ax so that he wavnmmber

appears in equation (2.5): wrI, = L(c, R) '1% + N(q', R). Write any solution of (2.5) as

f)(a', y) = A(a'),,(y) + A(x),^,(y) + IF(x, y)

thenI the xcahed version of equation (2.5) is transformed to

dA
a- - = f1 (A,;!, %I) (2.8a)

dAa-T. = fi(A,', ) (2.8a)

a-- = f 2 (A,A, T). (2.8c)
dax

At least locally (2 .%p.) can be solved for %P as a function of A and 7" (Coullet & Spiegel

119831). Theu back substitution of 'I' into (2.8a) results in a vectorficd on C. Applica-

tion of norinal form theory (see Guckeniciinier & llolmcs [1983, 1).1,121) results in the

(formal) iortial form for tie spatial-Ilopf bifurcation,

,Il = A. F(R- Rola - ao, JAI 2). (2.9)
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The reduction of (2.5) to (2.9) is "orwnal, simply because the Bl1asius solution is not a

truly paralel solution of the Navicr-S(okcs equations and we have neglected the non-

parallel terms. However the basic idea of a centre-manifold reduction for a spatial

bifurcation can be rigorously justified (Vanderbauwhede & Iooss [1990]) when an exact

cquilibrium state is used such as plane Poiscuille f, )w (Bridge.,, [1991c]). Te actual

numerical calculations required for the normal form (2.9) will be discussed in Section

3.2 and ate contained in Bridges [19911)] as a special case of the 3D Calculations.

Expaud F in a Taylor series,

F = F",(R - R.) + F,(a - ,,) + FO-IAI 2 +.... (2.10)

The imaginary part of (2.10) is solved for (cv - ao) and back substitution into the real

part of (2.10) results in the usual pitchfork bifurcation

da = ag(1i- R, a2 ), g = g*(R-R0 + g 2aL2 +
(lx

Supposing g',, > 0, a supercriical pitchfork bifurcation occurs if g,,2 < 0 and a sub-

critical pitchfork bifurcation occurs if ga2 > 0. Stability of the bifurcating states does

not follow directly froin (2.9) when the bifurcation is supercritical. For a satisfactory

stability analysis time must be reintroduced and sideband instability .onsidercd.

From the physical point of view the normal form provides two crucial pieces of

information: (a) the direction in primneter space (Reynold's number int this case) in

which the, nonlinear spatially periodic states persist (R < I, or It > R) and (b)

how tie m ,venumber changes along t branch of )eriodic states. We are particttlarily

intecsted in whether the wavcnumber goes to zero along the branch leading to spatial

homoclinic bifurcation.

2.2 Sccomidary bifitiotiois and spatial Floquet theory

One of the central features of the fixed-wavespeed spatial-bitfurcation theory is that

it is clear how more complex spatial bifurcations can arise (and indeed are expected).

13



In Sectioii 2.1 we showed that for for fixed c E (c 1 ,c 2 ), a spatial-Ilopf bifurcation

leads to a branch of spatially periodic solutions which is entirely analogous to a branch

of periodiic orbits in a finite-dimensional dynamical system. If we follow a branch of

periodic solu.ions then we can expect to encounter period-doubling and/or secondary

)ifurcatiou to a quasi-periodic flow. The idea here is to use Floquet theory in space;

that is, to study the spatial Floquet multipliers along the branch of .spatially periodic

solutions. Let (u, v, p) " (u + t, v + q, p + q) with (u, v,p) a periodic solution satisfying

(2.1). In Ihe usual way substitute (u + t, v + q;,P + q) into the Navier-Stokes equations

and liutca ize about the branch of periodic solutions. The result is the following system

with )eriod' coeflicients

O Oj
-+- =0o A .1

(t + U - e)- + + (V 1 t )i+ + 1
0: 0,; Oq 1

(it + U - c) + 1,' + v , + + - Al J.
This set (-an be simplified by introducing a perturbation stream functiou; let -0 0/ey

and q = --O,/Ox then the second ad third of (2.11) can be combined into

AAOS - R(it +1 U - caAO- 1v-i9 A + R(v.,, - (2.12)-7 FY. - O"'0 (2.12)

+ 1?(Uv, + YyY - v..)- = 0.OX

Now O(x, y) is not necessarily periodit, in x but by Floquet's theorem

O(z, Y) = e"((, y) 7 E C

and ,/7(x, y) is periodic in z of the same period as the basic state (it, v, p). Substitution

of /, = .f'r/, into (2.6) results in the following cigenvalue problem for the Floquet

L. = y'4Lo + TyL + _,2 L2  + -yLai + ,yL4 = 0 (2.13)

14



where

.0,I.

4 R~ + U
2& =4" 0 , + 4 2 -1( + ..- -L """Lo~o ~ ,,+,.- ,

4-- v-- +- R(u R(Uyy + u:: - v,)4.

,- + M 31 + + U -)- v

Notv that the eigenvalue lIoblenl (2.13) is a nonlinear inl the parameter eigenvalue

pr'oblem for the Floquet exponent 7. It. is reminiscent of the classic spatial stability

eigenvallme inobleiu; in fact it is the spatial form of the secondary "instability" pIoblem.

The above theory for secondary biffurcation using Floquet theory is similar to

therbert's [1983,1984] theory for subhmarmuonic bifurcation but there is a subtle difference.

The eigeuvalue problem (2.13) is the spatial secondary "instability" problem whereas

Herbert's theory is a temporal secondary instability theory. In herbert's theory the

spatial Flo(jttet exponent is treated as fixed (generally so that the spatial multiplier

lies a t -I) and the temporal exponent is solved for. In (2.13) the temporal exIponent is

abscn.t siace ve are looking for seCondary steady states; that is, states that mvc at the

given speed c but have more complex spatial structure.

Given ai Fourier-Clebyshev representation for the basic spatially periodic state,

(it,) , pt), tl eigenvalue problem (2.13) can be discretized by exlanding fi ill t finite

Fourier-Chebyslev series. The result is aim algebraic nonlinear in the parameter eigen-
value ploblelni

[D4(7)• {s} = [007'- + C173 + C272 -I- C37 + C 1 {'P} = 0 (2.14)

with thme Floquet exponents obtaited as roots of ID4(3') = 0. Numerical methods for

nmonlinear eigenvahite problems of the type (2.14) can be found in Bridges S Monis

119S.1] and l'earlstein & Goussis [198S] and references therein. Giveti the spectrum of
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exponents, the Floquet multipliers are given by exp(2ry/c). Suppose that the branch

of spatially periodic solutions is )arametrized by t parameter c. Tlwn two iutercstiug

)ossibillfies as c is varied are shown in Figure 2.3. We are not concerned with where

the bulk of the sl)ectrum of Zhe cigenvalue problem lies in the complex plane (although

most of the multipliers will probably tie in the interior of the unit circle); any multiplier

not. on the unit circle is inadmnissable as a bounded spatial state. 'I'herefoie we vary

C until the multiplier lies on the unit circle. If the multiplier passes through -I we

expect a wavelength doubling bifurcation and if complex-conjugate multipliers piss

through the unit circle at points other than ±1 we ex p ect a bifurcalion to a spatially

(uasil)c iodic state.

Numerical calculations are necessary to obtain precisely where secondary bifurca-

tioms occur. lowever, spatially quasi-periodic states are to be ex pected. One way to

show this is to iutroduce a singularity (in the neutral curve) which results iit a larger

dilmeuisionial ceutre-nianifold, then look for complex dynamics in the unfolding. In fact,

in Sectrin 5 it is shown that the compliant wall problem has a singularity of this form

fromim which we can show the existence of secondary branches of spatially quasi-periodic

stales (and possibly spatially quasi-periodic states with three frequencies!).

Tl. wavelength doubled solution call again double its wavelength with a possible

cas.ad, to spatially chaotic states (not turbulent though since we are restricted to two-

dimensions but the 3D problem is considered in Section 3). Al interesting theory for

wavelengeth doubling caSCades can be constructed as follows. Note that from Figure 2.1

thai. for fixed c E (C1 , C2 ), there is only a finite band in R in which ani unstable region

occurs. Fron numerical calculations of tlerbert [1975] we expect the nonlinear branch of

periodic solutions to form a global loop as shown in Figure 2.4. The global wavelength

doitbling structure of loops can be nodelled by it one-dimensional him-parameter Snap.

For exaumple consider

= (1 - (R - ) + y (2.15)

The fixed points of thim ltap (2.15) are as shown in Figure 2.4(a). Iterating the map

while imereasing 7 (corresponds to decreasing the wavespeCd e) results in secondary,
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tertiary, etc loops of period doubled points (Bridges [1991e]). Figuie 2.5 shows a finite

cas'ade of wavelength doubling. If'y is increased further the cascade will become infinite

resultinlg il chaos in it thin sulbintcrval of R. It is very likely that this is the structure

of wavehongth doublings in shear flows. Secondary period-doubling hiftircations from

the subcritical loop in Figure 2.4(b) can be modelled in a similar fashion using the

onc,-dimionsional map

21,,+1= X,,(1 - ( - R.) + -' - (f + 2m(R - - z,) (2.16)

wlWtc I, Ill E I1, 0 < ill < 1, y > 0 and /0 < - . . The period doitldlng s.ruc:ture

for Che map (2.16) is shown in Figure 2.6 with it finite cascade il 'igure 2.6(a) and

an illfiite cascade leading to a region of chaos in Figure 2.6(b). Note that although

the sub'ritical and supercritical loops in Figure 2.4(a) and (b) differ significlntly, the

secondary structure and cascade structure is about the same in both cases.

Note that the above theory is restricted to two spatial dimensions. If indced spatial

chaos occms it will not le turbulence. The role of threc-dimensionality is considered in

Sect ion 3. On the other hand, t.hrc-diniensionality does not af'ect, the cascade theory

shown in Figure 2.5, it simply results in non-trivial spanwise structure along with the

streamwise cascade.

2.3 Spatial evoluticin of the primitive variables

As an alternate to the evolution equation (2.5) where the stream fiunction vortic-

ity variablcs are used, an evolution c,,mtion for tile primitive vatiables (u,v,p) can

be consitructed although it has t nonstandard form (involving an evolution equation

and t conslraint.). The idea is to evolve (in x) the pressure and vertical valo,:ity and

detcrillifle the streamwise velocity using it constraint (a differential equation without

x-cheriv'.tivws). First. construct a Poisson equation for the pressure by taking the diver-

gemic 0f t.lI(h mnomnentmiii equations in (2.1),

A -2 (U!) O Olt 8(2.t7)
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Now lid./v /\

D= V)do (2.18)

TIhen tile Poisson equiation (2.17) and thle vertical momentum equatlioni call together

be 'vritemml as till evolution equation in .l

4= L(c, R) -4) + N(-I, i; R) (2.19)

0 1 0 a 0 0
I~cJ~dy and N= (2.20)

00 0

Note however that it appears in tile nonlinear termn buit is not a. component of C.

lOWever, tile streamnlwise niomucitiima equation call be written as a dilfcrcntisil equationi

fin y aloliC,

qU~v - (LU - c)v, + 7i(VY - 1mtY,) - LV + Vit~ = (I, (2.21)

w'md lit vach value of xm, it. is obtained from (2.21) for use in (2.20).

rlOw evolutioni equation for (it., v, p) is mom-standard in that it involves evolution of

ONi 11) with a constraint to determne thle strcannvise velocity. Neverthleless it is a uiseful

forium of' till. equations; inl particular, thle franmework (2.19)-(2-21) is easily extenmded to

tie ,3-dimenmsiommal Navier-Stokes equations (this is carriedl out in Section 3.5i) and the

118m'11uitl e-niaIuifioldl and~ b~ifurcat in theory is still appllicab~le.
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Table 2.1

Coordinates in the (c,R) plane and wavenumber

along the neutral curve for the Blasius boundary layer

Upper branch Lower branch

R c ro R C ao

4000 .2956 .2689 4000 .22875 .0918
3500 .3028 .2777 3500 .2368 .0967
3000 .31065 .2881 3000 .2461 .1028
2600 .3185 .2976 2560 .2552 .1097
2500 .3206 .3001 2500 .2568 .1106
2400 .3229 .3029 2360 .2608 .1135
2200 .3276 .3086 2160 .26655 .1178
2000 .3329 .3148 2000 .27105 .12175
1800 .3387 .3215 1960 .2726 .1229
1600 .3451 .3286 1760 .2798 .1290
1500 .3489 .3322 1560 .2881 .1364
1400 .3528 .3362 1500 .29085 .1389
1200 .3616 .3440 1360 .2981 .1456
1000 .3718 .3515 1260 .3034 .1513
900 .3777 .3545 1160 .3105 .1578
800 .3843 .3562 1060 .3178 .1655
750 .3877 .3562 1000 .3223 .17095
730 .38915 .3559 960 .3259 .1749
660 .3941. .3532 900 .3313 .1814
650 .3947 .3524 850 .3363 .1879
600 .3981 .3469 800 .34205 .1950
580 .3992 .3432 750 .3484 .2035
575 .3993 .3421 700 .3550 .2135
560 .4001 .3379 650 .3630 .2259
550 .4004 .3344 600 .37205 .2419
540 .4002 .3293 580 .37615 .2499
530 .4002 .3241 560 .3812 .2597
525 .3995 .3184 550 .38365 .2656
520 .3951 .2974 540 .3864 .2725

530 .3987 .2815
525 .3945 .2857
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Figure 2.1 Neutrrl curve in the (c, R) plane for the (parallel) Blasius boundary layer.

0
0

*00

Figure 2.2 Sp ;ctrutn of the modified (real) Orr-Soinicrfcld equiltion for fixed c E

(CI , C2 ) as R? intersects the neutral ctirve.
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Figure 2.3 Possible movement of the spatial Floquet multipliers exp(2r7/a) as a

function of e.

R4R

Figure 2.4 Global loop structtre for fixed c of spatially periodic states bifurcating

from the Blasius boundary layer: (a) supercriticad loop and (b) subcritical loop.



Figure 2.5 Global period-doubling loops with a finite cascade in the map (2.15): (a)

,y < 1 resulting in an absence of period-doubling and (b) y > 1 (in particular -Y= 1.30)

resulting in three period-doubing bifurcations.
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Figure 2.6 Finite and infinite period-doubllng cascade in the map (2.16) where the

primary loop is subcritical with in = P = -,/-- .2 and (a) -y = .21 and (b) y = .24.



3. Spatial bifurcations in three dimensions

lit this section we continue to treat the steady-state (in a mioviiig framen) Navior-

Stokes equations as anl evoluition e!quationl inl the streamwisc coordliiiate butll withi the

adldition of spanwise variation (three dlimensionality). The basic eqiflibriim state is

takeni to be thc (parallel) Illasins boundary layer although the theory is genecrally

tipltical)lC to any two-dlinensional parallel equilibrium state. Wi,,1i lthe shift xt--* x - ct

1.t geierai.ation of the equation set (2.1) to three dimensions is

+ I 1 - = 0
ox Oy Oz
Oll 09) OIL Ott Olt

(U - C)- + UYv + - - i - u+ it + v + - = ()
Ox ox, 7i Ox Y OZ (3.1)

(U - ) O + a,- 1AV+i Ov +VOv +I Ov=0
Ox O7y T, x + j + 7z5=

Ow C O pv OwP i +i i Ow + 1)offw

Tliv adldition of z (the spaniwisv coordIinate) introdutces nonitrivi;Il symmuetry that

illJI be fundamental to the analysis of three-dimensional states; in particultm', a trails-

lation anid reflection in z. T~he translation and reflection inl z follow front Lte fact that

the b~asic state is two-(lnenlsiontil. The z-reflection generates the group Z" " (nc) with

action onl functions givemi by ic -f(x, y, z) = f(x, y, -z). The got (3.1) is Z'-vequiviriant

an1d (11(c, 11, -Z), v(x, Y, -Z), -Io(x, Y, -. ), p(x, y, -z)) is a soluttion of (3.1) whienever

(tn(a:, y,:,,), n(X, y, z)) wi(X, Y, z)1), (X,?, Z)) is a solution; that is. there is a Z'-orbit of so-

lutiomis. No~e' that the existence of a ZI-orbit of solutions is trule rcgardlless of soluition

tyipe; even c:haotic trajectories have a Z'-orb~it which has important (01Conseeces with

rega,,;rd lto (division andl multillicity of attracting scts.

T1hi, tranislation invariance inl z of thc set (3.1) resullts inl a group orbit of solitioms

aks well (an arbitrary translate inl Z ofMasolutionl is also lulItionI). Ilowever if (u,Iv, av,p)

is laemII to 1)C PCriodC inl Z (,In ssmlitiption; more comnlclx spanwise spatial strutem is

posSilel 'II1d this is collsidlered inl Section 3.4) thean the translation groiti) is redlnced to

thev compad~: grouip SO(2). Combinig SO(2) with Z' resuilts inl II 0(2)-eimivariamice
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of Lte eq(uation set (3.1). lIn our sitbsequtcit analysis the 0(2)-equivariance of the set

(3.1 ) is I lie basic organizing feature of Lte three-dimensional states.

lit diree dimiension,% the basic spatial-llopf bifurcation introditred inl Section 2.1

persists but the 0(2).cquivariance results inl a higher dimnicsional (spatial) ccntrc-

niati1ifolcl, a higher multiplicity of spatially periodic states and the potential for mnore

Co)lll)lCX "dynamics" (i.e. more complex sp~atial bifurcations). For the sp~atial 1101)f hi-

fmrcaticn with 0(2) symmnetry we adapt thc well-dleveloped theory o~f 0(2)-cquivaritt

Ilojif biftircation (Golublitsky & Roberts [1987], Golubitsky, Stewart &, Schineflier (19881).

Thev 0(2)-cqntivariant spatial-Hopf lWfttrcation is a primary bifurcation to 3D states mid

is ticated inl Section 3.1.

lIn SedIion 3.3 we introduce a "spatial" secondary instability theory where a p~ri-

marmy spatially periodic two-dimensional state lWfurcates to a t:'ecc-imieiisional state

atI initc amplitude in a steady framne. This is to b~e compared with Lte tenporal see-

ondlary iistality thcory due to Orszag & Patera, [1983] and H~erb~ert. [1983,1984]. Tile

2D -4 3D spatial second~ary "instability" theory is similar to the thcory int, oduced inl

SecLion 2.2 but includes nontrivial (periodic) spanwise variation. Liniearizat ion about

the 2D stale results inl a system with periodhic (inl x) coefficients to which spatial Flo-

(Juict, the'ory is aplhiedl. Tim system will dhiffer from the system11 (2.11). TheC spatial

Floquiet. exponents now depend oil two paranteters: the p~aramnetrizedl branch and Pi

(the 5)alwise ivavenilamner of the jperturbaition). Our approach difhicrs fromi te tern-

poral theories of Orszag & Patentm and herbert inl that the temporal exp)onen~t is set

to zero; that is, we look for bifuratioins to bounded steady-states with mnom c (omplex

spatial structure inl x (wavelength donlbkd, triled, etc. or cjiasi-peiodic) but p~eriodic

ill -

It is clear that if a p~rimary state exists that is periodlic in Willh the stireamwise

direction and the spanwise direction (as obtained inl Section 3.1 or as a secondary

hifmrcatiom as inl Section 3.3), it is possible to have secondIary 1)fumcalions inl both the

sticamwise and spanwise directions. Inl particular', it is possil~le to have a W)fmr(ation to

stli~es with i(,re comlplex.4pOuwisI: spatial structure. Thle theory for spatial Ibifitrcationl
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in (:, z) will involve spatial Floquct. theory in two space dimensions and is discussed in

Seclion 3.4.

3.1 0(2)-ecqiivariant spatial Ilopf bifurcation

To determine bifurcation points from the equilibrium state, I.hc set (3.1) is lini-

earizcd resulting in

O Ov O,

0 1 ~ Ox O9Y z(32
o( - .)A] ,, + vp + Uv 0

o i0(1 =0(3)

which can be reduced to tLe two decoupled systems

Ov R 0

Av - R(U - c)F 0v = (
(3.3)Ov

Ap + 2U, - = 0
Ox

111d

Au - (U-c). +
TV OP (3.4)

Awv - R(U - c) O"
Ox Oz ,)

'Tlking u(., Y, z) = ex[II (Y) cos/3z + u2(Y) sin/3#z the secondary cigcnIvaltc problem

(3.'4) rehces to

02--T + [A2 - 0'- ,\n(u - e)jttj = 0 j = 1,2(35
0Y2

with appropriate boundary conditions. It is easy to show that if c It (and 1? finite)

thcn every menlbcr of the point spectrum of (3.5) is real and non-zero. Potential

bifircation )oints are therefore obtained from the eigenvalue problemt (3.3). Let

v (3;,Y,z) 1\p(VIM cosflz + IV,2&I) sinl3 :j (3.6)Ax ,t, (Z) -/ )I' 2 [(vI(Y)(P

thent "1" (A2 -
2))p -1- 2AUyvj = 0 (j = 1,2) and

-I-(A2 -/32) vj - AR(U - c) - + (A2 - /32) v + AlUjvj = 0 (3.7)
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wichel is it modifiedl (re") formn of the thtree-dimensional Orr-Somiiierfeld equation.

Given (c ?/)(all real) there are two linecarly independent eigcnfunctions for eachi

eigeuivaluec A of (3.7), hcence each cigenvalute af (3.7) has (generically) geomietric and

algebraiic multiplicity two. Consequently if there exists an eigelivaluec A of (3.7) with

Re(A) = 0 and Iiii(A) 0 0 thent it is (generically) doublc and with its comiplex conjugate,

the associatedl 4 eigenfunctions formn a basis for a foutr-dimiensional (spatial) ccntre-

sitl)5Iaie.

Ilopf bifurcation points arc found by fixing (c, /3) and increasing 1t iitil ii e

exists all cigelivaluec of (3.7) with Rc(A) = 0 and Iixi(A) 0 0, or for fixed [3 the neutral

curve ill thle (C' R?) planle Can be obtained. Wheni /3 = 0 the neuntral curve is ats shown

ill Figure 2.1 and when /3 0 0 Squire's theorem (Drazin & Reid [19S1, p). 155]) can be

adapted to dletermnine the /3~ 0 ncutral curve: supp~ose 3 0 and~ A = icr (a E R)

anid let (C, 1?") be t p)oint onl the necutral curve with wavenumbler (v,,. Then for / 40

Squire's theorem states that for each given c the neutral point (for P3 54 0) is shifted

(positivvly) to R11 = R,)a,/ap where opf =V ;- #C 2 (assumlling < ja,,). GiVell thIe

neutral curve for /3 = 0 it is therefore straightforward to construct the/3 0 neutral

smrlace and curves for various values of /3 are shown inl Figure 3.1.

Nole that for each adinissable /1 thicie exists a point inl (c, 1?.) space at which pure

imaginary eigenvalutes for the 2D and 3D states exist simultaneously (where the /1 0

and p3 V- 0 curvjes intersect). These points are codiiension 2 bifurcation points anid since

thec cigeuivalties are generically lionre-sonant, they correspond to points of bifurcation to

spa~ia1I' quiasi-periodic states and are analyzed inl Section 4. For )nrrlie:uhlr values of /3
the eigeiivallucs of the codizuiension 2 points will lbe resonant (this wvill he, of codiniension

3). For example if at /3 /3 the 2D and 3D eigenvalutes lie *at r0o and !a',, Ilie

iesoliance is a sp~atial version of the Craik resonant triad (Craikc [1971,t985]). Inl Section

'4 these resonances (cr0 and an/ln it = 2,3,4) are considleredl from the spatial point of

viewv; that is, they are codintension three organizing centers for more comiplex spatial

strichui e. Inl this section it is assumed that (c,P/) take generic (admiissable) values and

thec codiniension 1 bifurcations associated with variation of 1?. are treated.
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AWe niow proceedl to comipute tile bifurcation from the neutral curve with P 76 0.

Choose aditiissable values of Pi and c and suppose 1? = R,, is thle neutral, point with

cigetnvalit A\ = ia0, with a. E R. Scale x '-* ax so that a appears as a coefficient in thle

noninear set of equations (3.1). lReverting to complex coordinates thle solution of thle

linear equation (3.2) at the neutral point is given by

=1(:Y 211c(e#z+Be 61 (Y))
n (x, V, Z)+ '(iJ)} (38

whe(re A, B E C tire complex amlituides. Let c -(a2 +. fr'2) thcul the cmple

ftiie"tioiIS (h0 F i)~3,) Satisfy

L (V.,fl LCI & 2f0l + iaoRU&,0i - ial?(U - c)A&fi 0 (3.9)

ia0  at), _2_R_
-+ o 2 L- (Uy1)

a0 +#32 Dy Q+

V = -f a,/31 L(Uy, 1  (3.10)

= Ct2= +fP2(iaoUJ f;1 + j 2 -

w~here LJ2 A - iaoR(U - c).

The idea, is to apply the centie-mnanifold theorem to the spatial bifurcation of

periodlic States. Rigorous ap)1licafion of the centre-nianifold theory is not p)ossible inl

thIis case due1 to tile fact that thc Blasius solution does not satisfy Lte Navier-Stokes

c(Iatiolis an~d the further neglect of 11o1-jarallel. terms. We canl however give a formal

construction of the centre-nianifold using thme theory of Coullet & Spiegel [1983]. Thiere

tire two, step~s inl thme redutction to normal form. Suppose (3.1) has beeni rcast ;as anl

evolution cequatiom (this is carried out for thme primitive variables ill Section 3.5),

(= L(c, R?) 1'( + ND,, t; 1R). (3.11)
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For adissable c and R = R. tie linear operator L satisfies

L(c, R) -4,(y,z) = ia0 o(y, z) a. E R

whe're 'l'(Y, z) = (Aei-lz + Be-1 i3z)4 I (y) with A, B E C. Suppose that A =:ici, nrc

the only cilgenvahtes of L(c, R.) on the imaginary axis. Then 1, cai b expressed as

11,(x, y, z) = (A(x)e". + B()c - iO,A1 (y)

+ (.'c - itz + - ci)-,4(y) + P(a,.1,Z) (3.12)

where %' consists of all modes not ill the center subspace. The first ste l ) ill tile centre-

mantifohl reduction is to substitute (3.12) into (3.11) (at R = Ro) resulting il

dA = f,(:,B,, T)
,1; , (3.13)
dB -
' = f2 (A, B, A,/B, %P)

d'l
T = f3(A, B,-,-, ) (3.14)

with additional equations for q aid f. All cigenvalues of df 3(0, 0,0,0,0) nre off the

iiunginary axis and presumably (3.1.1) Cali be solved for i its a function ofA,B,'L, 9.

Back sibst.itlttion of q into (3.13) results ill it vectorfield on C2 . The reduced vcctorfield

will be an 0(2)-equivariaut vectorfield on C2 with :io (double) cigenvahites at the

litie;rization. Normal form theory is then applied to transform (3.13) to an 0(2) x Sl -

eqtiivariant vectorfield on C2;
dA
d = Af, ((r - a, R. - R,), JAI', 1112)17X = (3.15)'
dB= Bf2( - Oo,R -/, IA 2, [B12)

but the 0(2) x Sl symmetry requires f2(., ., lA12, 1112) = f, (,., 112, lA12).

First we will analyze the normal form equations (3.15) using the theory of Gol-

ubilsky, Stewart & Schaeffer (1988, Chapter XVII] and Golubitsky & Roberts [I987]

keeping in mind Ihat tile "frequency" is in fact tihe wavenuniber a. Then derais of Cho

coustrmictimi, of (3.15) are given.
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Let N = JA"12 + 1B12, A = 62 and 6 = 1B 12 - 1A12 then following Golubitsky &

Roberts [1985, prop. 2.11 the set (3.15) can be transformed to

A = (1 + iq + (r + is)6)A

= (p + iq - (r + is)6)B

where p, q, r and s are 0(2) x S1 invariant functions; that is, they arc functions of N, A

rind parameters. Writing A - ac' " and B = bei ' the set (3.16) can 1be split into

all litileC/phiase C(latiolns

,= (p + r'6),m ]

= (p - rS bamplitude equations (3.17)

= (q + 6) phase equations. (318)

#2 =(q-.46) 1

The' idem is to solve the phasc equations for a - a,. Then substitution of the expression

for a - a into (3.17) results in a function of R - R0 and (a, b) ndonie (when (e, ) are

fixed):
d b (a, b, R- R,,)

where

g(ab,R- R 0 ) = p(NA,R- I?,) (a) + r(N, A, R - R0 )b ( a . (3.19)

GCeierivally there are two types of solutions of the normal form: (a) oblique waves with

( V 0 mlid b = 0 which correspond to waves with a wavefront at sone angle to the

streainwise direction and (b) "standing waves" with a = b. These correspond to waves

timrl. travel in the streamwise direction but are periodic in the spanwiso direction. There

is also Ile possibility (with an additional parameter) for the two classes of waves to

interact producing quasi-periodic waves. Further details omi the symmetries and more

complete analysis of the normal fonrm (3.16)-(3.19) can be found in Chapter XVII of

GolubitL;ky, Stewart & Schaeffer 119881.

30



Tib coefficients in the normal form (3.12) are obtained ill the following way. Tile

cig('ufunctio, 4)1(y) ill (3.12) is easily constructed using the expressions in (3.8)-(.10).

The equation (3.14) is solved only to sufficient order (in A and B) to obtain the generic

normual form. This is done by expanding %F as a quadratic polynomial in A, B, and

1). Dropping terms that don't appear inl the normal form, q12 is constructed from

(u2, v2, IV2) where

V2C.tY, Z) = 2 le [(A2c2i(r+I ) + B 2 '(-P )61,(y) + 2AB 2 ir72 2(y)]

+ (ABcV /1" + A*Be-2) 23 (y) (3.20)

wlmt'm

I )21 = d (dol dfi d2v1.
7 20 dy (It (I! 71 -

1o- L (2 r, 0) • f12 = 4 2o d (f2 _ f)) - 2ia.-( .j + 4a ) ,2 , l

1i~(0I = _8p2 d (Ifl1 + Iti,, 12) d(2l,( 2 +p4/2) ,IU,, ,.(0, 2#3) - 23 (-ll 2i d2

(3.2.1)
For the strenimwise and spanwise velocity we find

U 21k, Y, Z) = 211c [(A 2C2i(2+/?: + Bl2 c2i(z-#)f 21 (Y) + 2Aflc 2z 22 (!y)]

A- (AB c2ill: + A*BC-2 )f,23 (y) + (1A,12 + I11I2) 2(h) (3.22)

1112(xr,y, z) = 2Rc [(A 2C2i2+11:) - B2e2i(z-Oz) )lb(Y)]

+" (AB* e21  - A* Be-2 i)la 23 (y) + (1,A12 - Ij) 24(:1) (3.23)
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d1121 = 9iar1i2i(Y) + 2ifiltb21(Y),

'1~ i d i d
1122 = -. 2  tb23(Y -- 23ao 2# dy

= Ryva +Ry(rL~IO + f40) 2flJ(iid4
4 r2t(Y) = 1?(fl2r + Ri;01)

1111d1

d
(,t1-()= R(&bO -1- tb*O1).

(3.24)
Stilstjttitjon of (3.20)-3.24) into flit! vectorieIld (3.13) and subsequent iioridizatioii

ic.Stilts ill

&A=4 [113(R. - R.) + h32(0 - a.o) + h331It 2 + h-.4 1012 +11IX (3.25)
dl=A[113l(R? -RI.) + I132(Oa - a,) + h34IAI12 + h33IBI12 +I(iX

where h3j =jIF, haj(tj)J and . is the adjoint cigenfunction of the Orr-Sotnincrfeld

h31(y) = 13&

I'32(y) = to'b _~V 2 -s- +2U(-b +ia~rii)
R. 7,, dy d

.4- Uyyf 1 + (U - o)&l- + 2ia0)(U - c) (.26

(12 d Y
h33() (2 +#2)ki I(y + d 2Y )

=~Y (12 + (a2 +p.12)] k21 (Y) +d 2()

Th'Ie opwralor & is Qie reced Laphljiiiui & 'L11 (a2~ +132) and the functions ki

are (IefiIlkd ill

kiI= (-a~fi - ifllt*1r) 2l - (ia0 124 + ifltb2.i)f'J
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- *(2iao,,2i + 2if/hD) (3.27u)

k2  - (--iaoi + iWff'1)i6 23 + 222(ifItbi - iaotl) - 2iacof1i22

+ oi(iotl 2 .t - iaoii 2 .) - i(iCto 2 3 + /4t(123 ) (3.27h)

k12 -2(iactof + i/t-t1)(iaofi2i - iftt 2.4) - 2(a. + fIJ)0r021

+ 2(-iaolif - i#1b*)(iaofL21 + ifitb2 l) (3.27t:)

k22  -2(iaoft + ifltb1)(iao1 2 1 - ig tb2 ) - 2(iaofil - iflit)j)(iroot 23 + iOb2.1)
-4tiao2 2 (icVo1 - i/3tFP,) - 2(ao2 + p 2)(,6,1 23 + 2O;,. 2) (3.27,1)

The vectlorfheld in (3.25) cin be recast as

-- = .[h3 (R.- n) + h32(n - to) + (h3 + h34)N + (h 34 - h33)6 .

which is of the form (3.16) with

I' + iq = h31(R. - Ro) + h32(a - a,) + 1(h33 + h 34)1- +

I. + is = 1(h3, - h'33) 2 (3..8)

(322

It. is now straightforward to apply the theory for 0(2) x S1 equivariant normal forms

to (3.28) given the complex numbers hij j = 1,...,4. Numerical evaluation of the

cocllicicitts in (3.28) is considcred is Section 3.2.

It is important to note that. tie above bifurcations are spatial bifurcations and

the stability assignnents given in Golubitsky, Stewart & Schaeffer [1988, Chapt. XVII]

-ire not applicable. To determine the stability of the two classes of waves (oblique and

stamlini) time will have to be reintroduced and the possibility of sideband instability

consideid. This is a very interesting problem that we will treat in detail else-whcre.

3.2 Computation of the coefficients for sl)atial 1lopf bifurcation

In iis Section details of the mmnerical evalation of the coefficients in the 0(2)xS1

equivarianit, normal form obtained in Section 3.1 are given for the case where the cquilib-

riutu state is the Blasius boundary layer. Numerical evaluation is esscntial becatuse the
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Blasius .olution is given implicitly as the solution of a diffcrential equation. nic ba:;ic

prolemI is to construct the functions h3j(y) (j = 1,... ,4) in equation (3.26) which in

turn depend on complex functions that satisfy the homogeneous or inhoniogencous Orr-

SoIunct fcld (or related) equation. The Blasius equation, the Orr-Sominerfeld equation

and rela'ted e(juations arc all posed on the semi-infinite interval y E [00, o). However lnt-

icrical solution of the Orr-Sommerfeld equation on semi-infinite domains is treated in

Bridges & Morris [1984b,19871 und we use their basic algorithnm here. The semi-infinite

doilain is mapped to [-1, +1] using the algebraic transformation

v +--- Eo, oo). (3.29)

Then i - i() where m(Y) (1 - ")2 /4 and all functions of y are considered as

functions of Y' and expanded in finife series of Chebyshev polynomials. As an example

we consider the construction of a finite Cliebyshev series expansion for tin' complex

function 021(Y) (in equation (3.19)) which satisfies all inhloniogencous (modified) Orr-

Solitil'a feld equation. Mapping y t-4 Y the governing equation for b2, is

d dd ddj d 2

M -,in - (i, -,) -- 2,,- ) (3.30)
ciiy TI -d Y - ) dY ci

where

A(Y) = -2(a o + #2) - in" I?(U(I) - C)

13(Y) = (V2o + fl2 )2 + io 0R(V2 + g2)(U - ) +u (3.31)
0 + ia.R,( 0 - c) ic( ciy d

The firsf. order vertical velocity is obtained as a solution of the Orr-Somiinerfeld equation

as ini B idges S- Morris [19871. The metric ni(Y) is expanded in a series of Cliebyshev

l)O lynlollials,

raC(]') = lno + miTI(Y) + 1112T 2 (Y) (3.32)

34



wit 1111 1 1111 and m12 = .Tlhen the Chiebyshiev pioduct and differentiation1

foruittlau, call be used to wirite the right hiand side of (3.30) in a finite series of (2hebysliev

jpol VioIluiaks. Sinailatily Cte coefficients A(Y') and 5(Y) can bc expanded in itte scres

of Cheilwyshiev polynlomlial1s. It is theni straightforward to expandl f121(Y) in1 a fillitc

sies. Substitution into (3.30) and1 app~lication of the Chiebyshiev-,r mnethod results in a

discrete system. After inumerically eliminating (3.30) reduces to thc finiite dimensional

inairix eqIuationI

[D4 (2nl, 20)] (021) (rlis). (:3.33)

Assmimiig (2a., 2(i) is not an cigenvaidue wihen (a.,#j) is (non1-resonlance poilit) tile (com-i

lex) system (3.33) is casily iniverted to find Cte vector (6211 Of CllzebYShICV fCoeficientLs.

Tit, remainder of thie secondl order funtctions arc obtained ini a similar fashion. Then

Cte functions I13j(Y) are Olbtainked Ly repented itse of the Chebyshiev product and differ-

tiatioii formulae. Thc niatrix [D., (a0, PIl is the (liscretized Orr-Somuerfelti equation

and therefore (whenl ia0, is anld eigenvalute) has a left cigenvector. Instead of using the

adkjoiit- (, gvefuuetdionl of Cte continuous ()rr-Soninerfeld equation to obtain tlmc bifuirca-

tioji covelheients we simpilly ulse the left cigeavector of Cte mnatrix ID. ((v., 0)]. Let 10.)

he I hie left eigelivector of D4,; tHIM. is,

j .)"-J tD., 0)Th= 0, (3.34)

thiemi thle biiiircit~ioii cocilicieits% h3j are easily ob~tainled by taking the (discrete) complex

ininer-1)rodluct, of (0.) with {Iz~,). Complete details of the numnerical calculations wvill

hbe reportedl in Bridges [1991b].

Alicrnatively a compilete anzalysis of transition process (through the spatial evo-

luidon equation) canl be carried out in the discrete setting. Write thec Navier-Stokces

equzationis as an evolution equation in xv: - L(c, 1?) -4) + N(4,; 11) and for brevity
we'll sketch the 2D case. Elimiiatc Cte differential operators in y by expanding 1, is a

fini Ic series% of Chiebysliev polynomials:

N

4I'(x, j) = 12,100 + ~ I,,(x)T,.(ij). (3.35)

35



'''h( evohttion equation for 4) is thcn reduced to an evolution equation on the finite

(alihough l.rge) dimensional space Rl N

10FXT= LR)-T+ l, ,R) (.6

where ' = (4,o, 4I1,...) , is a matrix and f4 is an algebraic nonlinear opciator. It

is then straightforward to apply the usual bifurcation theory for evolution equations in

finile dimensions to (3.36).

3.3 Secondary bifurcations 2D -+ 3D

An allhrnate route for three-diiiiensinality to arise is through a secondary bifur-

catfion from a 2D state to a 3D state. In fact this is a widely accepted thcory for the

origin of threce-diniensionality (Orszag & Patera [1983], Bayly, Orszag & Herbert [1988],

ierbert 119881). The "secondary instability" theories of Orszag & Patcra and Herbert

are however temporal theories. Ii this section we introduce a spatial theory for the

bifurcal ion from 2D finite amplitude states to three-dimensional stales. The idea is to

study the spatial Floquet multipliers along a branch of spatially periodic 2D states but

with 31.) lrturbationls.

Le. (u. n,p) be a 2D spatially periodic state satisfying (2.1) and consider the addi-

lion of a 31) perturbation (u + , - , w, p+q). Substitution into tle 3D Navier-Stokes

exuatious (3.1) and linearization abiout the 2D state results ;i the following system with

periodic (iii x) coefficients
0 Oii 0¢-- +  11 -t+ 0 (3.37)
(lx Dy tlz

ft +U - OF. - A] ( +, *vq+ OY~v ](~ 0
0 0 v g

(3.38)

TIhe lI'sstire perturbation q can be eliminated by taking the divergence of the pertur-

balion Ill lttmmmi equations,

Aq = -2 [(U, + uy)'h + vtlly + u1G + vXG] (3.39)
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Now, takingj the Laplaciani of tilc streamlwisc and vertical velocity perturbation equta-

tiolns results inl thle following coupled linear equations for (C,qi) with p)eriodhic (in x)

g a - RA~ ( ((J +l uy)ij + (u + U - c)C, + Cu,+ = 3.0

AAJ- R q- RA~ {vY11 + (tu + U - C)I,, + V + v11y} 0

w~ithL Lq given by (3.39) as a function of (~ ;.There is also an~ wdditional decoupled

cigeliiialuc prolemn associated with tile spanwise velocity pcrturbation; in particular,

given ((, q), q is 61btaiincd front (3.39) and the spanwlise velocity pert~urb~ation is given

by Ihle Solution of

1iv (it Owc v - q (3.'11)

Equationis (3.40) and (3.41) togcllher formn the eigenvalue problem for the secondary

bifiircalioms. But, since they are (lecoupled the Floquet eigenvalue p~roblem associated

with (3.41) canl be studied idepcndently. Let

w[(-T, Y, Z) = 0" 1111 ('-, Y) COS OZx + V2(X, Y) Sinl 1ZJ,

thcut vp~,(x, y) (j = 1,2) satisfy tile following qUadratic in the p(L7Vtfter eigenvalic

probIlemD,

-f2 II'j +,7 { 2 1- - 1?(i + U - e)t 1 }

-t pi2 
-1? fl(I + U 'V c)ij

+ {9 _ _ 11?& 0 = (3.412)

(j =1,2) for the sp~atial Flociuct. (vxjponent -y. Given expressions for thle periodic func-

lionls u(x, Y) and 12(x, y) along at branch of 2D spatially periodlic states, the eigeiivahtic

p~robleml (3.42) call be (iscretized and so~lvedl using thle methods de~scribedl in Section

2.2.

Thu, main cigenvalute p~roblenm for the slatial secondary "instab~ility" is tile coupled

set (3.4I0). Since thle coefficients of (3.40) are periodic ii a, and inidependett of z we

call tahe

(x~ ~ C,.,. y co, /Iz+ 61 (X Y)Jn1z] (.3
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with (ii, j=1,2) periodic ini x. Substitution of (3.43) into (3.40) results in the

noidiin (of degree 4) in (.te I)ianietcr cigenvalue p)roblemn

L(e,f3) -. = 0. (3.44

Explicit expressions for the operators Lj(e, P3) aire easily obtained by ,;-,tbstitutiiig (3.43)

into) (3.39) and (3.40). The p~ar'ameter e represents a paramietrization of the branch of

2D states and /3 is the SpanwisC wvavenuinber of the p~erturbation. [it particular, the

Floquet exponents -y(c, /3) will depend on two parameters which will result ini potentitilly

More Complex bifurcations (whten compared with the 2D secondary Ihifureatiofl problem

in Scction 2.2 where /3 = 0). Thme complexity of thc bifurcations cant also be increased

by changgig paranmeters that alter thc equilibrium state such as; v (thme wav'cspeed)

or utsing F~dkier-Slain flows rather than the Blasius flowv for the equilibriumi state or

add~ing a compliant wall along the boundary (Carpenter & Garrad 19851 & Carpenter

&, Morirk[] 9901).

The types of secondary bifitrcation points to lbe expected front thme eigenvaluec

prioblemI (3.44) will be similar to Ihose described in Section 2.2 ( wavelength doubling

and secondary bifurcation to (strvamnwisc) qu asi- periodic states) but. with the addition

of spamiwise p~eriodicity' of wavenumnber #3 (which is an independent paramieter).

To determine values of the 1)araneters (e,P/) at which secondary bifurcalions occur

wouldl ieqpire niumerical solution of the nonlinear eigenvaluec problem (3.44). One way

to show that iii fact secondary biftircations to spatially quasi-periodic states are to be

expected is to introduce a secondl param~eter whose variation brings the secondary bi-

fun cationcm point downm to the origin forming a codiniension 2 singularity. Then secondary

biflmcl ion to sp~atially (juasi-periodlic states can be found in thme untfolding. fIn Section

4 ii. is shown Chat for each #3 (sufficiently simall) there exists a coclimnensioni 2 point in

(c, 1?) space whose unfolding contains secondlary bifurcations to spatially (luasi-periodic

states. fin fact all alonug the upper branch of thme 2D neutral curve secondary bifurcationi

to (Iuasi-l)(riodic states (with p)eriodic spanwise variation) will be prievalent..

SAmmimetII(ry will play an1 important role ini thme secondlary bifurcations. For the
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second~ary bifurcation to streaiisc, quasi-periodic states thle normtal formi will be

0(2) x S'-cquivariant withi the 0(2) action associated with the spanwise periodicity

and reflectioni andl thc S' action is associated with the second~ streaiiiwise wavenuni-

bcr (assuming thc Floquet inuliplier lies at anl irrational point onl the unit circ). A

torus bifurcation inl the continuous system is locally equivalent to at llopf bifurcation

ill a map (discrete timec system). lit essence the above secondary bifurcation is equiv-

alent to a llapf bifurcation in au 0(2)-c quivariant map. Results onl llopf bifurcation

inl maps have been olbtainted by Chiossat, & Golubitsky [1988, p. 12621. Modulo sonic

(substaid il) technical dletails the 0(2).cquivaiiant Hopf bifurcation in mnaps resembles

the 0(2)-equtivariant. 1101)f bifurcation inl continuous systems. Inl particular there will

be t(Vo ClaISSe Of sCon-dary quasi-Periodic states. This is easy to see p)hysicahly: the

secondary state canl correspondl to anl oblique wave (where the streantwise wavenumber

does not resonate with time 2D waventunber) or thle secondary state can be oriented in

the streaunwise direction (but spanwise periodic and again non-resonant). The group-

theoretic results of Chiossat & Golubitsky canl be used to obtain further information.

There will be it group orbit. of quasi-periodic states; inl particular two oblique waves

withl isotropy sub~group) 915(2) anid at continuous group orbit of "standing" secondary

states (at torus of invariant tori!) with (liscrete isotropy subgroup. With time addition

of amothor pa~ramleter there will also exist points of tertiary bifurcation to 3-tori! The

analysis of secondarv b~ifurcation to quasi-periodic states with symnmetry is ant interest-

ig area for further study. Our analysis inl Section 4 shows that this bifurcation will

play at Crucial role along tile upp~er branch of the 2D neutral curve inl shecar flows.

The other class of secondlary bifurcations is wavelength dloubling (spatial Floquet

nmultiplier p~assin~g through -1). Suppose tile streamwise waventumber of the b~asic state

is norllmlized to 1 (wavclengthl 2-,r) and that at Floquet, multiplier lies at -1. Tro study

the bifurcation of 47r-periodic states we use the equations (3.1) perturbed about thme

2D state. Onl the space of 47r-periodic funictions however tlme noli 'ear problemn is

ZR-equiva;ria lt withl action p -f(,x, y, z) f f(x + 27r, y, z). Thme non-trivial span~wise

variation howaever' prov'ides i adl~h ional 0(2)-equivariance of the nmonlinear e-qiatiolis.
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Therefore secondary bifurcation to wavelength doubling from 2D states to 3D states

with spanwise periodicity is a ZP x 0(2) equivariant bifurcation problem, or in terms of

dynamical systems theory, the above bifurcation corresponds to period-doubling in the

presencc: of a continuous syntmetry. Period doubling with a continuous symmetry is a

diflicult problem. Acting on the periodic orbit with the SO(2) C 0(2) action results

in a torits of periodic orbits. Period-doubling will therefore correspond to a doubling

of the whole manifold of periodic orbits (see Vanderbauwhede (1989,1990]). In light of

its iml)ortance for sl)atial bifurcations in shear flows the properties of period-doubling

with 0(2) symmetry is an interesting area for further research.

3.4 Secondary bifurcations 3D - 3D

Secondary bifurcations from 3D states that are I)eriodic in the streamwise and

sI)alnwist direction are of great importance in shear flows. Three dimensionality is

essential for true turbulence and the theory in Sections 3.1 and 3.3 presents two routes to

3D states with spanwise l)eriodicity. 3D states with spanwise periodicity are apparently

an inevitable stage in the transition process. If a (spanwise periodic') 3D state exists I

and the stleaxnwise flow is also l)eriodic (it can either be the basic periodic state or

have wavelength doubled (or n-tupled) any number of tines)5 then we can apply two-

(limensioInal spatial Floquet theory to study tertiary bifurcations in both the streainwise

aLnd spaiwi:;e directions.

Linearization of the set. of equations (3.1) about a 3D state periodic in (x, z) results

in a pdc with doubly-periodic coelficients to which spatial Floquet theory (Eastham

[1973, Cliapt. 6]) will be applied. A basic question to be addressed in. the ap)lication of

2D spatial Floquet theory is the role of spanwise spatial bifurcations in the transition

l)ro:ess. In l)articular, is spanwise periodicity a good assuml)tion throughout the tran-

sition process with bifurcations essentially taking place in the streaniwise direction?

Or altertat ively, does wavelength n-tul)ling and/or spanwise quasi-periodicity play a

significant tole in the transition piocess?
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Suppose (1, v, IV, p) is a three-dimensional state that is periodic of period 2ir/f in

the spanvise direction and periodic of period 27rn (n E N) in the streamwise direction (it

doesn't real ter how many times the wavelength has doubled or n-tupled). Introduction

of a perturbation about the three-dimensional state (u+ , v+ql, w+(, p+q), stl)stitutionI

into equations (3.1) and linearization about the known 3D state results in the following

lincar pde with doubly periodic cocfficients,

0F+ 2+ 0 (3.45)

(iU -O 1 + tt V tL

+ v (I+ (uv w)T . V + Vy V, / 0.

Ltv, 1  (uvtI)y'

(3.46)

An equition for the pressure pertuirbation is obtained by taking the divergeuce of the

mno ienhumn equations resulting in

Aq = -2Ui/z - 2 Vit. + Vv. -+a + V 1 (3.47)

Tahing lhe Laplacian of each of the momentum equations in (3.46) will eliminate the

prcssur, pcrturbation via substitution of (3.47) resulting in three linear coupled equa-

tions with doubly-periodic coeflicient for the velocity perturbations ( , II, (), 1

i,(.v,:) z ) = o. (3.,48)

Two-diuensional Floquet theory (Eastham (1973, Chapt. 6)) is easily applied to (3.48).

Let
Ox,/ Y, Z) 71

= f + (x, Y)) (3.49)
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where , , and C are doubly periodic of "period" 27rn in x and 27r/fl in z. Substitution

of (3.49) into (3.48) results in an cigenvalue problemn for the pair of spatial Floquet

CXPel)CItS (7y1, 72),

L(x, Z; 71, 72). ~ 0 (3.50)

Equatiou (3.50) is again a nonlinear in the parameter eigenvalue probhden in both 7j and

72 and the degree is four. When Iche basic 3D state is known only approximately (as

say a Fourier-Chebyshev series) the cigenvalue problem (3.50) will require significant

colm)utat.ional effort. Iowever, the simpler question of the role of spaliwise bifurcations

can be addressed by setting -y, = 0. Then (3.50) is an eigenvahlu problem in one

parameter, the spanwise Floquet exponellt 72. Given 72 as a solution of (3.50) with

71 = 0 tlh, spatial Floquet multiplier is exl)[27r7 2/0] and all the usual bifurcations

(spanwise wavelength doubling, spanwise quasi-periodicity, etc.) are to be expected.

If the 3D basic doubly periodic state is of the standing variety, then Z' is in its

isotropy subgroup. In other words it is a reversible state (invariant under Z t-4 -z).

In this case the spanwise tertiary bifurcations will be of the type found in reversible

syslems. The Floquet theory for reversible systems (with a reversible periodic orbit) is

similar Io Ilamiltonian systems: periodic orbits are surrounded by tori generically and

n-tupling bifurcations (it > 3) are of codinmension 1 (rather than of codimension 2 as

ill 1on-teversible systems). Consequently the bifurcation structure of the spanwise ter-

tiary bifurcations will differ from the 1bifurcations in streamwise direction. A spanwise

Poi ncar(" section will have a struct ure reminiscent of a symplectic niap!

3.5 SpaIial evolution of the primitive variables in 3D

-hn evolution equation for the primitive variables introduced in Section 2.3 is easily

extended lo the three-dimensional Navier-Stokes equations. Taking the divergence of

the lloiientuin equations ill (3.1) results in the following Poisson equation for the
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' t

Azp+ 2Uv, + I2 + ,, + IV! + 2(v ,,u + wZIZ + ,v.) 0. (3.51)

The idea is to write the Poisson equation for 1 and the spanwise and vertical monmentum

equations as evolution equations and use the streainwise momentum equation as a

constraint. Let
V v

4) 117 w (3.52)

titem we find

(,I = L(c, R). 1, + N(I, u; R) (3.53)

where

0 1 0 0 0 0)
-(=O + R). n - c) 0 0 0

OS,
0 0 0 1 0 0L.(c, R) 0 0 o1- 2 + a2 R(U - c) RA 0
0 0 0 0 a2 0 1)

-(0y 02)R( c 0)
0-UY .0 0 -(-± .+ 17 0(3.54)

add
/ 0

RO I, + vvy + wtv)
0 (3.55)

N(,u; R)= R(uV + vwvy + Iww:)
0

-2(v'2 + IV, + vyw. + Vuy + 'Vu, + IvYn.)

and the comistraint induced by the streamwise momentum equation is

11
q + + 111) - ,, + u;:) + U v - (U - c)(vy + W..)

+ vil/ - I Vy t+IV: - 1t12 = 0-. (3.56)

Assuiming I he functions (u, v, w, p) have periodic spanwisc variation, the evolution eqita-

tion (3.53) is an O(2)-cquivariant vectorfield in a suitable function space.
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Figure 3.1 Neutral curves in the (c, R) plane for the modified (real) 3D Orr-Sommerfeld

equation (3.7) for 1> 0.
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* 4. Wave interactions and spatially quasi-periodic states

Our claiim is that along a branch of 2D spatially periodic states secondary bifurca-

tion to spatial states that are quasi-jpcriodic in the streaiiise direction (and p~eriodic

in the spanwise direction) arc to be expected. In this section a theory is p~resented that

shows that along tihe upper branch of the 2D neutral curve a secondary bifurcation to

spatially quasi-periodic states is generic (iii thc one-1)araineter family of 2D spatially

periodic states). This is shown by anialyzing the cod incunsion 2 sigularity associated

with the infersetion of thc fi = 0 and Pi 0 0 neutral curves; ini particular, thc codiincnl-

sion 2 sigularity brings the secondary b~ifurcation to quasi-periodic states down to the

origin. Analysis of the unfolding of the singularity shows that secondary bifurcation to

quasi-p)criodic states is codliniension 1 along a branch of 2D spatially periodic states.

Suppose Pi is chosen arbitrarily in the interval (0, 9 ... a.) where fnam. R .3 (for the

Blasius boundary layer). The neutral curve for 0 = 0 and P0# 0 is shown ini Figure

4.1. In Ihle two-paraincecr family (c, R) there is a codianension 2 point where the two

neutral curves intersect. At the point (c0 , &0 ) the 2D state and the 3D) state wvill have

jpurC ima.ginlary CigenIValuIeS; that is, at (c,,, R.) the Qrr-Soinmerfeld eqjuation (3.7) will

have anl eigenlvalue A = iai (ai E 11) when j3=0 and anl cigexivalue A = ia2 (a2 E R)

when i 0 i 0. Note that for each 13 E (0, 9 ...a,) there exists a codirnension 2 point,

therefoi c sitch a codiiniension 2 point call be found at each point onl the upper branch

of the 2D nieutral curve. For general f3 E (0, Omar) the ratio al/a2 will be irrational

but at particular values of Pi the ratio will be rational. lWe suppose henceforth that

the ratio o 1 /2 is irrational and then treat the codiniension 3 ponlits (c., R0, 13(,) where

al/a 2 E+ Q as speciaol cases.

As in Section 3.1 the 0(2) symmetry forces the CigenlValue A = ia2 (Whenif 0)

to be dlouble. Therefore the spatial ccntre-inianifold associated with the codiincnsioxi 2

1)oinit (ro, 1?o) is six-dimiensional. What we will show is that thc codnuension 2 point

(C,, H) call be treated as ail 0(2) e(juivarialt (spatial) llopf-Ilopf mode-initeraction

onl six-olimo'nsions. The correspondence is useful because there is an interestig normal



form theory due to Chossat, Golubitsky & Keyfitz [1986] (hereafter CGK) that is

applicable. The theory of CGK is a temporal theory but nevertheless their existence

results will be applicable here but the stability of the bifurcating quitsi-periodic states

will have to be determined by other methods.

4.1 Bifurcation of spatially quasi-periodic states

rh( evolution equation in the primitive variables given in Section 3.5 can be re-

cast as an 0(2)-equivariant vectorfiehl in the following way. Assuming periodicity

(wavenumber fP) in the spanwise direction we can write

o

(y,z) =,Io(,,) + ,' 2I,.-_(X, Y) Cos 1/3Z + ' 2 ,.(Z,y)sin mflz (4.1)

where

/ v1(x, y)I lj(' )

)j(x, y) = lj(XIy) with 1vo = IVo = 0. (4.2)
1,1 -(:, y)
))j (X,J Y)
qj(X, Y)

The point about. the (spatial) llopf-Ilopf interaction can be made using the linear part

of the evolution equation (in (3.53)-(3.54)). Let

0 1 0 0 0 0"
02 R(U- c) 0 0 -  0

0 0 0 0 0 00~ 0 0 0 0 0o (4.3)

0 0 0 0 0 1
0 -2Uy 0 0 -- 0

0 1 0 0 0 0"
,,zf 2 _ R(U - c) 0 0 'Y 0

L+ = 0 0 0 1 0 (4.4)
0 0 in2 P2 -r R(U-c) 0 0

0 0 0 0 0 1
-2U 0 0 772fi- 0  O.

and

Lill, = 71RE45 (4.5)
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whcre E 1s is a 6 x 6 matrix with unity at entry (4,5) and zero everywhere clsc. With

the matrices L0 and L:, the lincar vcctorfield -1I, = L(c, R)4 can be written

"Lo 0 0 ... ...
tI 0 -L . L 0 0

4 j3  0 0 L+  L- 00 4P3
9x 44 ) (4.6)

x ,,4  0 0o -L- L+  0 0
22

0 0 .

0 0
{ o0 sin noaG

Let R,o m , csto ill E N with 0 E 1 be the usual rotation niatrix on

R2 . Thct an action for 0(2) on the Fourier coefficicnt space is generated by

0(2) = (1, K) (4.7)

where R. generates SO(2) and is given by

R = diag(Ih, RO 0 10, R20 0 16,...- , R,,18 0 I6,..t

and K genrates Z' and is given by

/ = diag(Io,t, 0Io, 1C @Io,....)

with ic = diag(l', -1). With the action of 0(2) given in (4.7) it is clear that (4.6) is an

0(2)-equivariant vectorfield with 0(2) acting trivially on the 2D state (o. To study

the spalia! eigenvalue problem take 'Ij(x, y) = eAr ,(y) then (4.6) decouples into the

sequence of eigenvalue problemis

)o= Lo,, (4.8)

\ ',fl,,~ [ -L;, L,, 'm,1,,, " = 1,2 .... (4.9)

Suppose A E a(Lo) is a spatial Hopf bifurcation point (Re(A) = 0 and In(A) # 0). A I

(spatial) Hopf-llopf mode-interaction between a 2D state and a 3D state (equivalently

a 1opf-11opf mode interaction with 0(2) symmetry on 6-dimensions) takes place if (for

the same (,., R))

\ E -L1 L+1 (4.10)
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q

is also a sj)atial Hopf bifurcation point for sonic in. ~Vithout loss of generality we can

take in = 1. The scqucnce of cigenvaluc problems (4.9) is equivalent to (using (4.4)

and (4.5))

+ (A2 
- ii~2~32)~~2m AR(U - c)iuirn + ~ (4.11)

+ (A2 
- TI~2P~)132,,~ = -2AU~O211~

tb';,1, + (A2 
- .ii2132)ib = AR(U - e)b2h, + m/3Ri32131, (4.12)

with D~113, satisfying the stunc set of cqnations (i.e. cvery cigenvaluc of (4.l1)-(4.12)

is double). Clearly, a inodc-intcraction takes place (of six.dimcnsions) if tlmcre exists

(c0, H0) at which (4.11) has a purely immiaginary cigemivalue for both in = 0 and m = 1.

This is in fact the case as shown in Figure 4.1; that is, a sufficient condition is that the

nentral .:urves for ni = 0 and in = 1 have a point of intersection.

For the 1)ifurcation at the points (ce, H0) where a 2D and 3D state interact the

norimmal l~ormim theory will be sketched with conmpktc details along with miumnerical evalti-

atiomi of tin. coefficicuts to be veporte(l in Bridges [19911,). At tIme critical point (ce, R~)

51tl)I)Ose that A = jam (al E R) when /3 = 0 and A = ia2 (cr~ E B) when /3 ~ 0. Thcn

the lincar solution in terms of the primitive variables at the point (c,,, H0) is given by

=2Re[z
vi(xyz) I oe'~'~ ( Omi(y) II
p1 (xy,:) / \j3~'(y) JJ

I 1L12(iJ)z2 ei(G2z#z)) /J2Re + 0 m2(Y) II (4.13)
P12(Y) Il

:111(1

= 2Re [(Zici(fl22+ii:) - Z26 t(fl2713-))W1.2(y)]

where (:o, :j ,:2) E C3 are complex amplitudes. Formal application of centre-manifold

theory allows redimetiomi to a vectorheld on C:I. For the normal forum Proposition 2.3 of

00K is ad;mptcd to thc spatial setting. At. the j)oint (c0, H0 ) the nominal form is
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where 1)o,p,2, qo,q, and q# are real functions of p, N and A where p = zot 2, N =

I :I+I 2, A = 62 1n2 6 -1 Z ,-1 k 2. Moreover qo (0, 0, 0) = a, and qI (0, 0, 0) = a2.
An interesting )ro)erty of the coml)lex equations (4.14) is that the amplitudes and

phases separate: let -j = reiOJ j - 0, 1,2 then (4.14) decouples into

o = po(p, N, A)ro

j = (pi (p, N, A) + 8P2 (p, N, A))ri (4.15)

V2 = (pj(p, A, A) - 6P2(p, N, A))r2

and

o = qo(p, N, A)

p, = q, (p, N, A) + 6q2 (4.16)

2 = qj (p, N, A) - Sq2.

The set of amplitude equations in (-1.15) is particularily easy to analyze because it is a

Z2 (1) D.1 equivariant vectorfield. The group Z2 = (Fo) and D4 = (Ft, F2 , F) where

FO (1'0,i,,' 2) = (-ro,r1 , r 2)

F (1'o,r",,,2 ) = (1'o, I-r 2 ) (4.17)F2 .('0, ,',, '2) = (o, "i, - '2)

F. (0o, )'1, 1'2) = (1'o, V2 , ?'I).

CGK have used group-theoretic techniques to show the existence of seven classes of

solutions iii the normal form (4.15). They are listed in Table 4.1 along with their

symmetry group (as subgroups of Z2 (D D,s). Types 1,2 and 3 are the strictly periodic

states that occur away from the interaction. States 5 and 7 require an additional

paraniler (are codimnension 3). The interesting states are 4 and 6. They correspond
to two (lasses of spatially (streamnuise) quasi.periodic states with spanwise periodicity.

Type -1 involves interaction between an oblique travelling wave and a 2D wave with

intl)endent wavenunbers (but the same phase speed) and type 6 involves initeraction

between a standing 3D wave (actually travelling in the streamwise direction but periodic

in the spanwise direction) and a 2D wave.
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Further information about the bifurcating states can be obtained from the bifur-

cation equations. Expansion of the right hand side of (4.15) in a Taylor series and

truncation at order 3 results in
P = coA + it + aop + boN

1)= clA + alp + b1N (4.18)

P2 = P2
where cil, aij, bo, el, a,, b, and pv arc real constants to be determined and (A, it) are the

unfolding paramneters of the codinension 2 singularity. CGK give a partial analysis of

the bifurcation equations (4.18). There are numerous bifurcation sequences depending

on ihe value of the coefficients. Computation of the coefficients relevant to the tipper

branch of the Blasius solution neutral curve are carried out in Bridges [19911).

Ultimately the importance of the spatially quasi-periodic states that bifurcate

along the upper branch of the 2D neutral curve will depend on whether they are stable

or not. To determine stability of the spatial states will require reintroduction of tinie.

For the spatially periodic states the sideband instability will have to be considered

as well. More generally the spatial states correspond to spatial invariant manifolds.

Therefore I here will be two steps in the stability analysis: stability with respect to

paranet rically equivalent manifolds (i.e. in the spatially periodic case, stability with

respect to perturbations of the same wavenumber) and secondly stability with respect

to other "nearby" spatial invariant manifolds (this is a generalization of the sideband

instability). A stability theory for spatially periodic state including sideband instability

is straightforward but a theory for the stability of the more complex spatial invariant

manifolds is by10 no means clear but is clearly of great importance for determining the

stable spatial states in shear flows.

4.2 Spanwise resonances and mode-interactions on 8-dimensions

Although we do not pursue it here it is possible to have interactions between two

3D states resulting in an eight-dinmeusional centre-manifold. Maintaining the basic as-

sumption of periodicity in the spanwise direction we look for resonances between two
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3D blockis (tit > 0) inl ('4.9). For example consider block in = 1 and in =2 which wvould

correspondl to it spannse resonance between /3 and 2fl. Figure '4.2 shows anl example

of neutral curves inl the (c, 11) lazle for P3 and 2P3 (obtained by solving the eigeiivalue

p~rob~lem (4.11)). At thc point of intersection of the two curves both #3 and 211 result inl

p)urely imlaginary eigenvadues of (4.11); that is, A = ial (a1 E R) corresponds to P3 (at

fixed (c,,, 1?,,)) and 2/3 results inl \ = ia 2 ((12 E R). Each cigenvalue is double due to

the 0(2) symmeintry (and a1 /a2 is generically irrational) resulting inl anl 8-diantsional

centre-nianifold, Trlis interaction corresponds to at lopf-Ilopf mode-interaction with

0(2) symmnetry onl 8-dimiensions which has been studied by Chossat, Golubitsky&

Kcylitz 1198G1. The interaction is very comp1lex and p~rodulces quasi-periodic solutions

(inl the pre.sent case spatially cjuasi-peiiodic states) with 2, 3 and '4 independent fre-

qjuencies (or wavenuinihcs inl the present case). The 8-dimiensional mnode-interaction

ill occur at higher Reynold's number than the 0-dimiensional mode-interaction and

ther'efore it. would appear to be o~f less importance. However, there is tin interesting dy-

niauuical feature inl the eiglut-dinmezsiotia interaction. Melbourne, Chiossat & G'olubitsky

[19SS1 have shown that heicroclinic cycles call be found inl mode-interactions oin 8-

dinensions, Aubry, el, at. [19881 have introdluced at model for fully developed turbulence

inl boundary layers which shows that heteroclinic cylclcs proide at good theoretical

miodel for tlie bursting lplenoinelia. 'Therefore analysis of the 8-dimensionial interaction

ill transiional boundary layers may p~rov'ide ai prelude to "dynamical" behavior that

persists inl fully decveloped turbulent boundary layers.

4.3 Rlesounnt, triads

Ill the codinmiensionl two nion-resonant interaction treated inl Section 4.1 it was

noted fliat, at particular values of fl the interaction is resonant; that is, there exists

disiuugiiishecd points (c0 j, , ) at. which the 2D state hias wavenumber a,, the 3D

state hias spanwise wavenumnlber /1,, and waveniunber pal /q where (1, q) are integers.

The interesting i .,souiances are when 1) = 1 and q = 2,3 or 4 (strong resonances).

It is easy to show that, each of the(, strong resonances occur inl the Blasius boundary



layer. 1Ided, the (1), q) = (1, 2) resontance corresponds to t1hc Craik resonant triad

although our non)llinear theory will (differ: Craik treats the wave speed as compIlex and

shows that the eniergy inl anl IludstalC 2D wave is tranisferred to the 3D wave. hIl our

theory the watveslccdl is taken as rcal and the rcsonant interaction is treatedl as a sipatial

(codiincnsion 2 Ilopf) bifurcation.

Tltv r('sont. int-vractions are-( dvitionstrated its follows. Using the (c, 11) neutral

Curve, Pick at Value of c lit which there are two fl-intersectionis (1?o and Rl1 ) its shownt inl

Figure 41.3. Corresponding to (c, fl1 ) is 'vavenlunnbcr (to and to (c, RI) is waVelluill)Cr

Oat. Now map (no, Ro) -4 (a2, R1 , 1)) with 0 7- 0 using the Squire transformation. Then

(V2 1 = Rflo 0  02

Therefore corresponding to Reynolds niunber R,. there is a 2D wave with wavenumber

atI and at 31) wave with wavenunlIhe)r 02. W-1rite their ratio Its p = ai/a 2 theiil

which is easily (co:Istrilttedl from the neutral curve dlata, nl is plottedl as at function of

c inl Figure 4.4. A resonant, interaction occurs wheniever p =E.Ilgnrlp>1bti

is clear fromi Figure 4.4 that there exist values of (c, Ri, Pi) at which p =2, 3 and 4 but

in geneiral p will he irrational (corresponding to the states inl Section 4.1).

rTli( normial form for the resonant interactions p = 2,3 and 4 will be nior dliffhcult

than the ,ornial formi for the non-resonant interaction (less symmnetry). The normal

foriii syinnietry will be 0(2) x S' oin 6-dihnensions. Consequently thec aniplitude/pliase

equat ions (10 nlot. sojparate. Normial forins for resonant Ilopf-Ilopf interactions with 0(2)

symmeticlry onl G-dinmiII.Sions hatve not appeared inl the literature. This is anl interesting

amea for furither resvarch and will he of great interest for understanding the flow near

the resonant. points onl thec upper brantch of the 2D neutral curve.

52



Table 4.1

Solution types in the unfolding of the

codimension-2 singularity (co,Ro)

Isotropy Fix (E) Vectorfleld Solution Type
Subgroup E on Fix (E)

0 Z2 x D4  0 - trivial solution

1 {1} x D4  (ro,0,0) p0 = 0 2D spatially periodic state

2 Z2 x {F2 ,1} (0,ri,0) P - r 2 p2 = 0 3D (oblique) spatially
periodic state

3 Z2 X {F,l} (0, ri,ri) pi = 0 3D (standing) spatially

periodic state

4 {1} x {F2,1} (ro,ri,0) pa = 0 2D-3D(obique)
Pi - r2JP2 - 0 quasi-periodic interaction

5 Z2 x {1} (0, ri, r 2 ) PI = 0 3D(standing)-3D(oblique)
P2 = 0 quasi-periodic interaction

6 {1} x {F,1} (ro,ri,ri) Po = 0 2D-3D(standing)
P1 = 0 quasi-periodic interaction

7 {1) (ro,ri,r 2) PO = 0 2D-3D(oblique)-3D(standing)
P, = 0 quasi-periodic (3-torus) interaction
P2 = 0



R

Figure 4.1 Neutral curve of the Orr-Somnierfeld equation for fi0 and 96~ 0

illustrating the codirnension 2 intersection point.

Figure 4.2 Ncutril curve for Pi and 2p illustrating the interaction point, for spanwise
resonance.
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Figure 4.3 Finding resonant and non-resonant interaction points using Squire's tlieo-

rem.

Cax

I2. 3_

Figure 4.4 Ratio of the wavenunibcrs in thie 2D-3D w~ave-interaction along the tupper

branch of (lie 2D neutral curve.
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5. 2D spatially quasi-periodic states and the compliant wall problem

The introduction of a compliant wall to the boundary layer problem has a two-fold

effect. Research of Carpenter & Garrad [1985], Carpenter & Morris (1990] and others

has demonstrated that proper use of a compliant wall (i.e. optimal material properties,

geometry and construction) leads to a reduction in drag and a greater control over the

point of transition in the boundary layer. On the other hand the potential for "wall

dynamics" leads to new instabilities and competing instabilities in the boundary layer.

It is this latter feature that interests us here. A classification of the instabilities (and

the nonlinear bifurcations associated with them) is of great practical importance for

the design of a compliant wall (in other words they need to be understood so they can

be avoided (or used to advantage!)).

There are a number of singularities in the linear analysis of the stability of the

compliant wall problem (see Carpenter [19901). Here we consider a particular singu-

larity in the neutral curve for the compliant wall problem that supports our theory of

secondary bifurcation to spatially quasi-periodic states.

In Section 4 the emphasis was on secondary bifurcation to spatially (streamwise)

quasi-periodic state that have spanwise periodicity. In other words the streamwise

quasi-periodicity appeared with three-dimensionality and the basic 2D state was spa-

tially periodic. However, it was shown in Section 2.2 that secondary bifurcation from

spatially periodic 2D states to spatially quasi-periodic 2D states was possible. Identi-

fication of the points of secondary bifurcation to quasi-periodic 2D states will require

numerical calculation. Ai alternative is to use the "codimension-2 strategy". The

secondary bifurcation to 2D quasi-periodlic states is of codinmension 1; that is, such

bifurcations are generic in the one-parameter family of 2D spatially periodic states.

In the codimension-2 strategy we introduce another parameter that brings the see-

ondary bifurcation point down to the origin. In particular we will study a singularity

in the neutral curve found by Carpenter & Garrad [1985, Figure 111 by varying a sin-

gle parameter (the elastic modulus of the wall). What we intend to show is that the
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singularity found by Carpenter & Garrad is associated with a bifurcation to spatially

quasi-periodic 2D states. This singularity in question may not be of great practical

importance to the compliant wall problem (it appears at a Reynolds number of about

3000 (based on displacement thickness) whereas the initial 2D instability occurs at

R ;i 500) but it is nevertheless significant in demonstrating that bifurcation to more

complex 2D spatial structures (other than spatially periodic) is to be anticipated.

Consider the linear coupled fluid-wall problem. The fluid is governed by the linear

2D Navier-Stokes equations (in the convective frame) given in Equations (2.2). For a

rigid wall the wall boundary conditions are u = v = 0 at y = 0. For a compliant wall

the governing equation, when the wall is modeled as a simple bean, is

^,+ c;2, = -'w (5.1)

where ii(x, 1) is the vertical displacement of the wall and C~f, Ch and C* are dime-

sionless (using displacement thickness variables) coefficients and pw(Z, 0, t) is the fluid

pressure at the wall. The linear kinematic conditions at the wall are given by

Oilv = and u = -Uy(O)il. (5.2)

With the transformation x i-* x - ct the equations (5.1) and (5.2) can be written as

02V Ov 01

OXOY Ox Oxc-+ 0, v+ =0 Jand/ (5.3)

C +C2C* 2,1 + • _W.11 -X4  I c M -X2 R I,' =  IP,

The linear Navier-Stokes equations (2.2) together with the boundary conditions (5.3)

(and appropriate boundary conditions at infinity) are considered as an evolution equa-

tion in x. Taking the dynamical systems approach, let (u, v, p, i1) = eAz(fi , O, P, fl) then

the fluid equations reduce to the (modified (real)) Orr-Sommerfeld equation,

(12 + A2 ii +ARUy, - AR(U - c) d + A2  =0 (5.4)

57



and the boundary conditions (5.3) reduce to

L,+ U"O = o

+AAc+Ac~~fc~BR~o.y at Y=0. (5.5)dy3 + A2  +o -k4 + A2C2C +=

Equations (5.4) and (5.5) together with appropriate boundary conditions at infinity

(6, ' -+ 0 as y -4 co) form a nonlinear in the parameter eigenvalue problem (of degree

5) for A as a function of c, R and the wall parameters Co, CUI and CICE. The variables

C 1, CAI and CICE are introduced to eliminate the streamwise dependence of CB, C*1

and C; , (see Carpenter & Garrad [1985, eqn. (6.5)]),

=C1 R- 3, C*CE = CKER and C* = CMR- '.

The boundary conditions (5.5) are in a form rather different from Carpenter & Garrad

and Carpenter &, Morris; here we suppose c E R and A E C is a spatial eigenvalue. In

Carpenter &, Morris the classic spatial stability approach is used; that is, the frequency

w E R, c E C and a, the wavenunber, is the eigenvalue.

Figure 5.1 shows a schematic of the results of Carpenter & Garrad [1985] (taken

from their Figure 11, p. 498). By varying the elastic modulus (CAI fixed and C1¢C and

Cy1 varying dependent on E) the neutral curve varies dramatically. In particular as the

elastic wall modulus is decreased there exists a critical value of E = E at which the

neutral curve breaks into two pieces. Our interest is in the critical point E = E. when

the upper and lower branches of the neutral curve first intersect. Carpenter & Garrad

treated the problem from the temporal point of view (real wavenumber a with c E C the

eigenvalue) and plotted the neutral curve in a - R space. In Figure 5.2 the singularity

is viewed in the (c, R) plane (E will differ slightly from the temporal value in Figure

5.1). In other words there exist E = E0 at which the upper and lower branch of the

neutral curve (in the (c, R) plane intersect. Recall that associated with each point along

the neutral curve is an eigenvalue A with Re(A) = 0 and hn(A) 0 0. Therefore when

E = E, and (c, R) = (co, Ro) the linear problem will have eigenvalues A = -zial and

A = ±ia2 with al/a2 (generically) irrational; that is, the linear problem has spatially
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quasi-periodic solutions and a center subspace of 4 dimensions. The vertical velocity
will have the form

v(x,y) = 2re [AI(y)ei '  + B 2(y)e Q2z (5.6)

where A, B E C are complex amplitudes (note that vj and 02 are in general distinct

functions) and the wall displacement will also be spatially quasi-periodic,

,t) = -Re [-Aj(O)ei't + 02BO(O)eiG2 ]  (5.7)

with related expressions for u(z, y) and p(z, y).

The idea is to apply centre-manifold theory to reduce the spatial evolution equation

to a vectorfield on i 4 to which normal form theory is applied to show the bifurcation of

nonlinear spatially quasi-periodic states. The analysis is sketched here with complete

details to found in Bridges (1991dJ. Let f = (Re(A), Im(A), Re(B), Im(B)) E R4 then

the (formal) centre-manifold reduction (as in Section 3.1) can be used to construct a

reduced vectorfield for f;

d
-f = L(c, R.) -f + N(f,c., R.) E =E. (5.7)

with

L(co,l) = -aj 0 0 C1

The problem has been reduced to a vectorfield on R4 in which the linear part has 2

purely imaginary pairs of eigenvalues without resonance, a singularity that has been

analyzed by Takens and by Guckenheimer & Holmes [1983, Section 7.51. If we set

ri = IAI and 1'2 = IBI then successive changes of variables reduces (5.7) to a T2-

equivariant normal form (to some order). To third order the normal form for the

amplitudes reduces to

d , -- " ( it, +  r 2 + )

d + 1  2  (5.8)
dr2

d =r2 (11 + U. + d ) d=
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(Guckenheinier &, Holmes equation (7.5.2)) where (Ilq, L2) are the two unfolding pa-

rameters (related to c - c0 and R - R in the present case). Numerical calculations of

the coefficients b, c and d are carried out in Bridges [1991d] for the Blasius boundary

layer adjacent to a compliant wall. Unfolding of the normal form (5.8) shows that the

two branches of spatially periodic states will persist. In addition there are secondary

bifurcations to quasi-periodic states and if certain parametric conditions are met there

is a tertiary bifurcation to 3-tori. Schematic bifurcation diagrams are shown in Figures

5.3(a) and (b). In Figure 5.3(a) the secondary branch of quasi-periodic states goes off

to infinity whereas in Figure 5.3(b) the secondary branch connects the two branches

of periodic states and includes a tertiary bifurcation to a 3-torus. Note that stability

assignments are not included in Figure 5.3. The centre-manifold amplitudes and the

normal form in (5.8) are written in terms of spatial evolution so only existence results

are obtained. Determination of the stability properties of the quasi-periodic states is a

non-trivial problem antd will require the reintroduction of time.

In obtaining the singularity in Figure 5.1 Carpenter & Garrad varied only one pa-

rameter. Note that even in the simple model of the compliant wall (5.1) there are three

independent parameters (the more sophisticated models of Carpenter & Garrad and

Carpenter & Morris contain considerably more parameters). Our claim is that another

parameter can be varied to bring the two non-resonant wavenumbers in the (spatial)

Hopf bifurcation together as shown in Figure 5.4. The configuration in Figure 5.4 is

the (codimension 3) 1:1 nonsemisimple Hopf bifurcation and has been analyzed by van

Gils, Krupa & Langford [1990]. This singularity is of interest for two reasons. From a

practical point of view the location of high codimension singularities in the parameter

space of the compliant wall problem is of interest in order to "design around them".

From a theoretical point of view the 1:1 nonsemisimple (spatial) llopf bifurcation intro-

duces new spatial bifurcations; in particular, van Gils, Krupa & Langford show that the

unfolding of the 1:1 nonsemisimple Hopf contains homodinic bifurcations and period

doubling bifurcations as well as n-tori (n = 2 and 3). Adaptation to the spatial setting

will result in interesting spatial structures; in particular, the "spatial homoclinic" will
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corresp~ond to a solitoii-like feature in the shear flow!.
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5,f

K

Figure 5.1 Effect of reducing the wall elastic modulus (E) on the neutral curve for

the Blasius boundary layer (after Carpcnter & Garrad [1985, Figure 11)).

E= E.

Figure 5.2 Neutral curve at tlie critical value of the wall elastic molO(Uus E =E 0 in

the (c,R1) plane.



(a.A (6')

A 1 l

Figure 5.3 Schematic bifurcation diagrams for the normal form in equation (5.8)

showing how secondary bifurcations to 2-tori and 3-tori arise: (a) infinite branch of T2

and (b) finite secondary branch of T2 with tertiary bifurcation to T'.

.M (A) I,,(A ) Dr.,,,A)

al,<
IeI

Figure 5.4 Coalescence of the non-resonant Hopf-Hopf interaction by the addition of

a third parameter producing a 1 : 1 non-semilshnple llopf.
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