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1. Introduction

Many of the classic fluid flows of great practical importance: boundary layers,
channel flows, jets and wakes are open systems. That is, they are unbounded in some
(or all) spatial directions and thercfore do not appear to be natural candidates for
application of finite dimensional dynamical systems theory. On the other hand the
lincar theory of such systems is well understood particularily when the initial instability
is conwective rather than abselute. The uscful feature of conveetively unstable flows is
that changes in the flowficld take place in a “boosted” frame of reference a v x — et
¢ € R. The idea of convective instability is intimately linked with the now classic theory
of spatial stability of shear flows (Gaster [1963]). We introduce a natural generalization
(to the nonlincar regime) of the theory of spatial stability (spatial bifurcation theory)
and our claim is that the transition to turbulence in open systems with equilibrium
states inilially unstable through a convective instability can be analyzed nsing dynamical

systems theory in o spalial seiling.

lu the linear theory of spatial stability the frequency w of n disturbance is treated
as real and the (in general complex) wavenumber is the eigenvalue (with Im(a) < 0
corresponding to a spatieily unsteble wave and Im(a) > 0 corresponding to a spatially
stable wave). In the neutral case the temporal and spatial linear theories coincide and
anentral curve (;m! e plotted in three ways as shown in Figure 1.1, Figure 1.1(¢) is the
relevant neutral curve for spatial bifurcation theory however. In particular, in spatial
bifurcation theory the wavespeed c is treated as a given real parameler. A sketch of the
theory is as follows. Suppose (U(y),0) is a (parallel) 2D equilibrinm stale and write
the Navier-Stokes equations (in this case the stream function and vorticity variables)
perturbed about the equilibritun state as a spatial cvolution cguation in the boosted

Jrame x oy x — e,

W 0 ~1 0 0 P

0 X

5 2 = 7787 8 (1)2 ? Z -+ nonlinear terms  (1.1)
w 0 —RU" -2 RU-0)] \w
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or succinetly,

/)
_8;(1) =L(c,R)- P+ (1.2)
where v = =i, € is the vorticity and w = €, (sce Scction 2.1 for details). The idea

is to pick any ¢ € R (interesting values are those that interscct the nentral curve),
increase I and determine all bounded (in the streamwise direction) solutions. In this
setling it is straightforward to use the symmetry of the equations and to apply dy-
namical systems theory to show the existence of a spectacular zoo of spatial strue-
tures including spatially quasi-periodic states with 2,3 and possibly 4 independent
wavenumbers! The bifurcation sequence begins at the neutral point R = R, where
L(e, It’,,)‘i'(y) = io‘,,(i’(y) «, € R that is, the linearization of (1.1) has purcly imaginary
vigenvalues, a two-dimensional center subspace and a point of spatial Hopf bifurcation.
With no restriction (except for boundedness) placed on the streamwise spatial structure
the spatially periodic state will inevitably undergo wavelength dovbling (with cascades)
and/or secondary bifurcation to spatially quasi-periodic states. In fact a central obser-
vation of our work is that spatially quasi-periodic states are prevalent in shear flows
(gencrically oceur in the one parameter family of 2D states along the upper branch of
the 2D neutral curve in Figure 1.1(c)). Although the theory presented in the sequel
is generally applicable to any 2D parallel cquilibrium state with a nentral coarve as
in Figure 1.1 we suppose thronghout that the basic equilibrinm state is the (parallel)

Blasins boundary layer.

Of fundamental importance in transitional shear flows is the origin and subsequent
bifurcation of 3D states. However in Section 2 we begin with spatial bifurcations in
2D and show that even in 2D new and interesting spatial structure arises. The 2D
Navier-Stokes equations can be written as a spatial evolution equation in a number of
ways and two forms are introduced in Sections 2.1 and 2.3 using the stream function
& vorticily variables and the primitive variables (which leads to an interesting non-
standard evolution cquation) respectively. The basic 2D spatial bifurcation problem is
introduced in Seetion 2.1 and in Scction 2.2 a spatial secondary “instability” theory

is introduced that complements the temporal sccondary instability theory of Orszag &
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Patera [1983] and Herbert [1983,1984). It is shown how the known structuie of wave-
length doubling will potentially lead to cascades of wavelength doubling (wavelength
“bubbling”) and the seccondary bifurcation to 2D spatially quasi-periodic states is ex-
pected (a demonstation of secondary hifurcation to 2D spatially quasi-periodic states

is carried out in Scction 5).

Spatial bifurcations with the addition of spanwise structure (three dimensionality)
arc considered in Section 3. The 3D Navier-Stokes cquations are written as an cvolution
cquation in the primitive variables; that is with ® = (v, vz, 0,0z, p,ps)? the 3D Navier-
Stokes equations can be written as 5’;(1’ = L(c, R)D + N(P,u; R) and u is obtained
from the streamwise momentum equations (see Section 3.5 for details). We have not
attempted to construct other (spatial) evolution equations for the 31 Navier-Stokes
equations but spatinl evolution equations for the vorticity & velocily formulation or
a veelor streim function formulation should also be useful. Any bounded spanwise
struclure (salisfying the equations) is admissable but with the simple assumption of
spanwise periodicity already the munber of interesting bifurcations of the sticamwise
stracture is cousiderable. The assumption of spanwise periodicity leads to an O(2)-
equivariance of the evolution cquation which is central to the analysis of bifurcating
3D states. In Sections 3.1 to 3.3 O(2)-equivariant (spatial) Hopl bifurcation theory
is used to analyze the primary and sccondary spatial bifurcation of 3D states that
are petiodic in both the spanwise and streamwise directions. Scction 3.3 contains a
generalization of the spatial secondary “instability” theory of Scction 2.2 to 3D. Our
most useful observation with regard to applications is that all along the upper branch
of the 2D neutral curve there exists an interaction between a 2D state with strcamwise
wavenumber «; and a 3D state with streamwise wavenumber «g but with both waves
travelling at the swme phase speed. From a theoretical point of view the interaction is
a codimension 2 point of an O(2)-cquivariant vectorfield with a G-dimensional center
subspace! In Section 4 a formal application of centre-manifold theory and normal form
theory is used to show that all along the upper branch of the 2D neutral curve there

exists sccondary bifurcation to 3D states that are quasi-periodic in the streamwise
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direction (and periodic in the spanwise direction). The theory is formal simply hecause
the Blasins boundary layer is not an exact solution of the Navier-Stokes equations
and the additional neglect of non-parallel terms. For strictly parallel flows with a
similar netral curve (such as plane Poiseuille flow) the theory can be carried through
rigorously (Bridges {1991¢]), although particular care is always necessary when dealing

with the hifurcation of tori.

The theory for the quasi-periodic interaction of a 2D wave with 2 obligue (3D)
waves is of great practical interest becanse it is a mathematically consistent theory for
the appearance of quasi-periodic waves in the Blasius boundary layer. Experitnents of
Kachanov & Levehenko [1984] have shown that a quasi-periodic interaction between a
2D fundamental Tollmien-Schlichting wave with a pair of oblique waves is observed as o
1obust patt of the transition process. The normal form for the quasi-periodic interaction
is worked out. in Section 4. Some straightforward (although lengthy) calculations are
neeessaty to determine the coeflicients in the normal fortn and this work is in progress

(Bridges [L991b]).

In Section 4.2 the interesting idea of spanwise resonances is considered briefly. In
other words two pairs of oblique waves, one wiu: spanwise wavenumber 8 and other
with spanwise wavenumbernf n = 2,3,... interact. This is a codimension 2 interaction
(plot the /# and n8 neutral curves; the point of interscction between the two curves is the
interaction point). Such a codimension 2 point occurs for each value of # (4 sulliciently
small) but the streamwise wavemunbers of the two waves will be irrationally related.
Although the spanwise resonant interactions occur at Reynold’s numbers considerably
higher than the 2D-3D interaction of Section 4.1, they are nevertheless of great interest.
From a theoretical point of view the interaction corresponds to an 8-dimensional centre-
subspace and the normal formindicates the potential for bifurcation to high dimensional
tori. From a practical point of view the spanwise resonances introduce new spatial
structure that may be important for the transitional boundary layer at higher Reynolds

number.

Finally in Section 5 the strictly two-dimensional problem is reconsidered and the
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“codimension-2 strategy” is used to show secondary bifurcation to 2D spatially quasi-
petiodic states. The compliant wall problem (Carpenter [1990), Carpenter & Mortis
{1990]) provides an intercsting setting for the analysis because it already contains nu-
merous new parameters. Research of Carpenter & Garrad [1985) has shown that the
upper and lower branclies of the neutral curve coalesce and detach (see Figure 1.2) when
the clastic modulus of the compliant wall (adjacent to the Blasius boundary layer) is
reduced, In Scetion 5 the critical point E = B, is analyzed and it is shown that at
the interaction point of the upper/lower branches the linear Navier-Stokes cquations
have spatially quasi-periodic solutions with two independent wavenmuubers. Applica-
tion of dynmmical systems theory (in particular Section 7.5 of Guckenheimer & Holmes
[1983]) shows that the unfolding of the above singularity results in a secondary bifur-
calion of (spatially) quasi-periodic states (in the nonlincar cquations). The singulatity
in question is not particularly important to the main function of the compliant wall
(stabilization and drag reduction) but it nevertheless demonstrates that sccondery bi-
Jurcalion to spatially quasi-periodic stuies is to be anticipated cven in lwo-dimensional

boundary layers.

In spite of the fict that our methods are local (centre-manifold theory, normal
form theory and local equivariant dynamical systems theory) the existence of quite
complex spatial structures in shear flows is demonstrable. On the other hand it is clear
that the hifurcations to the various spatial tori and sequences of wavelength doubling
will inevitably lead (in some regions of parameter space) to chaotic spatial structure.
Will this be related to turbulence? Suppose that a sequence of bifurcations takes
place leading to non-trivial spanwise variation and chaotic streamwise structure, The
flowficld will indeed be three-dimensional and although the governing cqualions are
“steady” the strewmwise coordinate is in fact & — ct. Thercfore a probe at fixed z
will tegister a chaotic flow in time even though time does not appear independently.
Assuming; there is suilicient three-dimensionality for true turbulence (and an absolute
instability does not oceur) it. is entirely possible that the transition process takes place

in the convective frame 22 — ¢t. We call this structure convective cheos or convective

(914
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turbulence if indeed it is turbulence. However, in studying the sequence of bifurcations
in the convecetive frame it is important to check for secondary, tertiary, cte. absolutc

instabilitics which will force time into the problem independent of z — ct.

With the emphasis throughout on spatial bifurcations and spatial invariant man-
ifolds the stability assignments obtained from the normal forins (written as evolution
cquations in ) will not be applicable. A complete stability analysis of the spatial
structures is o very interesting problent and will require the reintroduction of time and
consideration of sideband instability (and its gencralizations). For spatial states that
are periodic in both the streamwise and spanwise direction the spatio-temporal sta-
bility can be studied using the theory of sideband instability but the generalization of
this concept to study the stability of the spatially quasi-periodic states is by no means

clear and will be an intercsting arca for further rescarch.
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2, Spatial bifurcations in two dimensious

"The 2D Navier-Stokes equations are considered in a steady-frame (z = 2 — ct)
with ¢ given and we look for all possible states moving at speed ¢ but with various spa-
tal structure that bifurcate from the cquilibrium state, For dcfinitencss suppose that
the basic equilibrimn state is the Blasius boundary layer (U, V) with U(x,y) = f'(),
V(a,y) = Y@R) 12 (nf'(n) = ), n = y(R/z)"/? and f(n) satisfying the Blasius equa-
tion 2:{’" + ff" = 0on 9 € {0,00). The Blasius solution is a troublesome equilibrium
state in that it satisfies the Navicr-Stokes equations only asymptotically and a proper
existence theory and stability theory requires careful use of asymplotic and multiple
deck theoty (Smith [1979]). We assume here that 2 = O(R) and invoke the parallel flow
approximation. Then U = O(1), V = O(R™!) and the two-dimensional Navier-Stokes

equations perturbed about the (parallel) Blasius boundary layer solution are

du  Ov
% Ty =Y
Ou a 1 ou Ou _ o
(U—c)-(;);-+va+;,)-;:-—-I—?-‘Au+u-a—£+vb-'j —0 (..«.1)
. 0 9p 1 dv Ov _
(U - C)'a; 'I' 5!7 - }EAU + ua; + Ua—y = 0.

In the case where the equilibrium state is strictly parallel the sct (2.1) is exacl. [n the
sct of cquations (2.1) time has been climinated by the shift 2 v 2 —¢f; in particular we
arce looking for steady bilurcations. Time can be reintroduced for a stability analysis
or if there is a bifurcation to a non-trivial temporal state. The crucial difference in
(2.1) from the usual theory is that ¢ is treated as a given real number. The iden is to
treat the set (2.1) as an evolution cquation in 2; that is, a pde with y as the “spatial”
variable and 2 as the “time-like” variable. With parameters (¢, ) we look for all the
usual bifurcations in evolution equations: Hopi-bifurcation, period-doubling and torus
bifurcation, ctc, except that in the spatial setting these bifurcations will correspond to

a sputial-Topf bifurcation, wavelength doubling and spatially quasiperiodic states.
T'he basic bifurcation from the Blasius boundary layer is determined by studying

9
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the spectrum of the lincarization of (2.1),

Ju
5 Ty =0
Ju ap
- et A = 2.2
w c)a + Uyv +a RAt 0 (22)
ap

(U - c)a 3 RAv =

Now let (iu,v,p) = e (i, #,p) then with fyy + A2p = —2\U,d the set (2.2) can be
reduced to a modified (real) form of the familiar Orr-Sommerfeld equation

dz 2 dz

dy?
We have purposcfully used e** rather than the usual ¢i* (which we'lt revert back to

shortly) to make an analogy with the dynamical systems appronch.

"T'he Orr-Sommerfeld equation is discretized using a finite expansion of #(y) (with
[0,00) mapped to [—1,41) using an algebraic transformation) in & Chebyshev series re-
ducing (2.3) to an algebraic nonlincar in the parameter eigenvaiue problem (sce Bridges
& Morris [1987]) for this type of reduction). The differential cigenvalue problem (2.3)

is then reduced to the algebraic cigenvalue problem
Dy (M) {5} = [CoM 4 C1A® + CuA 4 Cy A + Cy) {8} = 0. (2.4)

Note that in the fixed frequency spatial stability problem (Bridges & Morris [1987])
the matrices Co,...,Cy are complez but with fixed wavespeed ¢ € R the matrices
Cy,...,C4 are real. The cigenvalue will in general be complex, but with veal matrices
the nenerical computation can be carried out with greater cfliciency. The cigenvalue
problem (2.4) is solved using the methods of Bridges & Mortris {1984] for nonlinear in

the parameter cigenvalue problems.

Given (¢, ) the eigenvalue problem (2.4) produces a spectrum of spatial cigenval-
ues. ‘The iden in spatial bifurcation theory is to look for bounded solutions of (2.3); that
is, there ave admissible spatial states bifurcating from the Blasius boundary layer if and

only if there exists an eigenvalue X of (2.4) with Re(A) = 0. Eigenvalues with Re(A) # 0

10
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are not admissible as bifurcation points for spatial states because they are unbounded
as 2 — 400 or £ — —o00. Note that we are not concerned with cigenvalues that lic
off the imaginary axis (whether in the right or left half plane). Ultimatcly stability is
determined by checking the initial value problem (reintroducing time!). If Re(A) =0
and Iin(\) = 0 there is (potentially) a bifurcation to a new equilibrium state (although
this is nol expected to oceur for the Blasius boundary layer) whereas il Re(\) = 0 and
Im(\) # 0 there is a (spatial)-Hopf bifurcation (assuming the usual non-degeneracy

conditions on Hopf bifurcation) from the equilibrinm state to a spatially periodic state.

Solving |D4(A)] = 0 and Re(A) = 0 results in the well known neutral curve for the
Blasins boundary layer shown in Figure 2.1 (zlthough it is usually plotted in (w, R)
or (w, I?) space). In particular there is at most one pair of cigenvalues on the Im(\)
axis. Figure 2.3 shows an example of the spectrum of the cigenvalue problem (2.4)
(there is also a (stable) continuous spectrum of (2.3) (Grosch & Salwen [1978]) that
will appear as discrete in the finite-dimensional approximation). Accurate caleulations
of the (e, R) curve with the associated value of a are given in Table 2.1. Note that
there is a finite interval in wavespeed ¢ € (c1,¢2) in which the nentral curve exists
where ¢; % .22 and ¢; = .401. We call ¢ admissible if ¢ € (er,c2). [ is clear from
Figure 2.2 that if ¢ € (e1,¢2) and fixed and R is increased, a spatial-Hopf bifurcation
oceurs as I crosses the neutral curve. There is a continuum of Hopf bilurcation points
(varying ¢) and this will have consequences with regard to stability (the possibility of
sideband instability will have to be considered) but nevertheless, for fixed ¢ € (e1,¢2) o
classic Hopf hifurcation takes place as R crosses the neutral curve. We call it a spatial
Hopf bifurcation because the “frequency” associated with the bifurcation is in fuct the

streamwise wavenumber.

2.1 Puimary spatial Hopf bifurcation

"The set of equations (2.1) can be written as an evolution in z in the following way.

Introduce the stream function ¢ with u = 9y, v = -9, and the vorticity § = ~A.

11
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Then the vorticity and stream function equation set can be written as

—a%(l) = L(¢,R) - ¢ + N(®; R) (2.5)
where
{rl) ¥ 0
v | def 0
P = ¢ ;’ ., N@R=R| (2.6a)
w € Wiy + vty '
and
)2 -1 0 0
0 1 0
L(c,R) = 0 0 1 . (2.6b)
-RU" -&5 RU-¢)/
Taking & = ¢**@ results in the elgcnvaluc problem L(c,r)® = Ad which reduces

to the Ore-Sommerfeld problem (2.3) for the stream function perturbation. Suppose

¢ € (er,c2) and R = R, is a point on the neutral curve. Then Re(A) == 0, lin(\) = a,

and there exists an eigenfunction
L(c, R)® = ia,d. (2.7)
It is now straightforward to apply the Hopf bifurcation theorem using a formal centre-
manifold reduction (Coullet-Spicgel [1983]). Scale z — az so that the wavenumber
appears in cquation (2.5): a¥, = L(c, R) - ¥ + N(¥, R). Writc any solution of (2.5) as
D, y) = A(x)D(y) + A(€)b(y) + ¥(z,1)

then the scaled version of equation (2.5) is transformed to

aL = fi(4, A, ) (2.8)
aﬁ'-’ = f1(4, 4, ) (2.80)
ai(’i = f2(4, 4, 0). (2.8¢)

At least locally (2.%) can be solved for ¥ as a function of A and A (Coullet & Spicgel
[1983]). Then back substitution of ¥ into (2.8a) results in a vectorficld on C. Applica-
tion of normal form theory (see Guckenhcimer & Holines [1983, p.142}) results in the

(formal) normal form for the spatial-Hopf bifurcation,

dA

2 " ‘
T = 4 F(R= Roya = o, |4) (2.9) |

12 ]
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The reduction of (2.5) to (2.9) is ‘ormal simply because the Blasius solution is not a
truly parallel solution of the Navier-Stokes equations and we have neglected the non-
parallel terms, However the basic idea of a centre-manifold reduction for a spatial
bifurcation can be rigorously justified {Vanderbauwhede & Tooss {1990]) when an exact
cquilibriwin state is used such as plane Poiseuille fi sw (Bridges [1991¢]). The actual
numerical caleulations required for the normal form (2.9) will be discussed in Section

3.2 and ate contained in Bridges [1991D)] as a special case of the 3D calculations.

Iixpand F in a Taylor scries,
F =FR(R—-R,) + Fo(a = ao) + FXZMP S ETE (2.10)

The imaginary part of (2.10) is solved for (o — a,) and back substitution into the real

part of (2.10) results in the asnal pitchfork bifurcation

da

o= ag(ll = Roya?), g=gh(R=Ry)+g2a® -,

Supposing g% > 0, a supercritical pitchfork bifurcation occurs if g,2 < 0 and a sub-
critical pitchfork bifurcation oceurs if gq2 > 0. Stability of the bifurcating states does
not follow dircctly from (2.9) when the bifurcation is supercritical. For a satisfactory

stability analysis time must be reintroduced and sideband instability considered.

Irom the physical point of view the normal form provides two crncial picces of
information: (a) the direction in parameter space (Reynold’s number in this case) in
which the noulinear spatially periodic states persist (R < R, or It > R,) and (b)
how the wavenwmber changes along a branch of periodic states. We are particularily
interested in whether the wavenumber goes to zero along the branch leading to spatial

homoclinic bifurcation.

2.2 Sceondary bifurcations and spatial Floquet thcory

One of the central features of the fixed-wavespeed spatial-bifurcation theory is that

it is clear how more complex spatial bifurcations can arise (and indeed are expected).
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In Scction 2.1 we showed that for for fixed ¢ € (cy,c2), a spatial-Hopf bifurcation
leads to a branch of spatially periodic solutions which is entirely analogous to & branch
of periodic orbits in a finite-ditensional dynamical system. If we follow a branch of
periodic solutions then we can expect to encounter period-doubling and/or sccondary
bifurcation to a quasi-periodic flow. The idea here is to use Floquet theory in space;
that is, to study the spatial Floquet multipliers along the branch of spaetially periodic
solutions. Let (u,v,p) = (w+€, v+, p+q) with (x,v,p) a periodic solution satisfying
(2.1). In the usual way substitute (u + £, v + n,p + q) into the Navier-Stokes equations
and linearize about the branch of periodic solutions. The result is the following system

with periodic coeflicients

o Iy
01:+(7y_0
3 9¢ 9¢ 1
J - ¢)— - —_—— = .
(v 4+ c)am-{‘u,f-i-(Uy—luy)r]+vay+ax RA{ 0 (2.11)
an oy 9qg 1
J -yt o9 A=
(v +1 c)ax-i-v,(-i-vytH v0y+3y RAn 0

This set can be simplified by introducing a perturbation stream function; let § = 9¢/8y

and n = --9¢/dz then the second and third of (2.11) can be combined into

¢

ay

AAp— R(u+ U - c)-OiA¢ - Rv—a?-AqS + R(vzz — tzy)
. ‘ 9% Y (212)
+ R(Uyy + 94y = vty)‘aj =0.

Now ¢(z,y) is not necessarily periodic in z but by Floquet’s theorem

$(z,9) = c™d(z,y) v€C

and r]»(:r:, #) is periodic in z of the same period as the basic state (u, v, p). Substitution
of ¢ = ¢7% into (2.6) results in the following cigenvalue problem for the Floquet

exponent vy,
L-$=7"Lod +7°L1d + v’ Lad + vLad + yLad = 0 (2.13)
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where

Ln‘i’ =$
L= 4%{: - R{e+-U - 0)43
s oaa ., 0% 9 0
Lug =204 - 46? -3R(e 4+ U~ 6)55 - Rvaj
;208 i 0% 9% ;
Lyg = 4A5; ~Ru+U~c) (Ad) + 25;?) - 21?1)-5-@ + R(Uyy -ttty — vry )b

C A 04 03 0p
Lig=AAd - R(u+U ~ c)As= - RvAa—y + R(Uyy + ttyy = v2y) 5=

Note that the cigenvalue problem (2.13) is a nonlincar in the pariumncter eigenvalue
problem f{or the Flognet exponent 4. It is reminiscent of the classic spatial stability

cigenvalue problem; in fact it is the spatial form of the secondary “instability” problem.

The above theory for secondary bifurcation using Flogquet theory is similar to
Herbert’s [1983,1984] theory for subharmonic bifurcation but there is o subtle difference.
The eigenvalue problem (2.13) is the spatial secondary “instability” problem whereas
Herbert’s theory is a temporal sccondary instability theory. In Herbert’s theory the
spatial Flogquet exponent is treated as fixed (generally so that the spatial multiplier
lics ot —1) and the temporal exponent is solved for. In (2.13) the temporal exponent is
absent since we are looking for sccondary steady states; that is, states that move at the

given speed ¢ but have more complex spatial structure.

Given a Fourier-Chebyshev representation for the basie spatially periodic state,
(u,v,p), the cigenvalue problem (2.13) can be discretized by expanding ¢ in a finite
Fowrier-Chebyshev series. The result is an algebraic nonlinear in the parameter eigen-

value problem

(Ds(v)}- {4} =[Co7" + C17* + C17? + Cay + Cy] - {$} =0 (2.14)

with the Floquet exponents obtained as roots of {Dy(y)] = 0. Numerical methods for
nonlinear cigenvalue problems of the type (2.14) can be found in Bridges & Monis

[1981) and Pearlstein & Goussis [1988] and references therein. Given the spectrum of
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exponents, the Floquet multiplicrs are given by exp(2ry/«). Suppose that the branch
of spatially periodic solutions is parametrized by a parameter e. Then two intercsting
possibilitics as € is varied are shown in Figure 2.3, We are not concerned with where
the bulk of the spectrum of Jhe cigenvalue problem lics in the complex plane (although
most of the multipliers will probably lic in the interior of the unit circle); any multiplier
not on the unit circle is inadmissable as a bounded spatial state. ‘I'herefore we vary
€ until the multiplier lics on the nnit circle. If the multiplier passes through —1 we
expeet o wavelength doubling bifurcation and if complex-conjugate multiplicrs pass
through the unit cirele at points other than %1 we expect a bifurcation to a spatially

quasiperiodic state.

Numerical caleulations are necessary to obtain precisely where secondary bifurca-
tions occur, However, spatially quasi-periodic states are to be expected. One way to
show this is to introduce a singularity (in the neutral curve) which results i a larger
dimensional centre-manifold, then look for complex dynamics in the unfolding, In fact,
in Scction 5 it is shown that the compliant wall problemn has a singularity of this form
from which we can show the existence of secondary branches of spatially quasi-periodic

stales (and possibly spatially quasi-periodic states with three frequencies!).

The wavelength doubled solution can again double its wavelength with a possible
caseade to spatially chaotic states (not turbulent though since we are restricted to two-
dimensions but the 3D problem is considered in Section 3). An inleresting theory for
wavelength doubling cascades can he constructed as follows. Note that from Figuie 2.1
that for fixed ¢ € (¢4, ¢p), there is only a finite band in R in which an unstable region
ocents. From munerical caleulations of Herbert [1975] we expect the nonlinear branch of
periodic solutions to form a global loop as shown in Figure 2.4. The global wavelength
doubling structure of loups can he modelled by a one-dimensional Lwo-parameter map.

For eximple consider
Tugr = 2y (1= (R = Ro)? 47— 22). (2.15)

The fixed points of the map (2.15) are as shown in Figure 2.4(a). lterating the map

while increasing ¥ (corresponds to decreasing the wavespeed ¢) resulls in sccondary,
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tettiary, ete loops of period doubled points (Bridges (1991e]). Figuie 2.5 shows a finite
cascade of wavelength doubling. If  is increased further the cascade will becotne infinite
resulting; in chaos in a thin subinterval of R, It is very likely that this is the structure
of wavelength doublings in shear flows. Scecondary period-doubling bifurcations from
the suberitical loop in Figuie 2.4(b) can be modelled in a similar fashion using the

one-dimensional map
gy =20l = (R~ R)2 + 7= (B +2m(R = R,))x? — z}) (2.36)

whee fomeR0<m<1,y>0mmd f < —\/51_2:. The period doubling structitre
for the map (2.16) is shown in Figure 2.6 with a finite cascade in Figure 2.6(a) and
an infinite cascade leading to a region of chaos in Figure 2.6(b). Note that although
the suberitical and supercritical loops in Figure 2.4(a) and (b) differ significantly, the

secondary structure and cascade structure is about the same in hoth cases.

Note that the above theory is restricted to two spatial dimensions. If indeed spatial
chaos oceurs it will not be turbulence. The role of three-dimensionality is considered in
Scction 3. On the other hand, three-dimensionality does not affect the cascade theory
shown in Figure 2.5, it simply results in non-trivial spanwisc structure along with the

streamwise cascade.

2.3 Spatial evolution of the primitive variables

As an alternate to the evolution equation (2.5) where the stream function vortie-
ity variables are used, an evolution ¢ ,aation for the primitive viiables (1,v,p) can
be consiructed although it has a nonstandard form (involving an evolution cquation
and a constraint), The idea is to evolve (in z) the pressure and vertical velocity and
determine the streamwise velocity using a constraint (a differential equation without
a-derivatives). First construet a Poisson equation for the pressure by taking the diver-
genee of the momentum equations in (2.1),

v  Oudv avav)

5;4'97/@:4‘5!755 (2'17)

Ap=-2 (Uy
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Now let.

v v
P = V d_c_f Ve 9
b= LS (2.18)
q Pz

Theu the Poisson cquation (2.17) and the vertical momentum equation can together

be written as an evolution equation i <,

O3 =L(c, 1) @+ N(&,u; ) (2.19)
where
()7 1 0 0 0
P —¢ R2 o
Le gy = | “aw U= Rgg 0} jan<| FOV4og (2.20)
0 0 ()? 1 ) 0 5
0 -2, - (.;’y 0 ~2(g8)? -2V

Note however that « appears in the nonlinear term but is not a component of .
However, the streamwise momentum equation can be written as a diflerential equation
in y alone,

q+Uyv — (U = c)v, + —lﬁ(Vy — tUyy) ~ uvy 4 vy =0, (2.21)

and at cach value of , u is obtained from (2.21) for use in (2.20).

The evolution equation for (u, v, p) is non-standard in that it involves evolution of
(v, p) with o constraint to determine the streamwise velocity. Nevertheless it is a useful
form of the equations; in particular, the framework (2.19)-(2.21) is casily extended to
the 3-dimensional Navier-Stokes cquations (this is carried out in Section 3.5) and ihe

usual ceatie-manifold and bifurcation theory is still applicable.
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Table 2.1

Coordinates in the (c,R) plane and wavenumber
along the neutral curve for the Blasius boundary layer

Upper branch Lower branch
R c @, R c Qo
4000 2056 .2689 4000 .22875 0918
3500 3028 2777 3500 .2368 0967
3000 .31065 .2881 3000 2461 1028
2600 .3185 2976 2560 .2552 1097
2500 .3206 .3001 2500 2568 1106
2400 3229 .3029 2360 .2608 1135
2200 3276 .3086 2160 .26655 1178
2000 3329 3148 2000 27105 12175
1800 .3387 3215 1960 2726 1229
1600 3451 .3286 1760 2798 1290
1500 .3489 3322 1560 .2881 1364
1400 .3528 3362 1500 .29085 .1389
1200 .3616 3440 1360 .2081 1456
1000 3718 .3515 1260 .3034 1513
900 3771 3545 1160 3105 1578
800 .3843 .3562 1060 3178 1655
750 3877 .3562 1000 .3223 17095
730 .38915 .3559 960 .3259 1749
660 .3041, .3532 900 3313 1814
650 .3947 3524 850 .3363 1879
600 .3981 .3469 800 .34205 .1950
580 .3992 .3432 750 .3484 .2035
575 .3993 .3421 700 .3550 2135
560 4001 .3379 650 .3630 .2259
550 4004 3344 600 37205 .2419
540 .4002 .3293 580 37615 .2499
530 4002 .3241 560 .3812 2597
525 .3995 3184 550 .38365 2656
520 .3951 2074 540 .3864 2725
530 .3987 2815
525 3945 2857
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Figure 2.1 Neutral curve in the (¢, R) plane for the (parallel) Blasius boundary layer.
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Figure 2.2 Sp..ctrum of the modified (real) Orr-Sommerfeld equation for fixed ¢ €

(e1,c2) as R intersects the neutral curve.
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Figure 2.3 Possible movement of the spatial Floquet multipliers exp(27v/a) as a

function of e.

- -
-~ 4
\\ /
\ ]
] ‘—--L——-q
Ry Ra R

(Q) (®)

Figure 2.4 Global loop structure for fixed ¢ of spatially periodic states bifurcating

from the Blasius boundary layer: (a) supereritical loop and (b) subecritical loop.
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Figure 2.5 Global period-doubling loops with a finite cascade in the map (2.15): (a)
v < 1 resulting in an absence of period-doubling and (b) ¥ > 1 (in particular y = 1.30)

resulting in three period-doubing bifurcations.
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Figure 2.6 Finite and infinite period-doubling cascade in the map (2.16) where the

primary loop is subcritical with m = %, B=—/7—.2and (a) y=.21 and (b) v = .24.
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3. Spalial bifurcations in three dimensions

In this section we continue to treat the steady-state (in a moving frame) Navier-
Stokes equations as an evolution cquation in the streamwise coordinate but with the
addition of spanwisc variation (thrce dimensionality). The basic equilibrium state is
tiaken {o be the (parallel) Blasius boundary layer although the theory is gencrally
applicable to any two-dimnensional parallel equilibrium state. Wish the shift @ w9 a2 —ct

the generalization of the equation set (2.1) to three dimensions is

\
o0, o
(U—c)%-}-va+%§ —%Au-&-u%+vg—z+w%—: =) L -
(U—C)g% +%-%Av+u%+vg—;+w%§= B
(U—c)%ii +g’z—)—715Aw+u%§:—+v%§+w% =0 J

The addition of z (the spanwise coordinate) introduces nontrivial symmetry that
will be fundamental to the analysis of three-dimensional states; in particular, a trans-
lation and reflection in z. The translation and reflection in z follow ftom the fact that
the basic state is two-dimensional. The z-reflection generates the group 2§ == (i) with
action on functions given by k- f(x,y,2) = f(2,y,—z). The sct (3.1) is Z5-cquivariant
and (u(e,y, —z2),v(a,y, —2), —w(x,y,—2),p(2,y, —z)) is a solution of (3.1) whenever
(n(eyy, 2), v(2, y, 2), w(a, v, 2), p(2, 9, 2)) is @ solution; that is. there is a Z5-orbit of so-
lutions. Nole that the existence of a Z5-orbit of solutions is true regardless of solution
type; even chiaotic trajectories have a Z§-orbit which has important conscquences with

regand lo division and multiplicity of attracting sets.

"The translation invariance in z of the set (3.1) results in a group orbit of solutions
as well (an arbitrary translate in z of a solution is also a solution). However if (n, v, w,p)
is taken to be periodic in z (an assumption; mote complex spanwise spatial structure is
possible and this is considered in Section 3.4) then the trauslation group is rediteed to

the compnet group SO(2). Combining SO(2) with Z§ results in an O(2)-equivariance
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of the cquation set (3.1). In our subsequent analysis the O(2)-equivariance of the set

(3.1) is the basic organizing feature of the three-dimensional states.

In three dimensions the basic spatial-Hopf bifurcation introduced in Scetion 2.1
persists but the O(2)-cquivariance results in a higher dimensional (spatial) centre-
manifold, a higher multiplicity of spatially periodic states and the potential for more
complex “dynamics” (i.c. more complex spatial bifurcations). For the spatial Hopf bi-
furcation with O(2) symmetry we adapt the well-developed theory of O(2)-cquivariant
Hopf bifurcation (Golubitsky & Roberts {1987], Golubitsky, Stewart & Schaefler [1988)).
The O(2)-cquivariant spatial-Hopf bifurcation is a primary bifurcation to 3D states and

is treated in Section 3.1,

In Section 3.3 we introduce a “spatial” sccondary instability theory wheye a pri-
mary spatially periodic two-dimensional state bifurcates to a tivce-dimensional state
al finite amplitude in o steady frame. This is to be compared with the temporal sce-
ondary instability theory duc to Orszag & Patera [1983] and Herbert [1983,1984]. The
2D - 3D spatial sccondary “instability” theory is similar to the theory intioduced in
Section 2.2 but includes nontrivial (periodic) spanwise variation. Lincarization about
the 2D staie results in a system with periodic (in 2) coefficients to which spatial Flo-
quet theory is applied. The system will differ from the system (2.11). The spatial
Floquet exponents now depend on two parameters: the parametrized branch and g
(the spanwise wavenumber of the perturbation). Our approach differs from the tem-
poral theories of Orszag & Patera and Herbert in that the temporal exponent is set
to zero; that is, we look for bifurcations to bounded steady-states with more cotmplex
spatial structure in 2 (wavelength doubled, tripled, ete. or quasi-periodic) but periodic

in 2.

It is clear that if a primary state exists that is periodic in both the streamwise
direction and the spanwise direction (as obtained in Section 3.1 or as a sccondary
bifurcation as in Section 3.3), it is possible to have secondary bifurcations in boti the
strcamwise end spanwise directions. In particular, it is possible to have a hifurcation to

stales with more complex sprnwise spatial structure. The theory for spatial hifurcation
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in (a, z) will involve spatial Floquet theory in two space dimensions aud is discussed in

Seciion 3.4.

3.1 O(2)-cquivariant spatial Hopf hifurcation

To determine bifurcation points from the equilibrium state, the set (3.1) is lin-
cirized resulting in
Ou  Ov  Ouw

a+'a—zl'+-a—z=0

(V=02 - L1a] ) s opsuof0] =0 2
—C)— —~ = v | +Vp+Uypl 0] =
0r R ! y 0

w

which ean be reduced to the two decoupled systems

Av-R(U-c)g‘%—R%’l=o
) b y (3.3)
Ap+ 2U,J-U—: =0
and 9 9
Au— R(U - c)a—':_ = Ra—g + RU,v
dw Op (34)
Aw-R(U - o)z = RL.

Taking w(x,y,2) = e**[uy(y) cos Bz + uz(y)sin Bz] the secondary cigenvalue problem
(3.4) reduces to

0%u;
0y

with appropriate boundary conditions. It is easy to show that if ¢ ¢ R (and R finite)

+ [N == AR(U - c)Ju;j=0 j=1,2 (3.5)

then every member of the point spectrum of (3.5) is real and non-zero. Potenlial

bifurcalion points are therefore obtained from the eigenvalue problem (3.3). Let

(2, 9,2)\ _ e | 1(y) @)\ . .
<1’(*"% z)> = [(1}1@)) cosz + (z»:(y)) - ﬂ"] ’ (3.6)
then (.;':,21 | (,\2 - B))p; A 2AUyvj =0 (j =1,2) and

112 2 (12
[(-,-! 7+ (A% - /ﬂ)] v; = AR(U —¢) [7155 + (N - /32)] vj + ARUyv; =0 (3.7)
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which is & modified (real) form of the three-dimensional Orr-Somumerfeld equation.
Given (e, R, 8) (all real) there are two lincarly independent cigenfunctions for each
cigenvalne \ of (3.7), hence cach cigenvalue of (3.7) has (generically) geometric and
algebraic multiplicity two. Consequently if there exists an cigenvalue A of (3.7) with
Re(A) = 0 and Im()) # 0 then it is (generically) double and with its complex conjugate,
the associated 4 cigenfunctions form a basis for a four-dimensional (spatial) centre-

stthspace,

Hopf bifurcation points are found by fixing (¢, #) and increasing IR uatil there
exists an cigenvalue of (3.7) with Re()\) = 0 and Iin(\) # 0, or for fixed g the neutral
curve in the (¢, R) plane can be obtained. When g = 0 the neutral curve is as shown
in Figure 2.1 and when f # 0 Squire’s theorem (Drazin & Reid {1981, p. 155]) can be
adapted to determine the g # 0 ncutral curve: suppose g = 0 and \ = i« (« € R)
and let (¢, R,) be a point on the neutral curve with wavenumber «,. Then for g #: 0
Squire’s theorem states that for cach given ¢ the neutral point (for g # 0) is shifted
(positively) to Rp = Roao/ap where ag = 1/aZ = B2 (assuming |8] < |avl). Given the
nentral curve for g = 0 it is therefore straightforward to construct the g # 0 ncutral

surface and curves for various values of A are shown in Figure 3.1

Note that for each admissable § thete cxists a point in (¢, ) space at which pure
imaginary cigenvatues for the 2D and 3D states exist simultancously (where the #==0
and B # 0 curvesintersect). These points are codimension 2 bifurcation points and since
the cigenvalues are generically nonresonant, they correspond to points of bifurcation to
spatially quasi-periodic states and are analyzed in Section 4. For purticular values of 8
the cigenvalues of the codimension 2 points will be resonant (this will be of codimension
3). TFor example if at B = B, the 2D and 3D eigenvalues lie al v, and %oz,, the
1esonance is a spatial version of the Craik resonant triad (Craik [1971,1985]). [n Section
4 these resonances (o, and ao/n n = 2,3,4) are considered from the spatial point of
view; that is, they are codimension three organizing centers for more complex spatial
structwe. In this section it is assumed that (¢, B) take generic (admissable) values and

the codimeusion 1 bifurcations associated with variation of IR are treated.

(S
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We now proceed to compute the bifurcation from the neutral curve with 8 # 0,
Choose adiissable values of # and ¢ and suppose R = R, is the neutral point with
cigenvalue A = oy with a5 € R. Scale 2 = aa so that a appears as o coclficient in the
nonlincar sct of equations (3.1). Reverting to complex coordinates the solution of the

linear equation (3.2) at the neutral point is given by

(2,9, 2) [ , i1 (y)
vi(z,0,%) | =2Re |(AcZHAD) 4 BeE=ADY | §y(y)
1)1(-’3,3},2) L i(y)
and (38)
w2, y,2) = 2Re .(Ac"(""”’) — Bi(==82))yg, (y)]

whete A, B € C are complex amplitudes. Let A ‘= e d’ — (a? + B%) then the complex

functions (ity, 6y, 103, piy) satisfy

Li(cto, B) - 01 & A2y + icoRUyydy — iaoR(U — c)Ady =0 (3.9)
1 1] )
iy = _lﬂz_ﬁ’l.;. PR L (Uy)

o2+ B2 0y Q24
i Oty  aofR

0y = vy i o7 +ﬂ2 Ly (UyH1) (3.10)
. 1 0y
m= (t2 +ﬂ2 (1(1ko1)1 + = Lz( )) )

where Iy % A - ia, (U - ¢).

The idea is to apply the centic-manifold theorem to the spatial bifurcation of
periodic states. Rigorous application of the centre-manifold theory is not possible in
this case due to the fact that the Blasius solution does not satisfy the Navier-Stokes
equations and the further neglect of non-parallel terms. We can however give a formal
construction of the centre-manifold using the theory of Coullet & Spicgel [1983]. There
are two steps in the reduction to normal form. Suppose (3.1) has been recast as an

evolution equation (this is carried out for the primitive variables in Scction 3.5),

-(%(I’ =L(c,R) - ¢ + N(®,u,; ). (3.11)
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For admissable ¢ and R = R, the lincar operator L satisfies
L(c,R) - <i'(y,::) = io:.,(i’(y, z) a, €R

where *i'(y,z) = (de'?* 4 Be=#:)d,(y) with A, B € C. Supposc that A = Hia, nre
the only cipenvalues of L(e, R, ) on the imaginary axis. Then € can he expressed as
B2,9,7) = (A@)e"* + D)o )b (y)
+ (A(»)e™ % 4 B(z)e'?*)d, (y) + ¥(z,y,%) (3.12)

where W consists of all modes not in the center subspace. The first step in the centre-

manifold reduction is to substitute (3.12) into (3.11) (at R = R,) resulting in
dA

dz =h(,B B, 4, —B— ¥)
dB —_ (3.13)
% - fu4,5,4,5,9)

ﬂ = f4(A,B,4,T, ) (3.14)

with additional equations for A and B. All cigenvalues of df3(0,0,0,0,0) sre off the
imaginacy axis and presumably (3.14) can be solved for ¥ as a function of A, B, 4, B.
Back substitution of ¥ into (3.13) results in a vectorfield on C2. The rednced vectorficld
will be an O(2)-cquivariant vectorficld on C? with Fia, (double) cigenvalues at the
lincarization. Normal form theory is then applied to transform (3.13) to an O(2) x S!-

equivariant vectorficld on C?;

dA

l Afl(ﬂ’ - C"o,R Ra,|A|2,|B|2)

:{B (3.15)
- = Bfelev = a0, R = I, |47, |B]")

but the O(2) x S' symmietry requives fo-,+, A%, 1BI?) = fi(-,+|BI%, |A]%).

First we will analyze the normal form equations (3.15) using the theory of Gol-
ubitsky, Stewart & Schaeffer {1988, Chapter XVII} and Golubitsky & Roberts [1987)
keeping in mind that the “frequency” is in fact the wavenumber a. Then details of the

construction of (3.15) are given.
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Let N = JA]* + B, A = § and § = |BJ?> - |A]* then following Golubitsky &

Roberts [1985, prop. 2.1] the set (3.15) can be transformed to

A=(+ig+(r+is))A

) (3.16)
B=(p+iqg—(r+is)é)B

where pog, » and s are O(2) x S! invariant functions; that is, they arc functions of N, A
and paramcters. Writing A = ac'™ and B = be'¥2 the set (3.16) can be split into

amplitude/phase equations

a=(p+r6)a
) amplitude equations (3.17)
b= (p-rd)b
¥ = (g +s9) .
phase equations. (3.18)

P2 = (q— s0)
The iden is to solve the phase equations for a — a,. Then substitution of the cxpression

for e = v into (3.17) results in a function of R — R, and (a,b) alone (when (¢, 8) e
fixed):

l
(;_.L'- ((I:) = g(a,b,R— Ro)
where
gla,b,R = R,) = p(N,A,R - R,) (Z’) + (N, A, R - R,)é (-ilb) . (3.19)

Generieally there are two types of solutions of the normal form: (a) oblique waves with
a # 0 and b = 0 which correspond to waves with a wavefront at some angle to the
streamwisc direction and (b) “standing waves” with @ = b. These correspond to waves
that travel in the streamwise direction but are periodic in the spanwise direction. There
is also the possibility (with an additional parameter) for the two classes of waves to
interact producing quasi-periodic waves. Further details on the symmetries and more
complete analysis of the normal form (3.16)-(3.19) can be found in Chapter XVII of
Golubitsky, Stewart & Schaeffer [1988).
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The coefficients in the normal form (3.12) are obtained in the following way. The
cigenfunction &;(y) in (8.12) is easily constructed using the expressions in (3.8)-(2.10).
The equation (3.14) is solved only to sufficient order (in 4 and B) to obtain the generic
normal form. This is done by expanding ¥ as a quadratic polynomial in 4, B, 4 and
3. Dropping terms that don’t appear in the normal form, ¥; is constructed from

(12, v2,w2) where

va(%,y,2) = 2Re [(Azcz"("”’:) + B2 E=PM)5, (y) + 2Auc'-"'fﬁzz(y)]

+ (AB*¢*P: 4 A*Be™ %)y (y) (3.20)
where
| . d (diydsy . d*n )
Ly (20,,28) - fi9g = =2 [ el _ 5, =L
R, L1(205,28) - By dy (dy dy " dy?

~

1 . d,.. . . d P
EO-L.g(Quo,O) gy = 4af,a(uf - %) = 2'“"(;135 + 403) 19y

1 . 1w s o f & srn  a aa
ol 04(0,28) « 093 = —8ﬂ2:;TJ(|v1|2 + |1, |2) - 2if (-@5 + 4ﬂ2> (hy 1Dy — Dyedy). ‘
(3.21)

For the streamwise and spanwise velocity we find

wa(x,y,2) = 2Re [(Azc"”(””:) + B2e¥EP2)) iy, (y) + 2A1}c'“’i”1122(3/)]

4 (AB* ¢ 4 A* Be~P%)igg(y) + (JA]? + | B)au(y) (3.22)
wy(#,7,2) = 2Re [(A2c2"<’+f’=’ - Bzc”(’-f’ﬂ)zaz,(y)]

4 (AB*e®: — A* Be™ P Yigg(y) + (|AP: = |B3)2)ib24(y) (3.23)

31




where

i \
—%2/1 = iaoiizy(y) + 2iftoa(y),
. i d . td,
22 Ty ;I‘T/ 12, 2023(3/) = ‘55@"23,
(E;- - 42 )“23(./ RU, a3 + R—(ﬁ,lf); y0y) — 2BR(fky10] — @j1iy), ?

l ~ a A P
-(—;guu(y) = Rty 0} -} i} 8)

and

%tbu(y) = R(, 05 -+ 0] 8y).
7
(3.24)
!
Substitution of (3.20)-3.24) into the vectorfield (3.13) and subsequent normalization

results in

(IA =A [h'n(rl' Ry) + haa(a — aa) + hmIAlz + hulBIz ---- ]
d 13 (3.25)
I =4 [ha1 (R = R,) + has(e = o) + haal A2 + haa| B* - - -]

where by = [f., izsj(y)] and ¢, is the adjoint eigenfunction of the Orr-Somunerfold

equation and

hai(y) = —1-131:\1"'1,

- iy 5 . 2 . (i
’la'_n(y) = - ;?0 AU - FAlIJ + 2U, ((lvl +- taoul)
lit
+ Uyydy -+ (U = ¢)Aby + Ziao(U — ¢ ‘_;‘J_‘ | (4:26) |
- ) 1 ‘
haa(y) = [ + (a? 4 ﬂl)] Fri(y) + (;—ykxz(y) i

hsi(y) = [ 5+ (ad + 4 ]’-’21(1/)4-(-;%’»‘22(3/)-

/
. { £? .
The operator A is the reduced Laplacian, A 4 -1‘-'5,- = (a2 4 f%) and the functions k;;
are defined in
kyy = (~ta,ity — if1d] )z — (ia,itaq + ifbag )iy
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- 16} (2iyfiay + 2ifda1) (3.270)

kay == (—iaoily + i) )igs + 2hpa(ifid] — icoit]) — 2iae D} iz
+ 01 (ifbay — iaoitzy) — D1 (iaoilay + iPidas) (3.270)
kiz = ~2iaoits + ifidy Niaofiar +iBibar) — 2o + B)01 21
+ =ity — P10} ) (it -+ if1D2y) (3.27¢)

kyz == —2(iaoity + 110y Yiaodiag — iftbgs) — 2(icsity — 1810y )(ivaiizg + if1Das)

— diagiing(icrolt} — iptd}) = 2ad + B2)(By a3 + 26! $x2) (3.27d)

The vectorfield in (3.25) can be recast as

(|
‘(1—12 =4 [ha](R - R,,) o+ hu((\ - (l‘o) + :i,-(haa + hu)N + %(hu - h;:.)& e ]

which is of the form (3.16) with

n» - 1"] = "31(R - Ro) + 1132(0' - 0’0) -+ %(hsa + h:M)II e (3 ')s)
r+ is = ::-(h:“ -— ”33) e,
It is now straightforward to apply the theory for O(2) X §! cquivariant normal forms

to (3.28) given the complex numbers hgj 7 = 1,...,4. Numerical evaluation of the

cocllicients in (3.28) is considered is Scction 3.2.

It is important to note that the above hifurcations are spatial bifurcations and
the stability assignments given in Golubitsky, Stewart & Schaeffer [1988, Chapt. XVI1]]
arc not applicable. To determine the stability of the two classes of wives (oblique and
standing) time will have to be reintroduced and the possibility of sidebasnd instability

considercd. This is a very interesting problem that we will treat in detail elsewhere.

3.2 Computation of the cocfficicnts for spatial Hopf bifurcation

In this Section details of the numerical evaluation of the coefficients in the O(2)xS!
cquivariant normal form obtained in Section 3.1 are given for the case where the cquilib-

rium state is the Blasius boundary Iayer. Numerical evaluation is essential because the
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Blasius solution is given implicitly as the solution of a differential cquation. The basic
problem is Lo construct the functions hgj(y) (j = 1,...,4) in equation (3.26) which in
turn depend on complex functions that satisfy the homogeneous or inhomogencous Orr-
Sommeifeld (or related) equation. The Blasius equation, the Ore-Sommerfeld cquation
and related equations are all posed on the semi-infinite interval y € {0, 00). However nu-
merical solution of the Orr-Sommerfeld equation on semi-infinite domains is treated in
Bridges & Morris [19841,1987) and we usc their basic algorithm here. The semi-infinite

domain is mapped to [~1, 41} using the algebraic transformation
Y==—b yel0,00) (3.29)

Then ;;',, - m(]")ﬁv where m(Y) = (1-Y)?/4 and all functions of y arc considered as
functions of ¥ and expanded in finite scries of C'hcbyshcv polynomials. As an example
we consider the construction of a finite Chebyshiev series expansion for the complex
function 92, (y) (in cquation (3.19)) which satisfiecs an inhomogencous (modificd) Orr-

Sonmumeifeld equation, Mapping y = ¥ the governing equation for iy is

m(Y)‘f;’;,‘ o

d
s = (e it (m )) + A(Y)m IY+B(Y)021 =

d d 2 .
2Rom Y(v; de’) ..(m lY) (3.30)
where

A(Y) = =2(a + %) —ia, Ry(U(Y) - c)

’ , 1 3.3
B(Y) = (a? + ) + iaoRa(a2 + B*)U — ¢) + iaoRom rl(i’ (m U (3.41)

l}’)

Tl fivst order vertical velocity is obtained as a solution of the Qrr-Sommerfeld cquation
as in Biidges & Morris [1987). The metric m(Y) is expanded in a scries of Chebyshev

polynomials,
m(Y) = :i-mo + my Ty (Y) -+ maT2(Y) (3.32)
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with my = §, my = =4 and my = &+ Then the Chebyshev product and differentintion
formulae can be used to write the right hand side of (3.30) in a finite scries of Chebyshev
polynomials. Similuily the coefficients A(Y) and B(Y) can be expanded in imte seres
of Chebyshev polynomials. It is then straightforward to expand #2,(Y} in a finite
series, Substitution into (3.30) and application of the Chebyshev—7 method sesults in a
discrete system. After numerically climinating £ (3.30) reduces to the finite dimensional
malrix equation

[D4(20,,28)]) - {821} = {rhs}. (3.33)

Assuming (2a,, 2/) is not an cigenvalue when (ag, ) is (non-resonance point) the (com-
plex) system (3.33) is easily inverted to find the vector {621} of Chebyshev coefficients.
The remainder of the sccond order functions nre obtained in a similar fashion. Then
the functions fg j{y) ave obtained Ly repeated use of the Chebyshev product and differ-
entiation formulac. The matrix [Dy(a,, B)] is the discretized Orr-Sommerfeld equation
and therefore (when fa, is and eigenvalue) has a left eigenvector. lustead of using the
adjoint cigenfanction of the continuous Orr-Sommerfeld equation to obtain the bifurca-
tion cocllicients we situply use the left cigenvector of the matrix [Dy(co, 8)). Lt {¢hs}

be the left cigenvector of Dy; that is,

{$.} . [Di(eo,8)) = 0, (3.34)

then the bifurcation cocflicients Iy, are casily obtained by taking the (discrete) complex
inner-product of {¢.} with {fiz;}. Complete details of the numerical calculations will

be reported in Bridges [1991D].

Alternatively a complete analysis of transition process (through the spatial evo-
lution cquation) can be carried out in the discrete setting. Write the Navier-Stokes
equations as an evolution equation in 2: Z® = L(c, R) « & + N(&; J2) and for brevity
we'll sketeh the 2D case. Eliminate the differential operators in y by expanding @ is a

finite series of Clebyshev polynomials:

N
B(z,y) = §Bo(2) + Y Bul2)Tu(). (3.35)

n=1




.?

The evolution equation for € is then reduced to an evolution equation on the finite

(although large) dimensional space RN,
535\1' =L{¢,R)- ¥ + N(¥, R) (3.36)

where W = ($g, Py,...)7, L is a matrix and N is an algebraic nonlincar operator. It
is Lhen straightforward to apply the usual bifurcation theory for evolution equations in

finite dimensions to (3.36).

3.3 Sccondary bifurcations 2D — 3D

An alternate route for three-dimensinnality to arise is through o secondary bifur-
cation from a 2D state to a 3D state. In fact this is a widely accepled theory for the
oripin of three-dimensionality (Orszag & Patern [1983), Bayly, Orszag & Herbert [1988],
Herbert [1988]). The “sccondary instability” theories of Orszag & Patera and Herbert
are however temporal theories. In this section we introduce a spatial theory for the
bifureation from 2D finite amplitude states to three-dimensional states. The idea is to
study the spatial Floquet multipliers along a branch of spatially periodic 2D states but

with 31 perturbations.

Let (u.v,p) be a 2D spatially periodic state satisfying (2.1) and consider the addi-
tion of a 3D perturbation (u-+£, v+, w, p+q). Substitution into the 3D Navier-Stokes
equations (3.1) and linearization about the 2D state results in the following system with
periodic (in 2) cocflicients

¢ + o, 0 _

wtatn=0 (3.37)

Uy + 05"’5 Uy+uy 0 3

€
(w U= c)—a- - lA n)+Vg+ Vg vy -+ v;% 0 n ] =0
9 I ¢ 0 0 v:2 ¢
iy

(3.38)
The pressure perturbation ¢ can be climinated by taking the divergence of the pesrtur-

balion momentum equations,

Ag = =2[(Uy +uy)y, + vy + e + v:6y]. (3.39)
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Now, taking the Laplacian of the streamwise and vertical velocity perturbation equa-
tions results in the following coupled linear equations for (€,7) with periodic (in z)

cocllicicats,

AAE - Ra—i‘Aq — RA{(Uy +ug)y + (0 + U = e}z + §uz + 06y} =0

) (3.40)
AAy - Rb-'qu = RA {vyy - (u + U = ez + €vz + vy} =0

with Ag given by (3.39) as a function of (£,9). There is also ax additional decoupled
cigenvalue problem associated with the spanwise velocity perturbation; in particular,
given (€,1), g is obtained from (3.39) and the spanwise velocity perturbation is given

by the solution of

1 ow Jw dq
- T %8 9 p
RAw +(u+U-—c) on +v 5 T (3.41)

Equations (3.40) and (3.41) together form the eigenvalue problem for the secondary
bifurcalions. But, since they are decoupled the Floquet eigenvalue problem associated

with (3.41) can be studied independently. Let

w(z, y,z) = e [wi(,y) cos Bz 4 wa(z, y) sin fz2],
then w,(2,y) (7 = 1,2) satisfy the following quadratic in the parameter cigenvalue
problem,

72“’)_ + % { g_
+

- R(u 4 U - c)w; }

w;  0° wj 2 %_ _%_ _ '
{ e + === = ffw; - Ru+ U - 3y }—0 (3.42)

(7 = 1,2) for the spatial l‘loquct exponent 4. Given expressions for the periodic func-
tions u(z,y) and v(x,y) along a branch of 2D spatially periodic stales, the cigenvalue

problem (3.42) can be discretized and solved using the methods described in Section

2.2,

The main cigenvalue problem for the spatial secondary “instability” is the coupled

set (3.10). Since the coeflicients of (3.40) are petiodic in 2 and independent of z we

€,0,2) ) _ e [((1(2:0) €(2:9) ) o e .
(1)(3;,”,;)) =c’ [('I:(:U».’/)) cos Bz + (1)2(:1:,3/)) sm/)..] (3.43)

37

can take




with (§,,7,) (j = 1,2) periodic in w. Substitution of (3.43) into (3.40) results in the

nonlincar (of degree 4) in the parameter eigenvalue problem

1) (9) = ;Zov"ij(e,ﬂ) (§)=o (3.44)

Explicit expressions for the operators Lj(e, 3) are casily obtained by substituting (3.43)
into (3.49) and (3.40). The parameter € represents a parametrization of the branch of
2D states and 8 is the spanwise wavenumber of the perturbation. In particular, the
Floquet exponents (e, 8) will depend on two parameters which will result in potentially
more complex bifurcations (when compared with the 2D secondary hilurcation problem
in Section 2.2 where = 0). The complexity of the bifurcations can also be increased
by changing parameters that alter the cquilibrium state such as ¢ (the wavespeed)
or using Falkner-Skan flows rather than the Blasius flow for the cquilibrium state or
adding a compliant wall along the boundary (Carpenter & Garrad [1985) & Carpenter
& Morris[1990]).

The types of secondary bifurcation points to be expected from the cigenvalue
problem (3.44) will be similar to those described in Section 2.2 ( wavelength doubling
am secondary bifurcation to (streamwise) quasi-periodic states) but with the addition

of spanwise periodicity of wavenumber 8 (which is an independent parametor).

To determine values of the parameters (¢, 8) at which secondary bifurcations occur
wonld 1equire numerical solution of the nonlinear eigenvalue problem (3.44). One way
to show that in fact sccondary bifurcations to spatially quasi-periodic states are to be
expected is to introduce a second parameter whose variation brings the secondary bi-
furcation point down to the origin forming a codimension 2 singularity. Then sccondary
bifnreation to spatially quasi-periodic states can be found in the unfolding. In Scction
4 it is shown that for each g (sufliciently small) there exists a codimension 2 point in
(¢, R) space whose unfolding contains secondary bifurcations to spatially quasi-periodic
states. In fact all along the upper branch of the 2D ncutral curve sccondary bifurcation

to quasi-periodic states (with periodic spanwise variation) will he prevalent.
Symmetry will play an important role in the secondary bifurcations, For the

38




sccondary bifurcation to streamwise quasi-periodic states the normal form will be
0(2) x S'-cquivariant with the O(2) action associated with the spanwise periodicity
and reflcetion and the S! action is associated with the second stremmnwise wavenum-
ber (assuming the Floquet multiplicr lies at an irrational point on the unit circle). A
torus bifurcation in the continuous system is locally equivalent to a Hopf bifurcation
in & map (discrete time system). In essence the above secondary bifurcation is equiv-
alent to u Hopf bifurcation in an O(2)-equivariant map. Results on Hopf bifurcation
in maps have been obtained by Chossat & Golubitsky [1988, p. 1262]). Modulo some
(substantial) technical details the O(2)-equivariant Hopf bifurcation in maps resembles
the O(2)-cquivariant Hopf bifurcation in continuous systems. In particular there will
be two classes of secondary quasi-periodic states. This is easy to sco physically: the
sccondary state can correspond to an oblique wave (where the streamwise wavenumber
does not resonate with the 2D wavenumber) or the secondary state can be oriented in
the strenmwise direction (but spanwise periodic and again non-resonant). The group-
theoretic results of Chossat & Golubitsky can be used to obtain further information.
There will he a group orbit of quasi-periodic states; in particular two oblique waves
with isolropy subgroup §3(2) and a continuous group orbit of “standing” sccondary
states (o torus of invariant tori!) with discrete isotropy subgroup. With the addition
of another parameter there will also exist points of tertiary bifurcation to 3-tori! The
analysis of sccondary bifurcation to quasi-periodic states with symmelry is an interest-
ing area for further study. Our analysis in Scction 4 shows that this bifurcation will

play a cracial role along the upper branch of the 2D neutral curve in shear flows.

The other class of sccondary bifurcations is wavelength doubling (spatial Floquet
multiplicr passing through ~1). Suppose the streamwise wavenumber of the basic state
is normalized to 1 (wavelength 27) and that a Floquet multiplier lies at —1. To study
the bifurcation of 4x-periodic states we use the equations (3.1) perturbed about the
2D state. On the space of 4m-periodic functions however the nonli- 2ar problem is
Z)-cquivariant with action p - f(x,y,2) = f(2 + 2m,y,2). The non-trivial spanwise

varintion however provides an additional O(2)-equivariance of the nonlincar equations.
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Therefore secondary bifurcetion to wavelength doubling from 2D states to JD states
with spanwise periodicity is a 1§ X O(2) equivariant bifurcation problem, or in terms of
dynamical systems theory, the above bifurcation corresponds to period-doubling in the
presence of a continwous symmetry. Period doubling with a continuous symmetry is a
difficult problem. Acting on the periodic orbit with the SO(2) C O(2) action results
in a torus of periodic orbits. Period-doubling will therefore correspond to a doubling
of the whole manifold of periodic orbits (sce Vanderbauwhede (1989,1990]). In light of
its importance for spatial bifurcations in shear flows the propertics of period-doubling

with O(2) symmetry is an interesting avea for further research,

3.4 Secondary bifurcations 3D — 3D

Secondary bifurcations from 3D states that are periodic in the streamwise and
spanwisc divection are of great importance in shear flows. Three dimensionality is
essential for true turbulence and the theory in Sections 3.1 and 3.3 presents two routes to
3D states with spanwise periodicity. 3D states with spanwise periodicity are apparently
an inevilable stage in the transition process. If a (spanwise periodic) 3D state exists
and the sticamwise flow is also periodic (it can either be the basic periodic state or
have wavelength doubled (or n-tupled) any number of times), then we can apply two-
dimensional spatial Floquet theory to study tertiary bifurcations in both the strcamwise

and spanwise directions.

Lincarization of the set of equations (3.1) about a 3D state periodic in (z, 2) results
in a pde with doubly-periodic cocfficients to which spatial Floquet theory (Eastham
[1973, Chapt. 6]) will be applied. A basic question to be addressed in- the application of
2D spatial Floquet theory is the role of spanwise spatial bifurcations in the transition
process. In particular, is spanwise periodicity a good assumption throughout the tran-
sition process with bifurcations essentially taking place in the streamwise direction?
Or alternatively, does wavelength n-tupling and/or spanwise quasi-periodicity play a

significant 10le in the transition process?
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Suppose (, v,w, p) is & three-dimensional state that is periodic of period 2x/f in
the spanwise direction and periodic of period 27n (n € N) in the streamwise direction (it
doesn’t matter how many times the wavelength has doubled or n-tupled). Introduction
of a perturbation about the three-dimensional state (u+€, v+, w+¢, p4q), substitution
into equations (3.1) and lincarization about the known 3D state results in the following

lincar pele with doubly periodic cocfficients,

%, 00, % _ ;
Ox + Oy + 0z =0 (3.45)

§
(u +U-—c)—a— - %A] TR IERAY]

O ¢
(vvw)’ - V4 u, Uy +uy U, ¢
-+ Ur (vow)T -V 4, v, n|]=0
wy Wy (wow)" V4w. | \¢
(3.46)

An equation for the pressure perturbation is obtained by taking the divergence of the

momentuin equations resulting in

Agq= -2y, —2 V11-2+Vv-2+Vtv--a— 16] . (3.47)
iz Ox ay 0z ¢

Taking the Laplacian of each of the momentum equations in (3.46) will climinate the
pressure perturbation via substitution of (3.47) resulting in three lincar coupled equa-

tions with doubly-periodic coefficient for the velocity perturbations (€,9,¢),

£
L(x,2)-{ n | =0. (3.48)

¢

Two-dimensional Floquet theory (Eastham [1973, Chapt. 6]) is casily applied to (3.48).
LCL

§(zyy,2) é(x)y’z)
z,y,2) | =e™ s 72(2’, Y,2) (3.49)
¢z, y,2) ¢(z,y, z)

41




where €, j and ¢ are doubly periodic of “period” 27n in z and 27/ in z. Substitution
of (3.49) into (3.48) results in an cigenvalue problem for the pair of spatial Floquet

exponeuts (7y1,72),

€
Lz, s7,72) - [ i} ] =0. (3.50)
¢

Equation (3.50) is again a nonlincar in the parameter cigenvalue problem in both 1 and
72 and the degree is four. When the basic 3D state is known only approximately (as
say a Fouricer-Chebysliev series) the cigenvalue problem (3.50) will require significant
computational effort. However, the simpler question of the role of spanwise bifurcations
can be addressed by setting y1 = 0. Then (3.50) is an cigenvalue problem in one
parameter, the spanwise Floquet exponent 42. Given 42 as a solution of (3.50) with
71 = 0 the spatial Floquet multiplicr is exp(27y2/8) and all the nsual bifurcations

(spanwise wavelength doubling, spanwise quasi-periodicity, ete.) are to be expected.

If the 3D basic doubly periadic state is of the standing variety, then Zf is in its
isotropy subgroup. In other words it is a reversible state (invariant. under z - —z).
In this case the spanwise tertiary bifurcations will be of the type found in reversible
syslems. The Floquet theory for reversible systems (with a reversible periodic orbit) is
similar 1o Hawmiltonian systems: periodic orbits are surrounded by tori generically and
n-tupling hifurcations (n 2 3) arc of codimension 1 (rather than of codimension 2 as
in non-teversible systems). Consequently the bifurcation structure of the spanwise ter-
tiary bifurcations will differ from the bifurcations in streamwise direction. A spanwise

Poincaré section will have a structure reminiscent of a symplectic map!

3.5 Spatial evolution of the primitive variables in 3D

The evolution equation for the primitive vatriables introduced in Section 2.3 is casily
extended to the three-dimensional Navier-Stokes equations. Taking the divergence of
the momentum equations in (3.1) results in the following Poisson cquation for the

pressuye,




Ap+ 2Uyve + 4 + 02 + w2 + 2(veuy + wott, +wyv,) = 0. (3.51)

Theidex is Lo write the Poisson equation for p and the spanwise and vertical monientum
equations as evolution equations and use the streamwise momentumn cquation as a

constraint, Let

v v
Vv Uz
w Y\ def | w
P=lw|= Wy (3:52)
» ?
1 De
then we find
z)-a;‘l’ = L(¢,R) - ¢ 4+ N(¢,u; R) (3.53)
where
L0 1 0 0 0 0
~(&r+{2) RU-¢) 0 0 RE 0
L(c, R) = 0 0 ,0 1 0 0
= 0 0 ~(&r + &) R(U=¢) RZ 0
0 0 0 0 L0 1
0 ~2U, 0 0 —~(§x +m) O
(3.54)
and
0
R(uV 4 vvy + wv;)
Sy 0
N(®,u; 1) = R(ulV + vwy + ww:) (3.55)
0
=20} + w? + vyw: + Vuy + W, + wyn:)
and the constraint induced by the streamwise momentum equation is
1 . 1
q+ 'ﬁ("y + W) - 'ﬁ("yy +uz) + Uy ~ (U = o)(vy + w:)
+ vuy, — uvy + wu; — uw; = 0. (3.56)

Assuming the functions (u, v, w, p) have periodic spanwise variation, the evolution equa-

tion (3.53) is an O(2)-equivariant vectorficld in a suitable function space.
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Figure 3.1 Neutral curves in the (¢, R) plane for the modified (real) 3D Orr-Sommerfeld
equation (3.7) for 8 > 0.
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4. Wave interactions and spatially quasi-periodic states

Our claim is that along a branch of 2D spatially periodic states sccondary bifurca-
tion to spatial states that are quasi-periodic in the streamwise direction (and periodic
in the spanwise direction) are to be expected. In this section a theory is presented that
shows that along the upper branch of the 2D neutral curve a sccondury bifurcatior to
spatially quasi-periodic stales is generic (in the one-parameter family of 2D spatially
periodic states). This is shown by analyzing the codimension 2 singularity associated
with the intersection of the # = 0 and 8 # 0 neutral curves; in particular, the codimen-
sion 2 singularity brings the secondary bifurcation to quasi-periodic states down to the
origin. Analysis of the unfolding of the singularity shows that secondary bifurcation to

quasi-periodic states is codimension 1 along a branch of 2D spatially periodic states.

Suppose g is chosen arbitrarily in the interval (0, fimaz) where flnar = .3 (for the
Blasius boundary layer). The neutral curve for # = 0 and 8 # 0 is shown in Figure
4.1. In the two-parameter family (¢, R) there is a codimension 2 point where the two
neutral curves intersect. At the point (co, R,) the 2D state and the 3D state will have
pure inmginm;y cigenvalues; that is, at (co, I2,) the Orr-Sommerfeld equation (3.7) will
have an eigenvalue A = iay (a1 € R) when 8 = 0 and an eigenvalue X = iaz (a2 € R)
when s 0. Note that for each 8 € (0,fmaz) there exists a codimension 2 point,
therefore such a codimension 2 point can be found at each point on the upper branch
of the 2D neutral curve. For gencral f# € (0, fimaz) the ratio ay /a2 will be irrational
but at particular values of 8 the ratio will he rational. We suppose hencelorth that
the ratio a; /aq is irrational and then treat the codimension 3 points (co, o, 8,) where

a1/az € Q as special cases.

As in Section 3.1 the O(2) symmetry forces the cigenvalue A = iay (when g # 0)
to be double. Therefore the spatial centre-manifold associated with the codimension 2
point (¢o, 12,) is six-dimensional. What we will show is that the codimension 2 point
(co, o) can be treated as an O(2) equivariant (spatial) Hopf-Hopf mode-interaction

on six-dimensions. The corresponclence is useful because there is an interesting normal




form theory due to Chossat, Golubitsky & Keyfitz [1986] (hereafter CGK) that is
applicable. The theory of CGK is a temporal theory but nevertheless their existence
results will be applicable here but the stability of the bifurcating quasi-periodic states

will have to be determined by other methods.

4.1 Bifurcation of spatially quasi-periodic states

The evolution equation in the primitive variables given in Section 3.5 can be re-
cast as an O(2)-equivariant vectorficld in the following way. Assuming periodicity

(wavenumber 8) in the spanwise direction we can write

o0
B(2,y,2) = 1Do(z,y) + Z Pam—1(2,y) cos mPz + P2, (z,y)sinmpPz (4.1)
ms=1
where
vi(2,y)
Vi(z,y)

Bi(z,y) = ;;’;J((’; Z)) with we = Wo = 0. (4.2)

pi(2,y)
gj(2,y)
The point about the (spatial) Hopf-Hopf interaction can be made using the lincar part

of the evolution equation (in (3.53)-(3.54)). Let

[ 02 1 00 0 0]
Li=1 o 00 0 ol (4.3)
0 0 0 0 0: 1
| 0 =2U, 0 0 -F O
0 1 0 0 0 0]
mzﬂzo— -(%7 R(Uo— c) g (1) Ré;—’,’- 8
+
Ly, = 0 0 m?p? — 5%’,— R(U -¢) 0 0 (4.4)
0 0 0 0 5 1
i 0 -2U, 0 0 m2p? — 57 0
and
L;, = mBREs (4.5)




where Eys is a 6 x 6 matrix with unity at entry (4,5) and zero everywhere clse. With

the matrices Lo and LE the lincar vectorfield Z & = L(c, R)® can be written

'$°‘ 160 LOl Los: 0o o '$°’
m| [0 - oo b
"Q'ﬁ (2 | = . 0 0 L;- Lz_ 0 0 d Py \ . (46)
Iz | B4 o o -L; Lf o o |™
; o o ;
k : / | 0 0 k : /

cosmf sinméd
—~sinmf cosmb
R%. Then an action for O(2) on the Fourier cocflicient space is generated by

Let Ry = m € N with 8 € R be the usunal rotation matrix on

0(2) = (R,K) 4.7
where R generates SO(2) and is given by
R = diag(Is, R @ Iy, R2p @ Ig,..., Rino @ Is,...)
and K pencrates Z5 and is given by
K = diag(Is, £ @ Ig, £ @ Ig,...) -

with x == diag(1;, —=1). With the action of O(2) given in (4.7) it is clear that (4.6) is an
O(2)-cquivariant vectorfield with O(2) acting trivially on the 2D state $g. To study
the spalial eigenvalue problem take ®;(,y) = e**&;(y) then (4.6) decouples into the

sequence of eigenvalue problems

/\(i)o = Lu‘i’u (4-8)
(i’gm—l — L,‘" L1_n (i’gm-l —19

Suppose A € a(Lp) is a spatial Hopf bifurcation point (Re(A) = 0 and Im(\) # 0). A
(spatial) Hopf-Hopf mode-interaction between a 2D state and a 3D state (equivalently
a Hopf-Hopf mode interaction with O(2) symmetry on 6-dimensions) takes place if (for
the same (¢, R))

Ly L3\
A€o (_I’l'_ L““,) (4.10)

m m
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is also a spatial Hopf bifurcation point for some m. Without loss of gencrality we can
take m = 1. The sequence of eigenvalue problems (4.9) is equivalent to (using (4.4)
and (4.5))

ﬁ;m + (’\2 - "l2ﬁ2)52,,, = /\R(U - c)ﬁzm + Rﬁ'zm (4.11)
i)’z’m + (’\2 - mzﬂ'z )132m = "2/\ny)2".
'b;m + ('\2 - 'nzﬁ2)“"2m = ’\R(U — c)ibem + mPBRPaw, (4.12)

with $,,,— satisfying the same sct of equations (i.e. every cigenvalue of (4.11)-(4.12)
is double). Clearly, a mode-interaction takes place (of six-dimensions) if there exists
(coy I?5) at which (4.11) has a purcly imaginary eigenvalue for both m =0 and m = 1.
This is in fact the case as shown in Figure 4.1; that is, a sufficient condition is that the

neutral curves for m = 0 and m =1 have a point of intersection.

For the bifurcation at the points (o, R,) where a 2D and 3D state interact the
normal form theory will be sketched with complete details along with numerical evalu-
ation of the cocfficients to be reported in Bridges [1991b). At the critical point (¢, R,)
suppose that A = ia; (g € R) when # =0 and X = iz (a2 € R) when 8 54 0. Then

the linear solution in terms of the primitive variables at the point (cs, R,) is given by

(2, y,2) ) 11 (y) )
n(x,y,2) | =2Re |ze' ™" | t11(y)
m(z,y,z) n(y)

] _ 2(y) L

4 2Re |(z;ci(@27+62) +zze'(°’”'ﬁ’)) B12(y) (4.13)
Pr2(y)
and
wn(2,9,7) = 2Re (21649 — aiterr=pIyi (y)]
7

where (0,21, 32) € C* are complex amplitudes. Formal application of centre-nanifold
theory allows reduction to a vectorficld on C*. For the normal form Proposition 2.3 of

CGK is adapted to the spatial setting. At the point (co, RR,) the normal form is

1 z0 ) i) . 0 ) 0
ﬁ ] =(tig) ] O ) +tia) | o | H(p2+ie)s | a (4.14)
- ~9 0 29 -~22
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where po,p1,p2,qo,q1 and gu are real functions of p, N and A where p=|xn*N=
5112+ [=2%, A = 8 and § = |22)? = |z1]?. Morcover 70(0,0,0) = ay and 9;(0,0,0) = a3.
An interesting property of the complex equations (4.14) is that the amplitudes and

phases separate: let zj = rje’® j =0,1,2 then (4.14) decouples into

1o = po(p, N, A)ro
= (I’I(Pa N, A) + ép2(p, N)A))"l (4‘15)
i2 = (m(p, N,A) = pa(p, N, A))rs

and
do = qu(p, N, A)

o1 =q(p,N,A) + 8q; (4.16)
$2 = 0 (p,N,A) - bqa.
The set of amplitude equations in (4.15) is particularily casy to analyze because it is a

Ly h Dy equivariant vectorfield. The group Zp = (Fy) and D4 = (Fi, Fay F) where

Fy -« (ro,r1,12) = (—ro,ry,12)
F'! * ("0$"l)7'2) = ("01 ~71, —1‘2)

(4.17)
Fy o (ro,r1,72) = (10,71, —13)

F. (7'0s rla"?) = ("0)7'2)7'1 )‘

CGK have used group-theoretic techniques to show the existence of seven classes of
solutions in the normal form (4.15). They are listed in Table 4.1 along with their
symmetry group (as subgroups of Z; @ D,). Types 1,2 and 3 are the strictly periodic
states that occur away from the interaction. States 5 and 7 require an additional
parameler (are codimension 3). The interesting states are 4 and 6. They correspond
to two classes of spatially (streumuwise) quasi-periodic states with spanwise periodicity.
Type 4 involves interaction between an oblique travelling wave and a 2D wave with
intependent wavenumbers (but the same phase speed) and type 6 involves interaction
between a standing 3D wave (actually travelling in the streamwise dircetion but periodic

in the spanwise direction) and a 2D wave.
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Further information about the bifurcating states can be obtained from the bifur-
cation cquations. Expansion of the right hand side of (4.15) in a ‘Taylor series and

{runcation at order 3 results in
po = cod+ pt+aop+boN

m=calt+ap+hN (4.18)
1 =p;
where ey, @, bo, c1,a1,by and pg are real constants to be determnined and (A, i) arve the
unfolding parameters of the codimension 2 singularity. CGK give a partial analysis of
the bifurcation equations (4.18). There are numerous bifurcation sequences depending
on the value of the cocflicients, Computation of the coefficients relevant to the upper

branch of the Blasius solution neutral curve are carried out in Bridges [1991D).

Ultimately the importance of the spatially quasi-periodic states that bifurcate
along the upper branch of the 2D neutral curve will depend on whether they are stable
or not. To determine stability of the spatial states will require reintroduction of time,
For the spatially periodic states the sideband instability will have to be considered
as well. More generally the spatial states correspond to spatial invariant ianifolds.
Thercfore there will be two steps in the stability analysis: stability with respect to
paramectrically equivalent manifolds (i.e. in the spatially periodic case, stability with
respect to perturbations of the same wavenumber) and secondly stability with respect
to other “nearby” spatial invariant manifolds (this is a generalization of the sideband
instability). A stability theory for spatially periodic state including sideband instability
is straightforward but a theory for the stability of the more complex spatial invariant
manifolds is by no means clear but is cleatly of great importance for determining the

stable spatial states in shear flows.

4.2 Spanwise resonances and mode-interactions on 8-dimensions

Althongh we do not pursuc it here it is possible to have interactions between two
3D states resulting in an eight-dimensional centre-manifold. Maintaining the basic as-

sumption of periodicity in the spanwise direction we look for resonances between two
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3D blocks (1 > 0) in (4.9). For example consider block m = 1 and m = 2 which would
correspond to a spanwise resonance between g and 28. Figure 4.2 shows an example
of neutral curves in the (¢, %) plane for f and 28 (obtained by solving the cigenvalue
problem (4.11)). At the poiut of intersection of the two curves both # and 20 result in
purcly imaginary eigenvalues of (4.11); that is, A = i@y (a1 € R) corresponds to 8 (at
fixed (co, Ry)) and 273 results in N = ias (a2 € R). Each eigenvalue is double due to
the O(2) symmetry (and oy /ey is generically irrational) resulting in an 8-dimensional
centre-manifold, This interaction corresponds to a Hopf-Hopf mode-interaction with
O(2) symmetry on 8-dimensions which has been studied by Chossat, Golubitsky &
Keyfitz [1986). The interaction is very complex and produces quasi-periodic solutions
(in the present case spatielly quasi-periodic states) with 2, 3 and 4 independent fre-
quencies (or wavenumbers in the present case). The 8-dimensional mode-interaction
will ocenr at higher Reynold’s number ihan the G-dimensional mode-interaction and
therefore it would appear to be of less importance. However, there is an interesting dy-
namical feature in the cight-dimensiona interaction. Melbourne, Chossat & Golubitsky
[1988] have shown that heteroclinic cycles can be found in mode-interactions on 8-
dimensions, Aubry, ct al. [1988] have introduced a model for fully developed turbulence
in boundary layers which shows that heteroclinic cylcles provide a good theoretical
moclel for the bursting phenomena, Therefore analysis of the 8-dimensional interaction
in transitional boundary layers may provide a prelude to “dynamical” behavior that

persists in fully developed turbulent houndary layers.

4.3 Resonant triads

In the codimension two non-resonant interaction treated in Section 4.1 it was
noted that at particular values of f the interaction is resonant; that is, there exists
distinguished points (co, Ry, Bo) at which the 2D state has wavenumber oy, the 3D
state has spanwise wavenumber 3, and wavenumber pay /q where (p,g) are integers.
The interesting r :sonances are when p = 1 and ¢ = 2,3 or 4 (strong resonances).

It is casy to show that cach of the strong resonances occur in the Blasius boundary
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layer. Indeed, the (p,gq) = (1,2) resonance corresponds to the Craik resonant triad
although our nonlinear theory will differ: Craik treats the wave speed as complex and
shows that the energy in an unstable 2D wave is transferred to the 3D wave. In our
theory the wavespeed is taken as real and the resonant interaction is treated as a spatial

(codimension 2 Hopf) bifurcation.

The resonant interactions are demonstrated as follows., Using the (e, ) neutral
curve, pick a value of ¢ at which there are two R-intersections (R and Ry) as shown in
Figure 4.3. Corresponding to (¢, Ry) is wavenumber «y and to (¢, Ry) is wavenunber

ay. Now map (g, Ro) = (g, Ry, B) with 8 # 0 using the Squire transformation. Then

alty = Ryag ag = \/a’g - 2.

Therefore corresponding to Reynolds munber Ry there is a 2D wave with wavenumber
oy and a 3D wave with wavennmber a,. Wiite their ratio as p = a;/ay then

o a Yy

! aplRy
which is casily constructed from the neutral curve data and is plotted as a function of
cin Figure 4.4. A resonant interaction oceurs whenever p = 1q3. In general p > 1 but it
is clear from Figure 4.4 that there exist values of (e, R, ) at which p = 2,3 and 4 but

in general p will be irrational (corresponding to the states in Scction 4.1).

The normal form for the resonant interactions p = 2,3 and 4 will he more diflicult
than the :ormal form for the non-resonant interaction (less symmetry). The normal
form symmetry will be O(2) x §' on G-dimensions. Consequently the amplitnde/phase
equations do not separate. Normial forms for resonant Hopf-Hopf interactions with O(2)
symmetry on G-dimensions have not appeared in the literature. This is an interesting
arca for further rescarch and will be of great interest for understanding the flow near

the resonant points on the upper branch of the 2D neutral curve.
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Table 4.1

Solution types in the unfolding of the

codimension-2 singularity (c,, R,)

Isotropy Fix (L) Vectorfield Solution Type
Subgroup ¥ on Fix (¥)
2, x Dy 0 - trivial solution
{1} x D4 (r0,0,0) po=0 2D spatially periodic state
2 x {F,1}  (0,r1,0) pr—ripa=0 3D (oblique) spatially
periodic state
Z; x {F,1} 0,r1,m) =0 3D (standing) spatially
periodic state
{1} x {F2,1}  (ro,r1,0) po=0 2D-3D(oblique)
pr—ripp =0 quasi-periodic interaction
Z; x {1} (0,r1,r2) p1=0 3D(standing)-3D(cblique)
r2=0 quasi-periodic interaction
{1} x {F,1} (ro,71y71) po=0 2D-3D(standing)
=0 quasi-periodic interaction
{1} (royr1,72) po=0 2D-3D(oblique)-3D(standing)
=0 quasi-periodic (3-torus) interaction
p2=0
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Figure 4.1 Neutral curve of the Orr-Sommerfeld equation for # = 0 and 8 # 0

illustrating the codimension 2 intersection point.
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Figure 4.2 Neutral curve for 8 and 24 illustrating the interaction point for spanwise

resonatce,
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Figure 4.3 Finding resonant and non-resonant interaction points using Squire’s theo-

rem.
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Figure 4.4 Ratio of the wavenumbers in the 2D-3D wave-interaction along the upper

branch of the 2D neutral curve.
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5. 2D spatially quasi-periodic states and the compliant wall problem

The introduction of a compliant wall to the boundary layer problem has a two-fold
cffect. Rescarch of Carpenter & Garrad [1985], Carpenter & Morris [1990] and others
has demonstrated that proper use of a compliant wall (i.e. optimal material properties,
geometry and construction) leads to a reduction in drag and a greater control over the
point of transition in the boundary layer. On the other hand the potential for “wall
dynamics” leads to new instabilitics and competing instabilities in the boundary layer.
It is this latter feature that interests us here. A classification of the instabilities (and
the nonlincar bifurcations associated with them) is of great practical importance for
the design of a compliant wall (in other words they need to be understood so they can

be avoided (or used to advantage!)).

There are a number of singularities in the linear analysis of the stability of the
compliant wall problem (see Carpenter [1990]). Here we consider a particular singu-
larity in the neutral curve for the compliant wall problem that supports our theory of

secondary bifurcation to spatially quasi-periodic states.

In Section 4 the emphasis was on sccondary bifurcation to spatially (streamwise)
quasi-periodic state that have spanwise periodicity. In other words the streamwise
quasi-periodicity appeared with three-ditnensionality and the basic 2D state was spa-
tially periodic. However, it was shown in Scction 2.2 that secondary bifurcation from
spatially periodic 2D states to spatially quasi-periodic 2D states was possible. Identi-
fication of the points of secondary bifurcation to quasi-periodic 2D states will require
numerical calculation. An alternative is to use the “codimension-2 strategy”. The
secondary bifurcation to 2D quasi-periodic states is of codimension 1; that is, such
bifurcations are generic in the one-parameter family of 2D spatially periodic states.
In the codimension-2 strategy we introduce another parameter that brings the sec-
ondary bifurcation point down to the origin. In particular we will study a singularity
in the neutral curve found by Carpenter & Garrad [1985, Figure 11] by varying a sin-

gle parameter (the elastic modulus of the wall). What we intend to show is that the
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singularity found by Carpenter & Garrad is associated with a bifurcation to spatially
quasi-periodic 2D states. This singularity in question may not be of great practical
importance to the compliant wall problein (it appears at a Reynolds number of about
3000 (based on displacement thickness) whercas the initial 2D instability occurs at
R = 500) but it is nevertheless significant in demonstrating that bifurcation to more

complex 2D spatial structures (other than spatially periodic) is to be anticipated.

Consider the linear coupled fluid-wall problem. The fluid is governed by the linear
2D Navier-Stokes equations (in the convective frame) given in Equations (2.2). For a
rigid wall the wall boundary conditions are v = v = 0 at y = 0. For a compliant wall

the governing equation, when the wall is tnodeled as a simple beam, is

. 04 Lo .
Cmgt'zl + Cngh,—.,l + Ckell = ~Puw (5.1)

where 7(z,1) is the vertical displacement of the wall and C};, Cp and Cj,g are dimen-
sionless (using displacement thickness variables) coefficients and py(2,0,t) is the fluid

pressure at the wall. The linear kinematic conditions at the wall are given by

v= % and w = =Uy(0)1. (5.2)

With the transformation z +—  — ct the equations (5.1) and (5.2) can be written as

8% v Oy

°—’axay + U,,(O)% =0, v -{-'ca; =0

and (5.3)
w 0" . Py

Byt CzC'M'ap + Cren = —puw.

The linear Navier-Stokes equations (2.2) together with the boundary conditions (5.3)
(and appropriate boundary conditions at infinity) are considered as an evolution equa-
tion in 2. Taking the dynamical systems approach, let (u,v,p,n) = e**(#, 9, 5,4) then
the fluid equations reduce to the (modified (real)) Orr-Sommerfeld equation,

(12 2 2. ~ d2 2 ~
(;7!74-,\) v+,\RU,,yv—,\R(U-c)(E1Jz-+,\)U—O (5.4)
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and the boundary conditions (5.3) reduce to

c:—;-i-Uy(O)ﬁ:O
d3i) 2d{} \ ,\4 2o \ at y=0. (5.5)
W-H‘ -(E+-E(ECB+I\ c Cm+CKER)v=0

Equations (5.4) and (5.5) together with appropriate boundary conditions at infinity
(9,9' = 0 as y — co) form a nonlincar in the parameter eigenvalue problem (of degree
5) for A as a function of ¢, R and the wall parameters Cp, Cas and Cycg. The variables
Cp,Cu and Cig are introduced to eliminate the streamwise dependence of Cp,Cy
and Ckp (see Carpenter & Garrad [1985, eqn. (6.5)]),

Cp=CpR™>, Cxgp=CkxeR and Cj=CuR™.

The boundary conditions (5.5) are in a form rather different from Carpenter & Garrad
and Carpenter & Morris; here we suppose ¢ € R and A € C is a spatial eigenvalue. In
Carpenter & Morris the classic spatial stability approach is used; that is, the frequency

w € R, c € C and a, the wavenumber, is the eigenvalue.

Figurc 5.1 shows a schematic of the results of Carpenter & Garrad [1985] (taken
from their Figure 11, p. 498). By varying the elastic modulus (Cay fixed and Ck g and
Cp varying dependent on E) the neutral curve varies dramatically. In particular as the
elastic wall modulus is decreased there exists a critical value of E = E, at which the
neutral curve breaks into two pieces. Our interest is in the critical point E = E, when
the upper and lower branches of the neutral curve first intersect. Carpenter & Garrad
treated the problem from the temporal point of view (real wavenumber a with ¢ € C the
eigenvalue) and plotted the neutral curve in o — R space. In Figure 5.2 the singularity
is viewed in the (¢, R) plane (E, will differ slightly from the temporal value in Figure
5.1). In other words there exist E = E, at which the upper and lower branch of the
neutral curve (in the (¢, R) plane intersect. Recall that associated with each point along
the neutral curve is an eigenvalue A with Re(A) = 0 and Im()) # 0. Therefore when
E = E, and (¢, R) = (¢, Ro) the lincar problem will have eigenvalues A = %ia; and

A = diag with aj/as (generically) irrational; that is, the linear problem has spatially
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quasi-periodic solutions and a center subspace of 4 dimensions. The vertical velocity

will have the form
v(z,y) = 2Re [A01(y)e!™'® + Biy(y)e'***) (5.6)

where A, B € C are complex amplitudes (note that 4, and #; are in general distinct

functions) and the wall displacement will also be spatially quasi-periodic,
2 i . : .
1(z) = —Re [-’—Aa,(O)e'm + LBaz(O)eW] (5.7)
Co a) Qaz
with related expressions for u(z,y) and p(z,y).

Theidea is to apply centre-manifold theory to reduce the spatial evolution equation
to a vectorfield on R* to which normal form theory is applied to show the bifurcation of
nonlinear spatially quasi-periodic states. The analysis is sketched here with complete
details to found in Bridges [1991d). Let f = (Re(4),Im(A),Re(B),Im(B)) € R* then
the (formal) centre-manifold reduction (as in Section 3.1) can be used to construct a

reduced vectorfield for f;

L f = Lo Re): f+N(fycosRe)  E=E, (5.7
with
0 o
LicoyRo)= |~ O
0y 0 0 a2
-—Q2 0

The problem has been reduced to a vectorfield on R* in which the linear part has 2
purely imaginary pairs of eigenvalues without resonance, a singularity that has been
analyzed by Takens and by Guckenheimer & Holmes [1983, Section 7.5]. If we set
r1 = |A] and ro = |B| then successive changes of variables reduces (5.7) to a T2
equivariant normal form (to some order). To third order the normal form for the
amplitudes reduces to

dr

L=+ 2 4 br?)

dz

dry (5.8)

= ro(pz +or? +drd) d=%1
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(Guckenheimer & Holmes equation (7.5.2)) where (j11,t2) are the two unfolding pa-
rameters (related to ¢ — ¢, and R — R, in the present case). Numerical calculations of
the coefficients b,c and d are carried out in Bridges [1991d] for the Blasius boundary
layer adjacent to a compliant wall. Unfolding of the normal form (5.8) shows that the
two branches of spatially periodic states will persist. In addition there are secondary
bifurcations to quasi-periodic states and if certain parametric conditions are met there
is a tertiary bifurcation to 3-tori. Schematic bifurcation diagrams are shown in Figures
5.3(a) and (b). In Figure 5.3(a) the secondary branch of quasi-periodic states goes off
to infinity whereas in Figure 5.3(b) the secondary branch connects the two branches
of periodic states and includes a tertiary bifurcation to a 3-torus. Note that stability
assignments are not included in Figure 5.3. The centre-manifold amplitudes and the
normal form in (5.8) are written in terms of spatial evolution so only existence results
are obtained. Determination of the stability properties of the quasi-periodic states is a

non-trivial problem and will require the reintroduction of time.

In obtaining the singularity in Figure 5.1 Carpenter & Garrad varied only one pa-
rameter. Note that even in the simple model of the compliant wall (5.1) there are three
independent parameters (the more sophisticated models of Carpenter & Garrad and
Carpenter & Morris contain considerably more parameters). Our claim is that another
parameter can be varied to bring the two non-resonant wavenumbers in the (spatial)
Hopf bifurcation together as shown in Figure 5.4. The configuration in Figure 5.4 is
the (codimension 3) 1:1 nonsemisimple Hopf bifurcation and has been analyzed by van
Gils, Krupa & Laungford [1990). This singularity is of interest for two reasons. From a
practical point of view the location of high codimension singularities in the parameter
space of the compliant wall problem is of interest in order to “design around them”,
From a theoretical point of view the 1:1 nonsemisimple (spatial) Hopf bifurcation intro-
duces new spatial bifurcations; in particular, van Gils, Krupa & Langford show that the
unfolding of the 1:1 nonsemisimple Hopf contains homoclinic bifurcutions and period
doubling bifurcations as well as n-tori (n = 2 and 3). Adaptation to the spatial setting

will result in interesting spatial structures; in particular, the “spatial homoclinic” will

60




correspond to a soliton-like feature in the shear flow!
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Figure 5.1 Effect of reducing the wall elastic modulus (E') on the neutral curve for

the Blasius boundary layer (after Carpenter & Garrad (1985, Figure 11]).

(c° )R")

Figure 5.2 Neutral curve at the critical value of the wall elastic modulus E = E, in

the (¢, ) plane.
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Figure 5.3 Schematic bifurcation diagrams for the normal form in equation (5.8)
showing how secondary bifurcations to 2-tori and 3-tori arise: (a) infinite branch of T?

and (b) finite secondary branch of T? with tertiary bifurcation to T3.
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Figure 5.4 Coalescence of the non-resonant Hopf-Hopf interaction by the addition of

a third parameter producing a 1: 1 non-semisimple Hopf.

63




References

(1] N. AuBry, P. J. HOLMES, J. L. LUMLEY & E. STONE [1988) The dynamics of
coherent structures in the wall region of a turbulent boundary layer, J, Fluid Mech.
192, pp. 115-173

(2] B. J. BavyLy, S. A. OrszAG & T. HERBERT [1988] Instability mechanisms in
shear-flow transition, Aun. Rev. Fluid Mech. 20, pp. 359-91

(3] B. L. J. BRAAKSMA, H. W. BROER & G. B, HUITEMA [1990} Toward o quasi-
periodic bifurcation theery, Memoirs AMS 83, pp. 1-82

{4] T. J. BrIDGES [1991a] A dynamical systems approach to transition in shear flows,

in preparation

(5] T.J. BrIDGES [1991b] O(2)-equivariant spatial- Hopf bifurcation and quasi-periodic

wave-interactions in the Blasius boundary layer, in preparation

[6] T. J. BRIDGES [1991c] Secondary bifurcation of spatially quasi-pericdic states in

channel flow, in preparation

[7] T. J. BRIDGES [1991d] Spatially quasiperiodic waves in the Blasius boundary layer

adjacent to a compliant wall, in preparation
[8] 'T. J. BriDGES [1991¢] Degenerate period doubling and bubbling, in preparation

(9] T. J. Bripges & P. J. Mornis [1984a] Differential eigenvalue problems in which
the parameter appears nonlincarly, J. Comp. Physics 55, pp. 437-60

(20] T. J. BrupGEs & P. J. MoRRis [1984b] Spectral calculations of the spatial stability
of non-parallel boundary layers, AIAA Paper No. 84-0437

(11) T. J. Bripges & P. J. Monrris (1987 Boundary layer stability calculations,
Physics of Fluids 30(11), pp. 3351-8

[12] H. W. BroER, G. B. HUITEMA & F. TAKENS [1990] Unfoldings of quasi-periodic
tort, Memoirs AMS 83, pp. §3-175

[13] P. W. CARPENTER [1990] Status of Transition Delay Using Compliant Walls,
Prog. in Astro. and Aero. 123, pp. 79-113

64




[14] P. W, CARPENTER & A. D. GARRAD [1985] The hydrodynamic stability of flow
over Kramer-type compliant surfaces. Part 1. Tollmicn- Schlichting instabilities,
J. Fluid Mech. 155, pp. 465-510

[15] P. W. CARPENTER & P. J. MoRRis [1990] The effect of anisotropic wall compli-
ance on boundary-layer stability and transition, J. Fluid Mcch, 218, pp. 171-223

[16) P. Cnossat & M. GOLUBITSKY [1988) Iterates of maps with symreciry, SIAM
J. Math. Anal. 19, pp. 1259-1270

[17) P. Cuossar, M. GoLunrrsky & B. KEYFI12 [1986) Hopf-Hopf mode interations
with O(2) symmetry, Dyn. Stab. Sys. 1, pp. 255-292

(18] P. 1. CouLLET & E. A. SPIEGEL [1983] Amplitude cquations for systems with
competing instabilities SIAM J. Appl. Math. 43, pp. 776-821

[19] A. D. D. Cralx [1971] Nonlincar resonant instability in boundary layers, J. Fluid
Mech. 850, pp. 393-413

[20] A. D. D. CrAlx [1985] Wave interactions and fluid flows, Cambridge University
Press

[21] P. G. DrAzIN & W. REID [1981] Hydrodynamic Stability, Cambridge University
Press

[22) M. S. P. EasTuaM [1973) The Spectral Theory of Periodic Differential Equations,

Scottish Academic Press, Edinburgh

[23] C. EtAcit [1976] Waves in active and passive periodic structures: a review,
Proc. IEEE 64, pp. 1666-1698

[24) M. GASTER [1962) A note on the relation between temporally increasing and spa-
tially increasing disturbances in hydrodynamic stability, J. Fluid Mcch. 14, pp.
2224

[25) M. GAsTER [1990) On the nonlincar phase of wave growth leading to chaos and
breakdown to turbulence in a boundary layer as an czample of an open system,
Proc. Roy. Soc. A430, pp. 3-24

[26] S. A. vaN GiLs, M. Krura & W. .F. LANGFORD [1990] Hopf bifurcation with

non-gemisimple 1:1 resonance, Nonlinearity 3, pp. 825-850




[27] M. Gorusrrsky & M. RoBERTS [1987] A classification of degencrate Hopf bifur-
cations with O(2) symmetry, J. Diff. Equs. 69, pp. 216-64

(28) M. GoLusITsKY, I. STEWART & D. SCHAEFFER [1988] Singularities and groups
in bifurcation theory, Vol. II, Appl. Math. Sci. no. 69, Springer-Verlag

[29] C. Grosci & H. SALWEN [1978] The continuous spectrum of the Orr-Sommerfeld
problem. Part 1. The spectrum and the eigenfunctions, J. Fluid Mech. 87, pp.
33-54

[30) J. Guekenuemer & P. J. HOLMES [1983] Nonlinear Oscillations, Dynamical
Systems and Bifurcations of Vector Fields, Appl. Math, Sci. 42, Springer-Verlag

[31) T. Herpert [1975] On finite amplitudes of periodic disturbances on the boundary
layer along a flat plate, Proc. 4'" Int. Conf. Numer. Meth. Fluid Dyn. LNP-35,
pp. 212-7

[32] T. HenrBERT [1983) Secondary instability of plane channel flow to subharmonic

three-dimensional disturbances, Physics of Fluids 26, pp. 871-4

[33] T. HierBeERT [1984) Analysis of the subharmonic route to transition in boundary
layers, AIAA Paper No. 84-0009

[34] T. HerBERT [1088] Secondary instability of boundary layers, Aun. Rev. Fluid
Mech. 20, pp. 487-526

[35) Yu. S. Kacuanov & V. YA. LEVCHENKO [1984] The resonant interaction of
disturbances ot laminar-trubulent transition in @ boundary layer, J. Fluid Mech.
138, pp. 209-247

[36) K. KircnGAssnER [1982) Wave solutions of reversible systems and applications,
J. Dill. Equs. 45, pp. 113-27

[37) I. MELBOURNE, P. CliossAT & M. GoLuBITsky [1988] Heteroclinic cycles involv-

ing periodic solutions in mode interactions with O(2) symmetry, Research report
UH/MD-47, University of Houston

[38) S. A. OrszAG & A. T. PATERA [1983] Sccondary instability of wall-bounded shear
flows. J. Fluid Mech. 128, pp. 347-85

GG




(39} A. J. PEARLSTEIN & D. A. Goussis [1988] Efficient transformation of certain

singular polynomial matriz eigenvalue problems, J. Comp. Physics 78, pp. 305-12

(40} F. T. Smrtit [1979) On the non-parallel flow stability of the Blasius boundary layer,
Proc. Royal Soc. London A366, pp. 91-109

[41] A. VANDERBAUWHEDE [1989] Period-doublings and orbit-bifurcations in symmetric
systems, Dyn. Sys. & Exgodic Theory 23, Banach Center Publications, pp. 197-208

[42] A. VANDERBAUWNEDE [1990] Subkarmonic bifurcation in equivariant systems,
preprint, Rijksuniversiteit Gent, Belgium
[43) A. VANDERBAUWHEDE & G. 100ss [1990]) Center manifold theory in infinite di-

mensions, preprint, Université de Nice

[44] J. WATSON [1962]) On spatially-growing finite disturbances in planc Poiseuille flow,
J. Fluid Mech. 14, pp. 211-21

[45] A. A. WraYy & M. Y. HussAINI [1984] Numerical experiments in boundary layer
stability, Proc. Royal Soc. London A392, pp. 373-89




